Updates on Romulus, Remus and TGIF

Tetsu lwata¹ Mustafa Khairallah² <u>Kazuhiko Minematsu</u>³ Thomas Peyrin²

Nagoya University¹ Nanyang Technological University² NEC³

NIST Third Lightweight Cryptography Workshop, USA November 4-6, 2019

Romulus, Remus, and TGIF

Romulus

- A TBC-based AEAD mode
- Standard model security
- Skinny [BJK+16] as Tweakable Block Cipher

Remus

- An aggressively optimized version of Romulus
- Ideal-Cipher model security
- Skinny as Block Cipher (or IC)

TGIF

- Remus with a new cipher based on GIFT [BPP+17]
 - Designers : Yu Sasaki, Siang Meng Sim, Ling Sun and Romulus/Remus team

This talk's focus : Romulus, as a 2nd-round candidate

(wikipedia)

Our Updates

Security

- Improved Security Bounds
- No dependency on the input length, in most cases

Implementation

- Hardware (ASIC and FPGA)
- Round-base, Serial, Unrolled

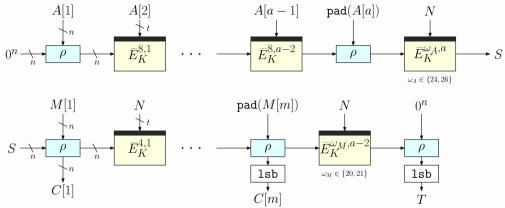
Basics of Romulus

Two variants

- Nonce-based N-variants (NAE)
- Nonce Misuse-resistant M-variants (MRAE)
- Both consist of three members

Design goal : the best of lightweight AEAD built on TBC

- Small-state
- Rate 1 operation (# of input blocks per primitive call)
- Strong security
 - Both qualitatively and quantitatively
- Simple structure


Family Members of Romulus

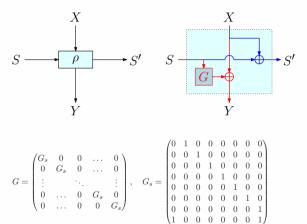
Family	Name	\widetilde{E}	k	nl	n	t	d	au
	Romulus-N1	Skinny-128-384	128	128	128	128	56	128
Romulus-N	Romulus-N2	Skinny-128-384	128	96	128	96	48	128
	Romulus-N3	Skinny-128-256	128	96	128	96	24	128
	Romulus-M1	Skinny-128-384	128	128	128	128	56	128
Romulus-M	Romulus-M2	Skinny-128-384	128	96	128	96	48	128
	Romulus-M3	Skinny-128-256	128	96	128	96	24	128

- k : key length, nl : nonce length, t : tweak main-block length
- d : counter length, τ : tag length
- Skinny-x-y : Skinny with *x*-bit block, *y*-bit tweakey

N3 and M3 are most efficient, while not able to handle single input of 2^{50} bytes

Romulus N-variants

- TBC \widetilde{E}_K on tweak set $\mathcal{T} = \{0,1\}^t \times \mathcal{D} \times \mathcal{B}$ and message set $\mathcal{M} = \{0,1\}^n$
- State function $\rho: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n \times \{0,1\}^n$
 - When AD is processed, the first output is ignored
- Based on iCOFB [CIMN16], with lots of changes/improvements


ρ function

Simple operation defined over bytes

- Byte matrix G
- Single-state (both red and blue lines can be independently computed)
- Partial input can be handle by truncation and padding
- Security condition for ρ : the same as COFB [CIMN16]
 - Unlike COFB, ${\cal G}$ is applied to output side
 - Simplifies AD process (just XOR-chain)

Choice of G

- Modular form suitable to serial circuit, no need of MUX
- Small # of XOR, SW/HW-friendly

Properties of Romulus-N

Efficiency

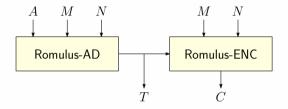
- Small state (TBC itself)
- Rate 1 (*n*-bit msg per call, n + t-bit AD per call)
- Small overhead for short message

Security

- n-bit security with n-bit block TBC
- Standard model : reduces to CPA security of TBC (TPRP)
 - Conservative, and no worry about the gap between the model and the instantiation
 - e.g. the use of weak permutation in Sponge constructions

