Simple, Fast and Constant-Time Gaussian Sampling over the Integers for Falcon

Thomas Prest - Thomas Ricosset - Mélissa Rossi

NIST PQC Workshop

(P-A Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin, T. Prest, T. Ricosset, G. Seiler, W. Whyte, Z. Zhang)

Based on the GPV framework

Gentry, Peikert and Vaikuntanathan STOC 2008

Falcon

Falcon in a nutshell

Round I Falcon

Advantages

- **M** Compact
- 🗹 Fast

GPV framework proved secure in the ROM and QROM (Boneh et al. ASIACRYPT 2011)

Round I Falcon

Limitations

- Non Trivial to understand and implement ?
 - **G** Floating point arithmetic
 - □ Side channel resistance not very studied

Round I Falcon

Limitations

- Non Trivial to understand and implement
 - Floating point arithmetic
 - Side channel resistance not very studied

This work

- ☑ Integer arithmetic
- **Mathematically studied constant time**
- Maintane Implementations

Sign(m,sk)

- Compute c such that cA = H(m)
- $\mathbf{v} \leftarrow \mathbf{a}$ vector in $\Lambda(\mathbf{B})$ close to \mathbf{c}
- $\mathbf{s} \leftarrow \mathbf{c} \mathbf{v}$

Except Gaussian sampling, other operations do not use conditional branching

Except Gaussian sampling, other operations do not use conditional branching

Constant time Gaussian sampling

Some literature on Gaussian Samplers:

Sinha Roy, Vercauteren and Verbauwhede SAC 2013 Hulsing, Lange and Smeets PKC 2018 Micciancio and Walter CRYPTO 2017 Karmakar et al. DAC IEEE 2019

Constant time Gaussian sampling

Some literature on Gaussian Samplers:

Sinha Roy, Vercauteren and Verbauwhede SAC 2013 Hulsing, Lange and Smeets PKC 2018 Micciancio and Walter CRYPTO 2017 Karmakar et al. DAC IEEE 2019

This work: a simple alternative dedicated to Falcon

The sampling distribution

$$1.31 = \sigma_{min} \le \sigma \le \sigma_0 = 1.82$$

$$\mu \in [0,1)$$

The sampling distribution

$$1.31 = \sigma_{min} \le \sigma \le \sigma_0 = 1.82$$

$$\mu \in [0,1)$$

The sampling distribution

$$\mu \in [0,1)$$

Draw an element z_0 from a centered half Gaussian of standard deviation σ_0

Draw *b* uniformly at random in {0,1} and compute $z \leftarrow (2b - 1) \cdot z_0 + b$

Draw *b* uniformly at random in {0,1} and compute $z \leftarrow (2b-1) \cdot z_0 + b$

Draw *b* uniformly at random in {0,1} and compute $z \leftarrow (2b - 1) \cdot z_0 + b$

Algorithm SampleZ(σ, μ) Require: $\mu \in [0,1), \sigma \leq \sigma_0$ Ensure: $z \sim D_{\mathbb{Z},\sigma,\mu}$ **1.** $z_0 \leftarrow \text{Basesampler()}$ 2. $b \leftarrow \{0,1\}$ uniformly **3.** $z \leftarrow (2b - 1) \cdot z_0 + b$ 4. $x \leftarrow -\frac{(z-\mu)^2}{2\sigma^2} + \frac{z_0^2}{2\sigma_0^2}$ 5. Accept with probability exp(x)Restart to 1. otherwise

1.

Constant time Falcon Gaussian sampler

If all the distributions and computations are perfect (Basesampler(), uniform and exp()), SampleZ(μ, σ) = $D_{\mathbb{Z},\sigma,\mu}$

Constant time Falcon Gaussian sampler

Require:
$$\mu \in [0,1), \sigma \leq \sigma_0$$

Ensure: $z \sim D_{\mathbb{Z},\sigma,\mu}$
1. $z_0 \leftarrow \text{Basesampler()}$
2. $b \leftarrow \{0,1\}$ uniformly
3. $z \leftarrow (2b-1) \cdot z_0 + b$
4. $x \leftarrow -\frac{(z-\mu)^2}{2\sigma^2} + \frac{z_0^2}{2\sigma_0^2}$
5. Accept with probability $\exp(x)$
Restart to 1. otherwise

Constant time and portability modifications

 Basesampler with a table
 Polynomial approximation for exp
 Make the number of iterations independent from the secret

If all the distributions and computations are perfect (Basesampler(), uniform and exp()), SampleZ(μ, σ) = $D_{\mathbb{Z},\sigma,\mu}$

