
Specification Mutation for Test Generation and

Analysis

by

Vadim Okun

Dissertation submitted to the Faculty of the Graduate School

of the University of Maryland Baltimore County

in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

2004

ABSTRACT

Mutation analysis is a fault-based testing technique that uses mutation operators to introduce
small changes into a program or specification, producing mutants, and then chooses test cases
to distinguish the mutants from the original. Mutation operators differ in the coverage they
get. They also differ in the number of mutants they generate. Consequently, selecting mutation
operators is an important problem whose solution affects the effectiveness and cost of mutation
testing.

We use the automated test generation and evaluation method that combines a model checker
and mutation analysis. We define a set of mutation operators and implement a mutation gener
ator for specifications written in SMV, a popular model checker.

To select the most effective mutation operators and sets of operators, we compare them using
both theoretical and experimental methods. We construct mutation detection conditions and
develop a technique to theoretically compare mutation operators. We apply mutation coverage
and pairwise coverage metrics to empirically compare the effectiveness of mutation operators.

To detect a fault in a program, a test case must cause the fault to affect the outputs, not
just intermediate variables. We develop a method that uses a model checker to guarantee that
tests cause visible output failures.

We find that mutation operators form a hierarchy with respect to detection capability; we can
skip a test for a mutation from an easier-to-detect mutation operator in the hierarchy, provided
that we detect a corresponding mutation from a harder-to-detect operator. Our theoretical
technique allows us to prove that the hierarchy applies to arbitrary logic expressions, whereas
previous results apply only to logic expressions in disjunctive normal form. Based on analysis
and empirical evaluation, we recommend mutation operators and sets of mutation operators that
yield good test coverage at a reduced cost.

Our experiments show that specification-based mutation can be applied to test programs; it
gets good program-based coverage. Our method for guaranteeing fault visibility is very effective
for black-box testing of programs which have a large intermediate state.

This thesis shows that specification-based mutation can be used to economically generate
effective tests.

ACKNOWLEDGEMENT

I would like to first thank my dissertation advisor, Yaacov Yesha, for his patience and faith in
me, as well as numerous discussions. He allowed me considerable freedom in my research.

I have been very lucky to work with Paul Black. This dissertation would not be possible
without him. Paul introduced me to this field and always helped and encouraged me. He taught
me a lot about thinking creatively, doing research, and presenting information. Many ideas
in this dissertation have originated from discussions with Paul. The ideas in this dissertation
were strengthened in discussions with Paul. He thoroughly reviewed my dissertation and made
numerous suggestions for its improvement.

Thanks to Paul Ammann for useful discussions and encouragement. He and Paul Black
pioneered this area of research.

I thank the members of my excellent dissertation committee (Paul Ammann, Paul Black,
Kostas Kalpakis, Sam Lomonaco, Charles Nicholas, and Yaacov Yesha) for providing valuable
advice.

I would like to thank Jeff Offutt, a leading expert in mutation testing, for insightful comments
about a part of this work and for sharing programs and their faulty versions with me.

Finally, thanks to my parents, Ernst Okun and Nataliya Rosina, for their support.

