Luís T. A. N. Brandão • Çağdaş Çalık • Morris Dworkin • René Peralta • Meltem Sönmez Turan Standards and Technology
U.S. Department of Commerce

Cryptographic Technology Group, Computer Security Division, National Institute of Standards and Technology

Boolean Circuits

A Boolean circuit is a directed acyclic graph, where the inputs and the gates are the nodes, and the edges are the Boolean-valued wires.

A Boolean circuit with n inputs and m outputs computes a function of the form $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$

Basic Boolean operators: AND, NAND, OR, NOT, XOR, XNOR,
The canonical form of a circuit is a standard representation based on AND and XOR gates. The topology of a circuit is an abstraction that shows the relative positions of the AND gates

Example. Let $f=x_{1} x_{2} x_{3}+x_{1} x_{3}+x_{1} x_{4}+x_{2} x_{3}+x_{4}$.

Complexity Measures

- Size complexity: The number of gates in the circuit.
- Depth complexity: The length of the longest path from an input gate to the output gate.
- Multiplicative complexity (MC): Number of non-linear gates used in a circuit, or (the minimum) required to implement a function.

Target metric depends on the application.

- Circuits with small number of gates use less energy and occupy smaller area, and are desired for lightweight cryptography applications running on constrained devices.
- Circuits with small number of AND gates are desired for secure multiparty computation, zero-knowledge proofs and side channel protection.
- Circuits with small AND-depth are desired for homomorphic encryption schemes.

Circuit Complexity Challenge

Given a Boolean function and a set of gates, construct a circuit which computes the function and is optimal according to a complexity measure.

Contact: circuit_complexity@nist.gov
Webpage: https://csrc.nist.gov/Projects/Circuit-Complexity Data repository: https://github.com/usnistgov/Circuits

Low-MC Circuits for Sets of Quadratic Forms

Goal: To design smaller circuits for computing sets of quadratic "forms". Example applications: - multiplication of binary polynomials,

- Galois field multiplication in characteristic 2 , used in elliptic curve cryptography, and - binary matrix multiplication.

Problem: Consider a set $\left\{g_{1}, \ldots, g_{m}\right\}$ of generators (93), each requiring one AND gate. How many such generators are needed to calculate a particular set $\left\{t_{0}, \ldots, t_{k-1}\right\}$ of k target functions t_{i} ? Approach: We enhance the search method of Barbulescu et al. by expanding subspaces incrementally, scoring intermediate results, and applying "genetic" mutations.
An intermediate state of the algorithm (example):

Leesend: T 1 is a set of 11 targets; G 1 is an incremental expansion to $\mathrm{T} 1 ; \mathrm{G} 2$ is the set of generators in the span of $\mathrm{T} 1 \cup \mathrm{G} 1 ; \mathrm{T} 2$ is the set of targets spanned by G2; the greyed out elements with dashed border are not in span.
The figure shows 11 targets 娄, together with 3 selected generators (20), spanning 12 generators

- 2 are targets tid $_{i}$, and 1 other is a linear combination (2) of targets;
- 3 are the expansion generators; (2)
- 6 are new generators (43) ($1^{\text {st }}$ score), which are in the span of $\mathrm{T} 1 \cup$ G1.

The set of 12 generators spans 5 targets $t_{i}\left(2^{\text {nd }}\right.$ score). We terminate when T 2 equals T 1 , i.e., the $2^{\text {nd }}$ score is k. The solution is derived from the subset G 2 of generators.
Results: We have found circuits with small number of aND gates for many instances of binary polynomial multiplication.

Boolean Circuits for Post-Quantum Cryptography
Quantum Circuits: Quantum computation will trigger a revision of all our cryptosystems. NIST is currently working to standardize post-quantum public-key cryptography. Because of Grover's algorithm, symmetric key cryptography will also be impacted. In quantum circuits, the gates corresponding to AND, such as the one below (by Mathias Soeken - see ia.cr/2019/1146), are much more expensive than those corresponding to XOR

Legend (gates):
H: Hadamard SS: Phase shift $\frac{\pi}{2}$ T: Phase shift $\frac{\pi}{4}$ TT: Conjugate of T
Example quantum-circuit implementation of an AND gate

Challenges

- Improve quantum circuits for symmetric encryption functions.
- Design cryptographic primitives with low MC for use in the post-quantum world. An example is the post-quantum signature candidate PICNIC.
- Design a standard format for describing quantum circuits.

MC of Symmetric Boolean Functions

Goal: To find efficient circuits with low number of and gates for symmetric Boolean functions, in which the output is determined by the number of ones of the input.

Method: There are two parts:

1. Encode the weight using full adders and half headers.
2. Build the symmetric function using the weight encoding

Results:

- Proposed technique constructs circuits for all symmetric functions with up to 25 variables

- Upper bounds on maximum MC of class of n-variable Boolean functions for $n \leq 132$.

Boolean Functions with MC 3 and 4
Goal: To identify the Boolean functions having MC 3 and 4.
Method: MC is affine invariant, it is enough to find the exhaustive list of affine equivalence classes that can be generated with 3, and 4 AND gates. Method has two parts:

- Part I: Identify the topologies having $k=3,4$ AND gates
- Part II: Evaluate topologies to find unique representative from each affine equivalence class.

Results

- There are 24 equivalence classes with MC 3. They can be generated using at least one of the following topologies

The number of n-variable Boolean functions with MC 3 is

$$
\sum_{d=4}^{6}\left(2^{n-d} \prod_{i=0}^{d-1} \frac{2^{n}-2^{i}}{2^{d}-2^{i}} \beta_{d}\right)
$$

where $\beta_{4}=32768, \beta_{5}=775728128, \beta_{6}=183894007808$.

- There are 1277 equivalence classes with MC 4. They can be generated using one of the 84 topologies with 4 AND gates.

References

- Ç. Çalık, M. Sönmez Turan, R. Peralta, Boolean Functions with Multiplicative Complexity 3 and 4, submitted to Cryptography and Communications, Special Issue on Boolean Functions and Their Applications, 2019
- L.T.A.N. Brandão, Ç. Çalik, M. Sonmez Turan, R. Peralta. Upper Bounds on the Multiplicative Complexity of Symmetric Boolean Functions, Cryptogr. Commun., 2019, https://doi.org/10.1007/s12095-019-00377-3
Ç. Çalk, M. Dworkin, N. Dykas, R. Peralta, Searching for Best Karatsuba Recurrences, To appear in Proceedings of Symposium on Experimental Algorithms, Springer 2019.

