
Optimized Software
Implementations of CRYSTALS-Kyber,
NTRU, and Saber Using NEON-Based
Special Instructions of ARMv8
Cryptographic Engineering Research Group @ George Mason University
Duc Tri Nguyen and Kris Gaj

Introduction

2

- NEON is an alternative name for Advanced
Single Instruction Multiple Data (ASIMD)
extension to the ARM Instruction Set
Architecture, mandatory since ARMv7-A.

- NEON provides 32x128-bit vector registers.
Compared with Single Instruction Single Data
(SISD), ASIMD can have ideal speed-up in the
range 2..16 (for 64..8-bit operands).

Apple M1:
part of new MacBook Air, MacBook Pro,

Mac Mini, iMac, and iPad Pro

Broadcom SoC, BCM2711:
part of the Raspberry Pi 4

single-board computer

Introduction

Intel/AMD

DSP AVX2NEON

Speed/Power

- Most software implementations
of PQC candidates on:
§ Intel/AMD (w/ AVX2 extension)
§ Cortex-M4 (w/ DSP extension)1

- Lack of NEON implementations on
ARMv7 and ARMv8 architectures

ARM

1 M. J. Kannwischer, J. Rijneveld, P. Schwabe, and K. Stoffelen, pqm4 - Post-quantum crypto library
for the ARM Cortex-M4, https://github.com/mupq/pqm4 3

Introduction

Intel/AMD

DSP AVX2NEON

Speed/Power

- Our goal is to fill the gap between
low-power embedded processors and
high-performance x86-64 platforms.

- We developed constant-time,
optimized ARMv8 implementations
of 3 KEM finalists:

§ CRYSTALS-Kyber
§ NTRU
§ Saber

ARM

4

Polynomial Multiplication

Typically:

k=2: Karatsuba : O(n1.58)

k=3: Toom-3 : O(n1.46)

k=4: Toom-4 : O(n1.40)
5

Optimal Choice of Algorithms

6 Optimized Software Implementations Using NEON-Based Special Instructions

based on CPA public-key encryption scheme with a slightly tweaked FO transform [18].
Improving performance of public-key encryption helps speed up KEM as well. Kyber
public and private keys are assumed to be already in NTT domain. This feature clearly
di�erentiates Kyber from Saber and NTRU. The multiplication in the NTT domain has
the best time complexity O(n log n).

The algorithms for encryption and decryption are shown in Algorithms 5 and 6. The
GenMatrix operation generates the matrix Â of the dimensions k ◊ k, where k œ {2, 3, 4}.
Additionally, GenMatrix enables parallel SHA-3 sampling for multiple rows and columns,
with the parameters seedA, i, and j. Sample

B
are samples from a binomial distribution,

similar to GenMatrix. Unlike Saber, Sample
B

and GenMatrix in Kyber enable parallel
computation. More details can be found in the Kyber specification [19].

3.4 Polynomial Multiplication

In this section, we introduce polynomial multiplication algorithms, arranged from the
worst to the best in terms of time complexity. The goal is to compute the product of two
polynomials in Equation 1 as fast as possible.

C(x) = A(x) ◊ B(x) =
n≠1ÿ

i=0
aix

i ◊
n≠1ÿ

i=0
bix

i (1)

Schoolbook Toom ≠ Cook NTT

O(n2) O(n
log(2k≠1)

log k) O(n log n)

3.4.1 Schoolbook Multiplication

Schoolbook is the simplest form of multiplication. The algorithm consists of two loops
with the O(n) space and O(n2) time complexity, as shown in Equation 2.

C(x) =
2n≠2ÿ

k=0
ckx

k =
n≠1ÿ

i=0

n≠1ÿ

j=0
aibjx

(i+j) (2)

3.4.2 Toom-Cook and Karatsuba

Toom-Cook and Karatsuba are multiplication algorithms that di�er greatly in terms of
computational cost versus the most straightforward schoolbook method when the degree
n is large. Karatsuba [20] is a special case of Toom-Cook [21, 22] (Toom-k). Generally,
both algorithms consist of five steps: splitting, evaluation, point-wise multiplication,
interpolation, and recomposition. An overview of polynomial multiplication using Toom-k
is shown in Algorithm 7. Splitting and recomposition are often merged into evaluation
and interpolation, respectively.

Examples of these steps in Toom-4 are shown in Equations 3, 4, 5, and 6, respectively.
In the splitting step, Toom-k splits the polynomial A(x) of the degree n ≠ 1 (containing n

coe�cients) into k polynomials with the degree n/k ≠ 1 and n/k coe�cients each. These
polynomials become coe�cients of another polynomial denoted as A(X). Then, A(X) is
evaluated for 2k ≠ 1 di�erent values of X = x

n/k. Below, we split A(x) and evaluate A(X)
as an example.

CRYSTALS-KYBERNTRU

Saber
?

Based on the analysis of algorithms, their parameters, and AVX2 implementations
for the 3 lattice-based KEMs finalists

6

5 Steps of Toom-4

1. Splitting

2. Evaluation 3. Pointwise
multiplication

Nguyen et al. 7

S

WWWWWWWWWWU

A(0)
A(1)
A(-1)
A(1

2)
A(- 1

2)
A(2)
A(Œ)

T

XXXXXXXXXXV

=

S

WWWWWWWWWWU

0 0 0 1
1 1 1 1
-1 1 -1 1
1
8

1
4

1
2 1

- 1
8

1
4 - 1

2 1
8 4 2 1
1 0 0 0

T

XXXXXXXXXXV

·

S

WWWU

–3
–2
–1
–0

T

XXXV
(4)

S

WWWWWWWWWWU

C(0)
C(1)
C(-1)
C(1

2)
C(- 1

2)
C(2)
C(Œ)

T

XXXXXXXXXXV

=

S

WWWWWWWWWWU

A(0)
A(1)
A(-1)
A(1

2)
A(- 1

2)
A(2)
A(Œ)

T

XXXXXXXXXXV

·

S

WWWWWWWWWWU

B(0)
B(1)
B(-1)
B(1

2)
B(- 1

2)
B(2)
B(Œ)

T

XXXXXXXXXXV

(5)

A(x) = x
3n
4

n≠1ÿ

i= 3n
4

aix
(i≠ 3n

4) + · · · + x
n
4

2n
4 ≠1ÿ

i= n
4

aix
(i≠ n

4) +
n
4 ≠1ÿ

i=0
aix

i

= –3 · x
3n
4 + –2 · x

2n
4 + –1 · x

n
4 + –0

=∆ A(X) = –3 · X 3 + –2 · X 2 + –1 · X + –0, where X = x
n
4 . (3)

Toom-k evaluates A(X) and B(X) in at least 2k ≠ 1 points [p0, p1, . . . p2k≠2], starting
with two trivial points {0, Œ}, and extending them with {±1, ± 1

2 , ±2, . . . } for the ease of
computations. Karatsuba, Toom-3, and Toom-4 evaluate in {0, 1, Œ}, {0, ±1, ≠2, Œ} and
{0, ±1, ± 1

2 , 2, Œ}, respectively.
The pointwise multiplication computes C(pi) = A(pi) ú B(pi) for all values of pi in

2k ≠ 1 evaluation points. If the sizes of polynomials are small, then these multiplications
can be performed directly using the Schoolbook algorithm. Otherwise, additional layers of
Toom-k should be applied to further reduce the cost of multiplication.

The inverse operation for evaluation is interpolation. Given evaluation points C(pi)
for i œ [0, . . . 2k ≠ 2], the optimal interpolation presented by Borato et al. [23] yields the
shortest inversion-sequence for up to Toom-5.

