Smartcard and Post-Quantum Crypto

Aurélien Greuet – aurelien.greuet@idemia.com IDEMIA - Crypto & Security Labs

June 7-9, 2021

mmm

IDEMIA

Merge between Morpho and Oberthur Technologies

- Identity Management → 3B ID docs, 5M biometric terminals
- Payment → 800M payment products (2020)
- Telecoms → 900M SIM cards (2020)

Crypto & Security Labs

Development + practical evaluations of crypto libraries

- For smartcard / secure element (\simeq smartcard chip without card)
- Secure against side-channel and faults attacks
- For the following products:
 - Electronic ID cards, electronic passports
 - Chip bank cards, mobile payment
 - SIM cards, eUICCs

Problematic: why and how to deploy PQC on today's smartcards

3

Smartcard Constraints, Impact for PQC Deployment

MILLI

Computer vs Smartcard

Computer vs Smartcard

Computer vs Smartcard

	mputing Capacity		
	\$400 PC	High-end Smartcard	
CPU	64-bit, 4 cores @4 GHz	32-bit, 1 core @100 MHz	\rightarrow > 40× slower
RAM	8 GB	48 kB	→ 170 000× less

	STM32F4	High-end Smartcard	
CPU	Cortex-M4 @168 MHz	Cortex-M3 @100 MHz	\rightarrow > 1.68× slower
RAM	192 kB	48 kB	\rightarrow 4× less

Communication rates Pretty slow: < 100 kB/s

Performance Constraints: Examples

- Contactless banking transaction: < 300 ms
- Key Generation performed in factory: < 3-4 second

Dedicated Hardware

 $\begin{array}{l} \mathsf{RNG} \ \ 32\text{-bit random in 50}-100 \ \ cycles, \ parallel \ execution \\ \mathsf{AES} \ \ 1 \ block \ encryption: \ several \ hundred \ cycles, \ parallel \ execution \\ \mathsf{ECC/RSA} \ \ 2048\text{-bit modular mult: several thousand cycles, parallel \ execution, } \\ \ \ > 10\times \ faster \ than \ software \ implem \end{array}$

→ but no dedicated hardware for Post-Quantum Crypto yet

Off-card computation

Example: signature of a several MB scanned document (Qualified eIDAS signature)

- Hash all the document except the last block on terminal or computer
- 2 Send partial hash state + document last block to smartcard
- I Finalize hashing and compute signature on smartcard
- → not possible if computation of *Hash* (rand || msg)

June 7-9,

Security

Security Constraints

Into the wild

An issued smartcard is in uncontrolled hostile environment:

- Attacker = owner
- No monitoring, no remote action
- Hard to deploy security flaw patches
- Sensitive to specific side-channel/fault attacks

Security Certification

Hardware and software can be certified, e.g. Common Criteria Certification

- → ensures practical security level
- → long process: 6-18 months, **need to be anticipated**

Protection against 1st order Side Channel Attacks

- SCA: Simple Power Analysis, Differential/Correlation Power Analysis
- Countermeasure = masking \rightarrow at best, execution time $\times 2$, RAM $\times 2$
- Practically, much worse
 - → Example: masked Dilithium execution time ×5.6 with optimized modulus [Migliore et al. *Masking Dilithium*, ACNS 2019]

Protection against single fault attacks

Countermeasure = redundancy \rightarrow execution time up to \times 2, small RAM overhead

Other attacks

- Safe error attacks → additional checks
- Template/machine learning attacks \rightarrow shuffling
- -> Security against physical attacks is expensive

9

Impact

Impact on PQ Crypto Deployment

Performance & security constraints eliminate some finalists:

McEliece: too much RAM, too slow

RAM:

- McEliece > 70 kB
- Time: KG > 1 224 Mcycles

OS

[Roth et al. Classic McEliece Implementation with Low Memory Footprint, CARDIS 2020]

Performance & security constraints eliminate some finalists:

McEliece: too much RAM, too slow

RAM: OS

McEliece > 70 kB

■ Time: KG > 1 224 Mcycles + communication to output 260 kB pubkey → > 14 s [Roth et al. Classic McEliece Implementation with Low Memory Footprint, CARDIS 2020]

Falcon: too much RAM, too slow with countermeasures

- RAM: OS Falcon > 25 kB
- Time: KG > 171 Mcycles

[Pornin. New Efficient, Constant-Time Implementations of Falcon, ePrint 2019]

Performance & security constraints eliminate some finalists:

McEliece: too much RAM, too slow

RAM: OS

McEliece > 70 kB

■ Time: KG > 1 224 Mcycles + communication to output 260 kB pubkey → > 14 s [Roth et al. Classic McEliece Implementation with Low Memory Footprint, CARDIS 2020]

Falcon: too much RAM, too slow with countermeasures

RAM: OS Falcon > 25 kB + masking

■ Time: KG > 171 Mcycles + countermeasures overhead → > 3.5 s [Pornin. New Efficient, Constant-Time Implementations of Falcon, ePrint 2019]

Performance & security constraints eliminate some finalists:

