Security Analysis of Beetle and SpoC

Bishwajit Chakraborty, Ashwin Jha and Mridul Nandi

Indian Statistical Institute,Kolkata

6th Nov 2019

Introduction

- NIST's SHA-3 competition had several sponge-based candidates.
- JH and Keccak were among the five finalists. Keccak became the eventual winner.
- Sponge based AE: The duplex mode.
- More than dozen Submissions in CEASAR Competition.
- Ascon, a winner in lightweight applications (resource constrained use-case)

Sponge in lightweight cryptography

- HASH Functions: Quark, PHOTON, SPONGENT, sLiSCP etc.
- AE Schemes: ASCON, Beetle (sponge-like), SpoC (sponge-like)
- Majority of the NIST submissions are inspired by the Sponge paradigm.

Existing Security Bounds of Sponge based AE

Notation:

- b-bit permutation: split into a c-bit inner state, called the capacity, and an r-bit outer state, called the rate.
- The security of Sponge based AE modes can be represented and understood in terms of two parameters:
- data complexity D.
- time complexity T.

Existing Security Bounds of Sponge based AE

- The dominating term (in integrity analysis) present in all of the existing analysis of duplex authenticated encryption is

$$
D T / 2^{c}
$$

- In D decryption attempts we fix rate part of inputs to 0^{r} and we make T primitive queries with 0^{r} in top.
- A collision in capacity leads to degeneracy in the next block output of the decryption call.

The Beetle Mode of AEAD

Introducing a combined feedback based absorption/squeezing (similar to the feedback paradigm of CoFB).

Figure: Beetle Feedback function

Existing Security of The Beetle Mode

- Got rid of the term $D T / 2^{c}$. However,
(1) integrity security up to $D T \ll 2^{b}$,

$$
T \ll \min \left\{2^{c-\log _{2} r}, 2^{r}, 2^{b / 2}\right\} .
$$

- This means that for $c=r=b / 2$, the beetle mode achieves close to ($c-\log _{2} r$)-bit security.
- Beetle-based schemes requires close to 120 -bit capacity and 120-bit rate to achieve NIST LwC requirements.
- Secondary version of PHOTON-Beetle submission has $r=32$.

The SpoC Mode of AEAD

- Here $b=192 / 256, r=64 / 128, \kappa=128$ depending on the two different variations.

Figure: SpoC Feedback function

Sponge-based AE in Light of NIST LwC Requirement

- In NIST's LwC call for submissions, it is mentioned that the primary AE version should have
- Data complexity $2^{50}-1$ bytes
- Time complexity 2^{112}.
- In order to satisfy these requirements, a traditional duplex-based scheme must have a capacity size of at least 160-bit.
- All sponge based submission to NIST LwC standardization process uses 192-bit capacity, except CLX

Multichain Structure

Multi-Chain Structure I

- $\mathcal{L}=\left(\left(u_{1}, v_{1}\right), \ldots,\left(u_{t}, v_{t}\right)\right), u_{1}, \ldots u_{t} \in\{0,1\}^{b}$ are distinct and $v_{1}, \ldots, v_{t} \in\{0,1\}^{b}$ are distinct.
- domain $(\mathcal{L})=\left\{u_{1}, \ldots, u_{t}\right\}$ and $\operatorname{range}(\mathcal{L})=\left\{v_{1}, \ldots, v_{t}\right\}$.
- L: $\{0,1\}^{b} \rightarrow\{0,1\}^{b}$ (Linear)
- Graph $(V:=\operatorname{range}(\mathcal{L}), E)$, where $E=\left\{v_{i} \xrightarrow{x} v_{j} \mid L\left(v_{i}\right) \oplus x=u_{j}\right\}$

Multi-Chain Structure II

- Single Chain: Given $x=\left(x_{1}, \ldots, x_{k}\right)$ a label walk

$$
\mathcal{W}: w_{0} \xrightarrow{x_{1}} w_{1} \xrightarrow{x_{2}} w_{2} \cdots \xrightarrow{x_{k}} w_{k} .
$$

- Simply write $\mathcal{W}=w_{0} \xrightarrow{x} w_{k}$

Figure: An element of a k-length multi-chain.

