Security Analysis of Beetle and SpoC

Bishwajit Chakraborty, Ashwin Jha and Mridul Nandi

Indian Statistical Institute, Kolkata

6th Nov 2019

Bishwajit Chakraborty, Ashwin Jha and Mridul Security Analysis of Beetle and SpoC

- ► NIST's SHA-3 competition had several sponge-based candidates.
- ► JH and Keccak were among the five finalists. Keccak became the eventual winner.
- **Sponge** based AE: The **duplex** mode.
- More than dozen Submissions in CEASAR Competition.
- Ascon, a winner in lightweight applications (resource constrained use-case)

- **HASH Functions:** Quark, PHOTON, SPONGENT, sLiSCP etc.
- ► AE Schemes: ASCON , Beetle (sponge-like), SpoC (sponge-like)
- Majority of the NIST submissions are inspired by the Sponge paradigm.

NOTATION:

- b-bit permutation: split into a c-bit inner state, called the capacity, and an r-bit outer state, called the rate.
- The security of Sponge based AE modes can be represented and understood in terms of two parameters:
 - data complexity D.
 - time complexity T.

The dominating term (in integrity analysis) present in all of the existing analysis of **duplex** authenticated encryption is

$DT/2^{c}$.

- In D decryption attempts we fix rate part of inputs to 0^r and we make T primitive queries with 0^r in top.
- A collision in capacity leads to degeneracy in the next block output of the decryption call.

Introducing a combined feedback based absorption/squeezing (similar to the feedback paradigm of CoFB).

Figure: Beetle Feedback function

Existing Security of The Beetle Mode

• Got rid of the term $DT/2^c$. However,

) integrity security up to
$$DT\ll 2^b$$
,

$$T \ll \min\{2^{c-\log_2 r}, 2^r, 2^{b/2}\}.$$

- ► This means that for c = r = b/2, the beetle mode achieves close to (c log₂ r)-bit security.
- Beetle-based schemes requires close to 120-bit capacity and 120-bit rate to achieve NIST LwC requirements.
- Secondary version of PHOTON-Beetle submission has r = 32.

The SpoC Mode of AEAD

Here b = 192/256, r = 64/128, κ = 128 depending on the two different variations.

Figure: SpoC Feedback function

- In NIST's LwC call for submissions, it is mentioned that the primary AE version should have
 - Data complexity $2^{50} 1$ bytes
 - Time complexity 2¹¹².
- In order to satisfy these requirements, a traditional duplex-based scheme must have a capacity size of at least 160-bit.
- All sponge based submission to NIST LwC standardization process uses 192-bit capacity, except CLX

Multichain Structure

- ▶ $\mathcal{L} = ((u_1, v_1), \dots, (u_t, v_t)), u_1, \dots u_t \in \{0, 1\}^b$ are distinct and $v_1, \dots, v_t \in \{0, 1\}^b$ are distinct.
- domain(\mathcal{L}) = { u_1, \ldots, u_t } and range(\mathcal{L}) = { v_1, \ldots, v_t }.

•
$$L: \{0,1\}^b \to \{0,1\}^b$$
 (Linear)

• Graph ($V := \operatorname{range}(\mathcal{L}), E$), where $E = \{v_i \xrightarrow{x} v_j | L(v_i) \oplus x = u_j\}$

Multi-Chain Structure II

Single Chain: Given $x = (x_1, \ldots, x_k)$ a label walk

$$\mathcal{W}: w_0 \stackrel{x_1}{\rightarrow} w_1 \stackrel{x_2}{\rightarrow} w_2 \cdots \stackrel{x_k}{\rightarrow} w_k.$$

• Simply write $\mathcal{W} = w_0 \stackrel{\times}{\longrightarrow} w_k$

Figure: An element of a k-length multi-chain.

 W_k is the maximum number of chains with (i) same labels and (ii) same top part of the starting and last node. • \mathcal{A} interacts t times with Π^{\pm} , obtains $\mathcal{L} = ((u_1, v_1), \dots, (u_t, v_t)).$

► The following term is appeared in the security analysis:

$$\mu_{k,\mathscr{A}} := \mathsf{Ex}\,[\mathsf{W}_k].$$
$$\mu_{k,t} = \max_{\mathscr{A}} \mu_{k,\mathscr{A}}$$

Transform-then-Permute

- $\mathcal{M} \in (\{0,1\}^r)^+$ where r is the rate of Transform-then-Permute.
- Key size $\kappa < b$. Nonce size $b \kappa$. Tag Size $\tau < b$.

Figure: For decryption we replace L_e by L_d and \overline{M}_i by \overline{C}_i .

Encompasses Beetle, SpoC and many other sponge like constructions.