We adopt the following formulas for the Toom-4 interpolation, based on the thesis of F.
Mansouri [24], with slight modifications:S

WWWWWWWWWWWWU

◊0

◊1

◊2

◊3

◊4

◊5

◊6

T

XXXXXXXXXXXXV

=

S

WWWWWWWWWWWWU

0 0 0 0 0 0 1
1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1
1

64
1

32
1

16
1
8

1
4

1
2 1

1
64 - 1

32
1

16 - 1
8

1
4 - 1

2 1
64 32 16 8 4 2 1
1 0 0 0 0 0 0

T

XXXXXXXXXXXXV

≠1

·

S

WWWWWWWWWWWWU

C(0)
C(1)
C(-1)
C(1

2)
C(- 1

2)
C(2)
C(Œ)

T

XXXXXXXXXXXXV

where C(X) =
6ÿ

i=0
◊iX i (6)

In summary, the overview of a polynomial multiplication using Toom-k is shown in Al-
gorithm 7, where splitting and recomposition are merged into evaluation and interpolation.

Algorithm 7: Toom-k: Product of two polynomials A(x) and B(x)
Input: Two polynomials A(x) and B(x)
Output: C(x) = A(x) ◊ B(x)

1 [A0(X), . . . A2k≠2(X)] Ω Evaluation of A(x)
2 [B0(X), . . . B2k≠2(X)] Ω Evaluation of B(x)
3 for i Ω 0 to 2k ≠ 2 do
4 Ci(X) = Ai(X) ú Bi(X)
5 C(x) Ω Interpolation of [C0(X), . . . C2k≠2(X)]

Nguyen et al. 7

S

WWWWWWWWWWU

A(0)
A(1)
A(-1)
A(1

2)
A(- 1

2)
A(2)
A(Œ)

T

XXXXXXXXXXV

=

S

WWWWWWWWWWU

0 0 0 1
1 1 1 1
-1 1 -1 1
1
8

1
4

1
2 1

- 1
8

1
4 - 1

2 1
8 4 2 1
1 0 0 0

T

XXXXXXXXXXV

·

S

WWWU

–3
–2
–1
–0

T

XXXV
(4)

S

WWWWWWWWWWU

C(0)
C(1)
C(-1)
C(1

2)
C(- 1

2)
C(2)
C(Œ)

T

XXXXXXXXXXV

=

S

WWWWWWWWWWU

A(0)
A(1)
A(-1)
A(1

2)
A(- 1

2)
A(2)
A(Œ)

T

XXXXXXXXXXV

·

S

WWWWWWWWWWU

B(0)
B(1)
B(-1)
B(1

2)
B(- 1

2)
B(2)
B(Œ)

T

XXXXXXXXXXV

(5)

A(x) = x
3n
4

n≠1ÿ

i= 3n
4

aix
(i≠ 3n

4) + · · · + x
n
4

2n
4 ≠1ÿ

i= n
4

aix
(i≠ n

4) +
n
4 ≠1ÿ

i=0
aix

i

= –3 · x
3n
4 + –2 · x

2n
4 + –1 · x

n
4 + –0

=∆ A(X) = –3 · X 3 + –2 · X 2 + –1 · X + –0, where X = x
n
4 . (3)

Toom-k evaluates A(X) and B(X) in at least 2k ≠ 1 points [p0, p1, . . . p2k≠2], starting
with two trivial points {0, Œ}, and extending them with {±1, ± 1

2 , ±2, . . . } for the ease of
computations. Karatsuba, Toom-3, and Toom-4 evaluate in {0, 1, Œ}, {0, ±1, ≠2, Œ} and
{0, ±1, ± 1

2 , 2, Œ}, respectively.
The pointwise multiplication computes C(pi) = A(pi) ú B(pi) for all values of pi in

2k ≠ 1 evaluation points. If the sizes of polynomials are small, then these multiplications
can be performed directly using the Schoolbook algorithm. Otherwise, additional layers of
Toom-k should be applied to further reduce the cost of multiplication.

The inverse operation for evaluation is interpolation. Given evaluation points C(pi)
for i œ [0, . . . 2k ≠ 2], the optimal interpolation presented by Borato et al. [23] yields the
shortest inversion-sequence for up to Toom-5.

We adopt the following formulas for the Toom-4 interpolation, based on the thesis of F.
Mansouri [24], with slight modifications:S

WWWWWWWWWWWWU

◊0

◊1

◊2

◊3

◊4

◊5

◊6

T

XXXXXXXXXXXXV

=

S

WWWWWWWWWWWWU

0 0 0 0 0 0 1
1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1
1

64
1

32
1

16
1
8

1
4

1
2 1

1
64 - 1

32
1

16 - 1
8

1
4 - 1

2 1
64 32 16 8 4 2 1
1 0 0 0 0 0 0

T

XXXXXXXXXXXXV

≠1

·

S

WWWWWWWWWWWWU

C(0)
C(1)
C(-1)
C(1

2)
C(- 1

2)
C(2)
C(Œ)

T

XXXXXXXXXXXXV

where C(X) =
6ÿ

i=0
◊iX i (6)

In summary, the overview of a polynomial multiplication using Toom-k is shown in Al-
gorithm 7, where splitting and recomposition are merged into evaluation and interpolation.

Algorithm 7: Toom-k: Product of two polynomials A(x) and B(x)
Input: Two polynomials A(x) and B(x)
Output: C(x) = A(x) ◊ B(x)

1 [A0(X), . . . A2k≠2(X)] Ω Evaluation of A(x)
2 [B0(X), . . . B2k≠2(X)] Ω Evaluation of B(x)
3 for i Ω 0 to 2k ≠ 2 do
4 Ci(X) = Ai(X) ú Bi(X)
5 C(x) Ω Interpolation of [C0(X), . . . C2k≠2(X)]

Nguyen et al. 7

S

WWWWWWWWWWU

A(0)
A(1)
A(-1)
A(1

2)
A(- 1

2)
A(2)
A(Œ)

T

XXXXXXXXXXV

=

S

WWWWWWWWWWU

0 0 0 1
1 1 1 1
-1 1 -1 1
1
8

1
4

1
2 1

- 1
8

1
4 - 1

2 1
8 4 2 1
1 0 0 0

T

XXXXXXXXXXV

·

S

WWWU

–3
–2
–1
–0

T

XXXV
(4)

S

WWWWWWWWWWU

C(0)
C(1)
C(-1)
C(1

2)
C(- 1

2)
C(2)
C(Œ)

T

XXXXXXXXXXV

=

S

WWWWWWWWWWU

A(0)
A(1)
A(-1)
A(1

2)
A(- 1

2)
A(2)
A(Œ)

T

XXXXXXXXXXV

·

S

WWWWWWWWWWU

B(0)
B(1)
B(-1)
B(1

2)
B(- 1

2)
B(2)
B(Œ)

T

XXXXXXXXXXV

(5)

A(x) = x
3n
4

n≠1ÿ

i= 3n
4

aix
(i≠ 3n

4) + · · · + x
n
4

2n
4 ≠1ÿ

i= n
4

aix
(i≠ n

4) +
n
4 ≠1ÿ

i=0
aix

i

= –3 · x
3n
4 + –2 · x

2n
4 + –1 · x

n
4 + –0

=∆ A(X) = –3 · X 3 + –2 · X 2 + –1 · X + –0, where X = x
n
4 . (3)

Toom-k evaluates A(X) and B(X) in at least 2k ≠ 1 points [p0, p1, . . . p2k≠2], starting
with two trivial points {0, Œ}, and extending them with {±1, ± 1

2 , ±2, . . . } for the ease of
computations. Karatsuba, Toom-3, and Toom-4 evaluate in {0, 1, Œ}, {0, ±1, ≠2, Œ} and
{0, ±1, ± 1

2 , 2, Œ}, respectively.
The pointwise multiplication computes C(pi) = A(pi) ú B(pi) for all values of pi in

2k ≠ 1 evaluation points. If the sizes of polynomials are small, then these multiplications
can be performed directly using the Schoolbook algorithm. Otherwise, additional layers of
Toom-k should be applied to further reduce the cost of multiplication.

