Security Analysis of mixFeed

Bishwajit Chakraborty and <u>Mridul Nandi</u> Indian Statistical Institute,Kolkata

6th Nov 2019

Simplified AE (with no AD) based on a TBC \tilde{E}_{κ} .

Simplified AE (with no AD) based on a TBC \tilde{E}_{κ} .

State size: (i) TBC state n, (ii) Tweak and Key state t + k, (iii) Possibly additional state to hold t-bit tweak and k bit key.

Simplified AE (with no AD) based on a TBC \tilde{E}_{κ} .

State size: (i) TBC state n, (ii) Tweak and Key state t + k, (iii) Possibly additional state to hold t-bit tweak and k bit key.

Simplified AE (with no AD) based on a TBC \tilde{E}_{κ} .

State size: (i) TBC state n, (ii) Tweak and Key state t + k, (iii) Possibly additional state to hold t-bit tweak and k bit key.

► Assume C_i = M_i ⊕ Y_{i-1} and X_i is dependent on Y_{i-1} and significant fraction of bits of C_i.

 $\mathsf{Adv}_{AE}^{\textit{priv}}(D, T) \leq \mathsf{Adv}_{\tilde{E}}^{\textit{TPRP}}(D, T) \text{ and } \mathsf{Adv}_{AE}^{\textit{auth}}(D, T) \leq \mathsf{Adv}_{\tilde{E}}^{\textit{TPRP}}(D, T) + \mathcal{O}(\frac{D}{2^n})$

 $\mathsf{Adv}_{AE}^{\textit{priv}}(D, T) \leq \mathsf{Adv}_{\tilde{E}}^{\textit{TPRP}}(D, T) \text{ and } \mathsf{Adv}_{AE}^{\textit{auth}}(D, T) \leq \mathsf{Adv}_{\tilde{E}}^{\textit{TPRP}}(D, T) + \mathcal{O}(\frac{D}{2^n})$

► How small can $\mathbf{Adv}_{\tilde{F}}^{TPRP}(D,T)$ be? Cannot be better than $T/2^{k}$.

Can have weaker security while designing TBC from BC.

TBC based on BC

Image: A matrix of the second seco

Figure: ICE1 with KDF1. (Remus-N1). Here tweak = (N, i, δ) .

- ▶ *D* many queries to ICE1 with input 0^n and changing the tweak to get Y_1, \ldots, Y_D .
- K_1, \ldots, K_D : intermediate keys for the second call of BC.

- ▶ D many queries to ICE1 with input 0ⁿ and changing the tweak to get Y₁,..., Y_D.
- K_1, \ldots, K_D : intermediate keys for the second call of BC.
- Precompute T many blockcipher outputs Y'₁,..., Y'_T with input 0ⁿ and key K'₁,..., K'_T.

- ▶ D many queries to ICE1 with input 0ⁿ and changing the tweak to get Y₁,..., Y_D.
- K_1, \ldots, K_D : intermediate keys for the second call of BC.
- Precompute T many blockcipher outputs Y'₁,..., Y'_T with input 0ⁿ and key K'₁,..., K'_T.
- When $DT \approx 2^n$, we expect $K_i = K'_j$ (detectable through $Y_i = Y'_j$).

Some Examples of TBC based on BC

Figure: ICE2 with KDF2. (Remus-N2). Here tweak = (N, i, δ) .

- TPRP advantage of ICE2 is $\frac{DT}{2^{2n}}$. Requires larger state.
- Can we have both (1) smaller state (2) higher security?

New Reduction and New Security Game

Figure: ICE1 with G as identity. (Remus-N1). Here tweak = (N, i, δ) .

- Use different reduction games considering μ-respecting adversary (the maximum number of query to TBC with same input is at most μ).
- **2** TPRP advantage of such an adversary against ICE1 is $\frac{\mu T}{2^n}$.
- Sestrict $\mu = O(n)$ and consider *n*-multicollision.

mixFeed

・ロト ・日下 ・ 日下

The mF Mode of AEAD

Figure: Block diagram of mF. $\operatorname{Fmt}_1(A) = (A_2 || A_1), \operatorname{Fmt}_2(M) = (M_2 || M_1).$

FeedBack Function used in mF

The TBC in mixFeed

Figure: The tweakable block cipher in mixFeed. Here ρ is the 11-th round key function in AES key scheduling algorithm.

Domain Separation by Last block processing.

Figure: MixFeed Last block processing.

► Tweak space \mathcal{T} . *n*-bit TBC \tilde{E} . Tweakable random Permutation $\tilde{\Pi}$.

