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1. Introduction

The protocol at a high-level

Towards certified/certifiable randomness.

1. The operator is given a freshly chosen random quantum circuit.

2. Soon after, the operator publishes many circuit output strings.

3. Client extracts randomness for use in applications.

4. Long after, a supercomputer outputs the “P-values” of the strings.

5. By analysis of the “P-values”, get a retroactive statistical assurance that
a sufficiently large set of outputs were sampled from the quantum circuit.

We want to look at suitable parameters for implementation of this protocol

4/34
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2. Exponential model
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2. Exponential model

Exponential model: frequency density
f(p): Counting the number of strings that, when sampling from a quantum
random circuit, occur with each probability (p).

0 1/N 2/N 3/N 4/N 5/N 6/N
0

0.1 N

0.2 N

0.3 N

0.4 N

0.5 N

0.6 N

0.7 N

0.8 N

0.9 N

N

p (probability value)

Frequency density
N × area under the density curve

f(p) = N · e−N ·p

Terminology:
we denote these

particular
probabilities (p)
as “P-values”

Note: the “frequency density” is a probability density (a continuous
approximation) across the P-values, rather than across the strings.
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2. Exponential model

More on P-values

Once we obtain a freshly random quantum circuit C:

I Evaluating the circuit (s← C) is easy/fast with a quantum computer
and super slow with a classical computer.

I There is a map Pval,C : {0, 1}n → [0, 1[, where Pval,C(s) = p means the
string s has probability p of being output by an quantum-evaluation of C

I Computing Pval(s) is very expensive for any s ∈ {0, 1}n

I A priori, without need to actually compute Pval,C(·)), the range
{Pval,C(s) : s ∈ {0, 1}n} of P-values is assumed to be match the
frequency characterization of function f = N · e−N ·p.

This is a model — which this presentation simply assumes.

7/34
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2. Exponential model

Histogramic perspective

What is the probability that a sampled string has a P-value below x?

x 1/N 2/N 3/N 4/N

Upon uniform sampling 63% 95% 98% 99%

Upon circuit evaluation 26% 59% 80% 91%

0 1/N 2/N 3/N 4/N 5/N 6/N
0

0.1 N

0.2 N

0.3 N

0.4 N

0.5 N

0.6 N

0.7 N

0.8 N

0.9 N

N

P-value

Frequency density
N × area under the density curve
Histogram: bin width 1/N   

0.632N

0.233N

0.086N
0.031N 0.012N 0.004N

0 1/N 2/N 3/N 4/N 5/N 6/N

0.00

0.25

0.50

0.75

1.00

p (prob "value")

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Frequency × probability density
N × Area under the density curve
Histogram: bin width 1/(1N)   

0.368N

0.271N

0.149N

0.073N
0.034N
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2. Exponential model

Frequency times P-value

f(p) · p: Frequency times P-value as a function of P-value

0 1/N 2/N 3/N 4/N 5/N 6/N

0.00

0.25

0.50

0.75

1.00

p (probability)

Frequency × probability density

N × Area under the density curve

E[XQ] = 2/N

V [XQ] = 2/N2

Useful to compute the probability with which each P-value occurs.
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2. Exponential model

Fidelity

We are told that making a correct quantum evaluation is hard:

I Correct evaluation happens with probability ϕ

I Otherwise the output is uniform

Statistics for sum of P-value of m sampled strings:

Sampling type
Random
variable
X∗,m[,∗]

Expected
value
E(X)

Variance
V (X)

Uniform XU,m m/N m/N2

Pure Quantum XQ,m 2 ·m/N 2 ·m/N2

Q-Fidelity ϕ XF,m,ϕ (1 + ϕ) ·m/N (1 + ϕ · (2− ϕ)) ·m/N2
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2. Exponential model

Analyzing the empirical distribution of Q-values
We will want to compare obtained P-values vs. several distributions.

What kind of random variable XF,m,ϕ makes sense to analyze?