The inverse operation for evaluation is interpolation. Given evaluation points C(pi)
for i œ [0, . . . 2k ≠ 2], the optimal interpolation presented by Borato et al. [23] yields the
shortest inversion-sequence for up to Toom-5.

We adopt the following formulas for the Toom-4 interpolation, based on the thesis of F.
Mansouri [24], with slight modifications:S

WWWWWWWWWWWWU

◊0

◊1

◊2

◊3

◊4

◊5

◊6

T

XXXXXXXXXXXXV

=

S

WWWWWWWWWWWWU

0 0 0 0 0 0 1
1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1
1

64
1

32
1

16
1
8

1
4

1
2 1

1
64 - 1

32
1

16 - 1
8

1
4 - 1

2 1
64 32 16 8 4 2 1
1 0 0 0 0 0 0

T

XXXXXXXXXXXXV

≠1

·

S

WWWWWWWWWWWWU

C(0)
C(1)
C(-1)
C(1

2)
C(- 1

2)
C(2)
C(Œ)

T

XXXXXXXXXXXXV

where C(X) =
6ÿ

i=0
◊iX i (6)

In summary, the overview of a polynomial multiplication using Toom-k is shown in Al-
gorithm 7, where splitting and recomposition are merged into evaluation and interpolation.

Algorithm 7: Toom-k: Product of two polynomials A(x) and B(x)
Input: Two polynomials A(x) and B(x)
Output: C(x) = A(x) ◊ B(x)

1 [A0(X), . . . A2k≠2(X)] Ω Evaluation of A(x)
2 [B0(X), . . . B2k≠2(X)] Ω Evaluation of B(x)
3 for i Ω 0 to 2k ≠ 2 do
4 Ci(X) = Ai(X) ú Bi(X)
5 C(x) Ω Interpolation of [C0(X), . . . C2k≠2(X)]

7

5 Steps of Toom-4

4. Interpolation

5. Merging

Nguyen et al. 7

S

WWWWWWWWWWU

A(0)
A(1)
A(-1)
A(1

2)
A(- 1

2)
A(2)
A(Œ)

T

XXXXXXXXXXV

=

S

WWWWWWWWWWU

0 0 0 1
1 1 1 1
-1 1 -1 1
1
8

1
4

1
2 1

- 1
8

1
4 - 1

2 1
8 4 2 1
1 0 0 0

T

XXXXXXXXXXV

·

S

WWWU

–3
–2
–1
–0

T

XXXV
(4)

S

WWWWWWWWWWU

C(0)
C(1)
C(-1)
C(1

2)
C(- 1

2)
C(2)
C(Œ)

T

XXXXXXXXXXV

=

S

WWWWWWWWWWU

A(0)
A(1)
A(-1)
A(1

2)
A(- 1

2)
A(2)
A(Œ)

T

XXXXXXXXXXV

·

S

WWWWWWWWWWU

B(0)
B(1)
B(-1)
B(1

2)
B(- 1

2)
B(2)
B(Œ)

T

XXXXXXXXXXV

(5)

A(x) = x
3n
4

n≠1ÿ

i= 3n
4

aix
(i≠ 3n

4) + · · · + x
n
4

2n
4 ≠1ÿ

i= n
4

aix
(i≠ n

4) +
n
4 ≠1ÿ

i=0
aix

i

= –3 · x
3n
4 + –2 · x

2n
4 + –1 · x

n
4 + –0

=∆ A(X) = –3 · X 3 + –2 · X 2 + –1 · X + –0, where X = x
n
4 . (3)

Toom-k evaluates A(X) and B(X) in at least 2k ≠ 1 points [p0, p1, . . . p2k≠2], starting
with two trivial points {0, Œ}, and extending them with {±1, ± 1

2 , ±2, . . . } for the ease of
computations. Karatsuba, Toom-3, and Toom-4 evaluate in {0, 1, Œ}, {0, ±1, ≠2, Œ} and
{0, ±1, ± 1

2 , 2, Œ}, respectively.
The pointwise multiplication computes C(pi) = A(pi) ú B(pi) for all values of pi in

2k ≠ 1 evaluation points. If the sizes of polynomials are small, then these multiplications
can be performed directly using the Schoolbook algorithm. Otherwise, additional layers of
Toom-k should be applied to further reduce the cost of multiplication.

The inverse operation for evaluation is interpolation. Given evaluation points C(pi)
for i œ [0, . . . 2k ≠ 2], the optimal interpolation presented by Borato et al. [23] yields the
shortest inversion-sequence for up to Toom-5.

We adopt the following formulas for the Toom-4 interpolation, based on the thesis of F.
Mansouri [24], with slight modifications:S

WWWWWWWWWWWWU

◊0

◊1

◊2

◊3

◊4

◊5

◊6

T

XXXXXXXXXXXXV

=

S

WWWWWWWWWWWWU

0 0 0 0 0 0 1
1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1
1

64
1

32
1

16
1
8

1
4

1
2 1

1
64 - 1

32
1

16 - 1
8

1
4 - 1

2 1
64 32 16 8 4 2 1
1 0 0 0 0 0 0

T

XXXXXXXXXXXXV

≠1

·

S

WWWWWWWWWWWWU

C(0)
C(1)
C(-1)
C(1

2)
C(- 1

2)
C(2)
C(Œ)

T

XXXXXXXXXXXXV

where C(X) =
6ÿ

i=0
◊iX i (6)

In summary, the overview of a polynomial multiplication using Toom-k is shown in Al-
gorithm 7, where splitting and recomposition are merged into evaluation and interpolation.

Algorithm 7: Toom-k: Product of two polynomials A(x) and B(x)
Input: Two polynomials A(x) and B(x)
Output: C(x) = A(x) ◊ B(x)

1 [A0(X), . . . A2k≠2(X)] Ω Evaluation of A(x)
2 [B0(X), . . . B2k≠2(X)] Ω Evaluation of B(x)
3 for i Ω 0 to 2k ≠ 2 do
4 Ci(X) = Ai(X) ú Bi(X)
5 C(x) Ω Interpolation of [C0(X), . . . C2k≠2(X)]

Nguyen et al. 7

S

WWWWWWWWWWU

A(0)
A(1)
A(-1)
A(1

2)
A(- 1

2)
A(2)
A(Œ)

T

XXXXXXXXXXV

=

S

WWWWWWWWWWU

0 0 0 1
1 1 1 1
-1 1 -1 1
1
8

1
4

1
2 1

- 1
8

1
4 - 1

2 1
8 4 2 1
1 0 0 0

T

XXXXXXXXXXV

·

S

WWWU

–3
–2
–1
–0

T

XXXV
(4)

S

WWWWWWWWWWU

C(0)
C(1)
C(-1)
C(1

2)
C(- 1

2)
C(2)
C(Œ)

T

XXXXXXXXXXV

=

S

WWWWWWWWWWU

A(0)
A(1)
A(-1)
A(1

2)
A(- 1

2)
A(2)
A(Œ)

T

XXXXXXXXXXV

·

S

WWWWWWWWWWU

B(0)
B(1)
B(-1)
B(1

2)
B(- 1

2)
B(2)
B(Œ)

T

XXXXXXXXXXV

(5)

A(x) = x
3n
4

n≠1ÿ

i= 3n
4

aix
(i≠ 3n

4) + · · · + x
n
4

2n
4 ≠1ÿ

i= n
4

aix
(i≠ n

4) +
n
4 ≠1ÿ

i=0
aix

i

= –3 · x
3n
4 + –2 · x

2n
4 + –1 · x

n
4 + –0

=∆ A(X) = –3 · X 3 + –2 · X 2 + –1 · X + –0, where X = x
n
4 . (3)

Toom-k evaluates A(X) and B(X) in at least 2k ≠ 1 points [p0, p1, . . . p2k≠2], starting
with two trivial points {0, Œ}, and extending them with {±1, ± 1

2 , ±2, . . . } for the ease of
computations. Karatsuba, Toom-3, and Toom-4 evaluate in {0, 1, Œ}, {0, ±1, ≠2, Œ} and
{0, ±1, ± 1

2 , 2, Œ}, respectively.
The pointwise multiplication computes C(pi) = A(pi) ú B(pi) for all values of pi in

2k ≠ 1 evaluation points. If the sizes of polynomials are small, then these multiplications
can be performed directly using the Schoolbook algorithm. Otherwise, additional layers of
Toom-k should be applied to further reduce the cost of multiplication.