▶ *µ*-**TPRP**:

• $\mathscr{A}^{\mathcal{O}}$, Restriction: $\forall X \in \{0,1\}^n$ number of queries $(\cdot,X) \leq \mu$

•
$$\operatorname{Adv}_{\tilde{E}}^{\mu\text{-}TPRP}(\mathscr{A}) = \left| \operatorname{Pr} \left[\mathscr{A}^{\tilde{E}_{K}} = 1 \right] - \operatorname{Pr} \left[\mathscr{A}^{\tilde{\Pi}} = 1 \right] \right|$$

 $\operatorname{Adv}_{\tilde{E}}^{\mu\text{-}TPRP}(q, t) = \max_{\mathscr{A}} \operatorname{Adv}_{\tilde{E}}^{\mu\text{-}TPRP}(\mathscr{A})$

where max over all $\mathscr{A}($ number of queries $\leq q$, time $\leq t$).

1 $\mathscr{A}^{\tilde{E}_{K}}$ runs in two phase. In the first phase it is μ -respecting.

9 $\mathscr{A}^{\tilde{E}_{\kappa}}$ runs in two phase. In the first phase it is μ -respecting.

2 \mathscr{A} commits D many $(tw_i, x_i, y_i), x_i, y_i \in \{0, 1\}^{\frac{n}{2}}$.

9 $\mathscr{A}^{\tilde{E}_{\kappa}}$ runs in two phase. In the first phase it is μ -respecting.

2 \mathscr{A} commits D many $(tw_i, x_i, y_i), x_i, y_i \in \{0, 1\}^{\frac{n}{2}}$.

9 Phase II: A^{Ĕ_κ} (with no restriction making at most D queries including prediction) predicts **fresh** some (tw_j, X_j, y_j) where [X_j]_{n/2} = x_i.

() $\mathscr{A}^{\tilde{E}_{\kappa}}$ runs in two phase. In the first phase it is μ -respecting.

2 \mathscr{A} commits D many $(tw_i, x_i, y_i), x_i, y_i \in \{0, 1\}^{\frac{n}{2}}$.

- Some including prediction) predicts fresh some (tw_j, X_j, y_j) where [X_j]ⁿ/₂ = x_i.
- \mathscr{A} wins (μ, D) -mcp game if $\lfloor \tilde{E}_{\mathcal{K}}(tw_j, X_j) \rfloor_{\frac{n}{2}} = y_j$, i.e. correctly predicts,

►
$$\mathbf{Adv}_{\tilde{E}}^{(\mu,D)\text{-}mcp}(\mathscr{A}) = \Pr[\mathscr{A} \text{ wins } (\mu,D)\text{-}mcp \text{ game }].$$

 $\mathbf{Adv}_{\tilde{E}}^{(\mu,D)\text{-}mcp}(T) = \max_{\mathscr{A}} \mathbf{Adv}_{\tilde{E}}^{(\mu,D)\text{-}mcp}(\mathscr{A})$

Where max over all \mathscr{A} with runtime at most T (this includes the number of public primitive queries).

- \mathscr{A} wins μ -multicollision game if
 - \mathscr{A} makes μ many queries $(X_i, Y_i)_{i \in [1,\mu]}$ with $Y_i = Y_j \ \forall i, j \in [1,\mu]$ among all D queries.

$$\mathsf{Adv}^{\mu\text{-mult}}_{\mathcal{O}}(D) = \max_{\mathscr{A}} \mathsf{Adv}^{\mu\text{-mult}}_{\mathcal{O}}(\mathscr{A})$$

Where max over all \mathscr{A} (number of queries $\leq D$).

Let P be the ideal n bit random permutation and P' is the n/2-bit truncated function of P.

Theorem

$$\mathsf{Adv}_{\mathcal{P}'}^{\mu ext{-mcoll}}(D) \leq Digg(1+rac{\mu^2}{2^n}igg)igg(rac{D}{2^{rac{n}{2}}}igg)^{\mu-1}.$$

When $\mu = n$,

$$\mathsf{Adv}_{P'}^{n\operatorname{-mcoll}}(D) = O\left(\frac{D}{2^{\frac{n}{2}}}\right).$$

Security Reductions of mixFeed

B: privacy adversary of mF.
 A: μ-TPRP adversary of *Ẽ*.
 C: multicollision adversary.

