Rainbow

Jintai Ding, Ming-Shing Chen, Albrecht Petzoldt, Dieter Schmidt, Bo Yin Yang

The 2nd NIST Standardization Conference for Post-Quantum Cryptosystems

Santa Barbara, USA 22.09.2019

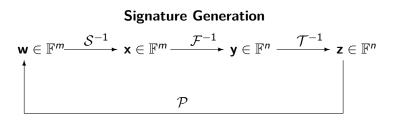
Multivariate Cryptography

MPKC: Multivariate Public Key Cryptosystem Public Key: System of nonlinear multivariate polynomials

$$p^{(1)}(x_1, \dots, x_n) = \sum_{i=1}^n \sum_{j=i}^n p_{ij}^{(1)} \cdot x_i x_j + \sum_{i=1}^n p_i^{(1)} \cdot x_i + p_0^{(1)}$$

$$p^{(2)}(x_1, \dots, x_n) = \sum_{i=1}^n \sum_{j=i}^n p_{ij}^{(2)} \cdot x_i x_j + \sum_{i=1}^n p_i^{(2)} \cdot x_i + p_0^{(2)}$$

$$\vdots$$


$$p^{(m)}(x_1, \dots, x_n) = \sum_{i=1}^n \sum_{j=i}^n p_{ij}^{(m)} \cdot x_i x_j + \sum_{i=1}^n p_i^{(m)} \cdot x_i + p_0^{(m)}$$

Construction

- Easily invertible quadratic map $\mathcal{F}:\mathbb{F}^n
 ightarrow\mathbb{F}^m$
- Two invertible affine (or linear) maps $\mathcal{S}: \mathbb{F}^m \to \mathbb{F}^m$ and $\mathcal{T}: \mathbb{F}^n \to \mathbb{F}^n$
- **Public key**: $\mathcal{P} = S \circ \mathcal{F} \circ \mathcal{T}$ supposed to look like a random system and S, \mathcal{T} are used to protect \mathcal{F}
- Private key: $\mathcal{S}, \ \mathcal{F}, \ \mathcal{T}$ allows to invert the public key

・ 同 ト ・ ヨ ト ・ ヨ ト

Signature Schemes $(m \le n)$

Signature Verification

Signature Generation: Given a document $d \in \{0,1\}^*$, use a hash function \mathcal{H} to compute $\mathbf{w} = \mathcal{H}(d) \in \mathbb{F}^m$, compute recursively $\mathbf{x} = S^{-1}(\mathbf{w}) \in \mathbb{F}^m$, $\mathbf{y} = \mathcal{F}^{-1}(\mathbf{x}) \in \mathbb{F}^n$ and $\mathbf{z} = \mathcal{T}^{-1}(\mathbf{y})$. The signature of the message d is $\mathbf{z} \in \mathbb{F}^n$. **Signature Verification**: Given signature $\mathbf{z} \in \mathbb{F}^n$, hash value $\mathbf{w} \in \mathbb{F}^m$, compute $\mathbf{w}' = \mathcal{P}(\mathbf{z}) \in \mathbb{F}^m$. If $\mathbf{w}' = \mathbf{w}$ holds, the signature is accepted, otherwise rejected.

Unbalanced Oil-vinegar (UOV) schemes

The design of Rainbow is based on the UOV by Patarin etc invented in 1999.

•
$$F = (f_1(x_1, ..., x_o, x'_1, ..., x'_v), \cdots, f_o(x_1, ..., x_o, x'_1, ..., x'_v)).$$

э

▲ 同 ▶ → 三 ▶

Unbalanced Oil-vinegar (UOV) schemes

The design of Rainbow is based on the UOV by Patarin etc invented in 1999.

•
$$F = (f_1(x_1, ..., x_o, x'_1, ..., x'_v), \cdots, f_o(x_1, ..., x_o, x'_1, ..., x'_v)).$$

$$f_l(x_1,.,x_o,x_1',.,x_v') = \sum a_{lij}x_ix_j' + \sum b_{lij}x_i'x_j' + \sum c_{li}x_i + \sum d_{li}x_i' + e_l.$$

Oil variables: $x_1, ..., x_o$.