Contents

1 Introduction and Motivation 1

1.1 Thesis Statement . 2

1.2 Methods Used . 2

1.3 Pointers to Published Portions of the Thesis . 3

1.4 Additional Results . 3

1.5 Organization of the Thesis . 3

2 Background 4

2.1 Testing Criteria . 4

2.1.1 Methods of Comparison . 4

2.1.2 Overview of Testing Criteria . 5

2.1.3 Design of Experiment and Pairwise Testing 6

2.2 Fault Visibility . 6

2.2.1 Relevant Work in Protocol Testing . 7

2.3 Specification-Fault-Based Testing . 8

2.3.1 Test Generation from Logic Specifications 8

2.3.2 Kuhn’s Fault Hierarchy . 9

2.4 Mutation Analysis . 10

2.4.1 Early Uses of Specification Mutation . 10

2.5 Temporal Logic and Model Checking . 11

2.6 Software Testing and Model Checking . 12

2.6.1 Reflection . 13

2.6.2 Specification-Based Mutation . 14

2.7 Higher-Level Specifications . 15

3 Specification Mutation Operators 16

3.1 Definitions . 16

3.2 Categories of Mutation Operators . 17

3.2.1 Mutations of Clauses . 18

3.2.2 Mutations of Compound Predicates . 20

3.3 Combinations of Mutation Operators . 20

4 Mutation Conditions 22

4.1 Origination Condition . 22

4.2 Propagation Condition . 22

4.3 Detection Condition . 24

5 Analytical Comparison of Mutation Operators 25

iv

6 Applications 29

6.1 Form of Specifications . 29

6.2 Comparison of Mutations in Specific Constructs 29

6.3 Analysis of Previous Observations . 30

6.4 On the Basic Meaningful Impact Strategy . 31

6.5 Clause Insertion Operator and Pairwise Testing 32

6.6 Limitations of Theoretical Comparison . 33

7 Empirical Comparison of Mutation Operators 36

7.1 Cruise Control . 36

7.1.1 Reflection Details . 37

7.2 Other Specifications . 38

7.3 Evaluation of Mutation Operators . 39

7.4 Evaluation of Mutation Operator Sets . 43

7.5 Pairwise Coverage . 46

7.6 Getting Almost Perfect Pairwise Coverage . 48

7.7 Summary . 48

8 Guaranteeing Fault Visibility 49

8.1 State Machine (SM) Duplication . 49

8.2 Handling Nondeterminism . 49

8.3 An Illustrative Example . 50

8.4 Duplicating Processes . 52

8.5 Sharing Independent Variables . 52

9 Program-Based Coverage 53

9.1 Effectiveness in Detecting Faults . 53

9.2 Structural Coverage Results . 54

10 Conclusions 56

A Mutation Generator 57

A.1 Overview . 57

A.2 Requirements . 57

A.3 Components . 58

A.3.1 Data Structures . 59

A.3.2 Parsing . 59

A.3.3 Mutant Generation . 59

B Details of Experiments for TCAS II/Boolean 61

Bibliography 67

v

Chapter 1

Introduction and Motivation

Few users are satisfied with reliability of their software. Even though the quality assurance
budgets of software makers are increasing, program failures with possible data loss remain quite
common. Failures are especially dangerous in safety-critical systems, such as aeronautics and
medical applications.

A program failure is caused by a fault, that is, a defect in the code, informally, a bug. Testing
is a way to find faults in software. It is a process of supplying a system under test with some
values and making conclusions on the basis of its behavior. A test case consists of inputs together
with the expected results. Although generating test inputs can be as simple as selecting numbers
randomly, deriving the corresponding expected results is often labor intensive.

Testing criteria define, in a quantifiable way, what should be tested and when the ob jective
of testing is achieved. For example, statement coverage requires that every statement in the
program is executed at least once during testing. Test sets may be chosen according to a
number of different testing criteria.

The testing criteria can be compared based on their relative effectiveness and cost. The
effectiveness of a criterion is determined by its ability to detect faults. Since the number of
faults can be infinite, we may choose to concentrate, on detecting a limited subset of faults;
mutation analysis is an example of this approach.

Alternatively, we may concentrate on the behavior instead of the code and attempt to sys
tematically cover the entire domain of a system. Pairwise coverage requires that for each pair
of inputs, every combination of valid values of these two inputs be covered by at least one test
case.

Testing criteria can be classified into program-based and specification-based categories. Prog
ram-based (or white-box) testing is based on the code without consideration of design. Thorough
white-box testing is prohibitively expensive for large software systems. Additionally, it provides
no information about whether the code is doing what it is supposed to be doing [35].

In contrast, specification-based (or black-box) testing derives test cases from the specification
of a system. A specification provides valuable information about the intended behavior of the
implementation, and therefore about the expected test results [31].

Automated test generation from formal specifications promises to improve our ability to test
software that has to be highly reliable, as well as lower the cost of testing off-the-shelf software.
A novel way was developed in [3] to automatically produce tests from formal specifications and
measure test coverage using a combination of specification-based mutation testing criterion and
model checking. The method is described in Section 2.6. Mutation generation is an important
part of the method.

Mutation analysis [23] is a method for developing sets of test cases which are sensitive to
small syntactic structural changes. A mutation analysis system defines a set of mutation oper
ators. Each operator is a pattern for a small syntactic change; it models a particular class of
faults. A mutant is produced by applying a single mutation operator exactly once to the original

1

2

specification (program). For instance, the insertion mutation operator can replace a Boolean
variable with a disjunction of the variable and another Boolean variable. Applying the set of
operators systematically generates a set of mutants. If a test set can distinguish a specification
from each slight variation, the test set is exercising the specification adequately.

Accordingly, mutation adequacy is a testing criterion which specifies the percentage of the
mutants distinguished by the test set. The method in [3] automatically generates a mutation
adequate test set, that is, a test set able to detect mutants generated by a chosen set of mutation
operators. Mutation operators differ in the number of mutants they generate. They also differ
in the coverage they get. Consequently, the cost and effectiveness of mutation testing depend
on which mutation operators are used.