Limitations

- Serial operation for both Enc/Dec
 - Reasonable for the applications of lightweight crypto
 - Parallel operation of many messages is always possible [BLT15]
 - Constraint devices are unlikely to process blocks in parallel for ASIC


Security Bounds for N-variants

$$\begin{split} & \operatorname{\mathsf{Adv}}^{\operatorname{priv}}_{\operatorname{\mathsf{Romulus-N}}}(\mathcal{A}) \leq \operatorname{\mathsf{Adv}}^{\operatorname{tprp}}_{\widetilde{E}}(\mathcal{A}'), \\ & \operatorname{\mathsf{Adv}}^{\operatorname{auth}}_{\operatorname{\mathsf{Romulus-N}}}(\mathcal{B}) \leq \operatorname{\mathsf{Adv}}^{\operatorname{tprp}}_{\widetilde{E}}(\mathcal{B}') + \frac{3q_d}{2^n} + \frac{2q_d}{2^\tau} \\ & (q_d: \operatorname{number of decryptions}, \tau: \operatorname{tag length}) \end{split}$$

Previous : AUTH contains $O(\sigma_d/2^n)$ (σ_d : total *effective* queried blocks in decryption)

Now : essentially equal to Θ CB3 security, **no degradation in input length!** ... a quite unique security feature only achievable by TBC-based modes **Proof :** similar technique as PFB [NS19]

Romulus M-variants

- (Fully) Nonce-misuse-resistance via SIV [RS06]
- Greatly shares Romulus-N components (easy to implement both)
- Proof : Use proof techniques of [NS19] and NaT MAC [CLS17]

Security Bounds for M-variants Nonce-Respecting (NR) adversary :

$$\begin{split} & \operatorname{\mathsf{Adv}}_{\operatorname{\mathsf{Romulus}}\operatorname{\mathsf{-M}}}^{\operatorname{\mathsf{priv}}}(\mathcal{A}) \leq \operatorname{\mathsf{Adv}}_{\widetilde{E}}^{\operatorname{\mathsf{tprp}}}(\mathcal{A}'), \\ & \operatorname{\mathsf{Adv}}_{\operatorname{\mathsf{Romulus}}\operatorname{\mathsf{-M}}}^{\operatorname{\mathsf{auth}}}(\mathcal{B}) \leq \operatorname{\mathsf{Adv}}_{\widetilde{E}}^{\operatorname{\mathsf{tprp}}}(\mathcal{B}') + \frac{5q_d}{2^n} \end{split}$$

Nonce-Misusing (NM) adversary w/ max r repetition of nonce in Enc :

$$\begin{split} \mathbf{Adv}_{\mathsf{Romulus}\text{-}\mathsf{M}}^{\mathsf{nm}\text{-}\mathsf{priv}}(\mathcal{A}) &\leq \mathbf{Adv}_{\widetilde{E}}^{\mathsf{tprp}}(\mathcal{A}') + \frac{4r\sigma_{\mathsf{priv}}}{2^{n}}, \\ \mathbf{Adv}_{\mathsf{Romulus}\text{-}\mathsf{M}}^{\mathsf{nm}\text{-}\mathsf{auth}}(\mathcal{B}) &\leq \mathbf{Adv}_{\widetilde{E}}^{\mathsf{tprp}}(\mathcal{B}') + \frac{4rq_{e} + 5rq_{d}}{2^{n}} \\ & (\sigma_{\mathsf{priv}}: \mathsf{total} \mathsf{ queried blocks in encryption}) \end{split}$$

Previous : AUTH includes $O(\ell q_d/2^n)$, NM-AUTH includes $O(r\ell q_d/2^n)$ & misses $O(rq_e/2^n)$

Now : no degradation in input length, except for nm-priv ... also very good security bounds, graceful security degradation for nonce repetition*

^{* [}CN19] subsequently informed us the need of incorporating the encryption queries and that they have proved a similar authenticity bound to ours.