Constant time Falcon Gaussian sampler

Require:
$$\mu \in [0,1), \sigma \leq \sigma_0$$

Ensure: $z \sim D_{\mathbb{Z},\sigma,\mu}$
1. $z_0 \leftarrow \text{Basesampler()}$
2. $b \leftarrow \{0,1\}$ uniformly
3. $z \leftarrow (2b-1) \cdot z_0 + b$
4. $x \leftarrow -\frac{(z-\mu)^2}{2\sigma^2} + \frac{z_0^2}{2\sigma_0^2}$
5. Accept with probability $\exp(x)$
Restart to 1. otherwise

Constant time and portability modifications

 Basesampler with a table
 Polynomial approximation for exp
 Make the number of iterations independent from the secret

If all the distributions and computations are perfect (Basesampler(), uniform and exp()),

SampleZ(
$$\mu, \sigma$$
) = $D_{\mathbb{Z}, \sigma, \mu}$

SampleZ(μ, σ) = $D_{\mathbb{Z},\sigma,\mu}$ Yes as long as the number of queries is bounded

SampleZ(μ, σ) = $D_{\mathbb{Z},\sigma,\mu}$ Yes as long as the number of queries is bounded

SampleZ(μ, σ) = $D_{\mathbb{Z},\sigma,\mu}$ Yes as long as the number of queries is bounded

Security loss theoremFor at most
$$2^{64}$$
 signature queries, $R_a \left(\mathsf{BaseSampler}(), D_{\mathbb{Z}^+, \sigma_0} \right) \le 1 + 2^{-80}$ and $\exp()$ replaced by a polynomial P such that $\forall x \in [0, \ln(2)]$ $\left| \frac{P(x) - \exp(x)}{\exp(x)} \right| \le 2^{-44}$ \Rightarrow at most 2 bits of security are lost.

SampleZ(μ, σ) = $D_{\mathbb{Z},\sigma,\mu}$ Yes as long as the number of queries is bounded

Security loss theoremFor at most
$$2^{64}$$
 signature queries, $R_a \left(\mathsf{BaseSampler}(), D_{\mathbb{Z}^+,\sigma_0} \right) \le 1 + 2^{-80}$ and $\exp()$ replaced by a polynomial P such that $\forall x \in [0, \ln(2)]$ $\left| \frac{P(x) - \exp(x)}{\exp(x)} \right| \le 2^{-44}$ \Rightarrow at most 2 bits of security are lost.

See paper for the proof.

Application of Bai et al. ASIACRYPT 2015, Prest ASIACRYPT 2017 Parameterized by the number of queries to the sampler

The constant time sampler

Basesampler with a table

Polynomial approximation for exp

Make the number of iterations independent from the secret

I) Sampling with a table

BaseSampler() close to $D_{\mathbb{Z}^+,\sigma_0}$

Cumulative Distribution Table (*CDT*) with w elements of θ bits

CDT sampling can be done in constant time if the algorithm reads the entire table each time and carry out each comparison

I) Sampling with a table

BaseSampler() close to $D_{\mathbb{Z}^+,\sigma_0}$

We provide a script that generates *w* and the *CDT* table for a given target precision $\epsilon = 2^{-80}$ and θ

CDT sampling can be done in constant time if the algorithm reads the entire table each time and carry out each comparison

I) Sampling with a table

BaseSampler() close to $D_{\mathbb{Z}^+,\sigma_0}$

We provide a script that generates w and the CDT table for a given target precision $\epsilon = 2^{-80}$ and θ

 \sim Algorithm Renyification($\sigma, \epsilon, heta)$ -

Require: $\sigma, \epsilon \leq 0, \theta$ Ensure: *w*, the *CDT* table

1. $w \leftarrow \text{Smallest tailcut such that } R_a\left(D_{[w],\sigma_0}, D_{\mathbb{Z}^+,\sigma_0}\right) \leq 1 + \epsilon$

2. Compute the table values with a « clever » rounding 1. For $z \ge 1$, $CDT(z) \leftarrow 2^{-\theta} \left[2^{\theta} \cdot D_{[w],\sigma_0}(z) \right]$ 2. $CDT(0) \leftarrow 1 - \sum_{z \ge 1} CDT(z)$

3. Recompute Rényi divergence and return the new precision, w and CDT

I) CDT Sampling

$$R_{\infty}\left(\mathsf{BaseSampler()}, D_{\mathbb{Z}^+, \sigma_0}\right) \le 1 + 2^{-80}$$

