
Issues in Software Testing with Model Checkers
 
Vadim Okun Paul E. Black
 

National Institute of Standards and Technology
 
Gaithersburg, MD 20899
 

{vokun1,paul.black}@nist.gov
 

I. GE N E R AT I N G S O F T WA R E T E S T S 

Most software developers consider formal methods too hard 
and tedious to use in practice. Instead of using formal methods, 
developers test software. Model checking is a “light-weight” 
formal method to check the truth (or falsity) of statements. 
We use the SMV model checker as part of a highly automated 
test generation tool, which we hope will motivate practitioners 
to use formal methods more. For instance, an organization is 
more likely to expend the considerable effort to develop a 
formal specification if, with a little extra effort, it can also get 
tests. In this paper we present some approaches to use model 
checkers to generate tests. 

Model checking is being applied to test generation and 
coverage evaluation [3], [4], [7]. In both uses, one first decides 
on a notion of what properties of a design must be exercised 
to constitute thorough testing. This notion leads to test criteria. 

One applies the chosen test criteria to the specification to 
derive test requirements, i.e., a set of individual properties 
to be tested, represented as temporal logic formulas [2]. To 
generate tests, the requirements must be negative requirements, 
that is, they are considered satisfied if the corresponding 
formulas are inconsistent with the state machine. They must 
also be of a form that a single counterexample demonstrates 
the inconsistency (exhaustive enumeration is needed to show 
inconsistency of an existential requirement). For instance, if 
the criterion is state coverage, the negative requirements are 
that the machine is never in state 1, never in state 2, etc. 

When the model checker finds an inconsistent formula, 
it produces a counterexample. Again, for state coverage, a 
counterexample gives stimulus to put the machine in state 
1 (if it is reachable), another to put the machine in state 2, 
etc. Counterexamples are automatically turned into executable 
tests. 

An alternative approach is developing a special tool, based 
on an existing model checker, to generate counterexamples that 
have properties, such as fault visibility (Section V), especially 
useful for test generation. This tool could benefit from most 
of the technology of existing model checkers. We are not yet 
pursuing this line of research due to lack of resources. 

II. AB S T R AC T I O N F O R T E S T I N G 

Since complete detailed designs are typically too big to 
check, abstractions, or reductions, are used. Abstractions for 
test generation can use a different soundness rule [1] than 
for property checking. Informally, counterexamples generated 
from the reduced specification must be valid traces in the 

original specification. Of course, reduction details must be kept 
to turn counterexamples into tests. Different test requirements 
may call for different reductions. 

One such sound reduction, called “finite focus” [1], reduces 
a large or infinite domain to a small subset of values. These 
values can be indicated by an analyst according to their testing 
importance. This reduction mechanically modifies both the 
state machine and test requirements. 

In addition to using abstractions, we often start with a high-
level design. 

III. HI G H E R L E V E L S P E C I FI C AT I O N S 

SMV’s description language is too low level for wide-spread 
use. A popular system must get state machines from higher 
level descriptions such as MATLAB stateflows, SCR, HOL, 
or UML state diagrams. 

Theorem provers and model checkers complement each 
other in description and analysis tasks. Static (or functional) 
aspects of a system are best described and analyzed with 
a theorem prover, while a model checker is well suited for 
dealing with dynamic (or behavioral) parts. 

HOL provides a higher level of language constructs than 
does SMV. A proposed test generation framework [8] starts 
with a system model in HOL, mechanically converts a part of 
the model to SMV, generates test cases for the static (HOL) 
and dynamic (SMV) parts separately, and integrates the tests. 

Portions of an HOL specification of a secure operating 
system model were converted to SMV using a prototype 
translator tool [8]. We also generated tests from the SMV 
model automatically. In the future, we hope to generate test 
cases from HOL specifications and integrate the test sets from 
HOL and SMV. 

IV. DE R I V I N G L O G I C C O N S T R A I N T S 

Mutation adequacy [5] is a test criterion that naturally 
yields negative requirements. The specification-based mutation 
criterion [2] requires tests to distinguish between the original 
state machine description and its mutants, that is, ones that 
differ from the original by exactly one syntactic change. 
Consider the following fragment of a state machine description 
in SMV. 

next(state) := case
 
state = ready & req : busy;
 
...
 

esac;
 

mailto:vokun1,paul.black}@nist.gov


One possible mutation is negating a boolean variable, as in 

state = ready & !req : busy;
 

The specification-based mutation scheme in [2] expresses 
the state machine in temporal logic, then systematically applies 
small changes to the temporal logic expressions yielding a set 
of mutant expressions. The model checker then finds coun­
terexamples that detect inconsistent mutants. The mechanical 
process of deriving temporal logic formulas from the state 
machine description is called reflection. A possible reflection 
for the above SMV fragment is 

AG (state=ready & req -> AX state=busy)
 

