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Threshold cryptography 3/38 

The secret key sk is shared among a set of parties 

Any subset of t parties are able to sign a document 

Any subset of less than t parties cannot do anything 

Applications: 
Multiple signers are needed to produce a signature (e.g. 
witnesses) 
Key protection: attacker has to breack multiple devices in 
order to recover the key (useful e.g. in cryptocurrencies, see 
ByzCoin) 



Threshold cryptography 4/38 

Secret key is shared according to some secret sharing scheme 
and then any operation in signing involving the secret key has to 
be done in MPC. 

Theoretically, compiling a signature scheme to a multiparty 
scheme is always possible 

In practice MPC is still limited in terms of number of parties and 
complexity of the circuit 

Some operations are tricky to perfoorm in MPC 



Threshold cryptography 5/38 

Expanding randomness and masking is usually done by 
computing an hash function over secret data 

Hash function typically instantiated using SHAKE-256 

Quite fast using state-of-the-art of MPC: 16ms to evaluate 
SHA-3 round function. 

Problem is one has to repeat this many times. 



Second round candidates 6/38 

Dilithium Lattice A mix of linear operations (suitable for LSSS-based 
MPC) and non-linear operations (suitable for GC-based 
MPC) requires costly transferring between the two repre-
sentations. We expect this to take around 12s to execute. 

qTesla Lattice As above. We expect to take at least 16s to execute. 
Falcon Lattice As above. We expect to take at least 6s to execute. 
Picnic MPC-in-H Applying SHA-3 to obtain the necessar y randomness in 

the views of the MPC parties. 
SPHINCS+ Hash Applying SHA-3 to obtain the data structures needed. 

MQDSS MQ Applying SHA-3 to obtain the commitments. 
GeMSS MQ Potential for threshold implementation, implementation 

is tricky due to need to extract polynomial roots via 
Berlekamp algorithm 

Rainbow MQ Simple LSSS based MPC solution which requires 12 
rounds of communication. We expect a signature can 
be generated in around three seconds 

LUOV MQ Simple LSSS based MPC solution which requires 6 
rounds of communication. We expect a signature can 
be generated in just over a second 
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Some steps use arithmetic over Fq, q = p, 2r . 
Use LSSS-based MPC over Fq 

Some steps use bit operations over Fq 

Use GC-based MPC over F2 

Means we need conversion 
daBit technique 



Crystals-Dilithium 9/38 

Dilithium signature algorithm 
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z =⊥ 

while z =⊥ do: 
Sample a short y ∈ Rl with kyk∞ ≤ γ1 q 
v = A · y 
Let w be the topbits of v 
c = H (µkw) ∈ Rq 

z = y + c · s1 

Compute v − c · s2 
If z or the lower bits of v − c · s2 are too big then: 

I z =⊥ 

return σ = (z, c) 



qTesla signature algorithm 
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z =⊥ 

while z =⊥ do: 
Sample a short y ∈ Rq with kyk∞ ≤ B 
b = [a · y]M ∈ Rq 

c = H (bkG (µ)) ∈ Rq 

z = y + s · c 
Compute a · y − e · c 
if z is not short or a · y − e · c is not well rounded then: 

I z =⊥ 

return σ = (z, c) 



Falcon signature algorithm 
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r ← {0, 1}320 

c = H (rkµ) 

t = (FFT (c) , FFT (0)) · B̄−1 

z =⊥ 

while z =⊥ do: 
z = ffSampling (t, T) n 
s = (t − z) · B ¯
if z is not short then: 

I z =⊥ 

6 (s1, s2) = FFT−1 (s) 
7 s = Compress (s2) 

8 return σ = (r, s) 
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Messages signed using many Winternitz signatures 

Public keys authenticated using a dynamical structure called 
FORS (forest of random subsets) 



SPHINCS+ 14/38 

Hash function of Winternitz scheme F and an hash function PRF 
for expanding the secret key into secret keys have to be 
computed on secret data. 

Specifcation gives exact number of calls of these functions. 

We estimated that even with the relevant simplifcations, signing 
takes at least 85 minutes. 
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The Picnic signature scheme 16/38 

Prove knowledge of a preimage x of a function Φ given y = Φ(x) 

Prover simulates an MPC protocol to compute Φ over the shares 
of x. 