The inverse operation for evaluation is interpolation. Given evaluation points C(pi)
for i œ [0, . . . 2k ≠ 2], the optimal interpolation presented by Borato et al. [23] yields the
shortest inversion-sequence for up to Toom-5.

We adopt the following formulas for the Toom-4 interpolation, based on the thesis of F.
Mansouri [24], with slight modifications:S

WWWWWWWWWWWWU

◊0

◊1

◊2

◊3

◊4

◊5

◊6

T

XXXXXXXXXXXXV

=

S

WWWWWWWWWWWWU

0 0 0 0 0 0 1
1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1
1

64
1

32
1

16
1
8

1
4

1
2 1

1
64 - 1

32
1

16 - 1
8

1
4 - 1

2 1
64 32 16 8 4 2 1
1 0 0 0 0 0 0

T

XXXXXXXXXXXXV

≠1

·

S

WWWWWWWWWWWWU

C(0)
C(1)
C(-1)
C(1

2)
C(- 1

2)
C(2)
C(Œ)

T

XXXXXXXXXXXXV

where C(X) =
6ÿ

i=0
◊iX i (6)

In summary, the overview of a polynomial multiplication using Toom-k is shown in Al-
gorithm 7, where splitting and recomposition are merged into evaluation and interpolation.

Algorithm 7: Toom-k: Product of two polynomials A(x) and B(x)
Input: Two polynomials A(x) and B(x)
Output: C(x) = A(x) ◊ B(x)

1 [A0(X), . . . A2k≠2(X)] Ω Evaluation of A(x)
2 [B0(X), . . . B2k≠2(X)] Ω Evaluation of B(x)
3 for i Ω 0 to 2k ≠ 2 do
4 Ci(X) = Ai(X) ú Bi(X)
5 C(x) Ω Interpolation of [C0(X), . . . C2k≠2(X)]

8

Toom-Cook: Splitting & Evaluation

9

Karatsuba

3 polynomials
N/2 coefficients each

1 polynomial
N coefficients

K2

N

3·N/2

Toom-3

5 polynomials
N/3 coefficients each

1 polynomial
N coefficients

TC3

N

5·N/3

Toom-4

7 polynomials
N/4 coefficients each

1 polynomial
N coefficients

TC4

N

7·N/4

Toom-Cook Implementation: Saber

Schoolbook 16 x 16: Pointwise Multiplication

Nguyen et al. 11

256

7 x 64

TC4

63 x 16

63 x 32

K2 x K2

63 x 16

SIMD
Batch
Mul
64

7 x 128

K2 x K2

512

TC4

SABER

864

3 x 432

K2

3 x 5 x 144

3 x 125 x 32

TC3

3 x 5 x 288

3 x 863

TC3

NTRU-HPS821

TC3 x TC3

SIMD
Batch
Mul
128

1728

3 x 125 x 16

3 x 125 x 16

TC3 x TC3

K2

Figure 1: The Toom-Cook implementation strategy for Saber and NTRU-HPS821

notion (k1, k2, . . .) for the Toom-k strategy at each layer. The Toom-k strategy for the
polynomial of length n follows four simple rules:

1. Utilize available registers by processing as many coe�cients as possible.

2. Schoolbook size should be close to 16.

3. The number of polynomials in the batch Schoolbook should be close to a multiple of
8.

4. The Toom-k strategy must generate a minimum number of polynomials.

4.2 Saber

We follow the optimization strategy from Mera et al. [26]. We precompute evaluation and
lazy interpolation, which helps to reduce the number of evaluations and interpolations in
MatrixVectorMul from (2l

2
, l

2) to (l2+l, l), where l is (2, 3, 4) for the security levels (1, 3, 5),
respectively. We also employ the Toom-k settings (k1, k2) = (4, 4) and (k1, k2, k3) = (4, 2, 2)
for both InnerProd and MatrixVectorMul. A graphical representation of a polynomial
multiplication in Saber is shown in Fig. 1. The ø and ¿ are evaluation and interpolation,
respectively.

4.3 NTRU

In NTRU, poly_Rq_mul and poly_S3_mul are polynomial multiplications in (q, �1�n)
and (3, �n) respectively, where �1 and �n are defined in Table 2. Our poly_Rq_mul
multiplication supports (q, �1�n). In addition, we implement poly_mod_3_Phi_n on top
of poly_Rq_mul to convert to (3, �n). Thus, only the multiplication in (q, �1�n) is imple-
mented.

NTRU-HPS821. According to Table 1, we have 4 available bits from a 16-bit type. The
optimal design that meets all rules is (k1, k2, k3, k4) = (2, 3, 3, 3), as shown in Fig. 1. Using
this setting, we compute 125 schoolbook multiplications of the size 16 ◊ 16 in each batch,

Repeated for A(x) & B(x) C(x)

10

Splitting
& Evaluation

Interpolation
& Merging

Toom-Cook Implementation: NTRU-HPS821

Schoolbook 16 x 16: Pointwise Multiplication

Repeated for A(x) & B(x) C(x)

Nguyen et al. 11

256

7 x 64

TC4

63 x 16

63 x 32

K2 x K2

63 x 16

SIMD
Batch
Mul
64

7 x 128

K2 x K2

512

TC4

SABER

864

3 x 432

K2

3 x 5 x 144

3 x 125 x 32

TC3

3 x 5 x 288

3 x 863

TC3

NTRU-HPS821

TC3 x TC3

SIMD
Batch
Mul
128

1728

3 x 125 x 16

3 x 125 x 16

TC3 x TC3

K2

Figure 1: The Toom-Cook implementation strategy for Saber and NTRU-HPS821

notion (k1, k2, . . .) for the Toom-k strategy at each layer. The Toom-k strategy for the
polynomial of length n follows four simple rules:

1. Utilize available registers by processing as many coe�cients as possible.

2. Schoolbook size should be close to 16.

3. The number of polynomials in the batch Schoolbook should be close to a multiple of
8.

4. The Toom-k strategy must generate a minimum number of polynomials.

4.2 Saber

We follow the optimization strategy from Mera et al. [26]. We precompute evaluation and
lazy interpolation, which helps to reduce the number of evaluations and interpolations in
MatrixVectorMul from (2l

2
, l

2) to (l2+l, l), where l is (2, 3, 4) for the security levels (1, 3, 5),
respectively. We also employ the Toom-k settings (k1, k2) = (4, 4) and (k1, k2, k3) = (4, 2, 2)
for both InnerProd and MatrixVectorMul. A graphical representation of a polynomial
multiplication in Saber is shown in Fig. 1. The ø and ¿ are evaluation and interpolation,
respectively.

4.3 NTRU

In NTRU, poly_Rq_mul and poly_S3_mul are polynomial multiplications in (q, �1�n)
and (3, �n) respectively, where �1 and �n are defined in Table 2. Our poly_Rq_mul
multiplication supports (q, �1�n). In addition, we implement poly_mod_3_Phi_n on top
of poly_Rq_mul to convert to (3, �n). Thus, only the multiplication in (q, �1�n) is imple-
mented.