This form of reflection, called direct reflection, is straight­
forward to derive. Suppose the SMV state machine description 
has the following case statement: 

next(x) := case ... bi : vi; ... esac; 

bi and vi are called guard and target, respectively. 
If the guards are a partition and the targets are pairwise 

disjoint, a tighter reflection is possible: 

AG ((bi - AX (x in vi)) & (!bi - AX !(x in vi))) 

For instance, if the mutation is to bi to form bi’, the mutant 
formula is 

AG ((bi ’ - AX (x in vi)) & (!bi ’ - AX !(x in vi))) 

Moreover, as shown in [2], when the resulting counterex­
ample includes an additional step, the clause 

AG (bi + bi’) 

is a satisfactory implementation for mutations to bi. 
There are transformations to recast the guards to be a 

partition and ways to cope with targets that are not pairwise 
disjoint. 

V. FAU LT V I S I B I L I T Y 

To detect an implementation error, a test case must cause 
an internal fault to propagate to a visible output. Consider the 
following fragment of a state machine description 

next(t) := case ... f(i) : v; ... esac;
 
next(o) := case ... g(t) : w; ... esac;
 

In the example, i is an input variable, t is an intermediate 
variable, o is an output variable. Suppose that mutation 
replaced the formula f(i) with f’(i). In the case of direct 
reflection, the corresponding mutant formula is 

AG (f’(i) -> t = v)
 

Often, the model checker will find a counterexample that 
will show inconsistency in the intermediate variable t but not 
in the output variable o. Such a test is of little value. 

We proposed two methods [6] to guarantee that tests cause 
detectable output failures. The first method, in-line expansion, 
uses only the reflections of the transition relation involving 
output variables. In these temporal logic formulas, any internal 
variable is replaced in-line with a copy of its transition relation. 
This substitution is repeated until the formulas are comprised 

exclusively of input and output variables, hence the model 
checker finds counterexamples that affect the outputs. For the 
above example, the mutant formula is 

AG (f’(i) -> AX (g(v) -> AX o = w))
 

Since only input and output appear, the model checker finds 
counterexamples that affect the output. The method may lead 
to an exponential increase in the number or size of logical 
formulas. 

The second method, state machine duplication, duplicates 
the state machine and combines the two machines ensuring 
that the duplicate always takes the same transitions as the 
original. The next step is to mutate the duplicate, then assert 
that the visible outputs of the original and the mutant are 
identical over the combined state machine. If the mutant 
has an observable fault, the model checker will produce a 
counterexample leading to the state where the original and 
the mutant differ in an output value. 

Of course, duplication of the state machine increases the 
size of the state space. Dependency analysis by slicing is one 
way to improve scalability. Our experiments suggest that both 
in-line expansion and state machine duplication methods are 
very effective for generating black-box tests. 

VI. CO N C L U S I O N S 

We believe that there are benefits of applying model check­
ing to software testing. While some issues raised in this 
paper are specific to test generation, others have much in 
common with the more mainstream uses of model checkers. 
The opportunities for future work include devising new ab­
straction techniques geared toward test generation, integration 
with higher-level languages, and developing a counterexample 
generator that guarantees propagation of faults to the visible 
outputs. 

RE F E R E N C E S 

[1]	 P. Ammann and P. E. Black. Abstracting formal specifications to generate 
software tests via model checking. In Proc. 18th Digital Avionics Systems 
Conference (DASC99), volume 2, page 10.A.6. IEEE, Oct 1999. Also 
NIST IR 6405. 

[2]	 P. Ammann, P. E. Black, and W. Ding. Model checkers in software 
testing. Technical Report NIST-IR-6777, National Institute of Standards 
and Technology, February 2002. 

[3]	 P. E. Ammann, P. E. Black, and W. Majurski. Using model checking to 
generate tests from specifications. In Proceedings of the Second IEEE 
International Conference on Formal Engineering Methods (ICFEM’98), 
pages 46–54. IEEE Computer Society, December 1998. 

[4]	 J. Callahan, F. Schneider, and S. Easterbrook. Automated software testing 
using model-checking. In Proc. 1996 SPIN Workshop, Rutgers, NJ, Aug 
1996. Also WVU TR #NASA-IVV-96-022. 

[5]	 R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data 
selection: Help for the practicing programmer. IEEE Comp, 11(4):34–41, 
1978. 

[6]	 V. Okun, P. E. Black, and Y. Yesha. Testing with model checker: Insuring 
fault visibility. In Proc. 2002 WSEAS International Conference on System 
Science, Applied Mathematics and Computer Science, Oct 2002. 

[7]	 S. Rayadurgam and M. P.E. Heimdahl. Coverage based test-case genera­
tion using model checkers. In 8th Annual IEEE International Conference 
and Workshop on the Engineering of Computer Based Systems (ECBS), 
Apr. 2001. 

[8]	 D. Zhou and P. E. Black. Translating HOL to specifications for the model 
checker SMV. In TPHOLs 2001, pages 400–415, Sep 2001. 