For $\sigma_0 = 1.8205$, our script gave

 $\begin{array}{l} \text{CDT}(0) = 2^{-72} \times 1697680241746640300030\\ \text{CDT}(1) = 2^{-72} \times 1459943456642912959616\\ \text{CDT}(2) = 2^{-72} \times 928488355018011056515\\ \text{CDT}(3) = 2^{-72} \times 436693944817054414619\\ \text{CDT}(4) = 2^{-72} \times 151893140790369201013\\ \text{CDT}(5) = 2^{-72} \times 39071441848292237840\\ \text{CDT}(6) = 2^{-72} \times 7432604049020375675\\ \text{CDT}(7) = 2^{-72} \times 1045641569992574730\\ \text{CDT}(8) = 2^{-72} \times 108788995549429682 \end{array}$

 $CDT(9) = 2^{-72} \times 8370422445201343$ $CDT(10) = 2^{-72} \times 476288472308334$ $CDT(11) = 2^{-72} \times 20042553305308$ $CDT(12) = 2^{-72} \times 623729532807$ $CDT(13) = 2^{-72} \times 4354889437$ $CDT(14) = 2^{-72} \times 244322621$ $CDT(15) = 2^{-72} \times 3075302$ $CDT(16) = 2^{-72} \times 28626$ $CDT(17) = 2^{-72} \times 197$ $CDT(18) = 2^{-72} \times 1$

The constant time sampler

Mases ampler with a table

Polynomial approximation for exp

Make the number of iterations independent from the secret

Find *P* such that
$$\left| \frac{P(x) - \exp(x)}{\exp(x)} \right| \le 2^{-44} \quad \forall x \in [0, \ln(2)]$$

Polynomial approximation tools

Find *P* such that
$$\left| \frac{P(x) - \exp(x)}{\exp(x)} \right| \le 2^{-44} \quad \forall x \in [0, \ln(2)]$$

Polynomial approximation tools

Floating points option: FACCT by Zhao, Steinfeld and Sakzad 2018/1234

Integer option: GALACTICS by Barthe et al. 2019/511

⇒ 32-bit coefficients degree 10

Find *P* such that
$$\left| \frac{P(x) - \exp(x)}{\exp(x)} \right| \le 2^{-44} \quad \forall x \in [0, \ln(2)]$$

Polynomial approximation tools

Floating points option: FACCT by Zhao, Steinfeld and Sakzad 2018/1234

Integer option: GALACTICS by Barthe et al. 2019/511

⇒ 32-bit coefficients degree 10

Find *P* such that
$$\left| \frac{P(x) - \exp(x)}{\exp(x)} \right| \le 2^{-44} \quad \forall x \in [0, \ln(2)]$$

Polynomial approximation tools

- Floating points option: FACCT by Zhao, Steinfeld and Sakzad 2018/1234
- Integer option: GALACTICS by Barthe et al. 2019/511

⇒ 32-bit coefficients degree 10

Find *P* such that
$$\left| \frac{P(x) - \exp(x)}{\exp(x)} \right| \le 2^{-44} \quad \forall x \in [0, \ln(2)]$$

Polynomial approximation tools

- Floating points option: FACCT by Zhao, Steinfeld and Sakzad 2018/1234
- Integer option: GALACTICS by Barthe et al. 2019/511

⇒ 32-bit coefficients degree 10

Find *P* such that
$$\left| \frac{P(x) - \exp(x)}{\exp(x)} \right| \le 2^{-44} \quad \forall x \in [0, \ln(2)]$$

Polynomial approximation tools

- Floating points option: FACCT by Zhao, Steinfeld and Sakzad 2018/1234
- Integer option: GALACTICS by Barthe et al. 2019/511

⇒ 32-bit coefficients degree 10

The constant time sampler

Basesampler with a table

M Polynomial approximation for exp

Make the number of iterations independent from the secret

- Zhao, Steinfeld and Sakzad (2018/1234)
- Karmakar et al (2019/267)
- Could the number of iterations leak the secret?

- Zhao, Steinfeld and Sakzad (2018/1234) Karmakar et al (2019/267)
- Karmakar et al (2019/267)
 Could the number of iterations leak the secret?

The number of iterations follows a geometric distribution of average $\dfrac{2\cdot \rho_{\sigma_0}(\mathbb{Z}^+)}{\rho_{\sigma,\mu}(\mathbb{Z})}$

Zhao, Steinfeld and Sakzad (2018/1234) Karmakar et al (2019/267)

Could the number of iterations leak the secret?

The average number of iterations is

The acceptance probability
$$P_{\text{accept}}$$
 is scaled by a factor $\frac{\sigma_{min}}{\sigma} \leq \frac{\sigma_{min}}{\sigma_{max}} \approx 0.73$

Zhao, Steinfeld and Sakzad (2018/1234) Karmakar et al (2019/267)

Could the number of iterations leak the secret?