This is a study of specification mutation. Although program-based mutation has been exten
sively studied over the years, previous specification-based mutation work does not systematically
compare the effectiveness and cost of different mutation operators and does not give a prescrip
tion for which sets of mutation operators should be used.

1.1 Thesis Statement

Specification-based mutation analysis can be used to economically generate effective tests. Com
paring mutation operators based on their coverage and the number of mutants generated allows
us to select subsets of operators which have lower cost while maintaining high fault detection
capabilities of the test set.

To ensure that choice of mutation operators is appropriate in most situations, the comparison
must be independent of a particular experimental base. Mutation operators can be compared
theoretically, so that the results do not depend on a chosen experimental base; moreover, these
results apply to arbitrary logic expressions, not just those in disjunctive normal form.

Mutation operators form a hierarchy with respect to detection capability; we can skip a test
for a mutation from an easier-to-detect mutation operator in the hierarchy, provided that we
detect a corresponding mutation from a harder-to-detect operator. In practice, tests generated
by harder-to-detect operators are either more effective, or likely to be as effective while being
less costly, than those generated by easier-to-detect operators.

A practical goal of testing is to reduce the number of faults in the programs corresponding
to the specifications. To detect a fault in a program, a test case must cause the fault to affect
the program output, not just intermediate variables. A model checker can be used to select
tests that cause detectable output failures. Specification-based mutation can be applied to test
programs; it gets good program-based coverage.

1.2 Methods Used

To select the most effective mutation operators and sets of operators, we compare them using
both theoretical and experimental methods. We give a brief overview of the methods below.

We develop a technique to theoretically compare mutation operators. In this technique, we
construct detection condition for a mutation in an expression as a conjunction of origination
condition and propagation condition. The origination condition for a mutation is the condition
under which the mutation changes the value of the smallest subexpression corresponding to
the mutation. The propagation condition is the condition under which the value of the whole
expression changes if the value of its subexpression changes. This construction enables us to
prove detectability relationships between mutation operators for arbitrary logic expressions, not
just those restricted to disjunctive normal form.

To enable empirical comparison of mutation operators and sets of operators, we use the
automated test generation and evaluation method developed in [3]; it combines specification
mutation analysis and model checking. A model checking specification consists of a state machine

3

description and temporal logic expressions over states and execution paths. The model checker
verifies that each temporal logic expression is consistent with the state machine. If there is an
inconsistency, the model checker generates a counterexample in the form of a sequence of states,
if possible. The method in [3] systematically mutates a model checking specification and uses a
model checker to generate counterexamples, then turns them into test cases. We use the method
to generate test sets and also to evaluate mutation coverage of test sets. We implement a tool
to mutate specifications written in the language of a popular model checker, SMV.

We use pairwise coverage to get an independent indication of the quality of mutation opera
tors and sets of operators.

The method in [3] may generate tests that do not cause faults to affect the outputs of the
program corresponding to the specification. We develop a method to generate test cases that
cause detectable output failures. In this method, we make a copy of the state machine and
mutate the copy. Then the model checker compares the external behavior of the original and
mutated state machines. Any counterexamples produced will exhibit differences in the outputs.

We use fault-based (fault seeding) and structural (block, branch, and data-flow) coverage
metrics to evaluate the applicability of specification mutation to testing programs corresponding
to the specifications.

1.3 Pointers to Published Portions of the Thesis

We define mutation operators in [10] and more comprehensively in Section 3. We describe the
mutation generator tool in [9] and in more detail in Appendix A. We experimentally compare
mutation operators in [10] and in depth in Section 7. We present mutation detection conditions
and use them to analytically compare mutation operators in [61] and in Sections 4, 5, and 6.
We describe our method guaranteeing that tests cause detectable output failures in [59] and in
more detail in [60] and in Section 8.

1.4 Additional Results

We use our theoretical technique to analyze existing testing methods. In particular, we show
that the basic meaningful impact strategy [82] is stronger in that it tests for mutations from a
harder-to-detect mutation operator than was claimed by the authors. We also find that if we
detect mutants generated by the insertion mutation operator, we get almost perfect pairwise
coverage.

1.5 Organization of the Thesis

The thesis is organized as follows. Section 2 presents background information. Section 3 defines
mutation operators and some combinations of mutation operators. They are compared using
both theoretical and experimental methods.

Sections 4–6 theoretically compare mutation operators. Section 4 defines the mutation condi
tions and explains our theoretical approach. Section 5 uses the approach to prove the hierarchy
of mutation operators. Section 6 applies the mutation conditions and mutation hierarchy to
compare several specific mutation categories, to consider some previous empirical observations,
and to analyze the basic meaningful impact strategy of Weyuker et al.

