
Sharing the LUOV: post-
quantum distributed signa-
ture schemes

Daniele Cozzo 1 Nigel Smart 12

1KU Leuven

2Bristol University
August 20, 2019

Outline 1/38

1

2

3

4

5

6

Threshold cryptography

Lattice-based signatures

Hash-based signatures

MPC-in-the-head

MQ-based signatures

Conclusions

1

2

3

4

5

6

Outline 2/38

Threshold cryptography
Lattice-based signatures
Hash-based signatures
MPC-in-the-head
MQ-based signatures
Conclusions

Threshold cryptography 3/38

The secret key sk is shared among a set of parties

Any subset of t parties are able to sign a document

Any subset of less than t parties cannot do anything

Applications:
Multiple signers are needed to produce a signature (e.g.
witnesses)
Key protection: attacker has to breack multiple devices in
order to recover the key (useful e.g. in cryptocurrencies, see
ByzCoin)

Threshold cryptography 4/38

Secret key is shared according to some secret sharing scheme
and then any operation in signing involving the secret key has to
be done in MPC.

Theoretically, compiling a signature scheme to a multiparty
scheme is always possible

In practice MPC is still limited in terms of number of parties and
complexity of the circuit

Some operations are tricky to perfoorm in MPC

Threshold cryptography 5/38

Expanding randomness and masking is usually done by
computing an hash function over secret data

Hash function typically instantiated using SHAKE-256

Quite fast using state-of-the-art of MPC: 16ms to evaluate
SHA-3 round function.

Problem is one has to repeat this many times.

Second round candidates 6/38

Dilithium Lattice A mix of linear operations (suitable for LSSS-based
MPC) and non-linear operations (suitable for GC-based
MPC) requires costly transferring between the two repre-
sentations. We expect this to take around 12s to execute.

qTesla Lattice As above. We expect to take at least 16s to execute.
Falcon Lattice As above. We expect to take at least 6s to execute.
Picnic MPC-in-H Applying SHA-3 to obtain the necessar y randomness in

the views of the MPC parties.
SPHINCS+ Hash Applying SHA-3 to obtain the data structures needed.

MQDSS MQ Applying SHA-3 to obtain the commitments.
GeMSS MQ Potential for threshold implementation, implementation

is tricky due to need to extract polynomial roots via
Berlekamp algorithm

Rainbow MQ Simple LSSS based MPC solution which requires 12
rounds of communication. We expect a signature can
be generated in around three seconds

LUOV MQ Simple LSSS based MPC solution which requires 6
rounds of communication. We expect a signature can
be generated in just over a second

1

2

3

4

5

6

Outline 7/38

Threshold cryptography
Lattice-based signatures
Hash-based signatures
MPC-in-the-head
MQ-based signatures
Conclusions

Some steps use arithmetic over Fq, q = p, 2r .
Use LSSS-based MPC over Fq

Some steps use bit operations over Fq

Use GC-based MPC over F2

Means we need conversion
daBit technique

Crystals-Dilithium 9/38

Dilithium signature algorithm

1

2

3

z =⊥

while z =⊥ do:
Sample a short y ∈ Rl with kyk∞ ≤ γ1 q
v = A · y
Let w be the topbits of v
c = H (µkw) ∈ Rq

z = y + c · s1

Compute v − c · s2
If z or the lower bits of v − c · s2 are too big then:

I z =⊥

return σ = (z, c)

qTesla signature algorithm

1

2

3

z =⊥

while z =⊥ do:
Sample a short y ∈ Rq with kyk∞ ≤ B
b = [a · y]M ∈ Rq

c = H (bkG (µ)) ∈ Rq

z = y + s · c
Compute a · y − e · c
if z is not short or a · y − e · c is not well rounded then:

I z =⊥

return σ = (z, c)

Falcon signature algorithm

1

2

3

4

5

r ← {0, 1}320

c = H (rkµ)

t = (FFT (c) , FFT (0)) · B̄−1

z =⊥

while z =⊥ do:
z = ffSampling (t, T) n
s = (t − z) · B ¯
if z is not short then:

I z =⊥

6 (s1, s2) = FFT−1 (s)
7 s = Compress (s2)

8 return σ = (r, s)

1

2

3

4

5

6

Outline 12/38

Threshold cryptography
Lattice-based signatures
Hash-based signatures
MPC-in-the-head
MQ-based signatures
Conclusions

SPHINCS+ 13/38

Messages signed using many Winternitz signatures

Public keys authenticated using a dynamical structure called
FORS (forest of random subsets)

SPHINCS+ 14/38

Hash function of Winternitz scheme F and an hash function PRF
for expanding the secret key into secret keys have to be
computed on secret data.

