Verifying Post-Quantum Signatures in 8 kB of RAM

Ruben Gonzalez¹, Andreas Hülsing², Matthias J. Kannwischer³, Juliane Krämer⁴, Tanja Lange², Marc Stöttinger⁵, Elisabeth Waitz⁶, Thom Wiggers⁷, and Bo-Yin Yang⁸

Third PQC Standardization Conference, 07. - 09. June 2021 Presenter: Ruben Gonzalez

Background

- We're at Round 3
 - Let's look at the real world
- PQC for Embedded Systems Workshop
 - Bringing together industry and academia

Post-Quantum Cryptography for Embedded Systems - This workshop is organized online -

5 - 9 October 2020

Venue: Lorentz Center@Oort

If you are invited or already registered for this workshop, you have received login details by email.

At the moment, communication between electronic systems is secured by means of cryptography to achieve confidentiality, integrity and authenticity. Almost all wide-spread cryptosystems are at least transmittally based on number-theoretic assumptions related to integre factorization or computing descent beamtime to factor moretic a sumptions related to the factor factorization or computing descent beamtime to factor moretic as a sumptions related to the factor factor and a computing descent beamtime to factor moretic as a sumptions related to the factor factor and a computing descent beamtime to factor more as a sumption relation of the factor factor and a computing the factor of the factor more as a sumption relation of the factor factor factor and and the factor of t

Program	~
Participants	*
Scientific organizers:	
Andreas Hülsing, Eindhoven University of Technology 🜌 🥹	
Marc Stöttinger, Continental AG 🕿 🖗	
Ruben Niederhagen, Fraunhofer SIT 🜌 🏵	
Simona Samardjiska, Radboud Universiteit 🜌 🖗	
Tanja Lange, Eindhoven University of Technology 🕿 🏵	
Sponsors:	
Particular to have been and the	

Use Case

- Feature Activation in Cars
 - Short signed messages

Use Case

• Feature Activation in Cars

- Short signed messages
- Protocol already exists

• Uses ECC

User		Authorization Entity: AE		Device: D
	$\xrightarrow{\text{Req. feature}}$	Validate feature		
		activation request		
	← Req.			
	authentication			
	$\xrightarrow{\text{Authenticate}}$	Verify authentication		
		Generate A_{msg}		
		$T_1: Sign_{pr_{AE}}(A_{msg})$	$\xrightarrow{\text{Send } \{A_{msg} T_1\}}$	Verify T_1 using pb_{AE}
				Update feature policies
				Activate feature
				Secure hash of the feature policies
		Update feature polices of D	$\xleftarrow{\text{Send } \{A_{rec}\}}$	Generate A_{rec}

Use Case

- Feature Activation in Cars
 - Short signed messages
- Protocol already exists
 - Uses ECC
- HSM has to verify signatures and Pubkey
 - Is resource constrained
 - Holds hash of public key
 - Stores activated features in secure memory

Investigated Schemes

Hash Based

Multivariate

Dilithium Falcon

Lattice Based

SPHINCS+ (SHA256-128)

SPHINCS+ (SHA256-128)

- Signature processed in order
- Pubkey fits in memory
- Chunk size of 16B possible

Rainbow (I-classic)

Rainbow (I-classic)

Rainbow (I-classic)

- Public key processed in order
- Signature fits in memory
- Chunk size of 32B possible

GeMSS (128)

GeMSS (128)

- Verification has 4 iterations
 - Pubkey has to be streamed 4 times
- Signature fits in memory
- Chunk size of 2174B possible
 - Due to row wise storage

Dilithium (2)

Dilithium (2)

- Public key is streamed one polynomial at a time
- Chunk size of 2420B and then 320B possible

Falcon

- No streaming required
- Everything fits in memory

Results

	st	reaming d	lata	streamin	g time
	pk	sig	total	500 kbit/s	20 Mbit/s
${\tt sphincs-s}^{\rm a}$	32	7856	7 888	126.2 ms	$3.2 \mathrm{ms}$
${\tt sphincs-f}^{ m b}$	32	17088	17120	273.9 ms	$6.9 \mathrm{ms}$
rainbowI-classic	161600	66	161666	$2586.7~\mathrm{ms}$	$64.7 \mathrm{\ ms}$
gemss-128	352188	33	$1408785^{\rm c}$	$22540.6~\mathrm{ms}$	$563.5 \mathrm{\ ms}$
dilithium2	1312	2420	3732	$59.7 \mathrm{\ ms}$	1.5 ms
falcon-512	897	690	1587	25.4 ms	$0.6 \mathrm{ms}$
^a -sha256-128s-sim	ple ^b -sh	a256-128	f-simple	$4 \cdot pk + sig $	

	w/o pk vrf.	w/	w/ streaming		
		pk vrf.	total	$\operatorname{time}^{\mathrm{e}}$	20 Mbit/s
sphincs-s ^a	8 741k	0	$8741\mathrm{k}$	$87.4 \mathrm{~ms}$	90.6 ms
${\tt sphincs-f}^{ m b}$	$26186\mathrm{k}$	0	$26186\mathrm{k}$	$261.9 \mathrm{\ ms}$	$268.7 \mathrm{\ ms}$
rainbowI-classic	333k	$6850 \mathrm{k}^{\mathrm{d}}$	$7182\mathrm{k}$	$71.8 \mathrm{\ ms}$	$136.5 \mathrm{\ ms}$
gemss-128	$1619\mathrm{k}$	$109938 \mathrm{k}^{\mathrm{c}}$	$111557\mathrm{k}$	$1115.6~\mathrm{ms}$	$1679.1~\mathrm{ms}$
dilithium2	1990k	$133k^{c}$	2123k	21.2 ms	21.8 ms
falcon-512	581k	$91k^{c}$	672k	$6.7 \mathrm{\ ms}$	$8.2 \mathrm{ms}$
^a -sha256-128s-sin ^d SHA-256 ^e At 1	nple ^b -sha 00 MHz (no y	256-128f- vait states)	simple	° SHA-3/SH	IAKE

Cycle Counts

	memory code					
	total	buffer	$.\mathrm{bss}$	stack	.text	
sphincs-s ^a	6904	4 9 2 8	780	1196	2724	
${\tt sphincs-f}^{ m b}$	7536	4864	780	1892	2586	
rainbowI-classic	8168	6848	724	596	2194	
gemss-128	8176	4560	496	3120	4740	
dilithium2	8048	40	6352	1656	7940	
falcon-512	6552	897	5255	400	5784	
^a -sha256-128s-sim	^a -sha256-128s-simple ^b -sha256-128f-simple					
Ме	Memory Usage					

Resources

Paper: <u>https://eprint.iacr.org/2021/662.pdf</u>

Code: <u>https://git.fslab.de/pqc/streaming-pq-sigs/</u>

Images used in this presentation were licensed from colourbox.de or freesvg.org. Hyptertree visualization by Abid Khan.