NTRU-HPS821. According to Table 1, we have 4 available bits from a 16-bit type. The
optimal design that meets all rules is (k1, k2, k3, k4) = (2, 3, 3, 3), as shown in Fig. 1. Using
this setting, we compute 125 schoolbook multiplications of the size 16 ◊ 16 in each batch,

11

Splitting
& Evaluation

Interpolation
& Merging

Toom-Cook Implementation: NTRU and Saber

Register

Memory

Register

Memory

Register

Memory

For multiple layers of Split-Evaluate/Interpolate-Merge:
• unroll these layers to save load/store instructions

12

SIMD Batch Schoolbook Multiplication

• In order to perform a batch multiplication, a matrix of
k polynomials with k coefficients has to be transposed
before and after the multiplication

• Optimal value of k was determined to be 16

SIMD Batch
Schoolbook

MUL
k×k

Transposed
Batch

polynomials

Transposed
Batch

polynomials

Transposed
Batch polynomials

Result

13

The 8x8 Matrix Transpose Operation

14

0 1 2 3 4 5 6 70 1 2 3 4 5 6 7
V0
V1
V2
V3
V4
V5
V6
V7

Indices of Coefficients

NEON 128-bit
Registers

Polynomials

poly0
poly1
poly2
poly3
poly4
poly5
poly6
poly7

16-bit coefficients

Transpose

Indices of
Coefficients

V0
V1
V2
V3
V4
V5
V6
V7

NEON 128-bit
Registers

0
1
2
3
4
5
6
7

Polynomials

poly0 poly2 poly4 poly6
poly1 poly3 poly5 poly7

• The transpose operation enables performing the same operation on the same
coefficients of 8 polynomials in parallel

• The 8 x 8 matrix transpose requires 27 out of 32 NEON 128-bit registers

• 16 x 16 matrix transpose requires memory
• To transpose 16 x 16 efficiently, transpose only 8 x 8 matrices and

remember the location of each 8 x 8 block 15

The 16x16 Matrix Transpose Operation

A B

C D

AT BT

CT DT

AT CT

BT DT

Performed
Operation

Desired
Output

Achieved
by remembering

the effective position
of each 8x8 block

8

8

Number Theoretic Transform

where 𝐴 𝑥 , 𝐵 𝑥 , 𝐶 𝑥 𝜖 𝑍! ⁄𝑥 𝑥" + 1 𝑎𝑛𝑑 𝑞 ≡ 1 𝑚𝑜𝑑 2𝑛

Complete NTT

16

Number Theoretic TransformExample 16-point Radix-4 FFT Analysis

39

RAM1
RAM2
RAM3
RAM4

INTT over the ring ℤ 𝑥 /< 𝑥 + 1 >

15

Because 𝛾 ≡ 휔 𝑚𝑜𝑑 𝑞 ,𝑚 = 2,2 , 2 , … , 𝑛, we have

휔 𝛾 ≡ 𝛾 () ≡ 𝛾 (𝑚𝑜𝑑 𝑞), 𝑘 = 0,1, … , − 1.

Only 𝑛 different values need to be pre-computed and stored.

Example of levels

Example of reordering indices
between levels 17

NTT Implementation: CRYSTALS-Kyber and Saber

- Utilize Load and Interleave instructions for Level 0-1
- Use transpose instructions for Level 2-3
- Twist store registers in Level 4

18

NTT Implementation: CRYSTALS-Kyber and Saber

5

19

NTT Implementation: CRYSTALS-Kyber and Saber

5

5

6

6

- Apply to NTT/FFT based
submissions

- 16-bit coefficients can
reach level 6

- 32-bit coefficients can
reach level 5.

20

NTT Implementation: Multiply and Modular Reduction

- NEON dependency chain: vuzp and vmull (vector unzip and vector multiply)
- Lack of an instruction similar to AVX2 vpmulhw:

Multiply Packed Unsigned Word Integers and Store the high 16-bits of Result
- Compared to AVX2, our implementation uses additionally

2 MUL and 3 UNZIP instructions
21

vpmulhw
vpmullw
vpmulhw

Benchmarking Methodology

Apple M1 System on Chip Firestorm core, 3.2 GHz1, MacBook Air
Broadcom BCM2711 System on Chip Cortex-A72 core, 1.5 GHz, Raspberry Pi 4
Operating System MacOS 11.4, Arch Linux (March 25, 2021)
Compiler clang 12.0 (MacBook Air), clang 11.1 (Raspberry Pi 4)
Compiler Options -O3 -mtune=native -fomit-frame-pointer
Cycles count on Cortex-A72 PAPI2

Cycles count on Apple M1 Modified3 from Dougall Johnson’s work4

Iterations 10,000,000 on Apple M1 to force CPU to run on
high-performance “FireStorm” core;
1,000,000 otherwise

1 https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested
2 D. Terpstra, H. Jagode, H. You, and J. Dongarra, “Collecting Performance Data with PAPI-C,”
in Tools for High Performance Computing, 2009

3 https://github.com/GMUCERG/PQC_NEON/blob/main/neon/kyber/m1cycles.c
4 https://github.com/dougallj 22

https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested
https://github.com/GMUCERG/PQC_NEON/blob/main/neon/kyber/m1cycles.c
https://github.com/dougallj

Toom-Cook vs. NTT for Saber

Dependencies degrade performance of NTT on high-performance processors.
On Apple M1, Toom-Cook better by 13-21%

On Cortex-A72 a tie.
We select Toom-Cook for the implementation of Saber. 23

All values in cycles

Ranking baseline C implementations

Encapsulation and Decapsulation ranking of baseline C implementations:
1. Saber
2. CRYSTALS-Kyber
3. NTRU (Levels 1 & 3 only)
Consistent between Cortex-A72 and Apple M1.

24

Ranking: NEON implementation

Decapsulation ranking of NEON implementations at Levels 1, 3 and 5
Encapsulation ranking of NEON implementations at Level 3 and 5:
1. CRYSTALS-Kyber
2. Saber
3. NTRU (Levels 1 & 3 only)
Consistent between Cortex-A72 and Apple M1. 25

Exception: Encapsulation at Level 1
1. NTRU
2. CRYSTALS-Kyber
3. Saber

Ranking: C versus NEON

Why do the rankings of Saber and CRYSTALS-Kyber switch places between
the baseline C and NEON implementations?

Answer: Performance of polynomial multiplication in vector by vector and
matrix by vector multiplications

26

Saber vs. Kyber

27

NEON vs. Baseline Speed-Up

28

16 Optimized Software Implementations Using NEON-Based Special Instructions

Algorithm ref (kc) neon (kc) avx2 (kc) ref/neon avx2/neon
E D E D E D E D E D

lightsaber 50.9 54.9 37.2 35.3 41.9 42.2 1.37 1.55 1.13 1.19
kyber512 75.7 89.5 32.6 29.4 28.4 22.6 2.33 3.04 0.87 0.77
ntru-hps677 183.1 430.4 60.1 54.6 26.0 45.7 3.05 7.89 0.43 0.84
ntru-hrss701 152.4 439.9 22.8 60.8 20.4 47.7 6.68 7.24 0.90 0.78
saber 90.4 96.2 59.9 58.0 70.9 70.7 1.51 1.66 1.18 1.22
kyber768 119.8 137.8 49.2 45.7 43.4 35.2 2.43 3.02 0.88 0.77
ntru-hps821 245.3 586.5 75.7 69.0 29.9 57.3 3.24 8.49 0.39 0.83
firesaber 140.9 150.8 87.9 86.7 103.3 103.7 1.60 1.74 1.18 1.20
kyber1024 175.4 198.4 71.6 67.1 63.0 53.1 2.45 2.96 0.88 0.79

Table 4: Execution time of Encapsulation and Decapsulation for three security levels.
ref and neon: results for Apple M1. avx2: results for AMD EPYC 7742. kc-kilocycles.

The only algorithm for which the NEON implementation on Apple M1 takes fewer
clock cycles than the AVX2 implementation on AMD EPYC 7742 is Saber. The speed-up
of Apple M1 over this AMD processor varies between 1.13 and 1.22, depending on the
operation and the security level.
Rankings. Based on Table 5, the ranking of C only implementations on Apple M1
is consistently 1. Saber, 2. Kyber, 3. NTRU (with the exception that NTRU is not
represented at level 5). The advantage of Saber over Kyber is relatively small (by a factor of
1.24-1.49 for encapsulation and 1.31-1.63 for decapsulation). This advantage decreases for
higher security levels. The advantage of Saber over NTRU is more substantial, 2.71-3.00 for
encapsulation and 6.10-8.01 for decapsulation. This advantage decreases between security
levels 1 and 3.