I Sum of obtained P-values
I Sum of the maximum k obtained P-values
I Kolmogorov-Smirnov of empirical distribution
I ...

For simplicity we focus here on the “Sum of m obtained P-values”. Rationale:
I The E[X] is the mean times the number of samples
I We already know that meanHonest > meanuniform
I Easy to approximate analytically (CLT), allowing faster simulations.

XF,m,ϕ ≈ N
(

(1+ϕ)·m
N ,

√
(1+ϕ(2−ϕ))·m

N

)

11/34
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2. Exponential model

Curves for M = 105 and M = 106

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.9885 m/N

0.9920 m/N

0.9955 m/N

0.9990 m/N

1.0025 m/N

1.0061 m/N

1.0096 m/N

1.0131 m/N

1.0166 m/N

Several string sampling experiments
(N=2^53; M=10^5; m/N=1.11022E-11)

Accumulated probability
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3. Distinguishability

Outline 3

1. Introduction

2. Exponential model

3. Distinguishability

4. Min-entropy estimation

5. Concluding remarks
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3. Distinguishability

Hypothesis testing

Some intro definitions:

I False negative (FN): reject when it is actually good (e.g., fid. 0.002)
I False positive (FP): accept when it is actually bad (e.g., uniform)

Example: If we have FN=20%, what do we get for FP?
It depends on the setup. In the last curves we had:
I If m = 105, then FP = 58.3%
I If m = 106, then FP = 12.4%

Different FP: We can formulate different definitions for FP, depending what
we want to compare. For example, we can compare fidelity 0.002 (assumed
honest) vs. 0.001 (the malicious case). This can be useful for entropy
estimation. Then we would get
I If m = 105, then FP = 70.1%
I If m = 106, then FP = 12.4%
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3. Distinguishability

What metrics for FN vs. FP?

Confusion matrix Classification
Positive Negative

Actual
condition

Positive (Honest operator) TP ratio FN ratio
Negative (Malicious operator) FP ratio TN ratio

accuracy = (TP + TN)/All; precision = TP / (TP + FP); recall = TP / (TP + FN); ...

Is TN or TP more costly than the other? May depend on the application.

I Are FN’s worse? Can a FN, determined after the fact, impose rolling
out / impugn some past legal procedure? E.g., assume the “randomness”
was used to select a small sample of voting booths to recount votes in a
tied election, leading to a tight win to one candidate. Will the procedure
be contested if later the sample is rejected?

I Are FP’s worse? A cryptographic application that hinges on fresh
randomness for security. What if a completely deterministic (PRG) output
is accepted, and the randomness provider is in cohots with an adversary?

15/34
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3. Distinguishability

Setting thresholds for FN and FP

I A la cryptographer: let FN = FP = 2−40 (common benchmark for
“one-shot” security applications, e.g., cut-and-choose protocols)

I Different criteria for other applications (?)

Let us look at some tables ...
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3. Distinguishability

Table: Fixed FN ratios vs. FP ratios (using ϕ=0.002)
M ∈

{
105, 106}

, ϕ = .002.
What is a “FP” depends on the comparison (e.g., consider “Uniform PU ”)

M ϕ
FN ratio

pϕ

Threshold
TH,M,ϕ

(Uniform)
pU

(Fidelity)
pϕ/4

(Fidelity)
pϕ/2

(Fidelity)
p3ϕ/4

105 0.002

2−40 1.08765E-11 1.00000 1.00000 1.00000 1.00000
2−30 1.09130E-11 1.00000 1.00000 1.00000 1.00000
2−20 1.09569E-11 0.99998 0.99999 1.00000 1.00000
0.001 1.10157E-11 0.99313 0.99561 0.99726 0.99833
0.01 1.10426E-11 0.95530 0.96825 0.97793 0.98498
0.1 1.10794E-11 0.74269 0.79085 0.83321 0.86956
1/3 1.11093E-11 0.42040 0.48296 0.54587 0.60760

