Lattice-based digital signature scheme qTESLA

(2nd NIST PQC Standardization Conference, 2019)

Sedat Akleylek Erdem Alkim Paulo S. L. M. Barreto Nina Bindel Johannes Buchmann Edward Eaton Gus Gutoski Juliane Krämer **Patrick Longa** Harun Polat Jefferson E. Ricardini Gustavo Zanon Ondokuz Mayis University, Turkey Ondokuz Mayis University, Turkey University of Washington Tacoma, USA TU Darmstadt, Germany TU Darmstadt, Germany ISARA Corporation, Canada ISARA Corporation, Canada TU Darmstadt, Germany **Microsoft Research, USA** TU Darmstadt, Germany University of São Paulo, Brazil University of São Paulo, Brazil

Introduction

- qTESLA is a family of post-quantum latticebased signature schemes
- Based on the decisional R-LWE problem
- The result of a long line of research (selected):

Introduction

- qTESLA is a family of post-quantum latticebased signature schemes
- Based on the decisional R-LWE problem
- □ The result of a long line of research (selected):

qTESLA – Key generation

- Secret key:
 - $s, e_1, ..., e_k \stackrel{\sigma}{\leftarrow} \mathcal{R} = \mathbb{Z}[x]/\langle x^n + 1 \rangle$, "small enough" ■ $seed_a, seed_y$

Public key:

 t₁ ← a₁s + e₁ mod q, ..., t_k ← a_ks + e_k mod q with a₁, ..., a_k ← GenA(seed_a)
 seed_a

Require: message m, and secret key $sk = (s, e_1, ..., e_k, \text{seed}_a, \text{seed}_y)$ **Ensure:** signature (z, c')

1: counter $\leftarrow 1$ 2: rand $\leftarrow \mathsf{PRF}_2(\mathsf{seed}_u, m)$ 3: $y \leftarrow ySampler(rand, counter)$ 4: $a_1, \ldots, a_k \leftarrow \mathsf{GenA}(\mathsf{seed}_a)$ 5: for i = 1, ..., k do $v_i = a_i y \mod^{\pm} q$ 6: 7: end for 8: $c' \leftarrow \mathsf{H}(v_1, ..., v_k, \mathsf{G}(m))$ 9: $c \triangleq \{pos_list, sign_list\} \leftarrow \mathsf{Enc}(c')$ 10: $z \leftarrow y + sc$ 11: if $z \notin \mathcal{R}_{q,[B-S]}$ then counter \leftarrow counter +112:13:Restart at step 3 14: end if 15: for i = 1, ..., k do $w_i \leftarrow v_i - e_i c \mod^{\pm} q$ 16:if $||[w_i]_L||_{\infty} \ge 2^{d-1} - E \lor ||w_i||_{\infty} \ge |q/2| - E$ then 17:18:counter \leftarrow counter +1Restart at step 3 19:end if 20:21: end for 22: return (z, c')

Require: message m, and secret key $sk = (s, e_1, ..., e_k, \text{seed}_a, \text{seed}_y)$ Ensure: signature (z, c')

1: counter $\leftarrow 1$	
2: rand $\leftarrow PRF_2(seed_y, m)$	Pseudo-randomness
3: $y \leftarrow ySampler(rand, counter)$	expansion
4: $a_1,, a_k \leftarrow GenA(seed_a)$	oxpanoion
5: for $i = 1,, k$ do	
$6: \qquad v_i = a_i y \ \mathrm{mod}^{\pm} q$	
7: end for	
8: $c' \leftarrow H(v_1,, v_k, G(m))$	
9: $c \triangleq \{pos_list, sign_list\} \leftarrow Enc(c')$	
10: $z \leftarrow y + sc$	
11: if $z \notin \mathcal{R}_{q,[B-S]}$ then	
12: counter \leftarrow counter + 1	
13: Restart at step 3	
14: end if	
15: for $i = 1,, k$ do	
16: $w_i \leftarrow v_i - e_i c \mod^{\pm} q$	
17: if $ [w_i]_L _{\infty} \ge 2^{d-1} - E \lor w_i _{\infty} \ge \lfloor q/2 \rfloor - E$ then	
18: $\operatorname{counter} \leftarrow \operatorname{counter} + 1$	
19: Restart at step 3	
20: end if	
21: end for	
22: return (z, c')	

