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Goals of the presentation:
» Convey our preliminary understanding of the certifiable-QRNG setting
» Discuss distinguishability / paremetrization aspects

> |dentify questions for subsequent followup / research directions (?)
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1. Introduction

The protocol at a high-level
Towards certified /certifiable randomness.
1. The operator is given a freshly chosen random quantum circuit.
2. Soon after, the operator publishes many circuit output strings.
3. Client extracts randomness for use in applications.
4. Long after, a supercomputer outputs the “P-values” of the strings.

5. By analysis of the "P-values”, get a retroactive statistical assurance that
a sufficiently large set of outputs were sampled from the quantum circuit.
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The protocol at a high-level

Towards certified /certifiable randomness.
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. The operator is given a freshly chosen random quantum circuit.
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. Soon after, the operator publishes many circuit output strings.

3. Client extracts randomness for use in applications.

S

. Long after, a supercomputer outputs the “P-values” of the strings.
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. By analysis of the “P-values”, get a retroactive statistical assurance that
a sufficiently large set of outputs were sampled from the quantum circuit.

We want to look at suitable parameters for implementation of this protocol
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2. Exponential model

Exponential model: frequency density

f(p): Counting the number of strings that, when sampling from a quantum
random circuit, occur with each probability (p).
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Exponential model: frequency density

f(p): Counting the number of strings that, when sampling from a quantum
random circuit, occur with each probability (p).
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Note: the “frequency density” is a probability density (a continuous
approximation) across the P-values, rather than across the strings.
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2. Exponential model

More on P-values
Once we obtain a freshly random quantum circuit C:

» Evaluating the circuit (s «+ C) is easy/fast with a quantum computer
and super slow with a classical computer.

» There is a map Paic: {0,1}" — [0,1], where Pa c(s) = p means the
string s has probability p of being output by an quantum-evaluation of C

» Computing Py (s) is very expensive for any s € {0,1}"
» A priori, without need to actually compute P, ¢(+)), the range

{Poa.c(s) : s € {0,1}"} of P-values is assumed to be match the
frequency characterization of function f = N - e~ VP,
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» Evaluating the circuit (s «+ C) is easy/fast with a quantum computer
and super slow with a classical computer.

» There is a map Paic: {0,1}" — [0,1], where Pa c(s) = p means the
string s has probability p of being output by an quantum-evaluation of C

» Computing Py (s) is very expensive for any s € {0,1}"
» A priori, without need to actually compute P, ¢(+)), the range
{Poa.c(s) : s € {0,1}"} of P-values is assumed to be match the

frequency characterization of function f = N - e~ VP,

This is a model — which this presentation simply assumes.
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2. Exponential model

Histogramic perspective

What is the probability that a sampled string has a P-value below z?
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Frequency times P-value
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f(p) - p: Frequency times P-value as a function of P-value
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Useful to compute the probability with which each P-value occurs.



2. Exponential model

Frequency times P-value

f(p) - p: Frequency times P-value as a function of P-value
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Fidelity

2. Exponential model

We are told that making a correct quantum evaluation is hard:

» Correct evaluation happens with probability ¢

» Otherwise the output is uniform

Statistics for sum of P-value of m sampled strings:

Random  Expected .
. . Variance
Sampling type  variable value V(X)
Xemps  B(X)
Uniform Xvum m/N m/N?
Pure Quantum  Xg 2-m/N 2-m/N?
Q-Fidelity ¢ Xeme (1+¢)-m/N (1+6¢-(2—¢)) -m/N?
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2. Exponential model

Analyzing the empirical distribution of Q-values

We will want to compare obtained P-values vs. several distributions.

What kind of random variable Xz ,,, » makes sense to analyze?
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» The E[X] is the mean times the number of samples
» We already know that meanyonest > mMeanniform

» Easy to approximate analytically (CLT), allowing faster simulations.

11/34



2. Exponential model

Analyzing the empirical distribution of Q-values

We will want to compare obtained P-values vs. several distributions.

What kind of random variable Xz ,,, » makes sense to analyze?
» Sum of obtained P-values
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> ..