Specifcation gives exact number of calls of these functions.

We estimated that even with the relevant simplifcations, signing
takes at least 85 minutes.

1

2

3

4

5

6

Outline 15/38

Threshold cryptography
Lattice-based signatures
Hash-based signatures
MPC-in-the-head
MQ-based signatures
Conclusions

The Picnic signature scheme 16/38

Prove knowledge of a preimage x of a function Φ given y = Φ(x)

Prover simulates an MPC protocol to compute Φ over the shares
of x.

Prover commits to status and transcripts of protocol

Prover sends commitments to the Verifer and randomly opens a
non qualifed subset of them (chosen by the verifer)

Verifer uses opened commitments to check that the protocol
was executed correctly, accepts or rejects accordingly

Need to repeat T times to improve security

Picnic signature scheme 17/38

ZKPoK of a preimage of y = fk(x), where f is a OWF, x and y
public and k secret to be proved.

Using FS transform, this is turned into a signature scheme with
public key (x, y) and private key k.

Picnic signature algorithm

1

2

3

4

5

Generate 3 · T secret seeds seedi,j for i = 0, . . . , T − 1 and
j = 0, 1, 2

Using a KDF, exapnd seedi,j to a sequence of random tapes
randi,j

For each round i, use three random tapes randi,jas the
random input to a party Pj for an MPC protocol to evaluate
the function fk(x)

Commit to the resulting views, and hash them with a
messageto obtain a set of challenges e0, . . . , eT ∈ {0, 1, 2}

Reveal all seeds seedi,j except seedi,ei .

Step 2 alone takes 37 seconds

1

2

3

4

5

6

Outline 19/38

Threshold cryptography
Lattice-based signatures
Hash-based signatures
MPC-in-the-head
MQ-based signatures
Conclusions

MQ-based signature schemes 20/38

Key generation

Public key is a quadratic map P : Fn
q → Fm

q Its factorization is
secret key S : Fm

q → Fm
q , F : Fn

q → Fm
q and T : Fn

q → Fn
q

The LUOV signature scheme 21/38

Partition n variables into v = n − m vinegar variables x1, . . . , xv

and m oil variables xv+1, . . . , xn.

Central map is F = (f1, . . . , fm) where

v n nXX X
fk (x1, . . . , xn) = αk

i,jxixj + βi
kxi + γk

i=1 j=1 i=1

The LUOV signature scheme 22/38

Use two felds. Maps F , T and hence P are defned over F2.
The message h(µ) is defned over F2r .

Solve the system over an extension of degree r

This maintains storage requirements at a reasonable level, but
gives stronger security

The LUOV signature algorithm

1 h = H (µ)

2 while system F(vko) = h has no solution do:
v ← F2r

A ← BuildAugmentedMatrix(public_params, T, v, h)
o ← GaussianElimination(A) � � � �

3

4

1v −T v s = · 0 1m o

return s

The LUOV distributed signature algorithm

1 h = H (µ)

2 while system hFi(hvikhoi) = h has no solution do:
hvi ← F2r

hAi ← BuildAugmentedMatrix(public_params, hTi, hvi, h)
hoi ← GaussianElimination(hAi)

3

4

5

6

o = Open(hoi) � � � �
1v −hTi hvi hsi = · 0 1m o

s = Open(hsi)

return s

The LUOV signature scheme 25/38

Inverting a secret matrix hAi

1

2

3

4

5

hRi ← Fm×m

hCi = hAi · hRi

C =Open(hCi)

C−1 =GaussianElimination(C)

hA−1i = hRi · C−1

BuildAugmentedMatrix

1

2

3

4

RHS = h − C − L (vk0)T � �
−T LHS = L 1m

for k from 1 to m do:
From public_params build Pk,1

From public_params build Pk,2
T RHS[k] = � RHS[k] − v� · Pk,1 · v

Fk,2 = − Pk,1 + Pk
T
,1 · T + Pk,2

LHS[k] = LHS[k] + v · Fk,2

return LHSkRHS

Distributed BuildAugmentedMatrix

1

2

3

4

hRHSi = h − C − L (hvik0)T � �
−hTi hLHSi = L 1m

for k from 1 to m do:
From public_params build Pk,1

From public_params build Pk,2

hRHSi[k] = � hRHSi[k] − � hvi
T · Pk,1 · hvi

hFik,2 = − Pk,1 + PT
k,1 · hTi + Pk,2

hLHSi[k] = hLHSi[k] + hvi · hFk,2i

return hLHSikhRHSi

LUOV in MPC 28/38

Requires 6 rounds in total

Level-4 parameters (r, m, v) = (8, 82, 323) require 2,756,430
secure multiplications