Prover commits to status and transcripts of protocol 

Prover sends commitments to the Verifer and randomly opens a 
non qualifed subset of them (chosen by the verifer) 

Verifer uses opened commitments to check that the protocol 
was executed correctly, accepts or rejects accordingly 

Need to repeat T times to improve security 



Picnic signature scheme 17/38 

ZKPoK of a preimage of y = fk(x), where f is a OWF, x and y 
public and k secret to be proved. 

Using FS transform, this is turned into a signature scheme with 
public key (x, y) and private key k. 



Picnic signature algorithm 
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Generate 3 · T secret seeds seedi,j for i = 0, . . . , T − 1 and 
j = 0, 1, 2 

Using a KDF, exapnd seedi,j to a sequence of random tapes 
randi,j 

For each round i, use three random tapes randi,jas the 
random input to a party Pj for an MPC protocol to evaluate 
the function fk(x) 

Commit to the resulting views, and hash them with a 
messageto obtain a set of challenges e0, . . . , eT ∈ {0, 1, 2} 

Reveal all seeds seedi,j except seedi,ei . 

Step 2 alone takes 37 seconds 
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MQ-based signature schemes 20/38 

Key generation 

Public key is a quadratic map P : Fn
q → Fm

q Its factorization is 
secret key S : Fm

q → Fm
q , F : Fn

q → Fm
q and T : Fn

q → Fn
q 



The LUOV signature scheme 21/38 

Partition n variables into v = n − m vinegar variables x1, . . . , xv 

and m oil variables xv+1, . . . , xn. 

Central map is F = (f1, . . . , fm) where 

v n nXX X 
fk (x1, . . . , xn) = αk

i,jxixj + βi
kxi + γk 

i=1 j=1 i=1 



The LUOV signature scheme 22/38 

Use two felds. Maps F , T and hence P are defned over F2. 
The message h(µ) is defned over F2r . 

Solve the system over an extension of degree r 

This maintains storage requirements at a reasonable level, but 
gives stronger security 



The LUOV signature algorithm 

1 h = H (µ) 

2 while system F(vko) = h has no solution do: 
v ← F2r 

A ← BuildAugmentedMatrix(public_params, T, v, h) 
o ← GaussianElimination(A) � � � � 

3 

4 

1v −T v s = · 0 1m o 

return s 



The LUOV distributed signature algorithm 

1 h = H (µ) 

2 while system hFi(hvikhoi) = h has no solution do: 
hvi ← F2r 

hAi ← BuildAugmentedMatrix(public_params, hTi, hvi, h) 
hoi ← GaussianElimination(hAi) 
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o = Open(hoi) � � � � 
1v −hTi hvi hsi = · 0 1m o 

s = Open(hsi) 

return s 



The LUOV signature scheme 25/38 

Inverting a secret matrix hAi 
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hRi ← Fm×m 

hCi = hAi · hRi 

C =Open(hCi) 

C−1 =GaussianElimination(C) 

hA−1i = hRi · C−1 



BuildAugmentedMatrix 
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RHS = h − C − L (vk0)T � � 
−T LHS = L 1m 

for k from 1 to m do: 
From public_params build Pk,1 

From public_params build Pk,2 
T RHS[k] = � RHS[k] − v� · Pk,1 · v 

Fk,2 = − Pk,1 + Pk
T 
,1 · T + Pk,2 

LHS[k] = LHS[k] + v · Fk,2 

return LHSkRHS 



Distributed BuildAugmentedMatrix 
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hRHSi = h − C − L (hvik0)T � � 
−hTi hLHSi = L 1m 

for k from 1 to m do: 
From public_params build Pk,1 

From public_params build Pk,2 

hRHSi[k] = � hRHSi[k] − � hvi
T · Pk,1 · hvi 

hFik,2 = − Pk,1 + PT 
k,1 · hTi + Pk,2 

hLHSi[k] = hLHSi[k] + hvi · hFk,2i 

return hLHSikhRHSi 



LUOV in MPC 28/38 

Requires 6 rounds in total 

Level-4 parameters (r, m, v) = (8, 82, 323) require 2,756,430 
secure multiplications 

Arithmetic over F28 allows us to do 250,000 multiplications per 
sec, so signing takes 10 secs 

Level-4 parameters (r, m, v) = (64, 61, 302) give 1,372,866 
secure multiplications 