Measuring the Efficiency of Romulus

Case of Romulus-N1 (n = 128): State

- Skinny-128-384 has n-bit block + 3n-bit tweakey
- State size = block (n) + effective part of tweak (t = 1.5n) + key (k = n) = 3.5n
 - $t = 1.5n \rightarrow n$ for (AD/N) and 0.5n for (counter + domain bits)
 - Unused 0.5n-bit tweakey does not need to be implemented (specific to Skinny)
- Rate (# of input n-bit blocks per primitive call, for simplicity no AD)
 - 1 (for all N-variants)

Security

• n bits

Our efficiency measure (smaller is better) : State/Rate = 3.5n

Detailed Comparison of NAE schemes (n = k = 128)

Scheme	Number of	State Size	Rate	Security	Efficiency	Inverse
Scheme	Primitive Calls	(S)	(R)		(S/R)	Free
Romulus-N1	$\left\lceil \frac{ A -n}{2n} \right\rceil + \left\lceil \frac{ M }{n} \right\rceil + 1$	3.5n	1	n	3.5n	Yes
Romulus-N2	$\left\lceil \frac{ A -n}{1.75n} \right\rceil + \left\lceil \frac{ M }{n} \right\rceil + 1$	3.2n	1	n	3.2n	Yes
Romulus-N3	$\left\lceil \frac{ A -n}{1.75n} \right\rceil + \left\lceil \frac{ M }{n} \right\rceil + 1$	3n	1	n	3n	Yes
COFB	$\left\lceil \frac{ A }{n} \right\rceil + \left\lceil \frac{ M }{n} \right\rceil + 1$	2.5n	1	$n/2 - \log n/2$	2.5n	Yes
ӨСВ3	$\left\lceil \frac{ A }{n} \right\rceil + \left\lceil \frac{ M }{n} \right\rceil + 1$	4.5n	1	n	4.5n	No
SpongeAE	$\left\lceil \frac{ A }{n} \right\rceil + \left\lceil \frac{ M }{n} \right\rceil + 1$	3n	1/3	n	9n	Yes
Beetle	$\left\lceil \frac{ A }{n} \right\rceil + \left\lceil \frac{ M }{n} \right\rceil + 2$	2n	1/2	$n - \log n$	4n	Yes
Ascon-128	$\left\lceil \frac{ A }{0.5n} \right\rceil + \left\lceil \frac{ M }{0.5n} \right\rceil + 1$	3.5n	1/5	n	17.5n	Yes
Ascon-128a	$\left\lceil \frac{ A }{n} \right\rceil + \left\lceil \frac{ M }{n} \right\rceil + 1$	3.5n	2/5	n	8.75n	Yes

OCB3: assuming n-bit nonce and n/2-bit counter

• SpongeAE: Duplex using 3n-bit permutation with n-bit rate, 2n-bit capacity.

Romulus-N achieves the best efficiency among full *n*-bit secure schemes

Detailed Comparison of MRAE schemes (n = k = 128)

Scheme	Number of	State Size	Rate	Security	Efficiency	Inverse
Scheme	Primitive Calls	(S)	(R)	$\rm NR \sim \rm NM$	(S/R)	Free
Romulus-M1	$\left\lceil \frac{ A + M -n}{2n} \right\rceil + \left\lceil \frac{ M }{n} \right\rceil + 1$	3.5n	2/3	$n \sim n/2$	5.25n	Yes
Romulus-M2	$\left\lceil \frac{ A + M -n}{1.75n} \right\rceil + \left\lceil \frac{ M }{n} \right\rceil + 1$	3.2n	7/11	$n \sim n/2$	5.03n	Yes
Romulus-M3	$\left\lceil \frac{ A + M -n}{1.75n} \right\rceil + \left\lceil \frac{ M }{n} \right\rceil + 1$	3n	7/11	$n \sim n/2$	4.71n	Yes
SCT	$\left\lceil \frac{ A + M }{n} \right\rceil + \left\lceil \frac{ M }{n} \right\rceil + 1$	4n	1/2	$n \sim n/2$	8n	Yes
SUNDAE	$\left\lceil \frac{ A + M }{n} \right\rceil + \left\lceil \frac{ M }{n} \right\rceil + 1$	2n	1/2	n/2	4n	Yes
ZAE	$\left\lceil \frac{ A + M }{2n} \right\rceil + \left\lceil \frac{ M }{n} \right\rceil + 6$	7n	2/3	n	10.5n	Yes

Romulus-M achieves the best efficiency among $n \sim n/2$ -secure schemes

ASIC Implementations

TSMC 65nm standard cell library (all synthesized by the same environment):