- W_{k} is the maximum number of chains with (i) same labels and (ii) same top part of the starting and last node.

Multi-Chain Structure III

- \mathcal{A} interacts t times with $\Pi^{ \pm}$, obtains $\mathcal{L}=\left(\left(u_{1}, v_{1}\right), \ldots,\left(u_{t}, v_{t}\right)\right)$.
- The following term is appeared in the security analysis:

$$
\begin{aligned}
& \mu_{k, \mathscr{A}}:=\operatorname{Ex}\left[\mathrm{W}_{k}\right] . \\
& \mu_{k, t}=\max _{\mathscr{A}} \mu_{k, \mathscr{A}}
\end{aligned}
$$

Transform-then-Permute

- $\mathcal{M} \in\left(\{0,1\}^{r}\right)^{+}$where r is the rate of Transform-then-Permute.
- Key size $\kappa<b$. Nonce size $b-\kappa$. Tag Size $\tau<b$.

Figure: For decryption we replace L_{e} by L_{d} and \bar{M}_{i} by \bar{C}_{i}.

Security of Transform-then-Permute

Encompasses Beetle, SpoC and many other sponge like constructions.

Theorem

Let, \mathcal{D} denote the set of query indices for decryption queries. Given $\sigma:=\sigma_{e}+\sigma_{d} \leq q_{p}$. For any $\left(q_{p}, q_{e}, q_{d}, \sigma_{e}, \sigma_{d}\right)$-adversary \mathscr{A},

$$
\begin{aligned}
\operatorname{Adv}_{\mathrm{TtP}}^{\text {aead }}(\mathscr{A}) \leq & \frac{q_{p}}{2^{\kappa}}+\frac{2 q_{d}}{2^{\tau}}+\frac{5 \sigma q_{p}}{2^{b}}+\frac{r q_{p}}{2^{c}}+ \\
& \sum_{i \in \mathcal{D}} \frac{\mu_{m_{i}^{*}, q_{p}}}{2^{c}}
\end{aligned}
$$

Proof Sketch: BAD events I

Bad events due to encryption and primitive transcript (mainly collisions):
B1: Primitive input and Key collision
B2: Primitive and encryption query block output collision
B3: Primitive and encryption query block input collision
B4: Output collision between encryption query blocks
B5: Input collision between encryption query blocks
B6: Bad events due to decryption transcript: Successful forgery.

Proof Sketch: BAD events II

$$
\begin{aligned}
& v_{0}^{1} \xrightarrow{\left(x_{p_{i}+1}^{*}, \ldots, x_{m_{i}}^{*}\right)} v_{k}^{1} \\
& v_{0}^{2} \xrightarrow{\left(x_{p_{i}+1}^{*}, \ldots, x_{m_{i}}^{*}\right)} v_{k}^{2} \\
& v_{0}^{j} \xrightarrow{\left(x_{p_{i}+1}^{*}, \ldots, x_{m_{i}}^{*}\right)} v_{k}^{j}
\end{aligned}
$$

Figure: Multi-chains contributing to B6.

Transform-then-Permute with Invertible Feedback

- If L_{d} is invertible then: If $v_{i} \xrightarrow{x} v_{k}$ and $v_{j} \xrightarrow{x} v_{k}$ then $v_{i}=v_{j}$.
- $\mathrm{W}^{\text {fiwd,a }}:=\left|\left\{i: \operatorname{dir}_{i}=+,\left\lceil v_{i}\right\rceil_{\tau}=a\right\}\right| ; \mathrm{W}^{\text {fwd }}:=\max _{a} \mathrm{~W}^{\text {fwd }, a}$
- $\mathrm{W}^{\mathrm{bck}, a}:=\left|\left\{i: \operatorname{dir}_{i}=-,\left\lceil v_{i}\right\rceil_{r}=a\right\}\right| ; \mathrm{W}^{\mathrm{bck}}:=\max _{a} \mathrm{~W}^{\mathrm{bck}, a}$
- $\mathrm{W}^{\text {mitm }, a}:=\left|\left\{(i, j): \operatorname{dir}_{i}=+, \operatorname{dir}_{j}=-, v_{i} \oplus u_{j}=a\right\}\right| ;$ $\mathrm{W}^{\text {mitm }}:=\max _{a} \mathrm{~W}^{\text {mitm }, a}$