For NEON implementations, running on Apple M1, the rankings change substantially,
as shown in Table 6. For encapsulation at level 1, the ranking becomes 1. NTRU, 2.
Kyber, 3. Saber, i.e., reversed compared to pure C implementations. For all levels and
both major operations, Kyber and Saber swap places. At the same time, the di�erences
between Kyber and Saber do not exceed 29% and slightly increase for higher security
levels.

The rankings for pure C implementations do not change when a high-speed core of
Apple M1 is replaced by the Cortex-A72 core, as shown in Table 7. Additionally, the
di�erences between Saber and Kyber become even smaller.

The ranking of NEON implementations also does not change between Apple M1 and
Cortex-A72, as shown in Table 8. However, at level 1, NTRU is almost in tie with Kyber.
For all other cases, the advantage of Kyber increases as compared to the rankings for
Apple M1.

Finally, in Table 9, the rankings for AVX2 implementations running on the AMD
EPYC 7742 core are presented. For encapsulation, at levels 1 and 3, the rankings are
1. NTRU, 2. Kyber, 3. Saber. Compared to the NEON implementations, the primary
di�erence is the no. 1 position of NTRU at level 3. For decapsulation, the rankings are
identical at all three security levels. The advantage of Kyber over Saber is higher than for
NEON implementations.
NTT implementation. In Table 10, the speed-ups of neon vs. ref are reported for the
forward and inverse NTT of Kyber, running on Cortex-A72. These speed-ups are 5.77
and 7.54 for NTT and inverse NTT, respectively. Both speed-ups are substantially higher
than for the entire implementation of Kyber, as reported in Table 4. There is no o�cial
NTT-based reference implementation of Saber released yet. Therefore, we analyzed cycle

16 Optimized Software Implementations Using NEON-Based Special Instructions

Algorithm ref (kc) neon (kc) avx2 (kc) ref/neon avx2/neon
E D E D E D E D E D

lightsaber 50.9 54.9 37.2 35.3 41.9 42.2 1.37 1.55 1.13 1.19
kyber512 75.7 89.5 32.6 29.4 28.4 22.6 2.33 3.04 0.87 0.77
ntru-hps677 183.1 430.4 60.1 54.6 26.0 45.7 3.05 7.89 0.43 0.84
ntru-hrss701 152.4 439.9 22.8 60.8 20.4 47.7 6.68 7.24 0.90 0.78
saber 90.4 96.2 59.9 58.0 70.9 70.7 1.51 1.66 1.18 1.22
kyber768 119.8 137.8 49.2 45.7 43.4 35.2 2.43 3.02 0.88 0.77
ntru-hps821 245.3 586.5 75.7 69.0 29.9 57.3 3.24 8.49 0.39 0.83
firesaber 140.9 150.8 87.9 86.7 103.3 103.7 1.60 1.74 1.18 1.20
kyber1024 175.4 198.4 71.6 67.1 63.0 53.1 2.45 2.96 0.88 0.79

Table 4: Execution time of Encapsulation and Decapsulation for three security levels.
ref and neon: results for Apple M1. avx2: results for AMD EPYC 7742. kc-kilocycles.

The only algorithm for which the NEON implementation on Apple M1 takes fewer
clock cycles than the AVX2 implementation on AMD EPYC 7742 is Saber. The speed-up
of Apple M1 over this AMD processor varies between 1.13 and 1.22, depending on the
operation and the security level.
Rankings. Based on Table 5, the ranking of C only implementations on Apple M1
is consistently 1. Saber, 2. Kyber, 3. NTRU (with the exception that NTRU is not
represented at level 5). The advantage of Saber over Kyber is relatively small (by a factor of
1.24-1.49 for encapsulation and 1.31-1.63 for decapsulation). This advantage decreases for
higher security levels. The advantage of Saber over NTRU is more substantial, 2.71-3.00 for
encapsulation and 6.10-8.01 for decapsulation. This advantage decreases between security
levels 1 and 3.

For NEON implementations, running on Apple M1, the rankings change substantially,
as shown in Table 6. For encapsulation at level 1, the ranking becomes 1. NTRU, 2.
Kyber, 3. Saber, i.e., reversed compared to pure C implementations. For all levels and
both major operations, Kyber and Saber swap places. At the same time, the di�erences
between Kyber and Saber do not exceed 29% and slightly increase for higher security
levels.

The rankings for pure C implementations do not change when a high-speed core of
Apple M1 is replaced by the Cortex-A72 core, as shown in Table 7. Additionally, the
di�erences between Saber and Kyber become even smaller.

The ranking of NEON implementations also does not change between Apple M1 and
Cortex-A72, as shown in Table 8. However, at level 1, NTRU is almost in tie with Kyber.
For all other cases, the advantage of Kyber increases as compared to the rankings for
Apple M1.

Finally, in Table 9, the rankings for AVX2 implementations running on the AMD
EPYC 7742 core are presented. For encapsulation, at levels 1 and 3, the rankings are
1. NTRU, 2. Kyber, 3. Saber. Compared to the NEON implementations, the primary
di�erence is the no. 1 position of NTRU at level 3. For decapsulation, the rankings are
identical at all three security levels. The advantage of Kyber over Saber is higher than for
NEON implementations.
NTT implementation. In Table 10, the speed-ups of neon vs. ref are reported for the
forward and inverse NTT of Kyber, running on Cortex-A72. These speed-ups are 5.77
and 7.54 for NTT and inverse NTT, respectively. Both speed-ups are substantially higher
than for the entire implementation of Kyber, as reported in Table 4. There is no o�cial
NTT-based reference implementation of Saber released yet. Therefore, we analyzed cycle

Ranking: AVX2

For Decapsulation, the rankings across all security levels are:
1. CRYSTALS-Kyber, 2.Saber, 3. NTRU (Levels 1 & 3 only)
For Encapsulation, at levels 1 and 3, the rankings are:
1. NTRU, 2. CRYSTALS-Kyber, 3. Saber
For Encapsulation, at level 5, the ranking is:
1. CRYSTALS-Kyber, 2. Saber 29

NEON vs. AVX2 in Cycles

30

16 Optimized Software Implementations Using NEON-Based Special Instructions

Algorithm ref (kc) neon (kc) avx2 (kc) ref/neon avx2/neon
E D E D E D E D E D

lightsaber 50.9 54.9 37.2 35.3 41.9 42.2 1.37 1.55 1.13 1.19
kyber512 75.7 89.5 32.6 29.4 28.4 22.6 2.33 3.04 0.87 0.77
ntru-hps677 183.1 430.4 60.1 54.6 26.0 45.7 3.05 7.89 0.43 0.84
ntru-hrss701 152.4 439.9 22.8 60.8 20.4 47.7 6.68 7.24 0.90 0.78
saber 90.4 96.2 59.9 58.0 70.9 70.7 1.51 1.66 1.18 1.22
kyber768 119.8 137.8 49.2 45.7 43.4 35.2 2.43 3.02 0.88 0.77
ntru-hps821 245.3 586.5 75.7 69.0 29.9 57.3 3.24 8.49 0.39 0.83
firesaber 140.9 150.8 87.9 86.7 103.3 103.7 1.60 1.74 1.18 1.20
kyber1024 175.4 198.4 71.6 67.1 63.0 53.1 2.45 2.96 0.88 0.79

Table 4: Execution time of Encapsulation and Decapsulation for three security levels.
ref and neon: results for Apple M1. avx2: results for AMD EPYC 7742. kc-kilocycles.

