

Crypto is ubiquitous in today's IT devices

- In smartphones for communication
- In hardware drives for storage
- In smartcards for authentication

How can these devices protect the secrets therein?

Attackers can often exfiltrate secret keys from devices!

bug (2014)

Two main categories of attacks:

- Leakage: derive secrets from side-channels
- Fault injection: interfere with the computation

Single-Device Threshold Implementations Computer Security Division (NIST-ITL)

NIST Threshold Cryptography Project — Single-Device Track

ZigBee chain reaction (2017)

MDS (2019)MD

A typical attack: differential power-analysis

Measure the power consumption during a crypto operation

Collect many *traces* and detect the consumption difference between processing a 0 or a 1 for each bit of the secret key.

The Threshold Implementation approach

- *Share* each secret-input bit into several random bits
- Probing any wire or tile will only reveal random bits

Image credit: V. Rijmen (slides at single-device workshop)

Protecting AES in hardware is of utmost importance!

AES is the Advanced Encryption Standard ... pervasive in crypto circuits.

Engaging with the community

Our positioning of the problem (NISTIR 8214A) led to a workshop (organized by KU-Leuven) focused on single-device threshold AES:

Online Workshop on Threshold Schemes for NIST-approved Symmetric Block Ciphers in a Single-Device Setting — July 7–9, 2020

https://www.esat.kuleuven.be/cosic/cosicevent/online-workshop-on-thresholdschemes-for-nist-approved-symmetric-block-ciphers-in-a-single-device-setting/

Key take-aways / questions:

Our approach to standardization

Contact: threshold-crypto@nist.gov **TC forum:** https://list.nist.gov/tc-forum Webpage: https://csrc.nist.gov/Projects/Threshold-Cryptography Poster produced for the NIST-ITL Virtual Science Day 2020 (October 29)

The unlabeled illustrative cliparts are from clker.com: chip with key, daemon, signal monitor.

INFORMATION TECHNOLOGY

• Big differentiation between leakage-only and combined attacks

• What protective schemes are really relevant to the industry?

• Benchmarking is needed (how many traces to break a protection?)

• Need verification tools to check correctness of threshold design

• Devise two reference attack models for evaluation of proposals

• Develop threshold guidelines with potential to improve best-practices

• Integrate proposed techniques in the crypto validation pipeline