

Circuit Complexity Challenge

A Boolean circuit is a *directed acyclic graph* that computes a function using basic Boolean operators such as AND, NOT, XOR, XNOR.

Circuit for SHA-3 S-Box (from https://keccak.team/figures.html)

Challenge: Given a function and a set of gates, construct a circuit that optimally computes it according to some *logical metric*.

Aim:

- Improve our understanding of circuit complexity.
- Develop techniques for better circuits for academia and industry.
- Evaluate and compare the performance of new heuristics.

Webpage: https://csrc.nist.gov/Projects/Circuit-Complexity

NIST Circuit Complexity Benchmarking

Luís T. A. N. Brandão · Çağdaş Çalık · Morris Dworkin · René Peralta · Meltem Sönmez Turan Cryptographic Technology Group, Computer Security Division, National Institute of Standards and Technology

• Circuit size: - Smaller gate count \Rightarrow smaller hardware area, less energy - Lower number of nonlinear gates (e.g., AND) \Rightarrow less communication for crypto lower cost for side-channel resistance. • Circuit depth: - Smaller circuit depth \Rightarrow lower latency - Lower AND-depth \Rightarrow fewer interaction rounds in multiparty computation; more efficient homomorphic encryption

Performance metrics for real-world apps relate to **logical** metrics.

Email: circuit_complexity@nist.gov

Logical & Performance Metrics

Public Benchmarking

We represent circuits using Straight Line Programs (SLPs).

begin CIRCUIT MAJ3 # Description: The majority of x1,x2,x3 Inputs: x1:x3; Outputs: y1; GateSyntax: GateName Output Inputs begin SLP XOR t1 x1 x2; XOR t2 x1 x3;AND t3 t1 t2; XOR y1 t3 x1 end SLP end CIRCUIT

Method:

Circuit	Gate count					Depth	
	All	AND	XOR	XNOR	NOT	All	AND
AES S-Box	113	32	77	4	0	27	6
$AES S-Box^{-1}$	121	34	83	4	0	21	4
AES-128 (k,m)	28 600	6400	21 356	844	0	326	60
SHA-256 (m)	115 882	22 385	89 248	3894	355	5403	1604

k: AES key; m: message (128-bit for AES; 512-bit for SHA-256)

• Select functions of varying difficulties and sizes • Determine evaluation criteria and publish best known circuits