Arithmetic over F264 allows us to do 1,000,000 multiplications per 
sec 

We estimate signing takes 1.3 secs 



The Rainbow signature scheme 29/38 

First layer of vinegar variables V1 = {1, . . . , v1} and oil variables 
O1 = {v1 + 1, . . . , v2}. Second layer of vinegar variables 
V2 = {1, . . . , v2} and oil variables O2 = {v2 + 1, . . . , n} 

Central map is given by F = f v1+1 , . . . , f v2 , f v2+1 , . . . , f n | {z } | {z } 
layer1 layer2 ( P P (k) (k) 

β k = v1 + 1, . . . , v2 f (k) i,j∈V1,i≤j αi,j xixj + i∈V1,j∈O1 i,j xixj 
= P P (k) (k) 

i,j∈V2,i≤j αi,j xixj + i∈V2,j∈O2 
βi,j xixj k = v2 + 1, . . . , n 



Inversion of Rainbow central map, layer 1 

1 ŷ1, . . . , ̂ ← Fv1 yv1 q 

2 Substitute ŷ1, . . . , ̂yv1 into the polynomials f v1+1 , . . . , f v2 . 
3 Perform Gaussian elimination on the system 

f (v1+1) (ŷ1, . . . , ̂yv1 , yv1+1, . . . , yn) = xv1+1 
. . . 
f (v2) (ŷ1, . . . , ̂yv1 , yv1+1, . . . , yn) = xv2 

to get the values of the second layer vinegar variables, say 
ŷv1+1, . . . , ̂yv2 . 



Inversion of Rainbow central map, layer 1 

1 

2 

hŷi1, . . . , hŷiv1 ← Fq
v1 

Substitute hŷi1, . . . , hŷiv1 into the polynomials 
hf iv1+1 , . . . , hf iv2 . 

3 Perform Gaussian elimination on the system 

hf i(v1+1) (hŷi1, . . . , hŷiv1 , yv1+1, . . . , yn) = xv1+1 
. . . 
hf i(v2) (hŷi1, . . . , hŷiv1 , yv1+1, . . . , yn) = xv2 

to get the values of the second layer vinegar variables, say 
hŷiv1+1, . . . , hŷiv2 . 



Inversion of Rainbow central map, layer 2 

1 Substitute ŷ1, . . . , ̂yv2 into the polynomials f v2+1 , . . . , f n . 
2 Perform Gaussian elimination on the system 

f (v2+1) (ŷ1, . . . , ̂yv2 , yv2+1, . . . , yn) = xv2+1 
. . . 
f (n) (ŷ1, . . . , ̂yv2 , yv2+1, . . . , yn) = xn 

to get the values of the second layer oil variables, say 
ŷv2+1, . . . , ̂yn. 

3 Return y = (ŷ1, . . . , ̂yn). 



Inversion of Rainbow central map, layer 2 

1 Substitute hŷi1, . . . , hŷiv2 into the polynomials 
hf iv2+1 , . . . , hf in . 

2 Perform Gaussian elimination on the system 

hf i(v2+1) (hŷi1, . . . , hŷiv2 , yv2+1, . . . , yn) = xv2+1 
. . . 
hf i(n) (hŷi1, . . . , hŷiv2 , yv2+1, . . . , yn) = xn 

to get the values of the second layer oil variables, say 
hŷiv2+1, . . . , hŷin. 

3 Return hyi = (hŷi1, . . . , hŷin). 



The Rainbow signature scheme 34/38 

Level-3 parameters (68, 36, 36) require 12 rounds of 
communication and 612216 secure multiplications 

Arithmetic is over F28 thus we can perform 250,000 
multiplications per sec. 

We estimate signing takes 3 secs 



MQDSS and GeMSS signature schemes 35/38 

MQDSS is built from a 5-round ID scheme using FS 
SHAKE-256 is used a number of times to commit to secret 
data 
Commitment phase alone takes a lot 

GeMSS is a potentially good candidate. 
Main problem is that signing involves executing several 
times the Berlekamp algorithm to fnd a root of univariate 
polynomials. 
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Post-quantum signatures are not easy to do in MPC 

So far only the MQ-based ones seem naturally suitable for a 
threshold implementation 

Rainbow better than LUOV in number of multiplications, however 
LUOV has half rounds and better memory storage. 



Questions? 38/38 
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