Arithmetic over F28 allows us to do 250,000 multiplications per
sec, so signing takes 10 secs

Level-4 parameters (r, m, v) = (64, 61, 302) give 1,372,866
secure multiplications

Arithmetic over F264 allows us to do 1,000,000 multiplications per
sec

We estimate signing takes 1.3 secs

The Rainbow signature scheme 29/38

First layer of vinegar variables V1 = {1, . . . , v1} and oil variables
O1 = {v1 + 1, . . . , v2}. Second layer of vinegar variables
V2 = {1, . . . , v2} and oil variables O2 = {v2 + 1, . . . , n}

Central map is given by F = f v1+1 , . . . , f v2 , f v2+1 , . . . , f n | {z } | {z }
layer1 layer2 (P P (k) (k)

β k = v1 + 1, . . . , v2 f (k) i,j∈V1,i≤j αi,j xixj + i∈V1,j∈O1 i,j xixj
= P P (k) (k)

i,j∈V2,i≤j αi,j xixj + i∈V2,j∈O2
βi,j xixj k = v2 + 1, . . . , n

Inversion of Rainbow central map, layer 1

1 ŷ1, . . . , ̂ ← Fv1 yv1 q

2 Substitute ŷ1, . . . , ̂yv1 into the polynomials f v1+1 , . . . , f v2 .
3 Perform Gaussian elimination on the system

f (v1+1) (ŷ1, . . . , ̂yv1 , yv1+1, . . . , yn) = xv1+1
. . .
f (v2) (ŷ1, . . . , ̂yv1 , yv1+1, . . . , yn) = xv2

to get the values of the second layer vinegar variables, say
ŷv1+1, . . . , ̂yv2 .

Inversion of Rainbow central map, layer 1

1

2

hŷi1, . . . , hŷiv1 ← Fq
v1

Substitute hŷi1, . . . , hŷiv1 into the polynomials
hf iv1+1 , . . . , hf iv2 .

3 Perform Gaussian elimination on the system

hf i(v1+1) (hŷi1, . . . , hŷiv1 , yv1+1, . . . , yn) = xv1+1
. . .
hf i(v2) (hŷi1, . . . , hŷiv1 , yv1+1, . . . , yn) = xv2

to get the values of the second layer vinegar variables, say
hŷiv1+1, . . . , hŷiv2 .

Inversion of Rainbow central map, layer 2

1 Substitute ŷ1, . . . , ̂yv2 into the polynomials f v2+1 , . . . , f n .
2 Perform Gaussian elimination on the system

f (v2+1) (ŷ1, . . . , ̂yv2 , yv2+1, . . . , yn) = xv2+1
. . .
f (n) (ŷ1, . . . , ̂yv2 , yv2+1, . . . , yn) = xn

to get the values of the second layer oil variables, say
ŷv2+1, . . . , ̂yn.

3 Return y = (ŷ1, . . . , ̂yn).

Inversion of Rainbow central map, layer 2

1 Substitute hŷi1, . . . , hŷiv2 into the polynomials
hf iv2+1 , . . . , hf in .

2 Perform Gaussian elimination on the system

hf i(v2+1) (hŷi1, . . . , hŷiv2 , yv2+1, . . . , yn) = xv2+1
. . .
hf i(n) (hŷi1, . . . , hŷiv2 , yv2+1, . . . , yn) = xn

to get the values of the second layer oil variables, say
hŷiv2+1, . . . , hŷin.

3 Return hyi = (hŷi1, . . . , hŷin).

The Rainbow signature scheme 34/38

Level-3 parameters (68, 36, 36) require 12 rounds of
communication and 612216 secure multiplications

Arithmetic is over F28 thus we can perform 250,000
multiplications per sec.

We estimate signing takes 3 secs

MQDSS and GeMSS signature schemes 35/38

MQDSS is built from a 5-round ID scheme using FS
SHAKE-256 is used a number of times to commit to secret
data
Commitment phase alone takes a lot

GeMSS is a potentially good candidate.
Main problem is that signing involves executing several
times the Berlekamp algorithm to fnd a root of univariate
polynomials.

1

2

3

4

5

6

Outline 36/38

Threshold cryptography
Lattice-based signatures
Hash-based signatures
MPC-in-the-head
MQ-based signatures
Conclusions

Conclusions 37/38

Post-quantum signatures are not easy to do in MPC

So far only the MQ-based ones seem naturally suitable for a
threshold implementation

Rainbow better than LUOV in number of multiplications, however
LUOV has half rounds and better memory storage.

Questions? 38/38

	Outline
	Threshold cryptography
	Lattice-based signatures
	Hash-based signatures
	MPC-in-the-head
	MQ-based signatures
	Conclusions

