Saber: Status update

A. Basso¹ J. P. D'Anvers² A. Karmakar² J. M. Bermudo Mera² S. S. Roy³ M. Van Beirendonck² F. Vercauteren²

¹ University of Birmingham, ² ESAT-COSIC - KU Leuven, ³ IAIK - Graz University of Technology

Saber - Mod-LWR

Mod-LWE	Mod-LWR		
$\left(oldsymbol{a},b=oldsymbol{a}^{T}oldsymbol{s}+e ight) \ \in \ {\it R}_{ ho}^{\prime imes 1} imes {\it R}_{ ho}$	$\left(oldsymbol{a},b=\left\lfloorrac{p}{q}(oldsymbol{a}^{ oldsymbol{ au}}oldsymbol{s}) ight ceil ight)\ \in\ R_q^{\prime imes 1} imes R_p$		
$\pmb{e} \leftarrow \chi(\pmb{R_p})$ small error	q/p determines inherent noise		

- No error generation required
- Public key and ciphertext compression
- Saber parameters: same as in Round 1
 - Fixed ring $R_q = \mathbb{Z}_q[x]/(x^{256}+1)$, power-of-two moduli $q = 2^{13}$, $p = 2^{10}$
 - Modules of rank *I*, with I = 2, 3, 4
 - Secrets sampled from binomial β_{μ} with $\mu = 5, 4, 3$ (values in $[-\mu, \mu]$)

Parameters and security

(ロト (個) (E) (E) (E) (の)()

Saber - Specification

Mod-LWR used twice

Equivalent of standard Regev-type LWE encryption

Parameters and security

Saber - Parameters

Common parameters: $q = 2^{13}$, $p = 2^{10}$, $f(x) = x^{256} + 1$

Security	Failure	Classical	Quantum	pk (B)	sk (B)	ct (B)
Category	Probability	Core-SVP	Core-SVP			
LightSaber-KEM: $I = 2$, $T = 2^3$, $\mu = 5$						
1	2^{-120}	2 ¹¹⁸	2 ¹⁰⁷	672	1568 (992)	736
Saber -KEM: $I = 3, T = 2^4, \mu = 4$						
3	2^{-136}	2 ¹⁸⁹	2 ¹⁷²	992	2304 (1440)	1088
FireSaber-KEM: $I = 4$, $T = 2^6$, $\mu = 3$						
5	2^{-165}	2 ²⁶⁰	2 ²³⁶	1312	3040 (1760)	1472

Parameters and security

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Saber - Parameter Choices

Simplicity: moduli T|p|q are powers of 2

- \oplus all security levels $p=2^{10}$ and $q=2^{13}$
- \oplus easy uniform sampling
- ⊕ no modular arithmetic, no real rounding no native NTT for fast multiplication
 - working modulo larger prime allows NTT
- Modular: Only one polynomial ring $R_q = \mathbb{Z}_q[x]/(x^{256}+1)$ with $q = 2^{13}$
- Flexibility: Rank of module 2, 3, 4 depending on security level

Saber - Security

- Parameters same since original submission
- Security estimates corrected and verified by 3 independent teams:
 - Original LWE estimator (Albrecht et. al)
 - Leaky LWE estimator (Léo Ducas)
 - Script by Dan Bernstein
- Saber ciphertexts uniformly random bytes due to power of 2
- Damien Stehlé: Security of Saber can be based on Search Mod-LWR (not just decision)
 - Core idea: prove OW-CPA instead of IND-CPA
 - Proof technique: Section 5 of J. Devevey, A. Sakzad, D. Stehlé, R. Steinfeld: On the Integer Polynomial Learning with Errors Problem. Public Key Cryptography (1) 2021: 184-214

Saber - Side Channel Security

- No error sampling required vs. LWE based schemes
- Implies less pseudo-random bits and thus less hash calls
 - ► Saber: 4/5/5 Keccak-f calls vs. Kyber: 7/7/9 Keccak-f calls
- ▶ No rejection sampling: less randomness, easier to mask
 - Masked randomness sampling: Kyber overhead of 17.5 vs. Saber
- Masked implementations: B2A and A2B conversions more efficient for power of two moduli q = 2^k than for prime q
 - ► B2A: Kyber overhead of 7 vs. Saber

Saber - Multiplications

- ▶ All multiplications in Saber are uniform random imes small element from β_{μ}
- ▶ Bounds on coefficients of product is $256 \cdot q \cdot \mu$ instead of $256 \cdot q^2$
- Flexibility: schoolbook / Karatsuba / Toom-Cook / NTT-based
- NTT-based multiplication: can choose smaller NTT-friendly prime
 - C.-M. M. Chung, V. Hwang, M. J. Kannwischer, G. Seiler, C.-J. Shih, B.-Y. Yang. NTT Multiplication for NTT-unfriendly Rings.
- Good for use on large-integer arithmetic co-processor
 - B. Wang, X. Gu, Y. Yang: Saber on ESP32. ACNS (1) 2020: 421-440
 - J. W. Bos, J, Renes, C. van Vredendaal: Polynomial Multiplication with Contemporary Co-Processors: Beyond Kronecker, Schönhage-Strassen & Nussbaumer. IACR Cryptol. ePrint Arch. 2020: 1303 (2020)
- Open problem: can this be exploited in masked implementations?