Theorem

Let, \mathcal{D} denote the set of query indices for decryption queries. Given $\sigma := \sigma_e + \sigma_d \leq q_p$. For any $(q_p, q_e, q_d, \sigma_e, \sigma_d)$ -adversary \mathscr{A} ,

$$\begin{split} \mathsf{Adv}_{\mathsf{TtP}}^{\mathsf{aead}}(\mathscr{A}) &\leq \frac{q_p}{2^{\kappa}} + \frac{2q_d}{2^{\tau}} + \frac{5\sigma q_p}{2^b} + \frac{rq_p}{2^c} + \\ &\sum_{i\in\mathcal{D}} \frac{\mu_{m_i^*,q_p}}{2^c}. \end{split}$$

Bad events due to encryption and primitive transcript (mainly collisions):

- B1: Primitive input and Key collision
- B2: Primitive and encryption query block output collision
- B3: Primitive and encryption query block input collision
- B4: Output collision between encryption query blocks
- B5: Input collision between encryption query blocks
- B6: Bad events due to decryption transcript: Successful forgery.

Proof Sketch : BAD events II

Figure: Multi-chains contributing to B6.

Bishwajit Chakraborty Ashwin the and Middu Security Analysis of Beetle and SpoC

6th Nov 2019 17 / 22

Transform-then-Permute with Invertible Feedback

- ▶ If L_d is invertible then: If $v_i \xrightarrow{x} v_k$ and $v_j \xrightarrow{x} v_k$ then $v_i = v_j$.
- $\blacktriangleright \ \mathsf{W}^{\mathsf{fwd},a} := |\{i : \mathsf{dir}_i = +, \lceil v_i \rceil_{\tau} = a\}|; \ \mathsf{W}^{\mathsf{fwd}} := \max_a \mathsf{W}^{\mathsf{fwd},a}$
- $\blacktriangleright \ \mathsf{W}^{\mathsf{bck},a} := |\{i : \mathsf{dir}_i = -, \lceil v_i \rceil_r = a\}|; \ \mathsf{W}^{\mathsf{bck}} := \max_a \mathsf{W}^{\mathsf{bck},a}$
- ► W^{mitm,a} := $|\{(i,j) : \operatorname{dir}_i = +, \operatorname{dir}_j = -, v_i \oplus u_j = a\}|;$ W^{mitm} := max_a W^{mitm,a}

Lemma

For any transcript, we have

$$W_k \leq W^{\mathsf{fwd}} + W^{\mathsf{bck}} + k \cdot W^{\mathsf{mitm}}$$

Theorem

If the feedback function L_d is invertible, then we have

$$\begin{split} \mu_{t,k} &\leq \mathsf{Ex}\left[\mathsf{W}^{\mathsf{fwd}}\right] + \mathsf{Ex}\left[\mathsf{W}^{\mathsf{bck}}\right] + k \cdot \mathsf{Ex}\left[\mathsf{W}^{\mathsf{mitm}}\right] \\ &\leq \mathsf{mcoll}(t, 2^{\tau}) + \mathsf{mcoll}(t, 2^{r}) + k \cdot \mathsf{mcoll}'(t^{2}, 2^{b}) \end{split}$$

Improved Security Bound for Beetle

►
$$L_d(x, y) \mapsto (x_2 \oplus x_1, x_1, y)$$
, where
 $(x_1, x_2, y) \in \{0, 1\}^{r/2} \times \{0, 1\}^{r/2} \times \{0, 1\}^c$

• Clearly the L_d function is invertible.

Corollary

For r, τ , $b \ge 16$ and any $(q_p, q_e, q_d, \sigma_e, \sigma_d)$ -adversary \mathscr{A} , we have

$$\mathsf{Adv}_{\mathsf{Beetle}}^{\mathsf{aead}}(\mathscr{A}) \leq \frac{q_p}{2^{\kappa}} + \frac{2q_d}{2^{\tau}} + \frac{5\sigma q_p}{2^b} + \frac{rq_p}{2^c} + \frac{2\tau q_p q_d}{2^b} + \frac{2bq_p^2\sigma_d}{2^{b+c}}.$$

•
$$L_d$$
 is defined as $L(x, y) \mapsto (x, x || 0^c \oplus y)$, where $(x, y) \in \{0, 1\}^r \times \{0, 1\}^c$.

• Clearly the L_d function is invertible.

Corollary

For r,
$$\tau$$
, $b \ge 16$ and any $(q_p, q_e, q_d, \sigma_e, \sigma_d)$ -adversary \mathscr{A} , we have

$$\mathsf{Adv}^{\mathsf{aead}}_{\mathsf{SpoC}}(\mathscr{A}) \leq \frac{q_p}{2^{\kappa}} + \frac{2q_d}{2^{\tau}} + \frac{5\sigma q_p}{2^b} + \frac{rq_p}{2^c} + \frac{2\tau q_p q_d}{2^b} + \frac{2bq_p^2 \sigma_d}{2^{b+c}}.$$

- Get rid of restriction on rate (required in the previous analysis of Beetle).
- Security analysis of SpoC.
- Onified sponge-like constructions.
- Understanding tight (integrity) security of sponge is still open.

Thank You!