The only algorithm for which the NEON implementation on Apple M1 takes fewer
clock cycles than the AVX2 implementation on AMD EPYC 7742 is Saber. The speed-up
of Apple M1 over this AMD processor varies between 1.13 and 1.22, depending on the
operation and the security level.
Rankings. Based on Table 5, the ranking of C only implementations on Apple M1
is consistently 1. Saber, 2. Kyber, 3. NTRU (with the exception that NTRU is not
represented at level 5). The advantage of Saber over Kyber is relatively small (by a factor of
1.24-1.49 for encapsulation and 1.31-1.63 for decapsulation). This advantage decreases for
higher security levels. The advantage of Saber over NTRU is more substantial, 2.71-3.00 for
encapsulation and 6.10-8.01 for decapsulation. This advantage decreases between security
levels 1 and 3.

For NEON implementations, running on Apple M1, the rankings change substantially,
as shown in Table 6. For encapsulation at level 1, the ranking becomes 1. NTRU, 2.
Kyber, 3. Saber, i.e., reversed compared to pure C implementations. For all levels and
both major operations, Kyber and Saber swap places. At the same time, the di�erences
between Kyber and Saber do not exceed 29% and slightly increase for higher security
levels.

The rankings for pure C implementations do not change when a high-speed core of
Apple M1 is replaced by the Cortex-A72 core, as shown in Table 7. Additionally, the
di�erences between Saber and Kyber become even smaller.

The ranking of NEON implementations also does not change between Apple M1 and
Cortex-A72, as shown in Table 8. However, at level 1, NTRU is almost in tie with Kyber.
For all other cases, the advantage of Kyber increases as compared to the rankings for
Apple M1.

Finally, in Table 9, the rankings for AVX2 implementations running on the AMD
EPYC 7742 core are presented. For encapsulation, at levels 1 and 3, the rankings are
1. NTRU, 2. Kyber, 3. Saber. Compared to the NEON implementations, the primary
di�erence is the no. 1 position of NTRU at level 3. For decapsulation, the rankings are
identical at all three security levels. The advantage of Kyber over Saber is higher than for
NEON implementations.
NTT implementation. In Table 10, the speed-ups of neon vs. ref are reported for the
forward and inverse NTT of Kyber, running on Cortex-A72. These speed-ups are 5.77
and 7.54 for NTT and inverse NTT, respectively. Both speed-ups are substantially higher
than for the entire implementation of Kyber, as reported in Table 4. There is no o�cial
NTT-based reference implementation of Saber released yet. Therefore, we analyzed cycle

16 Optimized Software Implementations Using NEON-Based Special Instructions

Algorithm ref (kc) neon (kc) avx2 (kc) ref/neon avx2/neon
E D E D E D E D E D

lightsaber 50.9 54.9 37.2 35.3 41.9 42.2 1.37 1.55 1.13 1.19
kyber512 75.7 89.5 32.6 29.4 28.4 22.6 2.33 3.04 0.87 0.77
ntru-hps677 183.1 430.4 60.1 54.6 26.0 45.7 3.05 7.89 0.43 0.84
ntru-hrss701 152.4 439.9 22.8 60.8 20.4 47.7 6.68 7.24 0.90 0.78
saber 90.4 96.2 59.9 58.0 70.9 70.7 1.51 1.66 1.18 1.22
kyber768 119.8 137.8 49.2 45.7 43.4 35.2 2.43 3.02 0.88 0.77
ntru-hps821 245.3 586.5 75.7 69.0 29.9 57.3 3.24 8.49 0.39 0.83
firesaber 140.9 150.8 87.9 86.7 103.3 103.7 1.60 1.74 1.18 1.20
kyber1024 175.4 198.4 71.6 67.1 63.0 53.1 2.45 2.96 0.88 0.79

Table 4: Execution time of Encapsulation and Decapsulation for three security levels.
ref and neon: results for Apple M1. avx2: results for AMD EPYC 7742. kc-kilocycles.

The only algorithm for which the NEON implementation on Apple M1 takes fewer
clock cycles than the AVX2 implementation on AMD EPYC 7742 is Saber. The speed-up
of Apple M1 over this AMD processor varies between 1.13 and 1.22, depending on the
operation and the security level.
Rankings. Based on Table 5, the ranking of C only implementations on Apple M1
is consistently 1. Saber, 2. Kyber, 3. NTRU (with the exception that NTRU is not
represented at level 5). The advantage of Saber over Kyber is relatively small (by a factor of
1.24-1.49 for encapsulation and 1.31-1.63 for decapsulation). This advantage decreases for
higher security levels. The advantage of Saber over NTRU is more substantial, 2.71-3.00 for
encapsulation and 6.10-8.01 for decapsulation. This advantage decreases between security
levels 1 and 3.

For NEON implementations, running on Apple M1, the rankings change substantially,
as shown in Table 6. For encapsulation at level 1, the ranking becomes 1. NTRU, 2.
Kyber, 3. Saber, i.e., reversed compared to pure C implementations. For all levels and
both major operations, Kyber and Saber swap places. At the same time, the di�erences
between Kyber and Saber do not exceed 29% and slightly increase for higher security
levels.

The rankings for pure C implementations do not change when a high-speed core of
Apple M1 is replaced by the Cortex-A72 core, as shown in Table 7. Additionally, the
di�erences between Saber and Kyber become even smaller.

The ranking of NEON implementations also does not change between Apple M1 and
Cortex-A72, as shown in Table 8. However, at level 1, NTRU is almost in tie with Kyber.
For all other cases, the advantage of Kyber increases as compared to the rankings for
Apple M1.

Finally, in Table 9, the rankings for AVX2 implementations running on the AMD
EPYC 7742 core are presented. For encapsulation, at levels 1 and 3, the rankings are
1. NTRU, 2. Kyber, 3. Saber. Compared to the NEON implementations, the primary
di�erence is the no. 1 position of NTRU at level 3. For decapsulation, the rankings are
identical at all three security levels. The advantage of Kyber over Saber is higher than for
NEON implementations.
NTT implementation. In Table 10, the speed-ups of neon vs. ref are reported for the
forward and inverse NTT of Kyber, running on Cortex-A72. These speed-ups are 5.77
and 7.54 for NTT and inverse NTT, respectively. Both speed-ups are substantially higher
than for the entire implementation of Kyber, as reported in Table 4. There is no o�cial
NTT-based reference implementation of Saber released yet. Therefore, we analyzed cycle

16 Optimized Software Implementations Using NEON-Based Special Instructions

Algorithm ref (kc) neon (kc) avx2 (kc) ref/neon avx2/neon
E D E D E D E D E D

lightsaber 50.9 54.9 37.2 35.3 41.9 42.2 1.37 1.55 1.13 1.19
kyber512 75.7 89.5 32.6 29.4 28.4 22.6 2.33 3.04 0.87 0.77
ntru-hps677 183.1 430.4 60.1 54.6 26.0 45.7 3.05 7.89 0.43 0.84
ntru-hrss701 152.4 439.9 22.8 60.8 20.4 47.7 6.68 7.24 0.90 0.78
saber 90.4 96.2 59.9 58.0 70.9 70.7 1.51 1.66 1.18 1.22
kyber768 119.8 137.8 49.2 45.7 43.4 35.2 2.43 3.02 0.88 0.77
ntru-hps821 245.3 586.5 75.7 69.0 29.9 57.3 3.24 8.49 0.39 0.83
firesaber 140.9 150.8 87.9 86.7 103.3 103.7 1.60 1.74 1.18 1.20
kyber1024 175.4 198.4 71.6 67.1 63.0 53.1 2.45 2.96 0.88 0.79

Table 4: Execution time of Encapsulation and Decapsulation for three security levels.
ref and neon: results for Apple M1. avx2: results for AMD EPYC 7742. kc-kilocycles.