For simplicity we focus here on the “Sum of m obtained P-values”. Rationale:
» The E[X] is the mean times the number of samples
» We already know that meanyonest > mMeanniform

» Easy to approximate analytically (CLT), allowing faster simulations.

~ 1+¢)-m /(1+¢(2—¢))m
XF,m7¢ ~ N <( ](6) Y N )
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2. Exponential model

Curves for M = 10° and M = 10

Several string sampling experiments Several string sampling experiments

(N=2753; M=10"5; m/N=1.11022E- 11) (N=2"53; M=10"6; m/N=1.11022E- 10)
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3. Distinguishability

Outline 3

3. Distinguishability
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3. Distinguishability

Hypothesis testing

Some intro definitions:

> False negative (FN): reject when it is actually good (e.g., fid. 0.002)
> False positive (FP): accept when it is actually bad (e.g., uniform)

Example: If we have FN=20%, what do we get for FP?

It depends on the setup. In the last curves we had:
» If m = 10°, then FP = 58.3%
» If m = 10°, then FP = 12.4%

Different FP: We can formulate different definitions for FP, depending what
we want to compare. For example, we can compare fidelity 0.002 (assumed
honest) vs. 0.001 (the malicious case). This can be useful for entropy
estimation. Then we would get

» If m = 10°, then FP = 70.1%

» If m = 10%, then FP = 12.4%
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3. Distinguishability

What metrics for FN vs. FP?

. . Classification
Confusion matrix — .
Positive Negative
Actual Positive (Honest operator) TP ratio | FN ratio
condition | Negative (Malicious operator) | FP ratio | TN ratio

accuracy = (TP + TN)/All; precision = TP / (TP + FP); recall = TP / (TP 4 EN); ..

Is TN or TP more costly than the other? May depend on the application
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3. Distinguishability

What metrics for FN vs. FP?

Classification
Positive Negative
Actual Positive (Honest operator) TP ratio | FN ratio
condition | Negative (Malicious operator) | FP ratio | TN ratio

Confusion matrix

accuracy = (TP + TN)/All; precision = TP / (TP + FP); recall = TP / (TP + FN); ..

Is TN or TP more costly than the other? May depend on the application.

> Are FN’s worse? Can a FN, determined after the fact, impose rolling
out / impugn some past legal procedure? E.g., assume the “randomness”
was used to select a small sample of voting booths to recount votes in a

tied election, leading to a tight win to one candidate. Will the procedure
be contested if later the sample is rejected?

» Are FP’s worse? A cryptographic application that hinges on fresh
randomness for security. What if a completely deterministic (PRG) output

is accepted, and the randomness provider is in cohots with an adversary?
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3. Distinguishability

Setting thresholds for FN and FP

» A la cryptographer: let FN = FP = 2740 (common benchmark for
“one-shot” security applications, e.g., cut-and-choose protocols)

» Different criteria for other applications (?)
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3. Distinguishability

Setting thresholds for FN and FP

» A la cryptographer: let FN = FP = 2740 (common benchmark for
“one-shot” security applications, e.g., cut-and-choose protocols)

» Different criteria for other applications (?)

Let us look at some tables ...
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3. Distinguishability

Table: Fixed FN ratios vs. FP ratios (using ¢=0.002)
M € {10°,10%}, ¢ = .002.

What is a “FP" depends on the comparison (e.g., consider “Uniform Py ")

FN ratio Threshold (Uniform)  (Fidelity) (Fidelity) (Fidelity)

M ¢ Do Th M, pU Do /a Do /2 P3g/a
240 1.08765E-11 1.00000 1.00000 1.00000 1.00000

230 1.09130E-11 1.00000 1.00000 1.00000 1.00000

1 0002 2-20 1.09569E-11 0.99998 0.99999 1.00000 1.00000
10° ’ 0.001 1.10157E-11 0.99313 0.99561 0.99726 0.99833
0.01 1.10426E-11 0.95530 0.96825 0.97793 0.98498

