ROLLO -Rank-Ouroboros, LAKE & LOCKER NIST Second Post-Quantum Cryptography Standardization Conference

Carlos AguilarMelchor² Nicolas Aragon¹ Magali Bardet⁶ Slim Bettaieb⁵ Loic Bidoux⁵ Olivier Blazy¹ Jean-Christophe Deneuville^{1,4} **Philippe Gaborit**¹ Ayoub Otmani⁶ Olivier Ruatta¹ Jean-Pierre Tillich⁷ Gilles Zemor³

¹University of Limoges, XLIM-DMI, France ; ²ISAE-SUPAERO, Toulouse, France

³Mathematical Institute of Bordeaux, France

⁴ENAC, Toulouse, France ; ⁵Worldline, France; ⁶University of Rouen, France; ⁷INRIA, France;

1 Recap on the schemes

- 2 NIST's comments after 1st round for ROLLO and modifications for the 2nd round
- 3 Comments on NIST's questions
- 4 Optimized implementation

Rationale

- ROLLO: merging of three original schemes which have in common the same decoding/decryption algorithm based on LRPC codes
- Each scheme possess its own features:
- ♦ ROLLO-I (ex LAKE) : optimized for key exchange and bandwidth
- ◇ ROLLO-II (ex LOCKER) : optimized for encryption and low DFR

◊ ROLLO-III (ex OUROBOROS-R): optimized for key exchange, bandwidth and security reduction

Rank Metric

We only consider codes with coefficients in \mathbb{F}_{q^m} . Let β_1, \ldots, β_m be a basis of $\mathbb{F}_{q^m}/\mathbb{F}_q$. To each vector $\mathbf{x} \in \mathbb{F}_{q^m}^n$ we can associate a matrix $\mathbf{M}_{\mathbf{x}}$

$$\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{F}_{q^m}^n \leftrightarrow \mathbf{M}_{\mathbf{x}} = \begin{pmatrix} x_{11} & \dots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{m1} & \dots & x_{mn} \end{pmatrix} \in \mathbb{F}_q^{m \times n}$$

such that $x_j = \sum_{i=1}^m x_{ij}\beta_i$ for each $j \in [1..n]$.

Definition

$$d_R(\mathbf{x}, \mathbf{y}) = \operatorname{Rank}(\mathbf{M}_{\mathbf{x}} - \mathbf{M}_{\mathbf{y}}) \text{ and } |\mathbf{x}|_r = \operatorname{Rank} \mathbf{M}_{\mathbf{x}}.$$

Support of a Word

Definition

The support of a word is the \mathbb{F}_q -subspace generated by its coordinates:

$$\mathsf{Supp}(\mathbf{x}) = \langle x_1, \dots, x_n \rangle_{\mathbb{F}_q}$$

Number of supports of weight w:

Rank	Hamming			
$\begin{bmatrix} m \\ w \end{bmatrix}_q \approx q^{w(m-w)}$	$\binom{n}{w} \leqslant 2^n$			

Best known complexity for combinatorial attacks: quadratically exponential for Rank Metric simply exponential for Hamming Metric

Difficult problems in rank metric

Problem (Rank Syndrome Decoding problem)

Given $\mathbf{H} \in \mathbb{F}_{q^m}^{(n-k) \times n}$, $\mathbf{s} \in \mathbb{F}_{q^m}^{n-k}$ and an integer r, find $\mathbf{e} \in \mathbb{F}_{q^m}^n$ such that:

$$He^T = s$$

 $|e|_r = r$

Probabilistic reduction to the NP-Complete SD problem [Gaborit-Zémor, IEEE-IT 2016].

LRPC basic scheme

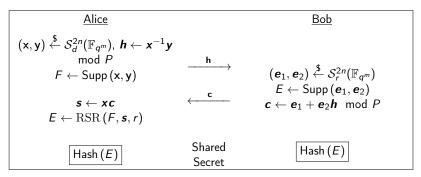


Figure 1: Informal description of ROLLO-I. h constitutes the public key.

 \diamond ROLLO II and ROLLO III are variations on this basic scheme with their own features

ROLLO Rank-Ouroboros, LAKE & LOCKER

Instance	pk size	sk size	ct size	ss size	Security level
ROLLO-I-128	465	40	465	64	1
ROLLO-I-192	590	40	590	64	3
ROLLO-I-256	947	40	947	64	5

Table 1: Resulting sizes in bytes for ROLLO-I using NIST seed expander initialized with 40 bytes long seeds.