Require: message m, and secret key $sk = (s, e_1, ..., e_k, \text{seed}_a, \text{seed}_y)$ Ensure: signature (z, c')

1: counter $\leftarrow 1$ 2: rand $\leftarrow PRF_2(seed_y, m)$ 3: $y \leftarrow ySampler(rand, counter)$ 4: $a_1, \dots, a_k \leftarrow GenA(seed_a)$	Pseudo-randomness expansion
5: for $i = 1,, k$ do 6: $v_i = a_i y \mod^{\pm} q$ 7: end for 8: $c' \leftarrow H(v_1,, v_k, G(m))$ 9: $c \triangleq \{pos_list, sign_list\} \leftarrow Enc(c')$ 10: $z \leftarrow y + sc$	Computing sparse polynomial <i>c</i> and candidate signature <i>z</i>
11: if $z \notin \mathcal{R}_{q,[B-S]}$ then	
12: counter \leftarrow counter $+ 1$	
13: Restart at step 3	
14: end if	
15: for $i = 1,, k$ do	
16: $w_i \leftarrow v_i - e_i c \mod^{\pm} q$	
17: if $ [w_i]_L _{\infty} \ge 2^{d-1} - E \lor w_i _{\infty} \ge q/2 - E$ then	
18: $\operatorname{counter} \leftarrow \operatorname{counter} + 1$	
19: Restart at step 3	
20: end if	
21: end for	
22: return (z, c')	

Require: message m, and secret key $sk = (s, e_1, ..., e_k, \text{seed}_a, \text{seed}_y)$ Ensure: signature (z, c')

1: counter $\leftarrow 1$ 2: rand $\leftarrow PRF_2(seed_y, m)$ 3: $y \leftarrow ySampler(rand, counter)$ 4: $a_1, \dots, a_k \leftarrow GenA(seed_a)$	Pseudo-randomness expansion
5: for $i = 1,, k$ do 6: $v_i = a_i y \mod^{\pm} q$ 7: end for 8: $c' \leftarrow H(v_1,, v_k, G(m))$ 9: $c \triangleq \{pos_list, sign_list\} \leftarrow Enc(c')$ 10: $z \leftarrow y + sc$	Computing sparse polynomial <i>c</i> and candidate signature <i>z</i>
11: if $z \notin \mathcal{R}_{q,[B-S]}$ then 12: counter \leftarrow counter + 1 13: Restart at step 3 14: end if	<pre>"security check" = rejection sampling</pre>
15: for $i = 1,, k$ do 16: $w_i \leftarrow v_i - e_i c \mod^{\pm} a$	
17: $ \mathbf{if} \ [w_i]_L \ _{\infty} \ge 2^{d-1} - E \lor \ w_i \ _{\infty} \ge \lfloor q/2 \rfloor - E \mathbf{then} $	
18: $\operatorname{counter} \leftarrow \operatorname{counter} + 1$	
19: Restart at step 3	

20: end if

21: end for

22: return (z, c')

Require: message m, and secret key $sk = (s, e_1, ..., e_k, \text{seed}_a, \text{seed}_y)$ Ensure: signature (z, c')

1: counter $\leftarrow 1$ 2: rand $\leftarrow PRF_2(seed_y, m)$ 3: $y \leftarrow ySampler(rand, counter)$ 4: $a_1, \dots, a_k \leftarrow GenA(seed_a)$	Pseudo-randomness expansion
5: for $i = 1,, k$ do 6: $v_i = a_i y \mod^{\pm} q$ 7: end for 8: $c' \leftarrow H(v_1,, v_k, G(m))$ 9: $c \triangleq \{pos_list, sign_list\} \leftarrow Enc(c')$ 10: $z \leftarrow y + sc$	Computing sparse polynomial <i>c</i> and candidate signature <i>z</i>
11: if $z \notin \mathcal{R}_{q,[B-S]}$ then 12: counter \leftarrow counter + 1 13: Restart at step 3 14: end if	<pre>"security check" = rejection sampling</pre>
15: for $i = 1,, k$ do 16: $w_i \leftarrow v_i - e_i c \mod^{\pm} q$ 17: if $\ [w_i]_L\ _{\infty} \ge 2^{d-1} - E \lor \ w_i\ _{\infty} \ge \lfloor q/2 \rfloor - E$ then 18: counter \leftarrow counter + 1 19: Restart at step 3 20: end if 21: end for 22: notume (z, q')	"correctness check"

Round 1	Round 2		
Provably-secure parameter sets.	Added heuristic parameter sets.		