Theorem

$$\mathrm{Adv}_{\mathit{mF}}^{\mathit{priv}}(\mathscr{B}) \leq \mathrm{Adv}_{\check{\mathcal{E}}}^{\mu\text{-}\mathit{TPRP}}(\mathscr{A}) + \mathrm{Adv}_{\mathit{P}}^{\mu+1\text{-}\mathrm{mcoll}}(\mathscr{C}).$$

So,

$$\operatorname{\mathsf{Adv}}_{\operatorname{\mathsf{mF}}}^{\operatorname{\mathit{priv}}}(D,T) \leq \operatorname{\mathsf{Adv}}_{\widetilde{E}}^{\operatorname{\mathit{n-TPRP}}}(D,T) + O(D/2^{n/2}).$$

Security Reductions of mixFeed : Forgery I

- ▶ For any (D, T) forging adversary ℬ of mF we have.
- (i) $(\mu 1, D)$ -mcp adversary \mathscr{A} and (ii) \mathscr{C} with oracle $\mathcal{O}_{\tilde{\mathcal{E}}_{\mathcal{K}}}$ where $\mathcal{O}_{\tilde{\mathcal{E}}}(tw, X, C) \to X' := C \oplus (0^{\frac{n}{2}} \|\lfloor \tilde{\mathcal{E}}_{\mathcal{K}}(tw, X) \rfloor_{\frac{n}{2}}).$

Theorem

For any forging adversary \mathscr{B} of mFwith data complexity D there is (i) an $(\mu - 1, D)$ -mcp adversary \mathscr{A} of \tilde{E} , and (ii) an $\mu + 1$ -multicollision adversary \mathscr{C} as defined above, we have

$$\mathsf{Adv}^{\textit{forge}}_{\textit{\textit{mF}}}(\mathscr{B}) \leq \mathsf{Adv}^{(\mu-1,D)\text{-}\textit{mcp}}_{\tilde{\mathcal{E}}}(\mathscr{A}) + \mathsf{Adv}^{(\mu+1)\text{-}\textit{mcoll}}_{\mathcal{O}_{\tilde{\mathcal{E}}_{K}}}(\mathscr{C}).$$

(i) μ -respecting TPRP (ii) (μ , D)-mcp advantage and (iii) (μ + 1)-multi-collision.

Assumption

For any $K \in \{0,1\}^n$ chosen uniformly at random, probability that K has a period at most I is at most $\frac{l}{2^{\frac{n}{2}}}$.

For random permutation the probability is much smaller: $\frac{1}{2^n}$.

Theorem

Under the above assumption

$$\begin{aligned} \mathsf{Adv}_{\tilde{E}}^{(\mu,D)\operatorname{-mcp}}(T) &= O(\frac{D}{2^{\frac{n}{2}}}) + O(\frac{nT}{2^{n}}) \\ \mathsf{Adv}_{\tilde{E}}^{n-TPRP}(D,T) &= O\left(\frac{D}{2^{\frac{n}{2}}}\right) + O\left(\frac{nT}{2^{n}}\right). \\ \mathsf{Adv}_{\tilde{E}}^{n\operatorname{-mcoll}}(D) &\leq O(\frac{D}{2^{\frac{n}{2}}}) \end{aligned}$$

э

Theorem (Final Bound of mixFeed)

Under Assumption 1

$$\begin{aligned} \mathbf{Adv}_{mixFeed}^{priv}(D,T) &= O(\frac{D}{2^{\frac{n}{2}}}) + O(\frac{nT}{2^{n}}) \\ \mathbf{Adv}_{mixFeed}^{forge}(D,T) &= O(\frac{D}{2^{\frac{n}{2}}}) + O(\frac{nT}{2^{n}}) \end{aligned}$$

Conclusion: mixFeed Mode of AEAD

- mixFeed is provable secure under the NIST requirements (by Assumption 1) in the nonce respecting scenario.
- As shown by Mustafa Khairallah (in the Forum), mixFeed is vulnerable to Nonce misuse attacks.
- the re-keying is done simply by the AES key scheduling algorithm and can be done online. So minimal state size.
- The Feedback function is extremely simple as it requires only *n*-bit XOR.

Conclusion: mixFeed Mode of AEAD

- mixFeed is provable secure under the NIST requirements (by Assumption 1) in the nonce respecting scenario.
- As shown by Mustafa Khairallah (in the Forum), mixFeed is vulnerable to Nonce misuse attacks.
- the re-keying is done simply by the AES key scheduling algorithm and can be done online. So minimal state size.
- The Feedback function is extremely simple as it requires only n-bit XOR.

Thank You!