Vinegar variables: $x'_1, ..., x'_{v}$.

۲

How to invert OV map?

$$f_l(x_1,.,x_o, \underbrace{x'_1,.,x'_v}_{\text{fix the values}}) = \\\sum_{l_{ij}x_ix'_j} a_{l_{ij}x_ix'_j} + \sum_{j} b_{l_{ij}x'_ix'_j} + \sum_{j} c_{l_ix_i} + \sum_{j} d_{l_ix'_j} + e_{l_j}.$$

э

A D N A B N A B N A B N

How to invert OV map?

$$f_l(x_1,.,x_o,x'_1,.,x'_v) = \sum_{l_{ij}x_ix'_j} a_{l_{ij}x_ix'_j} + \sum_{l_{ij}x'_ix'_j} b_{l_{ij}x'_ix'_j} + \sum_{l_{ij}x_i} c_{l_{ij}x_i} + \sum_{l_{ij}x_i} d_{l_{ij}x'_i} + e_l.$$

This implies high efficiency in signing since the main cost is to solve a small linear system.

э

・ 何 ト ・ ヨ ト ・ ヨ ト

How to invert OV map?

$$f_{l}(x_{1},.,x_{o},\mathbf{x}'_{1},.,\mathbf{x}'_{v}) = \sum a_{lij}x_{i}x_{j}' + \sum b_{lij}x_{i}'x_{j}' + \sum c_{li}x_{i} + \sum d_{li}x_{i}' + e_{l}.$$

 \implies OV map: easy to invert.

This implies high efficiency in signing since the main cost is to solve a small linear system.

э

▲ 同 ▶ → 三 ▶

The Rainbow Signature Scheme

• finite field \mathbb{F} with q elements, integers $0 < v_1 < v_2 < \cdots < v_u < v_{u+1} = n$

• set
$$V_i = \{1, \dots, v_i\}$$
 and $O_i = \{v_i + 1, \dots, v_{i+1}\}$ $(i = 1, \dots, u)$
 $\Rightarrow |V_i| = v_i, |O_i| = v_{i+1} - v_i := o_i$

• central map \mathcal{F} consists of $m := n - v_1$ polynomials $f^{(v_1+1)}, \ldots, f^{(n)}$ of the form

$$f^{(k)}(x_1,\ldots,x_n) = \sum_{i,j\in V_\ell} \alpha_{ij}^{(k)} x_i x_j + \sum_{i\in V_\ell, j\in O_\ell} \beta_{ij}^{(k)} x_i x_j + \sum_{i\in V_\ell\cup O_\ell} \gamma_i^{(k)} x_i + \delta^{(k)},$$

where ℓ is the only integer such that $k \in O_{\ell}$.

- two invertible affine maps $\mathcal{S}: \mathbb{F}^m \to \mathbb{F}^m$ and $\mathcal{T}: \mathbb{F}^n \to \mathbb{F}^n$
- Public Key: $\mathcal{P} = \mathcal{S} \circ \mathcal{F} \circ \mathcal{T} : \mathbb{F}^n \to \mathbb{F}^m$
- Private Key: \mathcal{S} , \mathcal{F} , \mathcal{T}

Signature Generation

Given a document $d \in \{0,1\}^{\star}$ to be signed, perform the following steps

() Use a hash function $\mathcal{H}: \{0,1\}^* \to \mathbb{F}^m$ to compute $\mathbf{w} = \mathcal{H}(d)$.

② Compute
$$\mathbf{x} = \mathcal{S}^{-1}(\mathbf{w}) \in \mathbb{F}^m$$
.

- The Vinegar variables are substituted by random values into the polynomials f^(v1+1),..., f⁽ⁿ⁾.
- o for I:=1 to u do Solve the linear system provided by f^(v_i+1),...f^(v_{i+1}) to get the values of y_{v_i+1},..., y_{v_{i+1}} and substitute them into the polynomials f^(v_{i+1}+1),..., f⁽ⁿ⁾.
- **5** Set $\mathbf{y} = (y_1, \ldots, y_n) \in \mathbb{F}^n$.
- **(** Compute the signature $z \in \mathbb{F}^n$ by $z = \mathcal{T}^{-1}(y)$.