The average number of iterations is

The acceptance probability
$$P_{\text{accept}}$$
 is scaled by a factor $\frac{\sigma_{min}}{\sigma} \leq \frac{\sigma_{min}}{\sigma_{max}} \approx 0.73$

Indeed, with a Poisson summation (under a Rényi divergence argument), $\rho_{\sigma,\mu}(\mathbb{Z})\approx\sigma\sqrt{2\pi}$

So,
$$\frac{2 \cdot \rho_{\sigma_0}(\mathbb{Z}^+)}{\frac{\sigma_{\min}}{\sigma} \rho_{\sigma,\mu}(\mathbb{Z})} \approx \frac{2 \cdot \rho_{\sigma_0}(\mathbb{Z}^+)}{\frac{\sigma_{\min}}{\sigma} \sigma \sqrt{2\pi}} = \frac{2 \cdot \rho_{\sigma_0}(\mathbb{Z}^+)}{\sigma_{\min}\sqrt{2\pi}}$$

Zhao, Steinfeld and Sakzad (2018/1234) Karmakar et al (2019/267)

Could the number of iterations leak the secret?

The average number of iterations is

The acceptance probability
$$P_{\text{accept}}$$
 is scaled by a factor $\frac{\sigma_{min}}{\sigma} \leq \frac{\sigma_{min}}{\sigma_{max}} \approx 0.73$

Indeed, with a Poisson summation (under a Rényi divergence argument),

$$\rho_{\sigma,\mu}(\mathbb{Z}) \approx \sigma \sqrt{2\pi}$$

So,
$$\frac{2 \cdot \rho_{\sigma_0}(\mathbb{Z}^+)}{\frac{\sigma_{\min}}{\sigma} \rho_{\sigma,\mu}(\mathbb{Z})} \approx \frac{2 \cdot \rho_{\sigma_0}(\mathbb{Z}^+)}{\frac{\sigma_{\min}}{\sigma} \sigma \sqrt{2\pi}} = \frac{2 \cdot \rho_{\sigma_0}(\mathbb{Z}^+)}{\sigma_{\min}\sqrt{2\pi}}$$

 \checkmark Independent from μ

- $\checkmark\,$ Independent from σ
- ✓ Independent from z

Could the number of iterations leak the secret?

The average number of iterations is

 $\frac{2 \cdot \rho_{\sigma_0}(\mathbb{Z}^+)}{\frac{\sigma_{\min}}{\sigma} \rho_{\sigma,\mu}(\mathbb{Z})}$

Tweak for Falcon's sampler
The acceptance probability
$$P_{\text{accept}}$$
 is scaled by a factor $\frac{\sigma_{min}}{\sigma} \leq \frac{\sigma_{min}}{\sigma_{max}} \approx 0.73$

Indeed, with a Poisson summation (under a Rényi divergence argument),

$$\rho_{\sigma,\mu}(\mathbb{Z}) \approx \sigma \sqrt{2\pi}$$

So,
$$\frac{2 \cdot \rho_{\sigma_0}(\mathbb{Z}^+)}{\frac{\sigma_{\min}}{\sigma} \rho_{\sigma,\mu}(\mathbb{Z})} \approx \frac{2 \cdot \rho_{\sigma_0}(\mathbb{Z}^+)}{\frac{\sigma_{\min}}{\sigma} \sigma \sqrt{2\pi}} = \frac{2 \cdot \rho_{\sigma_0}(\mathbb{Z}^+)}{\sigma_{\min}\sqrt{2\pi}}$$

✓ Independent from
$$\mu$$

- $\checkmark\,$ Independent from σ
- ✓ Independent from z

The whole algorithm is constant time

Number of sig computed in one second

Constant time and integers help Cortex M4 implementations

Falcon-512 (168 MHz)	Dynamic signatures (in milliseconds)	Memory (in bytes of extra RAM, not counting the key)
First M4 implementation (Oder et al. PQCRYPTO 2019)	479	50508
Recent Constant time and integers (Thomas Pornin) https://github.com/mupq/pqm4	243	36864

- Compact
- 🗹 Fast
- GPV framework proved secure

- ☑ Compact
- 🗹 Fast
- GPV framework proved secure
- **M** Constant time and still fast
- Integer arithmetic and still fast
- Solid implementations available (Thanks to Thomas Pornin)

- Compact
- 🗹 Fast
- GPV framework proved secure
- **M** Constant time and still fast
- ☑ Integer arithmetic and still fast
- Solid implementations available (Thanks to Thomas Pornin)

Currently studied: masking protection

- Compact
- 🗹 Fast
- GPV framework proved secure
- Constant time and still fast
- ☑ Integer arithmetic and still fast
- Solid implementations available (Thanks to Thomas Pornin)

Currently studied: masking protection

Paper available at:

https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/rossi-simple-fast-constant.pdf