0.1 1.10794E-11 0.74269 0.79085 0.83321 0.86956

1/3 1.11093E-11 0.42040 0.48296 0.54587 0.60760

2—10 1.10460E-10 1.00000 1.00000 1.00000 1.00000

230 1.10576E-10 0.99997 1.00000 1.00000 1.00000

0.002 2-20 1.10714E-10 0.99722 0.99946 0.99992 0.99999

106 ’ 0.001 1.10901E-10 0.86355 0.94471 0.98188 0.99524
0.01 1.10986E-10 0.62967 0.79689 0.90819 0.96624

0.1 1.11102E-10 0.23703 0.41458 0.61173 0.78317

1/3 1.11196E-10 0.05839 0.14279 0.28507 0.47277
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3. Distinguishability

Table: Fixed FN ratios vs. FP ratios (using ¢$=0.005)
M € {10°,10°}, ¢ = .005

M 8 FN ratio Threshold (Uniform)  (Fidelity) (Fidelity) (Fidelity)
PH Tw ¢ pu Do/a Pe/2 D3g/4

2740 1.09091E-11 | 1.00000  1.00000  1.00000  1.00000

2730 1.09457E-11 | 1.00000  1.00000  1.00000  1.00000

0.005 2720 1.09897E-11 | 0.99933  0.99984  0.99997  0.99999

10° | 0.001 1.10487E-11 | 0.93630  0.97240  0.98954  0.99654

0.01 1.10757E-11 | 0.77541  0.87506  0.93865  0.97353

0.1 1.11125E-11 | 0.38468  0.54060  0.69010  0.81308

1/3 1.11425E-11 | 0.12543 0.22601 0.36062 0.51494

240 1.10791E-10 | 0.98136  0.99956  1.00000  1.00000

2730 1.10907E-10 | 0.85066  0.98888  0.99979  1.00000

| 0.005 2720 1.11046E-10 | 0.41555 0.84976 0.98873 0.99979

100 | & 0.001 1.11233E-10 | 0.02909  0.25992  0.72711  0.96775

0.01 1.11318E-10 | 0.00388  0.07922  0.43578  0.86079

0.1 1.11434E-10 | 0.00010  0.00697  0.11332  0.51507

1/3 1.11529E-10 | 0.00000  0.00046  0.01960  0.20780
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Table: Fixed FN ratios vs
M =10%, ¢ € {.05,.1}

3. Distinguishability

. FP ratios (higher fidelity)

M " FN ratio  Threshold (Uniform)  (Fidelity)  (Fidelity) (Fidelity)
PH T e Pu Do/a DPe/2 P3g/a

240 1.08376E-12 | 0.99142  0.99983  1.00000  1.00000

2730 1.09584E-12 | 0.90243  0.99404  0.99989  1.00000

0.05 2720 1.11034E-12 | 0.49593  0.88965  0.99246  0.99985

0% | 0.001 1.12979E-12 | 0.03898  0.30630  0.76418  0.97245
0.01 1.13868E-12 | 0.00519  0.09734  0.47553  0.87404

0.1 1.15083E-12 | 0.00013  0.00870  0.12927  0.53560

1/3 1.16072E-12 | 0.00000  0.00056  0.02275  0.22038

2140 1.13589E-12 | 0.01039  0.57286  0.99486  1.00000

2730 1.14847E-12 | 0.00029  0.17824  0.93119  0.99992

01 2720 1.16356E-12 | 0.00000  0.01225  0.57414  0.99413

10* ' 0.001 1.18382E-12 | 0.00000  0.00003  0.05998  0.79225
0.01 1.19307E-12 | 0.00000  0.00000  0.00938  0.51407

0.1 1.20572E-12 | 0.00000  0.00000  0.00029  0.15147

1/3 1.21603E-12 | 0.00000  0.00000  0.00001  0.02886
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3. Distinguishability

Other random variables

Once all P-values are assessed, what is the best strategy for confirmation?

Example: Client has a “small” budget to verify P-values, e.g., 10% of them.
How should they be chosen?

» Uniformly?
» the 10% highest?
» Sampling related to the f distribution?

» Something else?