McEliece: too much RAM, too slow

RAM: OS

McEliece > 70 kB

■ Time: KG > 1 224 Mcycles + communication to output 260 kB pubkey → > 14 s [Roth et al. Classic McEliece Implementation with Low Memory Footprint, CARDIS 2020]

Falcon: too much RAM, too slow with countermeasures

RAM: OS Falcon > 25 kB + masking

■ Time: KG > 171 Mcycles + countermeasures overhead → > 3.5 s [Pornin. New Efficient, Constant-Time Implementations of Falcon, ePrint 2019]

Rainbow-Classic: too slow with countermeasures

■ Time: KG > 115 Mcycles

[Moya Riera. Performance Analysis of Rainbow on ARM Cortex-M4, Bachelor Thesis]

mpact

Performance & security constraints eliminate some finalists:

McEliece: too much RAM, too slow

RAM: OS

McEliece > 70 kB

■ Time: KG > 1 224 Mcycles + communication to output 260 kB pubkey → > 14 s [Roth et al. Classic McEliece Implementation with Low Memory Footprint, CARDIS 2020]

Falcon: too much RAM, too slow with countermeasures

RAM: OS Falcon > 25 kB + masking

■ Time: KG > 171 Mcycles + countermeasures overhead → > 3.5 s [Pornin. New Efficient, Constant-Time Implementations of Falcon, ePrint 2019]

Rainbow-Classic: too slow with countermeasures

■ Time: KG > 115 Mcycles + comm. for 150 kB pubkey + countermeasures → > 4 s [Moya Riera. Performance Analysis of Rainbow on ARM Cortex-M4, Bachelor Thesis]

mpact

Performance & security constraints eliminate some finalists:

McEliece: too much RAM, too slow

RAM: OS

McEliece > 70 kB

■ Time: KG > 1 224 Mcycles + communication to output 260 kB pubkey → > 14 s [Roth et al. Classic McEliece Implementation with Low Memory Footprint, CARDIS 2020]

Falcon: too much RAM, too slow with countermeasures

RAM: OS Falcon > 25 kB + masking

■ Time: KG > 171 Mcycles + countermeasures overhead → > 3.5 s [Pornin. New Efficient, Constant-Time Implementations of Falcon, ePrint 2019]

Rainbow-Classic: too slow with countermeasures

■ Time: KG > 115 Mcycles + comm. for 150 kB pubkey + countermeasures → > 4 s [Moya Riera. Performance Analysis of Rainbow on ARM Cortex-M4, Bachelor Thesis]

\rightarrow only lattice-based finalists are practical on current smartcard

10

Some Ideas for PQC Deployment on Smartcard

3

11111

ldeas for PQC deployment

Memory issues

- Standardization of at least 1 KEM and 1 signature fitting in smartcard
- Consider low memory devices (< 50 kB) in addition to Cortex-M4

Dedicated Hardware

- Keccak co-processor: secure, running in parallel
 Many schemes spend 40-70% on hashing
 - → Many schemes spend 40-/0% on hashing

[Kannwischer et al. pqm4: Testing and Benchmarking NIST PQC on ARM Cortex-M4, ePrint 2019]

Off-card hash for qualified signature

- Avoid computations of Hash (rand || msg)?
 - \rightarrow Hash (msg | | ...) instead would allow off-card hash computation

Ideas for PQC deployment

Specifications and Parameters

- "NTT schemes" with randoms not necessarily in NTT domain?
 - -- would slow down software implementations but allows to:
 - Use generic polynomial multiplication hardware
 [Roy, Basso. High-speed Instruction-set Co-processor for Lattice-based KEM: Saber in Hardware, TCHES 2020]
 - Re-use RSA accelerator for polynomial multiplication
 [Albrecht et al. Implementing RLWE-based Schemes Using an RSA Co-Processor, TCHES 2019]
 [Bos et al. Post-Quantum Cryptography with Contemporary Co-Processors, ePrint 2020]
- Investigate trade-offs on parameters
 - -> Example: masked Dilithium with power of 2 modulus much faster

[Migliore et al. Masking Dilithium, ACNS 2019]

Thank you for your attention!

aurelien.greuet@idemia.com

Join us on (f) (y) (in (p)

www.idemia.com

Image Credits

From Wikimedia Commons

Swissbit 2GB PC2-5300U-555 remix crop transparent.png, CC BY-SA 3.0

Laptop-hard-drive-exposed_remix_transparent.png, CC BY-SA 3.0

AMD_Ryzen_5_2600_(39851733273)_remix_transparent.png, CCO

Sapphire Radeon R9 290X-front oblique PNr°0437 remix transparent.png, CC BY 3.0

Computer_monitor_remix_transparent.png by Zzubnik, Public domain

Apple_Magic_Keyboard_-_US_remix_transparent.png, CC BY 4.0

Ethernet_cable_remix_crop_rotate_transparent.png, CC BY-SA 3.0

Sim_Chip.jpg by Janke, CC BY-SA 4.0

Dual_smart_card.svg, CC BY-SA 4.0

Image Credits