106 0.002

2−40 1.10460E-10 1.00000 1.00000 1.00000 1.00000
2−30 1.10576E-10 0.99997 1.00000 1.00000 1.00000
2−20 1.10714E-10 0.99722 0.99946 0.99992 0.99999
0.001 1.10901E-10 0.86355 0.94471 0.98188 0.99524
0.01 1.10986E-10 0.62967 0.79689 0.90819 0.96624
0.1 1.11102E-10 0.23703 0.41458 0.61173 0.78317
1/3 1.11196E-10 0.05839 0.14279 0.28507 0.47277
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3. Distinguishability

Table: Fixed FN ratios vs. FP ratios (using ϕ=0.005)
M ∈

{
105, 106}

, ϕ = .005

M ϕ
FN ratio

pH

Threshold
TH,M,ϕ

(Uniform)
pU

(Fidelity)
pϕ/4

(Fidelity)
pϕ/2

(Fidelity)
p3ϕ/4

105 0.005

2−40 1.09091E-11 1.00000 1.00000 1.00000 1.00000
2−30 1.09457E-11 1.00000 1.00000 1.00000 1.00000
2−20 1.09897E-11 0.99933 0.99984 0.99997 0.99999
0.001 1.10487E-11 0.93630 0.97240 0.98954 0.99654
0.01 1.10757E-11 0.77541 0.87506 0.93865 0.97353
0.1 1.11125E-11 0.38468 0.54060 0.69010 0.81308
1/3 1.11425E-11 0.12543 0.22601 0.36062 0.51494

106 0.005

2−40 1.10791E-10 0.98136 0.99956 1.00000 1.00000
2−30 1.10907E-10 0.85066 0.98888 0.99979 1.00000
2−20 1.11046E-10 0.41555 0.84976 0.98873 0.99979
0.001 1.11233E-10 0.02909 0.25992 0.72711 0.96775
0.01 1.11318E-10 0.00388 0.07922 0.43578 0.86079
0.1 1.11434E-10 0.00010 0.00697 0.11332 0.51507
1/3 1.11529E-10 0.00000 0.00046 0.01960 0.20780
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3. Distinguishability

Table: Fixed FN ratios vs. FP ratios (higher fidelity)
M = 104, ϕ ∈ {.05, .1}

M ϕ
FN ratio

pH

Threshold
TH,M,ϕ

(Uniform)
pU

(Fidelity)
pϕ/4

(Fidelity)
pϕ/2

(Fidelity)
p3ϕ/4

104 0.05

2−40 1.08376E-12 0.99142 0.99983 1.00000 1.00000
2−30 1.09584E-12 0.90243 0.99404 0.99989 1.00000
2−20 1.11034E-12 0.49593 0.88965 0.99246 0.99985
0.001 1.12979E-12 0.03898 0.30630 0.76418 0.97245
0.01 1.13868E-12 0.00519 0.09734 0.47553 0.87404
0.1 1.15083E-12 0.00013 0.00870 0.12927 0.53560
1/3 1.16072E-12 0.00000 0.00056 0.02275 0.22038

104 0.1

2−40 1.13589E-12 0.01039 0.57286 0.99486 1.00000
2−30 1.14847E-12 0.00029 0.17824 0.93119 0.99992
2−20 1.16356E-12 0.00000 0.01225 0.57414 0.99413
0.001 1.18382E-12 0.00000 0.00003 0.05998 0.79225
0.01 1.19307E-12 0.00000 0.00000 0.00938 0.51407
0.1 1.20572E-12 0.00000 0.00000 0.00029 0.15147
1/3 1.21603E-12 0.00000 0.00000 0.00001 0.02886
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3. Distinguishability

Other random variables

Once all P-values are assessed, what is the best strategy for confirmation?

Example: Client has a “small” budget to verify P-values, e.g., 10% of them.
How should they be chosen?