20/34



3. Distinguishability

Example: partial sum of the highest 10% P-values

21/34

Using M = 10°, compare the cases k = 10° vs. k = 10*

Several string sampling experiments
(N=2"53; M=10"5; k=10"5; m/N=1.11022
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Table: comparing some FP ratios for the same FN

Example:
> Positive case: honest circuit evaluation with fidelity ¢ = 0.002.

» Negative case: uniform string sampling.

(FN =0.25) (FN =0.1)
Mk k/M FP FP
103 .001 0.64 0.82
106 10* .01 0.45 0.68
10° 1 0.21 0.41
102 .01 0.69 0.86
10> 104 .1 0.59 0.79
10° 1 0.50 0.74

(Each curve based on simulation of 10* trials of partial-sums)

Observation: for fixed k and ¢, higher M leads to better results.

22/34
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4. Min-entropy estimation

Entropy needs / assumptions

Assume a correct experiment execution with a honest operator:
» (n qubits, # samples, fidelity ¢) = (n, M, ¢) = (53,10°,0.002)
> Let H( be the entropy of a circuit generated string.
> Let =M - ¢, e.g., (M, ) = (10°,0.002) — ¢ = 200

Then entropy ~ (M —q) - 2" + q- Hg ~ 5 x 10° bits
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Entropy needs / assumptions

Assume a correct experiment execution with a honest operator:
» (n qubits, # samples, fidelity ¢) = (n, M, ¢) = (53,10°,0.002)
> Let H( be the entropy of a circuit generated string.
> Let =M - ¢, e.g., (M, ) = (10°,0.002) — ¢ = 200

Then entropy ~ (M —q) - 2" + q- Hg ~ 5 x 10° bits

» Pre-sampling (sample size question): Given FN ratio and FP ratio
needed by my application, how many (M) strings do | need to collect
from a fidelity-¢ experiment to get something useful (enable a high
enough lower-bound on entropy)?

> Post-sampling (min-entropy question): Given a list of P-values,
measured for some set of strings,* what is the highest min-entropy that
we should estimate, under an adversarial scenario, with assurance p?
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4. Min-entropy estimation

Conceivable attacks
Setup:

» Quantum computer operator: advertises ¢
» Client: chooses FP < ¢, FN < ¢’ (Negative means uniform).
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4. Min-entropy estimation

Conceivable attacks

Setup:
» Quantum computer operator: advertises ¢
» Client: chooses FP < ¢, FN < ¢ (Negative means uniform).

Attack 0 (repeated strings):

> Select single string from circuit evaluation (E[X] = 2/N)
» Repeat the same string M times ... High probability of acceptance

Trivial fix: disallow repeated strings.

Attack 1 (full PRG generation):

» If FP is reasonable high (e.g., 0.1):
» Operator PRG-generates all M = 10° strings and hopes to be lucky.

Conclusion: entropy = 0 ... but attack does not work if FP; is very small
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4. Min-entropy estimation

Conceivable attacks

Attack 2 (higher fidelity):

1. Operator has a fidelity 1 computer, but claims to only have fidelity .05.
2. PRG-compute M’ = M - (1 — ¢/2) strings (P-values distributed as Xy /)
3. Circuit-evaluate ¢/2 strings
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4. Min-entropy estimation

Conceivable attacks

Attack 2 (higher fidelity):

1. Operator has a fidelity 1 computer, but claims to only have fidelity .05.
2. PRG-compute M’ = M - (1 — ¢/2) strings (P-values distributed as Xy /)
3. Circuit-evaluate ¢/2 strings

Conclusion: entropy = M - ¢/2 - Hg, e.g., 10° - 0.002/2 - 527 = 5200

Attack 3 (use lower fidelity):

» Change the FP — another Negative condition (Uniform — half fidelity)
» Example: (¢, FN) = (0.05,0.1) = FPy = 0.0013, but FP4 /o = 0.129 ~ 1/8
» Attackers try their luck (= 1/8 chance of winning) using half entropy.
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4. Min-entropy estimation

Conceivable attacks
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4. Min-entropy estimation

