
Updates on Romulus, Remus and TGIF

Tetsu Iwata1 Mustafa Khairallah2

Kazuhiko Minematsu3 Thomas Peyrin2

Nagoya University1 Nanyang Technological University2 NEC3

NIST Third Lightweight Cryptography Workshop, USA
November 4-6, 2019

1 / 20

Romulus, Remus, and TGIF
Romulus
• A TBC-based AEAD mode
• Standard model security
• Skinny [BJK+16] as Tweakable Block Cipher

Remus
• An aggressively optimized version of Romulus
• Ideal-Cipher model security
• Skinny as Block Cipher (or IC)

TGIF
• Remus with a new cipher based on GIFT [BPP+17]

– Designers : Yu Sasaki, Siang Meng Sim, Ling Sun and
Romulus/Remus team

(wikipedia)

This talk’s focus : Romulus, as a 2nd-round candidate
2 / 20

Our Updates

Security
• Improved Security Bounds
• No dependency on the input length, in most cases

Implementation
• Hardware (ASIC and FPGA)
• Round-base, Serial, Unrolled

3 / 20

Basics of Romulus

Two variants
• Nonce-based N-variants (NAE)
• Nonce Misuse-resistant M-variants (MRAE)
• Both consist of three members

Design goal : the best of lightweight AEAD built on TBC
• Small-state
• Rate 1 operation (# of input blocks per primitive call)
• Strong security

– Both qualitatively and quantitatively
• Simple structure

4 / 20

Family Members of Romulus

Family Name Ẽ k nl n t d τ

Romulus-N
Romulus-N1 Skinny-128-384 128 128 128 128 56 128
Romulus-N2 Skinny-128-384 128 96 128 96 48 128
Romulus-N3 Skinny-128-256 128 96 128 96 24 128

Romulus-M
Romulus-M1 Skinny-128-384 128 128 128 128 56 128
Romulus-M2 Skinny-128-384 128 96 128 96 48 128
Romulus-M3 Skinny-128-256 128 96 128 96 24 128

• k : key length, nl : nonce length, t : tweak main-block length
• d : counter length, τ : tag length
• Skinny-x-y : Skinny with x-bit block, y-bit tweakey

N3 and M3 are most efficient, while not able to handle single input of 250 bytes

5 / 20

Romulus N-variants

0n ρ

A[1] A[2] A[a− 1]

ρ

pad(A[a]) N

S
n

n

n

t

S ρ

M [1] N N

ρ

0n

n

n

n

t

C[1]

n

ρ

pad(M [m])

C[m]

lsb

T

ωA ∈ {24, 26}

ωM ∈ {20, 21}

Ẽ
8,1
K Ẽ

8,a−2
K Ẽ

ωA,a
K

Ẽ
4,1
K Ẽ

ωM ,a−2
K

lsb

• TBC ẼK on tweak set T = {0, 1}t ×D × B and message setM = {0, 1}n
• State function ρ : {0, 1}n × {0, 1}n → {0, 1}n × {0, 1}n

– When AD is processed, the first output is ignored
• Based on iCOFB [CIMN16], with lots of changes/improvements

6 / 20

ρ function
Simple operation defined over bytes
• Byte matrix G
• Single-state (both red and blue lines can
be independently computed)
• Partial input can be handle by truncation
and padding
• Security condition for ρ : the same as
COFB [CIMN16]

– Unlike COFB, G is applied to output side
– Simplifies AD process (just XOR-chain)

Choice of G
• Modular form suitable to serial circuit, no
need of MUX
• Small # of XOR, SW/HW-friendly

S ρ

X

Y

S′ S

X

Y

S′

G

G =

Gs 0 0 . . . 0
0 Gs 0 . . . 0
...
0 . . . 0 Gs 0
0 . . . 0 0 Gs

 , Gs =

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 1

7 / 20

Properties of Romulus-N
Efficiency
• Small state (TBC itself)
• Rate 1 (n-bit msg per call, n+ t-bit AD per call)
• Small overhead for short message

Security
• n-bit security with n-bit block TBC
• Standard model : reduces to CPA security of TBC (TPRP)

– Conservative, and no worry about the gap between the model and the instantiation
– e.g. the use of weak permutation in Sponge constructions

Limitations
• Serial operation for both Enc/Dec

– Reasonable for the applications of lightweight crypto
• Parallel operation of many messages is always possible [BLT15]
• Constraint devices are unlikely to process blocks in parallel for ASIC

8 / 20

Security Bounds for N-variants

Advpriv
Romulus-N(A) ≤ Advtprp

Ẽ
(A′),

Advauth
Romulus-N(B) ≤ Advtprp

Ẽ
(B′) + 3qd

2n + 2qd
2τ

(qd : number of decryptions, τ : tag length)

Previous : AUTH contains O(σd/2n) (σd : total effective queried blocks in decryption)