I Uniformly?
I the 10% highest?
I Sampling related to the f distribution?
I Something else?
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3. Distinguishability

Example: partial sum of the highest 10% P-values
Using M = 105, compare the cases k = 105 vs. k = 104

0 1000 2000 3000 4000 5000 6000 7000 8000 900010000

0.9895 m/N

0.9924 m/N

0.9954 m/N

0.9984 m/N

1.0014 m/N

1.0044 m/N

1.0074 m/N

1.0104 m/N

1.0134 m/N

Several string sampling experiments
(N=2^53; M=10^5; k=10^5; m/N=1.11022E-11)

Trial index (sorted for each curve)
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Uniform                                        
Fidelity 0.002

0 1000 2000 3000 4000 5000 6000 7000 8000 900010000

0.3259 m/N

0.3272 m/N

0.3284 m/N

0.3296 m/N

0.3309 m/N

0.3321 m/N

0.3333 m/N

0.3346 m/N

0.3358 m/N

Several string sampling experiments
(N=2^53; M=10^5; k=10^4; m/N=1.11022E-11)

Trial index (sorted for each curve)

P
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tia
l k

-
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m
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ig
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st

 P
-

va
lu

es

Uniform                                        
Fidelity 0.002
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3. Distinguishability

Table: comparing some FP ratios for the same FN

Example:
I Positive case: honest circuit evaluation with fidelity ϕ = 0.002.
I Negative case: uniform string sampling.

M k k/M
(FN = 0.25) (FN = 0.1)

FP FP

106
103 .001 0.64 0.82
104 .01 0.45 0.68
105 .1 0.21 0.41

105
103 .01 0.69 0.86
104 .1 0.59 0.79
105 1 0.50 0.74

(Each curve based on simulation of 104 trials of partial-sums)

Observation: for fixed k and ϕ, higher M leads to better results.
22/34
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4. Min-entropy estimation

Outline 4

1. Introduction

2. Exponential model

3. Distinguishability

4. Min-entropy estimation

5. Concluding remarks
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4. Min-entropy estimation

Entropy needs / assumptions

Assume a correct experiment execution with a honest operator:
I (n qubits, # samples, fidelity ϕ) = (n, M, ϕ) = (53, 105, 0.002)
I Let HQ be the entropy of a circuit generated string.
I Let q = M · ϕ, e.g., (M, ϕ) = (105, 0.002)→ q = 200

Then entropy ≈ (M − q) · 2n + q ·HQ ≈ 5× 106 bits

I Pre-sampling (sample size question):

Given FN ratio and FP ratio
needed by my application, how many (M) strings do I need to collect
from a fidelity-ϕ experiment to get something useful (enable a high
enough lower-bound on entropy)?

I Post-sampling (min-entropy question):

Given a list of P-values,
measured for some set of strings,∗ what is the highest min-entropy that
we should estimate, under an adversarial scenario, with assurance p?

∗ (assuming the strings were computed before enough time for classical simulation of P-values)

24/34



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

4. Min-entropy estimation

Entropy needs / assumptions

Assume a correct experiment execution with a honest operator:
I (n qubits, # samples, fidelity ϕ) = (n, M, ϕ) = (53, 105, 0.002)
I Let HQ be the entropy of a circuit generated string.
I Let q = M · ϕ, e.g., (M, ϕ) = (105, 0.002)→ q = 200

Then entropy ≈ (M − q) · 2n + q ·HQ ≈ 5× 106 bits

I Pre-sampling (sample size question):

Given FN ratio and FP ratio
needed by my application, how many (M) strings do I need to collect
from a fidelity-ϕ experiment to get something useful (enable a high
enough lower-bound on entropy)?

I Post-sampling (min-entropy question):

Given a list of P-values,
measured for some set of strings,∗ what is the highest min-entropy that
we should estimate, under an adversarial scenario, with assurance p?