Lemma

For any transcript, we have

$$
\mathrm{W}_{k} \leq \mathrm{W}^{\mathrm{fwd}}+\mathrm{W}^{\mathrm{bck}}+k \cdot \mathrm{~W}^{\mathrm{mitm}}
$$

Transform-then-Permute with Invertible Feedback

Theorem

If the feedback function L_{d} is invertible, then we have

$$
\begin{aligned}
\mu_{t, k} & \leq \operatorname{Ex}\left[\mathrm{W}^{\mathrm{fwd}}\right]+\mathrm{Ex}\left[\mathrm{~W}^{\mathrm{bck}}\right]+k \cdot \mathrm{Ex}\left[\mathrm{~W}^{\mathrm{mitm}}\right] \\
& \leq \operatorname{mcoll}\left(t, 2^{\tau}\right)+\operatorname{mcoll}\left(t, 2^{r}\right)+k \cdot \operatorname{mcoll}^{\prime}\left(t^{2}, 2^{b}\right)
\end{aligned}
$$

Improved Security Bound for Beetle

- $L_{d}(x, y) \mapsto\left(x_{2} \oplus x_{1}, x_{1}, y\right)$, where

$$
\left(x_{1}, x_{2}, y\right) \in\{0,1\}^{r / 2} \times\{0,1\}^{r / 2} \times\{0,1\}^{c}
$$

- Clearly the L_{d} function is invertible.

Corollary

For $r, \tau, b \geq 16$ and any $\left(q_{p}, q_{e}, q_{d}, \sigma_{e}, \sigma_{d}\right)$-adversary \mathscr{A}, we have

$$
\operatorname{Adv}_{\text {Beetle }}^{\text {aead }}(\mathscr{A}) \leq \frac{q_{p}}{2^{\kappa}}+\frac{2 q_{d}}{2^{\tau}}+\frac{5 \sigma q_{p}}{2^{b}}+\frac{r q_{p}}{2^{c}}+\frac{2 \tau q_{p} q_{d}}{2^{b}}+\frac{2 b q_{p}^{2} \sigma_{d}}{2^{b+c}}
$$

Security Bound for SpoC

- L_{d} is defined as $L(x, y) \mapsto\left(x, x \| 0^{c} \oplus y\right)$, where $(x, y) \in\{0,1\}^{r} \times\{0,1\}^{c}$.
- Clearly the L_{d} function is invertible.

Corollary

For $r, \tau, b \geq 16$ and any $\left(q_{p}, q_{e}, q_{d}, \sigma_{e}, \sigma_{d}\right)$-adversary \mathscr{A}, we have

$$
\operatorname{Adv}_{\mathrm{SpoC}}^{\text {aead }}(\mathscr{A}) \leq \frac{q_{p}}{2^{\kappa}}+\frac{2 q_{d}}{2^{\tau}}+\frac{5 \sigma q_{p}}{2^{b}}+\frac{r q_{p}}{2^{c}}+\frac{2 \tau q_{p} q_{d}}{2^{b}}+\frac{2 b q_{p}^{2} \sigma_{d}}{2^{b+c}}
$$

Conclusion

(1) Get rid of restriction on rate (required in the previous analysis of Beetle).
(2) Security analysis of SpoC.
(3) Unified sponge-like constructions.
(9) Understanding tight (integrity) security of sponge is still open.

Thank You!