4 AR N 4 E N 4 E N

Signature Verification

Given a document $d \in \{0,1\}^*$ and a signature $\mathbf{z} \in \mathbb{F}^n$, compute • $\mathbf{w}' = \mathcal{P}(\mathbf{z}) \in \mathbb{F}^m$ and

•
$$\mathbf{w} = \mathcal{H}(d) \in \mathbb{F}^m$$
.

If $\mathbf{w}' = \mathbf{w}$ holds, the signature is accepted; otherwise it is rejected.

Security Analysis of Rainbow

- Generic MQ problem NP-hard
- Direct attacks do not work (as hard as generic problem)
- Simple structure simple, easy to implement and well understood attacks

Main attacks: Algebraic attack, OV attack, Rank attacks and RainbowBand Separation attacks

- Practical attacks match closely to theoretical estimates.
- No substantial but incremental update of Rainbow cryptanalysis since 2008

Rainbow - Highlights

- Solid history: UOV 1999 and Rainbow 2004
- existentially unforgeable under chosen message attacks
- very efficient signature generation and verification (signature generation at least 20 times faster than that of all competitors)
- easy to implement and naturally resist passive side channel attacks
- very short signatures (48 bytes for Level I, II) but relatively large PK size
- accepted as a 2nd round candidate for the NIST standardization process of post-quantum cryptosystems

4 AR N 4 E N 4 E N

Changes to the first round submission

- Reduction of the number of parameter sets We now have three parameter sets
 - ▶ (GF(16),32,32,32) for NIST security category I and II,
 - ▶ (GF(256),68,36,36) for NIST security category III and IV and
 - ▶ (GF(256),92,48,48) for the NIST security category V and VI.
- Inclusion of two other modes
 - cyclic Rainbow
 - \Rightarrow Reduction of the public key size by up to 70 %
 - compressed Rainbow
 - \Rightarrow Reduction of the public key size by up to 70 %
 - \Rightarrow Private key is stored as a 64B seed
 - \Rightarrow Slower signature generation and verification process

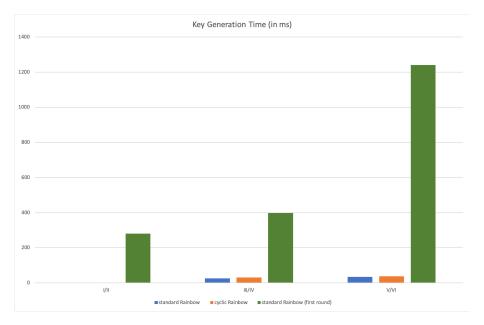
Changes to the first round submission (2)

• Speed up of the Key Generation algorithm

- use of homogeneous keys
- use of specially designed maps ${\cal S}$ and ${\cal T}$ (equivalent keys)

$$S = \begin{pmatrix} 1_{o_1 \times o_1} & S'_{o_1 \times o_2} \\ 0_{o_2 \times o_1} & 1_{o_2 \times o_2} \end{pmatrix}, \quad T = \begin{pmatrix} 1_{v_1 \times v_1} & T^{(1)}_{v_1 \times v_1} & T^{(2)}_{v_1 \times o_1} \\ 0_{o_1 \times v_1} & 1_{o_1 \times o_1} & T^{(3)}_{o_1 \times o_2} \\ 0_{o_2 \times v_1} & 0_{o_2 \times o_1} & 1_{o_2 \times o_2} \end{pmatrix}$$

 \Rightarrow Key Generation can be performed using matrix vector products \Rightarrow Significant speed up of the key generation process


Key Sizes

NIST security	standard Rainbow		cyclic Rainbow		compressed Rainbow	
category	pk KB	sk KB	pk KB	sk KB	pk KB	sk
1/11	149.0	93.0	58.1	93.0	58.1	64B
III/IV	710.6	511.4	206.7	511.4	206.7	64B
V/VI	1,705.5	1,227.1	491.9	1,227.1	491.9	64B

Signature sizes: 48B, 140B, 184B

э

A (10) N (10)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで 16/17 NIST Standardization Conference

Thank you for your attention

Questions?

Jintai Ding

NIST Standardization Conference 17 / 17

э

A D N A B N A B N A B N