Conceivable attacks

Attack 4 (post-sampling choice — in complement to attacks 2 and 3):
1. Operator PRG-generates M — ¢ strings (0 entropy), e.g., with ¢ = 100
2. With fidelity 1, privately evaluate circuit about 22° - ¢ times

3. Choose ¢ strings whose first 25 bits are zero after some transformation
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4. Min-entropy estimation

Conceivable attacks

Attack 4 (post-sampling choice — in complement to attacks 2 and 3):
1. Operator PRG-generates M — ¢ strings (0 entropy), e.g., with ¢ = 100

225

2. With fidelity 1, privately evaluate circuit about - q times

3. Choose ¢ strings whose first 25 bits are zero after some transformation
Entropy: = ¢ - (Hg — 25) ~ 100 - 27 ~ 2700

(more subtleties are needed, e.g., PR order of strings ...)

To-do:
» Play with concrete parameters, get concrete results.
» Application appropriate parameters
» If you trust PRGS, why would you need thousands of bits?
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Outline 5

5. Concluding remarks
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5. Concluding remarks

Some questions worth exploring:

29/34

Suitable (FN,FP) threshold for conceivable applications?
Verification budget of P-Values for the user? (and oracle budget)
What are the best statistics to measure? Full-sum, partial-sum, KS, ...7

Application motivation: when are more than 512 random bits actually
needed at once?

Security proofs

Research problem: (efficiently-verifiable) probabilistic checkable proofs
(PCPs) for this problem



5. Concluding remarks

Some questions worth exploring:

» Suitable (FN,FP) threshold for conceivable applications?
» \Verification budget of P-Values for the user? (and oracle budget)
» What are the best statistics to measure? Full-sum, partial-sum, KS, ...7

» Application motivation: when are more than 512 random bits actually
needed at once?

» Security proofs

» Research problem: (efficiently-verifiable) probabilistic checkable proofs
(PCPs) for this problem

Overall this field has interesting challenges

Engaging in this has a potential to foster the understanding of applications of

quantum randomness.
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A major caveat

There is a major caveat in our analysis!
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5. Concluding remarks

A major caveat

There is a major caveat in our analysis!

Our simulations used classical randomness!

VAN
Would we get better results with quantum randomness? a
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> NISTIR 8213: https://doi.org/10.6028 /NIST.IR.8213-draft

> Beacon project: https://csrc.nist.gov/Projects/Interoperable-Randomness-Beacons
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5. Concluding remarks

Thank you

> NISTIR 8213: https://doi.org/10.6028 /NIST.IR.8213-draft

> Beacon project: https://csrc.nist.gov/Projects/Interoperable-Randomness-Beacons

Some notes on Interrogating

Random Quantum Circuits

luis.brandao@hnist.gov; rene.peralta@nist.gov

Presentation at NIST/Google meeting
December 13, 2019 @ NIST Gaithersburg, USA

Disclaimer. Opinions expressed in this presentation are from the author(s) and are not to be construed as official or as views of the U.S. Department of Commerce. The
identification of any commercial product or trade names in this presentation does not imply endorsement of recommendation by NIST, nor is it intended to imply that
the material or equipment identified are necessarily the best available for the purpose,

Disclaimer. Some external-source images and cliparts were included/adapted in this presentation with the expectation of such use constituting licensed and/or fair use.
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Using Kolmogorov-Smirnov
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This slide and the next are tentative.

Results obtained this morning ... requires further sanity check.

Several string sampling experiments

(N=2"53; M=10"5; k=10"3; m/N=1.00000E+
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Table: Fixed FN ratios vs. FP ratios (higher fidelity)
M =10%, ¢ € {.05,.1}

FN ratio Threshold (Uniform)  (Fidelity)

M ¢
PH Tr,m,¢ PU Po/2

2720 1.85008E-03 | 0.99600  1.00000
10° | 0.002 | 0.001 1.92992E-03 | 0.98800  0.99700

0.01 2.22990E-03 | 0.94600  0.97600

0.1 3.16900E-03 | 0.62100 0.75400

2/3 5.28000E-03 | 0.05000 0.16900
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