Security Analysis of mixFeed

Bishwajit Chakraborty and Mridul Nandi Indian Statistical Institute, Kolkata

6th Nov 2019

TBC-based AE Mode

- Simplified AE (with no AD) based on a TBC \tilde{E}_{K}.

TBC-based AE Mode

- Simplified AE (with no AD) based on a TBC \tilde{E}_{K}.

- State size: (i) TBC state n, (ii) Tweak and Key state $t+k$, (iii) Possibly additional state to hold t-bit tweak and k bit key.

TBC-based AE Mode

- Simplified AE (with no AD) based on a TBC \tilde{E}_{K}.

- State size: (i) TBC state n, (ii) Tweak and Key state $t+k$, (iii) Possibly additional state to hold t-bit tweak and k bit key.
- Decryption: FB^{-}(instead of FB^{+}).

TBC-based AE Mode

- Simplified AE (with no AD) based on a TBC \tilde{E}_{K}.

- State size: (i) TBC state n, (ii) Tweak and Key state $t+k$, (iii) Possibly additional state to hold t-bit tweak and k bit key.
- Decryption: FB^{-}(instead of FB^{+}).
- Assume $C_{i}=M_{i} \oplus Y_{i-1}$ and X_{i} is dependent on Y_{i-1} and significant fraction of bits of C_{i}.

TBC-based AE Mode

$\operatorname{Adv}_{A E}^{\text {priv }}(D, T) \leq \operatorname{Adv}_{\tilde{E}}^{T P R P}(D, T)$ and $\operatorname{Adv}_{A E}^{\text {auth }}(D, T) \leq \operatorname{Adv}_{\tilde{E}}^{T P R P}(D, T)+\mathcal{O}\left(\frac{D}{2^{n}}\right)$

TBC-based AE Mode

$\operatorname{Adv}_{A E}^{\text {priv }}(D, T) \leq \operatorname{Adv}_{E}^{T P R P}(D, T)$ and $\operatorname{Adv}_{A E}^{\text {auth }}(D, T) \leq \operatorname{Adv}_{E}^{T P R P}(D, T)+\mathcal{O}\left(\frac{D}{2^{n}}\right)$

- How small can $\operatorname{Adv}_{\tilde{E}}^{T P R P}(D, T)$ be? Cannot be better than $T / 2^{k}$.
- Can have weaker security while designing TBC from BC.

TBC based on BC

Some Examples of TBC based on BC

Figure: ICE1 with KDF1. (Remus-N1). Here tweak $=(N, i, \delta)$.

Some Examples of TBC based on BC

- D many queries to ICE1 with input 0^{n} and changing the tweak to get Y_{1}, \ldots, Y_{D}.
- K_{1}, \ldots, K_{D} : intermediate keys for the second call of BC.

Some Examples of TBC based on BC

- D many queries to ICE1 with input 0^{n} and changing the tweak to get Y_{1}, \ldots, Y_{D}.
- K_{1}, \ldots, K_{D} : intermediate keys for the second call of BC.
- Precompute T many blockcipher outputs $Y_{1}^{\prime}, \ldots, Y_{T}^{\prime}$ with input 0^{n} and key $K_{1}^{\prime}, \ldots, K_{T}^{\prime}$.

Some Examples of TBC based on BC

- D many queries to ICE1 with input 0^{n} and changing the tweak to get Y_{1}, \ldots, Y_{D}.
- K_{1}, \ldots, K_{D} : intermediate keys for the second call of BC.
- Precompute T many blockcipher outputs $Y_{1}^{\prime}, \ldots, Y_{T}^{\prime}$ with input 0^{n} and key $K_{1}^{\prime}, \ldots, K_{T}^{\prime}$.
- When $D T \approx 2^{n}$, we expect $K_{i}=K_{j}^{\prime}\left(\right.$ detectable through $\left.Y_{i}=Y_{j}^{\prime}\right)$.

Some Examples of TBC based on BC

Figure: ICE2 with KDF2. (Remus-N2). Here tweak $=(N, i, \delta)$.

- TPRP advantage of ICE2 is $\frac{D T}{2^{2 n}}$. Requires larger state.
- Can we have both (1) smaller state (2) higher security?

New Reduction and New Security Game

Figure: ICE1 with G as identity. (Remus-N1). Here tweak $=(N, i, \delta)$.
(1) Use different reduction games considering μ-respecting adversary (the maximum number of query to TBC with same input is at most μ).
(2) TPRP advantage of such an adversary against ICE1 is $\frac{\mu T}{2^{n}}$.
(3) Restrict $\mu=O(n)$ and consider n-multicollision.

mixFeed

The mF Mode of AEAD

Figure: Block diagram of $\mathrm{mF} . \operatorname{Fmt}_{1}(A)=\left(A_{2} \| A_{1}\right), \operatorname{Fmt}_{2}(M)=\left(M_{2} \| M_{1}\right)$.

FeedBack Function used in mF

The TBC in mixFeed

Figure: The tweakable block cipher in mixFeed. Here ρ is the 11-th round key function in AES key scheduling algorithm.
(1) State size is just $n+k$ (i.e. 256).
(2) Rate is 1 .