Now : essentially equal to ΘCB3 security, no degradation in input length!
... a quite unique security feature only achievable by TBC-based modes
Proof : similar technique as PFB [NS19]

9 / 20

Romulus M-variants

Romulus-AD

A M N M N

T C

Romulus-ENC

• (Fully) Nonce-misuse-resistance via SIV [RS06]
• Greatly shares Romulus-N components (easy to implement both)
• Proof : Use proof techniques of [NS19] and NaT MAC [CLS17]

10 / 20

Security Bounds for M-variants
Nonce-Respecting (NR) adversary :

Advpriv
Romulus-M(A) ≤ Advtprp

Ẽ
(A′),

Advauth
Romulus-M(B) ≤ Advtprp

Ẽ
(B′) + 5qd

2n

Nonce-Misusing (NM) adversary w/ max r repetition of nonce in Enc :

Advnm-priv
Romulus-M(A) ≤ Advtprp

Ẽ
(A′) + 4rσpriv

2n ,

Advnm-auth
Romulus-M(B) ≤ Advtprp

Ẽ
(B′) + 4rqe + 5rqd

2n
(σpriv : total queried blocks in encryption)

Previous : AUTH includes O(`qd/2n), NM-AUTH includes O(r`qd/2n) & misses O(rqe/2n)
Now : no degradation in input length, except for nm-priv
... also very good security bounds, graceful security degradation for nonce repetition∗

∗ [CN19] subsequently informed us the need of incorporating the encryption queries and that they have proved a similar authenticity bound to ours.
11 / 20

Measuring the Efficiency of Romulus

Case of Romulus-N1 (n = 128):
State
• Skinny-128-384 has n-bit block + 3n-bit tweakey
• State size = block (n) + effective part of tweak (t = 1.5n) + key (k = n) = 3.5n

– t = 1.5n → n for (AD/N) and 0.5n for (counter + domain bits)
– Unused 0.5n-bit tweakey does not need to be implemented (specific to Skinny)

Rate (# of input n-bit blocks per primitive call, for simplicity no AD)
• 1 (for all N-variants)

Security
• n bits

Our efficiency measure (smaller is better) : State/Rate = 3.5n

12 / 20

Detailed Comparison of NAE schemes (n = k = 128)

Scheme
Number of State Size Rate Security Efficiency Inverse

Primitive Calls (S) (R) (S/R) Free

Romulus-N1
⌈ |A|−n

2n
⌉

+
⌈ |M |
n

⌉
+ 1 3.5n 1 n 3.5n Yes

Romulus-N2
⌈ |A|−n

1.75n
⌉

+
⌈ |M |
n

⌉
+ 1 3.2n 1 n 3.2n Yes

Romulus-N3
⌈ |A|−n

1.75n
⌉

+
⌈ |M |
n

⌉
+ 1 3n 1 n 3n Yes

COFB
⌈ |A|
n

⌉
+
⌈ |M |
n

⌉
+ 1 2.5n 1 n/2− logn/2 2.5n Yes

ΘCB3
⌈ |A|
n

⌉
+
⌈ |M |
n

⌉
+ 1 4.5n 1 n 4.5n No

SpongeAE
⌈ |A|
n

⌉
+
⌈ |M |
n

⌉
+ 1 3n 1/3 n 9n Yes

Beetle
⌈ |A|
n

⌉
+
⌈ |M |
n

⌉
+ 2 2n 1/2 n− logn 4n Yes

Ascon-128
⌈ |A|

0.5n
⌉

+
⌈ |M |

0.5n
⌉

+ 1 3.5n 1/5 n 17.5n Yes

Ascon-128a
⌈ |A|
n

⌉
+
⌈ |M |
n

⌉
+ 1 3.5n 2/5 n 8.75n Yes

• ΘCB3: assuming n-bit nonce and n/2-bit counter
• SpongeAE: Duplex using 3n-bit permutation with n-bit rate, 2n-bit capacity.

Romulus-N achieves the best efficiency among full n-bit secure schemes
13 / 20

Detailed Comparison of MRAE schemes (n = k = 128)

Scheme
Number of State Size Rate Security Efficiency Inverse

Primitive Calls (S) (R) NR ∼ NM (S/R) Free

Romulus-M1
⌈ |A|+|M |−n

2n
⌉

+
⌈ |M |
n

⌉
+ 1 3.5n 2/3 n ∼ n/2 5.25n Yes

Romulus-M2
⌈ |A|+|M |−n

1.75n
⌉

+
⌈ |M |
n

⌉
+ 1 3.2n 7/11 n ∼ n/2 5.03n Yes

Romulus-M3
⌈ |A|+|M |−n

1.75n
⌉

+
⌈ |M |
n

⌉
+ 1 3n 7/11 n ∼ n/2 4.71n Yes

SCT
⌈ |A|+|M |

n

⌉
+
⌈ |M |
n

⌉
+ 1 4n 1/2 n ∼ n/2 8n Yes

SUNDAE
⌈ |A|+|M |

n

⌉
+
⌈ |M |
n

⌉
+ 1 2n 1/2 n/2 4n Yes

ZAE
⌈ |A|+|M |

2n
⌉

+
⌈ |M |
n

⌉
+ 6 7n 2/3 n 10.5n Yes

Romulus-M achieves the best efficiency among n ∼ n/2-secure schemes

14 / 20

ASIC Implementations
TSMC 65nm standard cell library (all synthesized by the same environment):

