Torsion-point attacks on SIDH-like schemes

Péter Kutas, Christophe Petit
University of Birmingham
7th June 2021

Isogeny-based cryptography

Hard, well-studied number theoretical problems:

- Compute any isogeny between two supersingular elliptic curves
- Compute a degree d isogeny between two supersingular elliptic curves
- Compute the endomorpism ring of a supersingular elliptic curve

These problems seem to be hard even for a quantum computer \rightarrow Isogeny-based cryptography is a viable option for PQC

SIKE

- SIDH -10 years old
- In SIDH you are given extra information : $\phi(P), \phi(Q)$
- Not a well-studied problem
- Natural question : Study this problem in more detail and see whether this can be exploited
- Torsion-point attacks: Active attacks, reduction to endomorphism ring computation, classical and quantum passive attacks

Active attack

- Natural question : can you use static keys in SIDH ; Answer: No
- Galbraith-Petit-Shani-Ti : active attack using malformed torsion points
- Attack model : α is Alice's secret Oracle is given $E, E_{B}, P, Q, E^{\prime}$ where $P, Q \in E$ and have order A
- Oracle returns true if $E^{\prime} \cong E_{B} /\langle P+\alpha Q\rangle$ otherwise returns false
- Motivation: in SIDH $P=\phi_{B}\left(P_{A}\right), Q=\phi_{B}\left(Q_{A}\right)$ but Alice cannot check whether this is the case (Alice can check the order of P, Q thus can thwart a trivial attack)
- Store already computed bits, in every iteration get one more bit of the secret
- Countermeasures : Fujisaki-Okamoto, k-SIDH, Jao-Urbanik scheme

Isogeny problem with torsion information

This motivates the study of the follwoing algorithmic problem :
Problem (SSI-T)
Let ϕ be a secret isogeny of degree A between supersingular elliptic curves E_{1} and E_{2}. Suppose that you know $\phi\left(P_{B}\right)$ and $\phi\left(Q_{B}\right)$. Compute ϕ

- Goal : give conditions on the relationship between A, B, p for which we can solve this problem in polynomial time (or at least improve on generic meet-in-the-middle)

Passive torsion-point attacks

- Find a special endomorphism θ of E_{0} and an integer d such that $\tau=\phi \circ \theta \circ \hat{\phi}+[d]$ is computable
- Computing $\operatorname{ker}(\tau-d) \cap E_{A}[A]$ will return $\hat{\phi}$
- How do you find θ ?
- Two types of attacks: 1. $E_{0}: y^{2}=x^{3}+x$, 2. backdoor attack

A tale of three equations

- You can compute τ if $\operatorname{deg}(\tau)=B e$ where e is small
- Improvements : instead of B one can have B^{2} (using dual information) or $B^{2} p$ (using the Frobenius isogeny)
- One can look for θ as $c i+b j+a i j$
- $A^{2}\left(a^{2} p+b^{2} p+c^{2}\right)+d^{2}=B e$
- $A^{2}\left(a^{2} p+b^{2} p+c^{2}\right)+d^{2}=B^{2} e$
- $A^{2}\left(a^{2} p+b^{2} p+c^{2}\right)+d^{2}=B^{2} p e$

Petit 2017

de Quehen, Kutas, Leonardi, Martindale, Panny, Petit, Stange 2021

Main impact of attacks: polynomial-time key recovery when $p \approx A B$ and $B>A^{5}$

Backdoor attacks

- Can you generate starting curves from which one can solve SSI-T in polynomial time/faster than meet-in-the-middle?
- Answer: yes
- Whenever $B>A^{2}$ (the condition is independent of p) then one can generate (A, B)-backdoor curves with a polynomial-time key recovery
- When $A \approx B$ then one can generate backdoor curves which beat current attacks
- Backdoor curves are hard to distinguish from random curves

Quantum hidden shift attack

- SIDH does not admit a similar group action as CSIDH thus is not vulnerable to Kuperberg's subexponential algorithm
- Alternative group action: let O be the endomorphism ring of E_{0}, then $(O / A O) *$ acts on curves of distance A from E_{0}
- Let $E_{A}=E /\langle A\rangle$ be the secret curve of distance A
- Then $\theta * E_{A}:=E=\langle\theta(A)\rangle$; If one chooses a suitable subgroup of $(O / A O)^{*}$ then this action is free and transitive and one can apply a Kuperberg-style attack
- The group action is computable whenever $B>p A^{4}$
- Worse than previous attack but shows previously unknown structure of the problem

Past, Present,Future

- Torsion-point attacks-5 years
- Impact on balanced SIDH : cannot reuse keys
- Passive attacks do not impact SIKE parameters
- Cryptoanalysis picture is much clearer (or less clear from a different perspective)
- (small) breakthrough : don't use unbalanced variants !
- don't trust starting curves coming from an unknown source
- Future : Combine classical attack with quantum hidden shift attack