Parameters and security

NTT-based Saber

C.-M. M. Chung, V. Hwang, M. J. Kannwischer, G. Seiler, C.-J. Shih, B.-Y. Yang. **NTT Multiplication for NTT-unfriendly Rings.**

- Use larger NTT-friendly prime or a pair of two smaller NTT-friendly primes
- Negacyclic transformation to compute product modulo $x^{256} + 1$
- Matrix-vector and inner-product allow to save on inverse NTT's

	Cortex-M4 (E/D)		AVX2 (E/D)		
	Toom-Cook	NTT	Toom-Cook	NTT	
LigthSaber	653k / 678k	513k / 498k	75k / 70k	72k / 64k	
Saber	1103k / 1127k	864k / 835k	125k / 118k	118k / 107k	
FireSaber	1642k / 1679k	1255k / 1227k	184k / 174k	172k / 160k	

Saber in pqm4

Significantly reduced stack usage in pqm4 starting from NTT-based Saber

	Cortex-M4 (E/D)		
	cycles	bytes	
LigthSaber	485k / 460k	5,156/5,172	
Saber	828k / 786k	6,180/6,196	
FireSaber	1214k / 1167k	7,204/7,220	
Kyber-512	556k/516k	2,308/2,324	
Kyber-768	907k/848k	2,780/2,804	
Kyber-1024	1383k/1304k	3,292/3,324	

Masked Saber in HW/SW

Algorithm	Device	Decapsulation			
		unmasked	masked		
Saber	ARM M4	1, 123, 280	2,833,348 (×2.52)		
Kyber*	ARM M4	847, 584	3,596,193 (×4.24)		
Saber	RISC-V	347, 323	914,925 (×2.63)		
Kyber	RISC-V	338, 746	1,402,650 (×4.14)		

M. Van Beirendonck, J.-P. D'anvers, A. Karmakar, J. Balasch, and I. Verbauwhede.

A Side-Channel-Resistant Implementation of Saber.

T. Fritzmann, M. Van Beirendonck, D. B. Roy, P. Karl, T. Schamberger, I. Verbauwhede, and G. Sigl. Masked Accelerators and Instruction Set Extensions for Post-Quantum Cryptography.

* D. Heinz, P. Schwabe, M. J. Kannwischer, G. Land, D. Sprenkels, T. Pöppelmann. First-Order Masked Kyber on ARM Cortex-M4.

▲□▶▲□▶▲□▶▲□▶ □ のへで

Masked Saber on FPGA

	Cycl	Overhead	
Operation	Unmasked	Masked	
Polynomial arithmetic (256 DSPs)	4,484	8,968	2.00×
SHA-256	303	1,344	4.44 imes
SHA-512	62	124	2.00 imes
Binomial Sampler	176	339	1.92 imes
A2A			
Rounding and Scaling	339	682	2.01 imes
Ciphertext compression	107	561	5.24 imes
[Message extraction	167	985	5.90 imes
Other operations	993	1,986	2.00×
Total (256 DSPs)	8,034	16,392	2.04×

A. Basso, L. Prokop, S. S. Roy. A side-channel resistant hardware implementation of Saber.

Saber in HW

э

< ≥ > < ≥ >

Saber on ASIC

- Tsingua university: Y. Zhu, M. Zhu, B. Yang, W. Zhu, C. Deng, C. Chen, S. Wei and L. Liu; LWRpro: An Energy-Efficient Configurable Crypto-Processor for Module-LWR
 - ▶ 40nm, 400MHz, 1456/1701 E/D cycles, 275k Enc/sec, 0.15µJ/op, 0.38 mm²
 - Very energy efficient, only CPA version
- TalTech: Malik Imran, Felipe Almeida, Samuel Pagliarini (EU H2020 952252)
 - ▶ 65nm, 1GHz, 6880/8630 E/D cycles, 145k Enc/sec, 4.2µJ/op, 0.49 mm²
 - Full CCA version, no masking
- Purdue/Intel: A. Ghosh, S. Shreyas, D. Das (Purdue) and S. Ghosh (Intel)
 - ► 65nm, 200MHz, 18705/23390 E/D cycles, 10.6k Enc/sec, 1.12 µJ/op, 0.74 mm²
 - Full CCA version, circuit level side-channel protection, no masking

Saber is ...

Secure

- Security can be based on Search Mod-LWR
- Security levels confirmed by 3 teams
- Stable: parameters same as in Round 1
- **Easy to implement** (less footguns than other schemes)
 - No modular reduction
 - No rejection sampling
 - Modular: only arithmetic in one fixed R_q
- Efficient to protect against side-channels (see presentation Michiel)
 - Power-of-two moduli
 - Less hashing (due to rounding)
 - For higher order, difference gets larger