Variant Cycles Area Minimum Throughput Power Energy Thput/Area
(GE) Delay (ns) (Gbps) (µW) (pJ) (Gbps/kGE)

Romulus-N1 Low Area 1264 4498 0.8 0.1689 - - 0.0376
Romulus-N1 60 6620 1 2.78 548 32.8 0.42
Romulus-N1 unrolled x4 18 10748 1 9.27 - - 0.86

ACORN [ATHENA] - 6580 0.9 8.8 - - 1.36
Ascon Low Area [Official] 3078 4545 0.5 0.042 167 51402 0.01
Ascon Basic Iterative [Official] 6 8562 1 10.4 292.7 - 1.22
Ketje-Sr [ATHENA] - 19230 0.9 1.11 - - 0.06

• Power and Energy are estimated at 10 Mhz.
• Energy is for 1 TBC call

Remarks :
• Low-area Romulus-N1 is more efficient than low-area Ascon (one of the CAESAR winners)
• Ours are almost fully compliant to CAESAR API, Ascon implementations are custom API

15 / 20

FPGA Implementations

Xilinx Virtex 6 FPGA using ISE :

Variant Slices LUTs Registers Max. Freq. Throughput Throughput/Area
(MHz) (Mbps) (Mbps/Area)

Romulus-N1 307 919 534 250 695 2.26
Romulus-N1 Unrolled ×4 597 1884 528 250 2300 3.85

Lilliput-I-128 391 1506 1017 185 657.8 1.68
Lilliput-II-128 309 1088 885 185 328.9 1.06

More schemes to be added for comparison

16 / 20

Some Implementation Details

• Utilize the fully linear tweakey scheduling, mostly routing and
renaming bytes

– Reverse tweakey schedule at the end of every TBC call, instead
of keeping input

– Very low area, only 67 XOR gates!
– If we were to maintain tweakey state (due to modes/TBC), at

least 320 FFs
• Lightweight core is suitable to full-unroll, excellent tread-off

– Speeding up ×2 by two-round unrolling : ≈ + 1,000 GEs, +
20 % of total area

S0 S1 S2 S3

S4 S5 S6 S7

S8 S9 Sa Sb

Sc Sd Se Sf SBox

RC

RTK
ρ

input

0x00

len

output

0x00

Fig. Serial state update

17 / 20

Remus
IC-based Encryption (ICE)
• IC to TBC conversion, a variant of XHX [JLM+17]

– Optimized to reduce state and computation for counter incrementation
• (n(block), n(key))-BC can be used to implement (n(block), 2n(tweak), n(key))-TBC
• Three versions, having different nonce-based mask derivation (L and V)

K

n

n

E
n

N ρ

0n

L

K ⊕ 1
n

E
n

ρ

0n

V

2iL⊕ b
n

E

2iV 2iV

X Y

18 / 20

Security Bounds of Remus and TGIF

• Remus bound = Romulus bound + ICE bound
– for NR and NM adversaries

• ICE bound : O(σ2/2c), c = n for ICE 1 and 3, c = 2n for ICE 2
• Updates on the bounds from the initial document, in a similar manner to Romulus

19 / 20

Concluding Remarks
Romulus : (what we believe) the best we can do for lightweight, highly reliable AEAD
with TBC
• Very strong provable security bounds, in the standard model

– N-variants : n-bit security equivalent to ΘCB3
– M-variants : ≈ n-bit security as long as # of nonce repetition is small

• Skinny’s high security (CPA-security for single-key setting is enough)
• Rate 1 and minimum-state as TBC-based AE

Next Steps
• More HW implementations including M-variants
• MCU implementations
• Side-channel resistance
• (Third-party implementations are always welcome)

Thanks!

20 / 20

Concluding Remarks
Romulus : (what we believe) the best we can do for lightweight, highly reliable AEAD
with TBC
• Very strong provable security bounds, in the standard model

– N-variants : n-bit security equivalent to ΘCB3
– M-variants : ≈ n-bit security as long as # of nonce repetition is small

• Skinny’s high security (CPA-security for single-key setting is enough)
• Rate 1 and minimum-state as TBC-based AE

Next Steps
• More HW implementations including M-variants
• MCU implementations
• Side-channel resistance
• (Third-party implementations are always welcome)

Thanks!
20 / 20