Round 1	Round 2
Provably-secure parameter sets.	Added heuristic parameter sets.
Support for power-of-two cyclotomic ring $\mathcal{R}_q = \mathbb{Z}_q[x]/\langle \phi_{2^{\ell}}(x) \rangle$.	Added support for non-power-of-two cyclotomic ring $\mathcal{R}_q = \mathbb{Z}_q[x]/\langle \phi_{2^{\ell}9}(x) \rangle$.

Round 1	Round 2
Provably-secure parameter sets.	Added heuristic parameter sets.
Support for power-of-two cyclotomic ring $\mathcal{R}_q = \mathbb{Z}_q[x]/\langle \phi_{2^\ell}(x) \rangle$.	Added support for non-power-of-two cyclotomic ring $\mathcal{R}_q = \mathbb{Z}_q[x]/\langle \phi_{2^{\ell}9}(x) \rangle$.
Simplified Bernoulli sampler:Portability issuesHard to make fully constant-time.	Replaced by simpler, faster, portable, constant-time CDT-based Gaussian sampler.

Round 1	Round 2
Deterministic signatures.	Converted to probabilistic.

Require: message m, and secret key $sk = (s, e_1, ..., e_k, \text{seed}_a, \text{seed}_y)$ Ensure: signature (z, c')

1: counter \leftarrow $2: r \leftarrow_\$ \{0,1\}^\kappa$ $2: \operatorname{rand} \leftarrow \mathsf{PRF}_2(\mathsf{seed}_u, m)$ Pseudo-randomness 3: rand $\leftarrow \mathsf{PRF}_2(\mathsf{seed}_u, r, \mathsf{G}(m))$ 4: $y \leftarrow ySampler(rand, counter)$ expansion 5: $a_1, ..., a_k \leftarrow \mathsf{GenA}(\mathsf{seed}_a)$ 6: for i = 1, ..., k do $v_i = a_i y \mod^{\pm} q$ 7: 8: end for 9: $c' \leftarrow \mathsf{H}(v_1, ..., v_k, \mathsf{G}(m))$ 10: $c \triangleq \{pos_list, sign_list\} \leftarrow \mathsf{Enc}(c')$ 11: $z \leftarrow y + sc$ 12: if $z \notin \mathcal{R}_{q,[B-S]}$ then counter \leftarrow counter +113:14:Restart at step 4 15: end if 16: for i = 1, ..., k do 17: $w_i \leftarrow v_i - e_i c \mod^{\pm} q$ if $||[w_i]_L||_{\infty} \geq 2^{d-1} - E \vee ||w_i||_{\infty} \geq |q/2| - E$ then 18:counter \leftarrow counter + 1 19:20: Restart at step 4 end if 21:22: end for 23: return (z, c')

Round 1	Round 2
Deterministic signatures.	Converted to probabilistic.
Security reduction in the QROM using conjecture.	Refined conjecture and backed it up experimentally.

 V. Lyubashevsky pointed out that heuristic parameters lacked analysis of R-SIS hardness (thanks!)

- V. Lyubashevsky pointed out that heuristic parameters lacked analysis of R-SIS hardness (thanks!)
- We confirmed that R-SIS hardness was too low for round 2 heuristic parameters
- We issued an update on Aug 20, 2019

- V. Lyubashevsky pointed out that heuristic parameters lacked analysis of R-SIS hardness (thanks!)
- We confirmed that R-SIS hardness was too low for round 2 heuristic parameters
- We issued an update on Aug 20, 2019
 - A security proof following [KLS18] that reduces hardness of ST-R-SIS and R-LWE to the security of heuristic qTESLA allows generation of secure parameters
 - Main change involves increasing number of R-LWE samples from 1 to 2