∗ (assuming the strings were computed before enough time for classical simulation of P-values)

24/34



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

4. Min-entropy estimation

Entropy needs / assumptions

Assume a correct experiment execution with a honest operator:
I (n qubits, # samples, fidelity ϕ) = (n, M, ϕ) = (53, 105, 0.002)
I Let HQ be the entropy of a circuit generated string.
I Let q = M · ϕ, e.g., (M, ϕ) = (105, 0.002)→ q = 200

Then entropy ≈ (M − q) · 2n + q ·HQ ≈ 5× 106 bits

I Pre-sampling (sample size question): Given FN ratio and FP ratio
needed by my application, how many (M) strings do I need to collect
from a fidelity-ϕ experiment to get something useful (enable a high
enough lower-bound on entropy)?

I Post-sampling (min-entropy question):

Given a list of P-values,
measured for some set of strings,∗ what is the highest min-entropy that
we should estimate, under an adversarial scenario, with assurance p?

∗ (assuming the strings were computed before enough time for classical simulation of P-values)

24/34



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

4. Min-entropy estimation

Entropy needs / assumptions

Assume a correct experiment execution with a honest operator:
I (n qubits, # samples, fidelity ϕ) = (n, M, ϕ) = (53, 105, 0.002)
I Let HQ be the entropy of a circuit generated string.
I Let q = M · ϕ, e.g., (M, ϕ) = (105, 0.002)→ q = 200

Then entropy ≈ (M − q) · 2n + q ·HQ ≈ 5× 106 bits

I Pre-sampling (sample size question): Given FN ratio and FP ratio
needed by my application, how many (M) strings do I need to collect
from a fidelity-ϕ experiment to get something useful (enable a high
enough lower-bound on entropy)?

I Post-sampling (min-entropy question): Given a list of P-values,
measured for some set of strings,∗ what is the highest min-entropy that
we should estimate, under an adversarial scenario, with assurance p?

∗ (assuming the strings were computed before enough time for classical simulation of P-values)

24/34



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

4. Min-entropy estimation

Conceivable attacks

Setup:
I Quantum computer operator: advertises ϕ

I Client: chooses FP < ϵ, FN < ϵ′ (Negative means uniform).

Attack 0 (repeated strings):

I Select single string from circuit evaluation (E[X] = 2/N)
I Repeat the same string M times ... High probability of acceptance

Trivial fix: disallow repeated strings.

Attack 1 (full PRG generation):

I If FP is reasonable high (e.g., 0.1):
I Operator PRG-generates all M = 105 strings and hopes to be lucky.

Conclusion: entropy = 0 ... but attack does not work if FPU is very small
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4. Min-entropy estimation

Conceivable attacks

Setup:
I Quantum computer operator: advertises ϕ

I Client: chooses FP < ϵ, FN < ϵ′ (Negative means uniform).

Attack 0 (repeated strings):

I Select single string from circuit evaluation (E[X] = 2/N)
I Repeat the same string M times ... High probability of acceptance

Trivial fix: disallow repeated strings.

Attack 1 (full PRG generation):

I If FP is reasonable high (e.g., 0.1):
I Operator PRG-generates all M = 105 strings and hopes to be lucky.
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4. Min-entropy estimation

Conceivable attacks

Attack 2 (higher fidelity):

1. Operator has a fidelity 1 computer, but claims to only have fidelity .05.
2. PRG-compute M ′ = M · (1− ϕ/2) strings (P-values distributed as XU,M ′)

3. Circuit-evaluate ϕ/2 strings

Conclusion: entropy = M · ϕ/2 ·HQ, e.g., 105 · 0.002/2 · 52? = 5200

Attack 3 (use lower fidelity):

I Change the FP — another Negative condition (Uniform → half fidelity)
I Example: (ϕ, FN) = (0.05, 0.1)⇒ FPU = 0.0013, but FPϕ/2 = 0.129 ≈ 1/8
I Attackers try their luck (≈ 1/8 chance of winning) using half entropy.
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2. PRG-compute M ′ = M · (1− ϕ/2) strings (P-values distributed as XU,M ′)

3. Circuit-evaluate ϕ/2 strings

Conclusion: entropy = M · ϕ/2 ·HQ, e.g., 105 · 0.002/2 · 52? = 5200
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4. Min-entropy estimation