Last Block Processing: mixFeed

- Domain Separation by Last block processing.

Figure: MixFeed Last block processing.

Security Definitions of Input Restricting TPRP

- Tweak space \mathcal{T}. n-bit TBC \tilde{E}. Tweakable random Permutation Π.
- μ-TPRP:
- $\mathscr{A}^{\mathcal{O}}$, Restriction: $\forall X \in\{0,1\}^{n}$ number of queries $(\cdot, X) \leq \mu$
- $\operatorname{Adv}_{\tilde{E}}^{\mu-T P R P}(\mathscr{A})=\left|\operatorname{Pr}\left[\mathscr{A}^{\tilde{E}_{K}}=1\right]-\operatorname{Pr}\left[\mathscr{A}^{\tilde{\mathrm{n}}}=1\right]\right|$

$$
\boldsymbol{A d v}_{\tilde{E}}^{\mu-T P R P}(q, t)=\max _{\mathscr{A}} \operatorname{Adv}_{\tilde{E}}^{\mu-T P R P}(\mathscr{A})
$$

where max over all \mathscr{A} (number of queries $\leq q$, time $\leq t$).

(μ, D)-Multi-commitment-Prediction (or (μ, D)-mcp)

(1) $\mathscr{A} \tilde{E}_{K}$ runs in two phase. In the first phase it is μ-respecting.

(μ, D)-Multi-commitment-Prediction (or (μ, D)-mсp)

(1) $\mathscr{A} \tilde{E}_{K}$ runs in two phase. In the first phase it is μ-respecting.
(2) \mathscr{A} commits D many $\left(t w_{i}, x_{i}, y_{i}\right), x_{i}, y_{i} \in\{0,1\}^{\frac{n}{2}}$.

(μ, D)-Multi-commitment-Prediction (or (μ, D)-mcp)

(1) $\mathscr{A} \tilde{E}_{K}$ runs in two phase. In the first phase it is μ-respecting.
(2) \mathscr{A} commits D many $\left(t w_{i}, x_{i}, y_{i}\right), x_{i}, y_{i} \in\{0,1\}^{\frac{n}{2}}$.

(3) Phase II: $\mathscr{A}^{\tilde{E}_{K}}$ (with no restriction making at most D queries including prediction) predicts fresh some $\left(t w_{j}, X_{j}, y_{j}\right)$ where $\left\lceil X_{j}\right\rceil_{\frac{n}{2}}=x_{i}$.

(μ, D)-Multi-commitment-Prediction (or (μ, D)-mсp)

(1) $\mathscr{A} \tilde{E}_{K}$ runs in two phase. In the first phase it is μ-respecting.
(2) \mathscr{A} commits D many $\left(t w_{i}, x_{i}, y_{i}\right), x_{i}, y_{i} \in\{0,1\}^{\frac{n}{2}}$.

(3) Phase II: $\mathscr{A}^{\tilde{E}_{K}}$ (with no restriction making at most D queries including prediction) predicts fresh some $\left(t w_{j}, X_{j}, y_{j}\right)$ where $\left\lceil X_{j}\right\rceil_{\frac{n}{2}}=x_{i}$.
(9) \mathscr{A} wins (μ, D)-mcp game if $\left\lfloor\tilde{E}_{K}\left(t w_{j}, X_{j}\right)\right\rfloor_{\frac{n}{2}}=y_{j}$, i.e. correctly predicts,

mcp Security Game

- $\operatorname{Adv}_{\tilde{E}}^{(\mu, D)-m c p}(\mathscr{A})=\operatorname{Pr}[\mathscr{A}$ wins $(\mu, D)-m c p$ game $]$.

$$
\operatorname{Adv}_{\tilde{E}}^{(\mu, D)-m c p}(T)=\max _{\mathscr{A}} \operatorname{Adv}_{\tilde{E}}^{(\mu, D)-m c p}(\mathscr{A})
$$

Where max over all \mathscr{A} with runtime at most T (this includes the number of public primitive queries).

μ-Multicollision Game

$-\mathscr{A}^{\mathcal{O}_{\tilde{E}_{K}}}$

- \mathscr{A} wins μ-multicollision game if
- \mathscr{A} makes μ many queries $\left(X_{i}, Y_{i}\right)_{i \in[1, \mu]}$ with $Y_{i}=Y_{j} \forall i, j \in[1, \mu]$ among all D queries.
- $\operatorname{Adv}_{\mathcal{O}}^{\mu-m u l t}(\mathscr{A})=\operatorname{Pr}[\mathscr{A}$ wins μ-multicollision game $]$

$$
\operatorname{Adv}_{\mathcal{O}}^{\mu-m u l t}(D)=\max _{\mathscr{A}} \operatorname{Adv}_{\mathcal{O}}^{\mu-m u l t}(\mathscr{A})
$$

Where max over all \mathscr{A} (number of queries $\leq D$).

μ-Multicollision Game

Let P be the ideal n bit random permutation and P^{\prime} is the $n / 2$-bit truncated function of P.