Variant	Cycles	Area (GE)	Minimum Delay (ns)	Throughput (Gbps)	Power (µW)	Energy (pJ)	Thput/Area (Gbps/kGE)
Romulus-N1 Low Area	1264	4498	0.8	0.1689	-	-	0.0376
Romulus-N1	60	6620	1	2.78	548	32.8	0.42
Romulus-N1 unrolled ×4	18	10748	1	9.27	-	-	0.86
ACORN [ATHENA]	-	6580	0.9	8.8	-	-	1.36
Ascon Low Area [Official]	3078	4545	0.5	0.042	167	51402	0.01
Ascon Basic Iterative [Official]	6	8562	1	10.4	292.7	-	1.22
Ketje-Sr [ATHENA]	-	19230	0.9	1.11	-	-	0.06

- Power and Energy are estimated at 10 Mhz.
- Energy is for 1 TBC call

Remarks :

- Low-area Romulus-N1 is more efficient than low-area Ascon (one of the CAESAR winners)
- Ours are almost fully compliant to CAESAR API, Ascon implementations are custom API

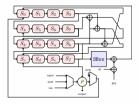
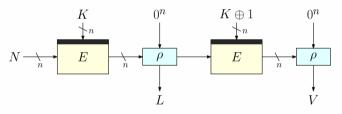
FPGA Implementations

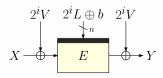
Xilinx Virtex 6 FPGA using ISE :

Variant	Slices	LUTs	Registers	Max. Freq. (MHz)	Throughput (Mbps)	Throughput/Area (Mbps/Area)
Romulus-N1	307	919	534	250	695	2.26
Romulus-N1 Unrolled $\times 4$	597	1884	528	250	2300	3.85
Lilliput-I-128	391	1506	1017	185	657.8	1.68
Lilliput-II-128	309	1088	885	185	328.9	1.06

More schemes to be added for comparison

- Utilize the fully linear tweakey scheduling, mostly routing and renaming bytes
 - Reverse tweakey schedule at the end of every TBC call, instead of keeping input
 - Very low area, only 67 XOR gates!
 - If we were to maintain tweakey state (due to modes/TBC), at least 320 FFs
- Lightweight core is suitable to full-unroll, excellent tread-off
 - Speeding up $\times 2$ by two-round unrolling : $\approx +$ 1,000 GEs, + 20 % of total area


Fig. Serial state update

Remus

IC-based Encryption (ICE)

- $\bullet\,$ IC to TBC conversion, a variant of XHX [JLM+17]
 - Optimized to reduce state and computation for counter incrementation
- (n(block), n(key))-BC can be used to implement (n(block), 2n(tweak), n(key))-TBC
- Three versions, having different nonce-based mask derivation (L and V)

Security Bounds of Remus and TGIF

- Remus bound = Romulus bound + ICE bound
 - for NR and NM adversaries
- ICE bound : $O(\sigma^2/2^c)$, c=n for ICE 1 and 3, c=2n for ICE 2
- Updates on the bounds from the initial document, in a similar manner to Romulus

Concluding Remarks

Romulus : (what we believe) the best we can do for lightweight, highly reliable AEAD with TBC

- Very strong provable security bounds, in the standard model
 - N-variants : n-bit security equivalent to $\Theta CB3$
 - M-variants : pprox n-bit security as long as # of nonce repetition is small
- Skinny's high security (CPA-security for single-key setting is enough)
- Rate 1 and minimum-state as TBC-based AE

Next Steps

- More HW implementations including M-variants
- MCU implementations
- Side-channel resistance
- (Third-party implementations are always welcome)

Concluding Remarks

Romulus : (what we believe) the best we can do for lightweight, highly reliable AEAD with TBC $% \left({{\left({{{\rm{AEAD}}} \right)}_{\rm{AEAD}}} \right)$

- Very strong provable security bounds, in the standard model
 - N-variants : n-bit security equivalent to $\Theta CB3$
 - M-variants : pprox n-bit security as long as # of nonce repetition is small
- Skinny's high security (CPA-security for single-key setting is enough)
- Rate 1 and minimum-state as TBC-based AE

Next Steps

- More HW implementations including M-variants
- MCU implementations
- Side-channel resistance
- (Third-party implementations are always welcome)

Thanks!