The only algorithm for which the NEON implementation on Apple M1 takes fewer
clock cycles than the AVX2 implementation on AMD EPYC 7742 is Saber. The speed-up
of Apple M1 over this AMD processor varies between 1.13 and 1.22, depending on the
operation and the security level.
Rankings. Based on Table 5, the ranking of C only implementations on Apple M1
is consistently 1. Saber, 2. Kyber, 3. NTRU (with the exception that NTRU is not
represented at level 5). The advantage of Saber over Kyber is relatively small (by a factor of
1.24-1.49 for encapsulation and 1.31-1.63 for decapsulation). This advantage decreases for
higher security levels. The advantage of Saber over NTRU is more substantial, 2.71-3.00 for
encapsulation and 6.10-8.01 for decapsulation. This advantage decreases between security
levels 1 and 3.

For NEON implementations, running on Apple M1, the rankings change substantially,
as shown in Table 6. For encapsulation at level 1, the ranking becomes 1. NTRU, 2.
Kyber, 3. Saber, i.e., reversed compared to pure C implementations. For all levels and
both major operations, Kyber and Saber swap places. At the same time, the di�erences
between Kyber and Saber do not exceed 29% and slightly increase for higher security
levels.

The rankings for pure C implementations do not change when a high-speed core of
Apple M1 is replaced by the Cortex-A72 core, as shown in Table 7. Additionally, the
di�erences between Saber and Kyber become even smaller.

The ranking of NEON implementations also does not change between Apple M1 and
Cortex-A72, as shown in Table 8. However, at level 1, NTRU is almost in tie with Kyber.
For all other cases, the advantage of Kyber increases as compared to the rankings for
Apple M1.

Finally, in Table 9, the rankings for AVX2 implementations running on the AMD
EPYC 7742 core are presented. For encapsulation, at levels 1 and 3, the rankings are
1. NTRU, 2. Kyber, 3. Saber. Compared to the NEON implementations, the primary
di�erence is the no. 1 position of NTRU at level 3. For decapsulation, the rankings are
identical at all three security levels. The advantage of Kyber over Saber is higher than for
NEON implementations.
NTT implementation. In Table 10, the speed-ups of neon vs. ref are reported for the
forward and inverse NTT of Kyber, running on Cortex-A72. These speed-ups are 5.77
and 7.54 for NTT and inverse NTT, respectively. Both speed-ups are substantially higher
than for the entire implementation of Kyber, as reported in Table 4. There is no o�cial
NTT-based reference implementation of Saber released yet. Therefore, we analyzed cycle

16 Optimized Software Implementations Using NEON-Based Special Instructions

Algorithm ref (kc) neon (kc) avx2 (kc) ref/neon avx2/neon
E D E D E D E D E D

lightsaber 50.9 54.9 37.2 35.3 41.9 42.2 1.37 1.55 1.13 1.19
kyber512 75.7 89.5 32.6 29.4 28.4 22.6 2.33 3.04 0.87 0.77
ntru-hps677 183.1 430.4 60.1 54.6 26.0 45.7 3.05 7.89 0.43 0.84
ntru-hrss701 152.4 439.9 22.8 60.8 20.4 47.7 6.68 7.24 0.90 0.78
saber 90.4 96.2 59.9 58.0 70.9 70.7 1.51 1.66 1.18 1.22
kyber768 119.8 137.8 49.2 45.7 43.4 35.2 2.43 3.02 0.88 0.77
ntru-hps821 245.3 586.5 75.7 69.0 29.9 57.3 3.24 8.49 0.39 0.83
firesaber 140.9 150.8 87.9 86.7 103.3 103.7 1.60 1.74 1.18 1.20
kyber1024 175.4 198.4 71.6 67.1 63.0 53.1 2.45 2.96 0.88 0.79

Table 4: Execution time of Encapsulation and Decapsulation for three security levels.
ref and neon: results for Apple M1. avx2: results for AMD EPYC 7742. kc-kilocycles.

The only algorithm for which the NEON implementation on Apple M1 takes fewer
clock cycles than the AVX2 implementation on AMD EPYC 7742 is Saber. The speed-up
of Apple M1 over this AMD processor varies between 1.13 and 1.22, depending on the
operation and the security level.
Rankings. Based on Table 5, the ranking of C only implementations on Apple M1
is consistently 1. Saber, 2. Kyber, 3. NTRU (with the exception that NTRU is not
represented at level 5). The advantage of Saber over Kyber is relatively small (by a factor of
1.24-1.49 for encapsulation and 1.31-1.63 for decapsulation). This advantage decreases for
higher security levels. The advantage of Saber over NTRU is more substantial, 2.71-3.00 for
encapsulation and 6.10-8.01 for decapsulation. This advantage decreases between security
levels 1 and 3.

For NEON implementations, running on Apple M1, the rankings change substantially,
as shown in Table 6. For encapsulation at level 1, the ranking becomes 1. NTRU, 2.
Kyber, 3. Saber, i.e., reversed compared to pure C implementations. For all levels and
both major operations, Kyber and Saber swap places. At the same time, the di�erences
between Kyber and Saber do not exceed 29% and slightly increase for higher security
levels.

The rankings for pure C implementations do not change when a high-speed core of
Apple M1 is replaced by the Cortex-A72 core, as shown in Table 7. Additionally, the
di�erences between Saber and Kyber become even smaller.

The ranking of NEON implementations also does not change between Apple M1 and
Cortex-A72, as shown in Table 8. However, at level 1, NTRU is almost in tie with Kyber.
For all other cases, the advantage of Kyber increases as compared to the rankings for
Apple M1.

Finally, in Table 9, the rankings for AVX2 implementations running on the AMD
EPYC 7742 core are presented. For encapsulation, at levels 1 and 3, the rankings are
1. NTRU, 2. Kyber, 3. Saber. Compared to the NEON implementations, the primary
di�erence is the no. 1 position of NTRU at level 3. For decapsulation, the rankings are
identical at all three security levels. The advantage of Kyber over Saber is higher than for
NEON implementations.
NTT implementation. In Table 10, the speed-ups of neon vs. ref are reported for the
forward and inverse NTT of Kyber, running on Cortex-A72. These speed-ups are 5.77
and 7.54 for NTT and inverse NTT, respectively. Both speed-ups are substantially higher
than for the entire implementation of Kyber, as reported in Table 4. There is no o�cial
NTT-based reference implementation of Saber released yet. Therefore, we analyzed cycle

Result for AVX2 AMD EPYC 7742 taken from supercop-20210125

Frequency Scaling Effect
Apple M1 @ 3.2 GHz versus Intel Core i7-8750H 4.1 GHz

31

us

15.1
11.6

14.3
11.2

25.5

18.9

24.2

18.4

37.1

28.0

36.1

27.6

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

AVX2-Saber-Encap NEON-Saber-Encap AVX2-Saber-Decap NEON-Saber-Decap

Saber: AVX2 vs. NEON Level 1 Level 3 Level 5

32

Frequency Scaling Effect
Apple M1 @ 3.2 GHz versus Intel Core i7-8750H 4.1 GHz

Time measured with the ns accuracy using clock_gettime() on a MacBook Air and a PC laptop

Conclusions: Toom-Cook and NTT

- The polynomial multiplication performance affects the C baseline
and NEON rankings in case of Saber and Kyber.

- Proposed optimal Toom-Cook strategy tailored for NTRU and Saber
parameters.

- Missing instruction equivalent to AVX2 vpmulhw causes
dependencies and worse performance

33

Conclusions
- First optimized implementation of CRYSTALS-Kyber, NTRU, and Saber

targeting ARMv8.

- Largest speed-up for NTRU, followed by CRYSTALS-Kyber, and Saber

- The rankings of lattice-based PQC KEM finalists in terms of speed in
software are similar for the NEON implementations and AVX2
implementations

Decapsulation: 1. CRYSTALS-Kyber, 2.Saber, 3. NTRU (L1 & 3 only)
Encapsulation: 1. NTRU (L1 & 3 only), 2. CRYSTALS-Kyber, 3. Saber

34

Thanks for your attention!

Our source code is available at:
https://github.com/GMUCERG/PQC_NEON

35

https://github.com/GMUCERG/PQC_NEON