1 Recap on the schemes

2 NIST's comments after 1st round for ROLLO and modifications for the 2nd round

3 Comments on NIST's questions

4 Optimized implementation

ROLLO Rank-Ouroboros, LAKE & LOCKER

NIST's comments after 1st round for ROLLO

Points of interest:

- small size parameters
- adds diversity

Questions:

- security of difficult problems in rank metric
- security reduction for quasi-cyclic/ideal structures
- decryption failure attacks

Modifications for 2nd round

 \diamond All reductions are now done in the ideal setting (modulo an irreducible polynomial rather than modulo $X^n - 1$)

 \diamond Parameters have been smoothed so that the rank error weight increases with the security level

1 Recap on the schemes

2 NIST's comments after 1st round for ROLLO and modifications for the 2nd round

3 Comments on NIST's questions

4 Optimized implementation

ROLLO Rank-Ouroboros, LAKE & LOCKER

Security of rank based problems: combinatorial attacks

Combinatorial attacks:

- \diamond Have been studied for more than 28 years
- ♦ Best attack [AGHT18]

 \rightarrow to go beyond: inherent difficulty resulting from the difference between support and coordinates in rank metric to generalize birthday paradox attacks

Algebraic attacks

◊ For a long time thought to be too costly

 \diamond Recent progress [[VBC⁺19] PQCrypto '19] in the Kipnis-Shamir setting for the MinRank problem: through added syzygies first degree fall / solving degree in r+2 → still very high complexities because of the setting.

 \diamond Very recently: [Bardet, Briaud, Bros, Gaborit, Neiger, Ruatta and Tillich - ongoing work '19], new optimized SCSS setting for the RSD problem : first degree fall through syzygies in r+1 and a priori lower bounded by r.

Less unknowns than Kipnis-Shamir setting \rightarrow for high parameters better than combinatorial attacks, but not speeded up by quantum computer, does not impact Lvl 3 and 5 but may need to slightly modify Level 1 parameters in the worst case scenario.

Advantage: better understanding of how algebraic attacks work, seems difficult to do better.

◊ Security reductions for quasi-cyclicity Same type of configuration than Hamming/Euclidean metrics

Reaction attack

Reaction attacks against LRPC-based cryptosystem have been studied recently in [AG19] and [SSPB].

ROLLO negates both of these attacks for the following reasons :

- ROLLO-I and ROLLO-III use ephemeral keys
- The DFR $<2^{-128}$ in ROLLO-II makes the complexity of the attacks too high in practice

1 Recap on the schemes

- 2 NIST's comments after 1st round for ROLLO and modifications for the 2nd round
- 3 Comments on NIST's questions
- 4 Optimized implementation

ROLLO Rank-Ouroboros, LAKE & LOCKER

AVX2 implementation

Performance comparaison between:

- 1 : Reference implementation submitted to the second round
- 2 : AVX2 implementation sent to NIST on July, 1st, 2019
- 3 : Current AVX2 implementation

Parameter	Keygen		Encaps			Decaps			
	1	2	3	1	2	3	1	2	3
ROLLO-I-128	2.00	0.36	0.36	0.46	0.095	0.080	1.65	1.00	0.65
ROLLO-I-256	3.42	0.71	0.70	0.73	0.15	0.10	4.78	4.45	2.47
ROLLO-II-128	9.62	2.46	2.46	1.52	0.35	0.29	4.96	3.00	1.90
ROLLO-II-256	11.41	2.84	2.84	2.39	0.43	0.34	7.94	5.00	3.03
ROLLO-III-128	2.71	0.10	0.10	0.55	0.19	0.16	2.57	0.81	0.51
ROLLO-III-256	3.58	0.18	0.18	0.60	0.32	0.26	3.77	4.23	2.30

Figure 2: Measures in millions of cycles

Constant time

 \diamond Decoding algorithm is designed to be constant time while still reaching announced DFR.

 \diamond A full constant-time implementation of ROLLO-I-128 is done in [AMBC⁺] with small overhead.

Take away for ROLLO

Advantages:

- $\diamond\,$ Very small key size
- $\diamond~$ Increases diversity of problems
- ◊ Fast encryption/decryption
- ◊ Reduction to : decoding a random ideal code (ROLLO-III) or distinguishing LRPC (ROLLO I-II).
- ♦ Combinatorial/algebraic attacks better/well understood by now
- ◊ Optimized implementations in AVX2

On going work for public constant time implementation.

References I

- Nicolas Aragon and Philippe Gaborit, A key recovery attack against lrpc using decryption failures, Coding and Cryptography, International Workshop, WCC, vol. 2019, 2019.
- Nicolas Aragon, Philippe Gaborit, Adrien Hauteville, and Jean-Pierre Tillich, A new algorithm for solving the rank syndrome decoding problem, 2018 IEEE International Symposium on Information Theory, ISIT 2018, Vail, CO, USA, June 17-22, 2018, 2018, pp. 2421–2425.
- Carlos Aguilar-Melchor, Emanuele Bellini, Florian Caullery, Rusydi H Makarim, Marc Manzano, Chiara Marcolla, and Victor Mateu, Constant-time algorithms for rollo.

References II

- Simona Samardjiska, Paolo Santini, Edoardo Persichetti, and Gustavo Banegas, *A reaction attack against cryptosystems based on Irpc codes*.
- Javier A. Verbel, John Baena, Daniel Cabarcas, Ray A. Perlner, and Daniel Smith-Tone, On the complexity of "superdetermined" minrank instances, Post-Quantum Cryptography - 10th International Conference, PQCrypto 2019, Chongqing, China, May 8-10, 2019 Revised Selected Papers, 2019, pp. 167–186.