- V. Lyubashevsky pointed out that heuristic parameters lacked analysis of R-SIS hardness (thanks!)
- We confirmed that R-SIS hardness was too low for round 2 heuristic parameters
- We issued an update on Aug 20, 2019
 - A security proof following [KLS18] that reduces hardness of ST-R-SIS and R-LWE to the security of heuristic qTESLA allows generation of secure parameters
 - Main change involves increasing number of R-LWE samples from 1 to 2
 - However, we decided to **drop the heuristic parameters**

[KLS18]: A Concrete Treatment of Fiat-Shamir Signatures in the Quantum Random-Oracle Model, by Kiltz, Lyubashevsky, Schaffner, 2018

Parameter sets

Parameter set	Heuristic			Provable	
	qTESLA-I	qTESLA-II	qTESLA-III	qTESLA-p-I	qTESLA-p-III
NIST category	1	2	3	1	3
R-LWE hardness	111	138	188	140	279
SIS hardness	50	71	95	-	-
Targeted hardness	95	128	160	95	160
pk size [bytes]	1,504	2,336	3,104	14,880	38,432
sig size [bytes]	1,376	2,144	2,848	2,592	5,664

Parameter sets

Parameter set	Heuristic			Provable	
	qTESLA-I	qTESLA-II	qTESLA-III	qTESLA-p-I	qTESLA-p-III
NIST category	1	2	3	1	3
R-LWE hardness	111	138	188	140	279
SIS hardness	50	71	95	-	-
Targeted hardness	95	128	160	95	160
pk size [bytes]	1,504	2,336	3,104	14,880	38,432
sig size [bytes]	1,376	2,144	2,848	2,592	5,664

Fixed parameter sets

Parameter set	Heuristic			Provable	
	qTESLA-I	qTESLA-II	qTESLA-III	qTESLA-p-l	qTESLA-p-III
NIST category	1	2	3	1	3
R-LWE hardness	97	130	178	140	279
SIS hardness	100	143	197	-	-
Targeted hardness	95	128	160	95	160
pk size [bytes]	2,976	4,832	6,432	14,880	38,432
sig size [bytes]	1,400	2,336	3,104	2,592	5,664

Updated parameter sets (round 2+)

Parameter set	Provable	
	qTESLA-p-l	qTESLA-p-III
NIST category	1	3
R-LWE hardness	140	279
Targeted hardness	95	160
pk size [bytes]	14,880	38,432
sig size [bytes]	2,592	5,664

Performance (round 2+)

Performance (in kilocycles) of the constant-time **reference implementation** on a 3.40GHz Intel Core i7-6700 (Skylake) processor

Parameter set	Provable	
	qTESLA-p-I	qTESLA-p-III
keygen	2,316	13,727
sign	2,325	6,285
verify	671	1,830
Total (sign + verify)	2,996	8,115

Performance (round 2+)

Performance (in kilocycles) of the constant-time **reference implementation** on a 3.40GHz Intel Core i7-6700 (Skylake) processor

Parameter set	Provable	
	qTESLA-p-l	qTESLA-p-III
keygen	2,316	13,727
sign	2,325	6,285
verify	671	1,830
Total (sign + verify)	2,996	8,115

• E.g., qTESLA-p-I produces signatures in **0.68 msec.** or **1,470 signs/sec**.

Simple and easy to implement

- Facilitates efficient and secure portable implementations
- Reduces {theoretical, practical} attack surface

Simple and easy to implement

- Facilitates efficient and secure portable implementations
- Reduces {theoretical, practical} attack surface
- By default built-in protection against some sidechannel and fault attacks

Simple and easy to implement

- Facilitates efficient and secure portable implementations
- Reduces {theoretical, practical} attack surface
- By default built-in protection against some sidechannel and fault attacks
- Very conservative security
 - qTESLA instantiations are provably-secure in the QROM

Potential avenues of improvement

- Further optimization of implementation (e.g., using assembly).
- Use of Dilithium's pk compression technique.

Thanks!

qTESLA website: https://qtesla.org/

Updated specs: <u>https://qtesla.org/wp-content/uploads/2019/08/</u> <u>qTESLA_round2_08.19.2019.pdf</u>

Updated package: <u>https://qtesla.org/wp-content/uploads/2019/08/</u> qTESLA_NIST_update_08.19.2019.zip

Code: <u>https://github.com/qtesla/qTesla</u>