Conceivable attacks

Attack 2 (higher fidelity):

1. Operator has a fidelity 1 computer, but claims to only have fidelity .05.
2. PRG-compute M ′ = M · (1− ϕ/2) strings (P-values distributed as XU,M ′)

3. Circuit-evaluate ϕ/2 strings

Conclusion: entropy = M · ϕ/2 ·HQ, e.g., 105 · 0.002/2 · 52? = 5200

Attack 3 (use lower fidelity):

I Change the FP — another Negative condition (Uniform → half fidelity)
I Example: (ϕ, FN) = (0.05, 0.1)⇒ FPU = 0.0013, but FPϕ/2 = 0.129 ≈ 1/8
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4. Min-entropy estimation

Conceivable attacks

Attack 4 (post-sampling choice — in complement to attacks 2 and 3):
1. Operator PRG-generates M − q strings (0 entropy), e.g., with q = 100
2. With fidelity 1, privately evaluate circuit about 225 · q times
3. Choose q strings whose first 25 bits are zero after some transformation

Entropy: ≈ q · (HQ − 25) ≈ 100 · 27 ≈ 2700
(more subtleties are needed, e.g., PR order of strings ...)

To-do:
I Play with concrete parameters, get concrete results.
I Application appropriate parameters
I If you trust PRGS, why would you need thousands of bits?
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Conceivable attacks
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4. Min-entropy estimation

Conceivable attacks

Attack 4 (post-sampling choice — in complement to attacks 2 and 3):
1. Operator PRG-generates M − q strings (0 entropy), e.g., with q = 100
2. With fidelity 1, privately evaluate circuit about 225 · q times
3. Choose q strings whose first 25 bits are zero after some transformation

Entropy: ≈ q · (HQ − 25) ≈ 100 · 27 ≈ 2700
(more subtleties are needed, e.g., PR order of strings ...)

To-do:
I Play with concrete parameters, get concrete results.
I Application appropriate parameters
I If you trust PRGS, why would you need thousands of bits?

27/34



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

5. Concluding remarks

Outline 5

1. Introduction

2. Exponential model

3. Distinguishability

4. Min-entropy estimation

5. Concluding remarks
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5. Concluding remarks

Some questions worth exploring:

I Suitable (FN,FP) threshold for conceivable applications?

I Verification budget of P-Values for the user? (and oracle budget)

I What are the best statistics to measure? Full-sum, partial-sum, KS, ...?

I Application motivation: when are more than 512 random bits actually
needed at once?

I Security proofs

I Research problem: (efficiently-verifiable) probabilistic checkable proofs
(PCPs) for this problem

Overall this field has interesting challenges

Engaging in this has a potential to foster the understanding of applications of
quantum randomness.

29/34



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

5. Concluding remarks

Some questions worth exploring:

I Suitable (FN,FP) threshold for conceivable applications?

I Verification budget of P-Values for the user? (and oracle budget)

I What are the best statistics to measure? Full-sum, partial-sum, KS, ...?

I Application motivation: when are more than 512 random bits actually
needed at once?

I Security proofs

I Research problem: (efficiently-verifiable) probabilistic checkable proofs
(PCPs) for this problem

Overall this field has interesting challenges

Engaging in this has a potential to foster the understanding of applications of
quantum randomness.

29/34



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

5. Concluding remarks

A major caveat

There is a major caveat in our analysis!

Our simulations used classical randomness!
Would we get better results with quantum randomness?
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5. Concluding remarks

Thank you

I NISTIR 8213: https://doi.org/10.6028/NIST.IR.8213-draft
I Beacon project: https://csrc.nist.gov/Projects/Interoperable-Randomness-Beacons

Some notes on Interrogating
Random Quantum Circuits

;
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identification of any commercial product or trade names in this presentation does not imply endorsement of recommendation by NIST, nor is it intended to imply that
the material or equipment identified are necessarily the best available for the purpose.

