

Third PQC Standardization Conference

Resistance of Isogeny-Based Cryptographic Implementations to a Fault Attack

Élise Tasso (CEA) joint work with Luca De Feo (IBM Research), Nadia El Mrabet (EMSE) and Simon Pontié (CEA) June 9th, 2021

SAS joint research team at the Centre of Microelectronics in Provence, Gardanne, France

1. Context: SIKE and physical attacks

2. Ti's theoretical fault attack on isogeny-based cryptography

3. Fault injection in a laboratory on a SIKE Keygen implementation

4. Countermeasure

Context: SIKE and physical attacks

Élise Tasso - CEA, France - June 9th, 2021 3rd PQC Standardization Conference - Fault attack on isogenies

2

SIKE is one of the NIST alternate candidates for encryption and key encapsulation.

- The only one based on isogenies between elliptic curves.
- Relatively slow: on an Intel CPU, $(9681 + 10343) \cdot 10^3$ cycles for encapsulation + decapsulation vs $(1862 + 1747) \cdot 10^3$ cycles for the slowest among the other candidates at the lowest security level.
- Smallest public key size : 330 bytes (p434, uncompressed) vs 672 bytes for the smallest key among the other candidates at the lowest security level.

3

 $\mathsf{SIDH}: \mathsf{Supersingular} \text{ isogeny Diffie-Hellman}$

Alice and Bob want to share a secret. Public data:

- an elliptic curve E_0 defined on \mathbb{F}_{p^2} with $p = 2^{e_2} 3^{e_3} 1$.
- points P_2 , Q_2 of order 2^{e_2} and R_2 such that $R_2 = P_2 Q_2$,
- points P_3 , Q_3 of order 3^{e_3} and R_3 such that $R_3 = P_3 Q_3$.

Secret keys:

- $\mathsf{sk}_2 \in [0, 2^{e_2 \log_2(2)} 1]$ and
- $\mathsf{sk}_3 \in [0, 2^{e_3 \log_2(3)} 1].$

The associated secret isogenies are ϕ_A and ϕ_B such that

$$\mathsf{Ker}(\phi_{\mathsf{A}}) = \langle \mathsf{P}_2 + \mathsf{sk}_2 Q_2
angle$$
 and $\mathsf{Ker}(\phi_{\mathsf{B}}) = \langle \mathsf{P}_3 + \mathsf{sk}_3 Q_3
angle,$

and ϕ_A' and ϕ_B' such that

 $\operatorname{Ker}(\phi_A') = \langle \phi_B(P_2) + \operatorname{sk}_2 \phi_B(Q_2) \rangle \text{ and } \operatorname{Ker}(\phi_B) = \langle \phi_A(P_3) + \operatorname{sk}_3 \phi_A(Q_3) \rangle.$

The SIKE mechanism

Public key computation in SIKE

Physical attacks

SIKE is believed to be mathematically secure, but physical attacks may exist depending on the implementation...

Physical attacks on SIKE : state of the art

- Regularity of SIKE
- Attacks taking advantage of ECC or of the isogeny computation

	Fault injection	Side-channel attacks
Theoretical	Yan Bo Ti, 2017	Koziel et al., 2017
Simulated	Gélin et al., 2017	none
Experimentally	none	Koppermann et al., 2018
verified		Zhang et al., 2020

- Is Ti's 2017 fault attack on isogeny-based cryptosystems exploitable in practice ?
- What are fitting countermeasures ?

Ti's theoretical fault attack on isogeny-based cryptography

Élise Tasso - CEA, France - June 9th, 2021 3rd PQC Standardization Conference - Fault attack on isogenies 11

Threat model

Ti's theoretical attack

Fault injection in a laboratory on a SIKE Keygen implementation

Élise Tasso - CEA, France - June 9th, 2021 3rd PQC Standardization Conference - Fault attack on isogenies 14

- ARM v8 software implementation of the "key exchange" part of SIKE of the NIST PQC Standardization Process round 3 submission.
- Target choice: attack in a laboratory of a system on chip (SoC) with four cortex A53 cores at a 1.2 GHz frequency.
- Targeting an instruction we want to skip is arduous because of SoC latency (Gaine et al., WIFS 2020), but a great precision is not necessary to perform Ti's attack.

Set up of an attack campaign

Set up for the realization of EM injection attack campaign

- Fixed probe.
- Fixed pulse width.
- Find the best (amplitude,delay) configuration to recover the secret.

1 040 000 attempts in 4.5 days.

- Highest success rate for an amplitude of 360 V and a delay of 440 ns : 0.62%.
- In this case, one secret is found every 3 minutes and 10 seconds.

Countermeasure

Élise Tasso - CEA, France - June 9th, 2021 3rd PQC Standardization Conference - Fault attack on isogenies 18

Impact on SIKE

- SIKE is not broken, unless it is incorrectly implemented.
- However, in a multipartite key exchange the secret is used multiple times...

Countermeasure

Conclusion

- Ti's attack is exploitable in practice if a secret is used more than once to generate a public key.
- Our countermeasure takes advantage of redundancy in SIKE's code and has a high probability to detect a fault.

Ti's theoretical attack

- Input: $\phi(P_3)$, $\phi(Q_3)$, $\phi(R_3)$ and an altered point $\phi(\widetilde{P_3})$.
- Method: to determine φ of degree 2²¹⁶, we determine its dual τ. We have deg(τ) = deg(φ).
- Computation of $T = 3^{137} \phi(\widetilde{P_3})$.
- Computation of isogeny ψ of kernel ker $(\psi) = \langle T \rangle$.
- If $\deg(\psi) = \deg(\phi)$, then ψ is the dual of ϕ . We deduce ϕ .

Ti's theoretical attack

- If deg(ψ) < deg(φ), we use a brute force attack to recover θ such that θ ∘ ψ i.e. the dual of φ.
- We deduce ϕ .

Note : If P_3 is not altered, $E' = E_A$ and computing θ is as difficult as finding Alice's secret isogeny.