
Saber Post-Quantum Key Encapsulation
Mechanism (KEM): Evaluating Performance in
Mobile Devices and Suggesting Some
Improvements / Evaluating Kyber in
post-quantum KEM in a mobile application

NIST PQC Conference 2021

Topics

• Saber/Kyber Testing Flow
• Saber Performance Tests Data

• x64 versus ARM Architectures
• Kyber Performance Tests Data

• x64 versus ARM Architectures

Saber/Kyber Test Flow

● Used standard version of both Saber/Kyber.
● Tests Characteristics:

○ Input: Key Session Object (128 bytes).
○ Output: Profiling Data
○ Code Sequence:

■ Call “indcpa_kem_keypair (byte[] pubKey, byte[] privKey)”.
■ Call “indcpa_kem_enc (byte[] message, byte[] pubKey)”.
■ Call “indcpa_kem_dec (byte[] encData, byte[] privKey) ”.

● Padding was necessary when data was not multiple of block size.

How were the tests done?

Algorithms Versions Evaluated - NIST Round 2 and 3

● Kyber1024
● NIST security level: 5¹

● sk: 3168

● pk: 1568

● ct: 1568

● FireSaber
● NIST security level: 5¹

● sk: 1664

● pk: 1312

● ct: 1472

¹ “Any attack that breaks the relevant security definition must require computational resources comparable to or

greater than those required for key search on a block cipher with a 256-bit key (e.g. AES 256).” (NIST, 2017).

Saber Test Devices

● Mobile Device ARMv8
○ Android 10

○ RAM: 8GB

○ Octa-core (2x2.73 GHz

Mongoose M5 + 2x2.60 GHz

Cortex-A76 + 4x2.0 GHz

Cortex-A55)

● Security Level: FireSaber (AES-256)

● PC
○ Ubuntu 20.04 LTS

○ RAM: 8GB

○ Intel(R) Core(TM) i7-6700 -

3,4GHz

○ 64 bits

Saber - Average Time - x64 Architecture

● Round 2
○ KEY GENERATION:

■ 1458.00 𝜇 seconds
○ ENCRYPTION:

■ 1584.04 𝜇 seconds
○ DECRYPTION:

■ 382.43 𝜇 seconds

● Round 3
○ KEY GENERATION:

■ 1970.18 𝜇 seconds
○ ENCRYPTION:

■ 2435.74 𝜇 seconds
○ DECRYPTION:

■ 574.68 𝜇 seconds

* Round 2 had better performance

Saber - Average Time - ARM Architecture

● Round 2
○ KEY GENERATION:

■ 894.20 𝜇 seconds
○ ENCRYPTION:

■ 753.70 𝜇 seconds
○ DECRYPTION:

■ 211..09 𝜇 seconds

● Round 3
○ KEY GENERATION:

■ 333.96 𝜇 seconds
○ ENCRYPTION:

■ 355.25 𝜇 seconds
○ DECRYPTION:

■ 128.25 𝜇 seconds

* Round 3 had better performance

Saber - Bottlenecks - x64 Architecture

● Round 2
○ KEY GENERATION:

■ MatrixVectorMulti Function
(81% Consumption)

○ ENCRYPTION:
■ MatrixVectorMulti Function

(59% Consumption)
○ DECRYPTION:

■ InnerProd Function (95%
Consumption)

● Round 3
○ KEY GENERATION:

■ MatrixVectorMulti Function
(86% Consumption)

○ ENCRYPTION:
■ MatrixVectorMulti Function

(68% Consumption)
○ DECRYPTION:

■ InnerProd Function (96%
Consumption)

* MatrixVectorMulti and InnerProd are bottlenecks

Saber - Bottlenecks - ARM Architecture

● Round 2
○ KEY GENERATION:

■ MatrixVectorMulti Function
(67% Consumption)

○ ENCRYPTION:
■ MatrixVectorMulti Function

(40% Consumption)
○ DECRYPTION:

■ InnerProd Function (88%
Consumption)

● Round 3
○ KEY GENERATION:

■ MatrixVectorMulti Function
(64% Consumption)

○ ENCRYPTION:
■ MatrixVectorMulti Function

(55% Consumption)
○ DECRYPTION:

■ InnerProd Function (89%
Consumption)

* MatrixVectorMulti and InnerProd are bottlenecks

* Consumption values were more balanced

Saber Round 2 - x64 versus ARM Architectures

Saber Round 3 - x64 versus ARM Architectures

● x64 better 4 times and ARM better 26 times

Saber Round 3 Code Improvement

● Improvement in MatrixVectorMulti Function
○ Use shift operations instead of division by 2 on karatsuba_simple function that is inside

MatrixVectorMulti function.
● What was better in performance?

○ Function had an improvement of 3.26% compared to Round 3 original code.
● Is improvement conclusive?

○ Tests showed better performance, however we can’t affirm it’s conclusive.
○ There are compilers that automatically change division by 2 to shift operations.
○ We suggest Saber team to evaluate this improvement and conclude if it really improved

performance.

Kyber Test Devices

● Mobile Device ARMv8
○ Android 10

○ RAM: 8GB

○ Octa-core (2x2.73 GHz

Mongoose M5 + 2x2.60 GHz

Cortex-A76 + 4x2.0 GHz

Cortex-A55)

● PC
○ Ubuntu 20.04 LTS

○ RAM: 8GB

○ Intel(R) Core(TM) i7-6700 -

3,4GHz

○ 64 bits

● Security Level: Kyber1024 (AES-256)

Kyber - Analysis Round 2 versus Round 3

● Analysis
○ Average execution time for Linux was increased

○ Average execution time for Android was reduced

○ Top values were kept

● Conclusion
○ Kyber was optimized for ARM architecture in newest NIST submission

Searching for code improvements

● Look for multiplication and division operations that could be replaced by

bit shifting
○ Not found an effective change

● Use 90s variant to find out improvements
○ “The 90s variant of Kyber uses symmetric primitives that are standardized by

NIST and accelerated in hardware on a large variety of platforms.” (Kyber, 2020)

○ For Galaxy S20 was not effective (see next slide), it increased the average

execution time in 41.28%
■ Worst times for key pair generation and encryption

■ Better times for decryption