Disclaimer. Some external-source images and cliparts were included/adapted in this presentation with the expectation of such use constituting licensed and/or fair use.
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5. Concluding remarks

Using Kolmogorov-Smirnov
This slide and the next are tentative.
Results obtained this morning ... requires further sanity check.

0 100 200 300 400 500 600 700 800 900 1000

0.0026

0.0034

0.0042

0.0050

0.0058

0.0066

0.0074

0.0082

0.0090

Several string sampling experiments
(N=2^53; M=10^5; k=10^3; m/N=1.00000E+00)

Trial index (sorted for each curve)
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Fid. Ref 0.002 vs. Fid. Test 0.002
Fid. Ref 0.002 vs. Fid. Test 0.001
Fid. Ref 0.002 vs. Fid. Test 0.0
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5. Concluding remarks

Table: Fixed FN ratios vs. FP ratios (higher fidelity)
M = 104, ϕ ∈ {.05, .1}

M ϕ
FN ratio

pH

Threshold
TH,M,ϕ

(Uniform)
pU

(Fidelity)
pϕ/2

105 0.002
2−20 1.85008E-03 0.99600 1.00000
0.001 1.92992E-03 0.98800 0.99700
0.01 2.22990E-03 0.94600 0.97600
0.1 3.16900E-03 0.62100 0.75400
2/3 5.28000E-03 0.05000 0.16900

33/34



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

6. Index

List of slides

1. Promoting Public Randomness ...
2. Outline
3. Outline 1
4. The protocol at a high-level
5. Outline 2
6. Exponential model: frequency density
7. More on P-values
8. Histogramic perspective
9. Frequency times P-value
10. Fidelity
11. Analyzing the empirical distribution of Q-values
12. Curves for M = 105 and M = 106

13. Outline 3
14. Hypothesis testing
15. What metrics for FN vs. FP?
16. Setting thresholds for FN and FP
17. Table: Fixed FN ratios vs. FP ratios (using
ϕ=0.002)
18. Table: Fixed FN ratios vs. FP ratios (using
ϕ=0.005)

19. Table: Fixed FN ratios vs. FP ratios (higher
fidelity)
20. Other random variables
21. Example: partial sum of the highest 10% P-
values
22. Table: comparing some FP ratios for the same
FN
23. Outline 4
24. Entropy needs / assumptions
25. Conceivable attacks
26. Conceivable attacks
27. Conceivable attacks
28. Outline 5
29. Some questions worth deepening:
30. A major caveat
31. Thank you
32. Using Kolmogorov-Smirnov
33. Table: Fixed FN ratios vs. FP ratios (higher
fidelity)
34. List of slides

34/34


	Promoting Public Randomness ...
	Outline
	Introduction
	Outline 1
	The protocol at a high-level

	Exponential model
	Outline 2
	Exponential model: frequency density
	More on P-values
	Histogramic perspective
	Frequency times P-value
	Fidelity
	Analyzing the empirical distribution of Q-values
	Curves for M=10-to-5 and M=10-to-6

	Distinguishability
	Outline 3
	Hypothesis testing
	What metrics for FN vs. FP?
	Setting thresholds for FN and FP
	Table: Fixed FN ratios vs. FP ratios (using phi=0.002)
	Table: Fixed FN ratios vs. FP ratios (using phi=0.005)
	Table: Fixed FN ratios vs. FP ratios (higher fidelity)
	Other random variables
	Example: partial sum of the highest 10% P-values
	Table: comparing some FP ratios for the same FN

	Min-entropy estimation
	Outline 4
	Entropy needs / assumptions
	Conceivable attacks
	Conceivable attacks
	Conceivable attacks

	Concluding remarks
	Outline 5
	Some questions worth exploring:
	A major caveat
	Thank you
	Using Kolmogorov-Smirnov
	Table: Fixed FN ratios vs. FP ratios (higher fidelity)

	Index
	List of slides



		2019-12-13T13:29:28-0500
	Timestamping
	Timestamping