Theorem

$$
\operatorname{Adv}_{P^{\prime}}^{\mu-\text { mcoll }}(D) \leq D\left(1+\frac{\mu^{2}}{2^{n}}\right)\left(\frac{D}{2^{\frac{n}{2}}}\right)^{\mu-1}
$$

When $\mu=n$,

$$
\operatorname{Adv}_{P^{\prime}}^{n-\text { mcoll }}(D)=O\left(\frac{D}{2^{\frac{n}{2}}}\right)
$$

Security Reductions of mixFeed

Security Reductions of mixFeed : Privacy Security I

- \mathscr{B} : privacy adversary of mF . $\mathscr{A}: \mu$-TPRP adversary of \tilde{E}. \mathscr{C} : multicollision adversary.

Theorem

$$
\operatorname{Adv}_{m F}^{p r i v}(\mathscr{B}) \leq \operatorname{Adv}_{\tilde{E}}^{\mu-T P R P}(\mathscr{A})+\operatorname{Adv}_{P}^{\mu+1-\mathrm{mcoll}}(\mathscr{C})
$$

So,

$$
\operatorname{Adv}_{\mathrm{mF}}^{\text {priv }}(D, T) \leq \mathbf{A d v}_{\tilde{E}}^{n-T P R P}(D, T)+O\left(D / 2^{n / 2}\right)
$$

Security Reductions of mixFeed: Forgery I

- For any (D, T) forging adversary \mathscr{B} of mF we have.
- (i) $(\mu-1, D)$-mcp adversary \mathscr{A} and (ii) \mathscr{C} with oracle $\mathcal{O}_{\tilde{E}_{K}}$ where $\mathcal{O}_{\tilde{E}}(t w, X, C) \rightarrow X^{\prime}:=C \oplus\left(0^{\frac{n}{2}} \|\left\lfloor\tilde{E}_{K}(t w, X)\right\rfloor_{\frac{n}{2}}\right)$.

Theorem

For any forging adversary \mathscr{B} of $m F$ with data complexity D there is (i) an $(\mu-1, D)$-mcp adversary \mathscr{A} of \tilde{E}, and (ii) an $\mu+1$-multicollision adversary \mathscr{C} as defined above, we have

$$
\operatorname{Adv}_{m F}^{\text {forge }}(\mathscr{B}) \leq \operatorname{Adv}_{\tilde{E}}^{(\mu-1, D)-m c p}(\mathscr{A})+\operatorname{Adv}_{\mathcal{O}_{\tilde{E}_{K}}}^{(\mu+1) \text {-mcoll }}(\mathscr{C})
$$

The TBC in mixFeed

(i) μ-respecting TPRP
(ii) (μ, D)-mcp advantage and (iii) $(\mu+1)$-multi-collision.

Assumption

For any $K \in\{0,1\}^{n}$ chosen uniformly at random, probability that K has a period at most l is at most $\frac{1}{2^{\frac{\pi}{2}}}$.
For random permutation the probability is much smaller: $\frac{1}{2^{n}}$.

The TBC in mixFeed

Theorem

Under the above assumption

$$
\begin{gathered}
\operatorname{Adv}_{\tilde{E}}^{(\mu, D)-\mathrm{mcp}}(T)=O\left(\frac{D}{2^{\frac{n}{2}}}\right)+O\left(\frac{n T}{2^{n}}\right) \\
\operatorname{Adv}_{\tilde{E}}^{n-T P R P}(D, T)=O\left(\frac{D}{2^{\frac{n}{2}}}\right)+O\left(\frac{n T}{2^{n}}\right) . \\
\operatorname{Adv}_{\tilde{E}}^{n-m \operatorname{coll}}(D) \leq O\left(\frac{D}{2^{\frac{n}{2}}}\right)
\end{gathered}
$$

Security Bounds: mixFeed I

Theorem (Final Bound of mixFeed)

Under Assumption 1

$$
\begin{aligned}
& \mathbf{A d v}_{\text {mixFeed }}^{\text {priv }}(D, T)=O\left(\frac{D}{2^{\frac{n}{2}}}\right)+O\left(\frac{n T}{2^{n}}\right) \\
& \mathbf{A d v}_{\text {mixFeed }}^{\text {forge }}(D, T)=O\left(\frac{D}{2^{\frac{n}{2}}}\right)+O\left(\frac{n T}{2^{n}}\right)
\end{aligned}
$$

Conclusion: mixFeed Mode of AEAD

- mixFeed is provable secure under the NIST requirements (by Assumption 1) in the nonce respecting scenario.
- As shown by Mustafa Khairallah (in the Forum), mixFeed is vulnerable to Nonce misuse attacks.
- the re-keying is done simply by the AES key scheduling algorithm and can be done online. So minimal state size.
- The Feedback function is extremely simple as it requires only n-bit XOR.

Conclusion: mixFeed Mode of AEAD

- mixFeed is provable secure under the NIST requirements (by Assumption 1) in the nonce respecting scenario.
- As shown by Mustafa Khairallah (in the Forum), mixFeed is vulnerable to Nonce misuse attacks.
- the re-keying is done simply by the AES key scheduling algorithm and can be done online. So minimal state size.
- The Feedback function is extremely simple as it requires only n-bit XOR.

Thank You!