Section 7 experimentally compares mutation operators and their combinations in terms of
their specification-based coverage. Appendix B presents details of some experiments.

To detect a fault in an implementation, a test case must cause the fault to affect the exter
nally visible outputs. Section 8 presents our approach to guarantee fault visibility. Section 9
evaluates the effectiveness of specification mutation for testing the implementations. Section 10
summarizes contributions of the thesis. Appendix A describes the mutation generator tool.

Chapter 2

Background

We survey research of others on testing criteria, fault visibility, fault classes, mutation analysis,
and model checking. Section 2.6 describes the method of test generation and evaluation [3] that
combines a model checker and mutation analysis.

2.1 Testing Criteria

A testing criterion [31] specifies what properties of a program or specification must be exercised
to constitute a thorough test. Examples of testing criteria are statement coverage, branch
coverage, multiple condition coverage, and mutation adequacy. Criteria for generating tests
from state-based specifications are presented in [58].

2.1.1 Methods of Comparison

Weyuker et. al [83] examined the means of comparing different testing criteria. The most
important bases for comparison are effectiveness and cost. Cost is secondary to effectiveness
because an ineffective criterion, no matter how cheap, is a poor choice. The effectiveness of a
criterion is the extent to which it enables us to detect faults. Since it is usually impossible to
enumerate all possible faults, one practical approximation is to measure the ability to detect
mutants.

Various methods of comparison have their strengths and weaknesses. First, some methods
allow to compare more criteria than others. Second, some methods rank different criteria quali
tatively, while others quantitatively. Third, some methods compare with respect to all possible
programs and specifications, while others compare the criteria for a particular program.

Subsumption relationship is a widely used method for comparing different testing criteria. A
criterion C1 is said to subsume another criterion C2 if and only if any test set that satisfies C1 also
satisfies C2. A subsumption hierarchy for several path selection criteria was developed in [20].
Many criteria based on logical control flow through a program [17] are subsumed by mutation
testing [54]. Many criteria are incomparable under subsumption. Even when subsumption orders
two criteria, it gives no quantitative measure of their differences in terms of effectiveness [52].
Theoretical comparisons often have these kinds of weaknesses.

Empirical comparisons usually give quantitative measure, however, they depend on the chosen
experimental base and it is hard to extrapolate the results.

Some empirical studies use one testing criterion (for instance, mutation adequacy in [82]
and [42]) as a standard for comparison of other techniques. Such comparisons tend to favor
those criteria which are similar to the criterion used as the standard. This problem can be
alleviated by using more than one standard.

4

5

if (a > 1)
x = 2;

else
x = 5;

if (x == b)
printf("Equal\n");

else
printf("Not equal\n");

Figure 2.1: A Code Fragment Illustrating P-use Coverage.

Since no method of comparison is perfect, we believe that using several different approaches
gives the best results. In this thesis, we compare the mutation operators analytically, then
compare them empirically using two different metrics: mutation coverage and pairwise coverage.

2.1.2 Overview of Testing Criteria

Zhu et. al [88] list three basic approaches to software testing: structural testing, fault-based
testing, and error-based testing. Structural testing requires coverage of a particular set of el
ements in the structure of the program or specification. Two main groups of program-based
structural test adequacy criteria are control-flow criteria and data-flow criteria. As the names
suggest, they are based on the flow-graph model of program structure.

Examples of control-flow criteria are statement coverage, block coverage, branch coverage,
and path coverage [22]. Statement coverage reports whether each executable statement is en
countered. Block coverage counts the branch-free executable code fragments that are exercised
at least once. A block may be more than one statement if there is no branching between state
ments. An expression may contain multiple blocks if there is branching implied in the expression,
for instance, an expression with logical connectors. If block coverage is less than 100%, some
statements are not exercised by the test set. Branch coverage, or decision coverage, checks
whether logic expressions tested in control structures evaluated to both true and false. Condi
tion coverage reports the true or false outcome of each logic subexpression. Multiple condition
coverage checks whether every possible combination of logic subexpressions occurs. Modified
condition/decision coverage (MC/DC) requires enough test cases to verify that every condition
can affect the result of its encompassing decision. Path coverage checks whether every possible
path has been followed. Statement coverage is subsumed by decision coverage, which in turn is
subsumed by path coverage.

Data-flow testing [68] classifies each occurrence of a variable as either an assignment to the
variable or a use of the variable. A good test set must insure that for each possible assignment to
a variable, the uses of the variable are exercised. We follow the definitions in [37]; other data flow
coverage measures have been proposed, see [20]. C-use, or computation variable use coverage,
counts the number of combinations of an assignment to a variable and a use of the variable
in a computation that is not part of a conditional expression. P-use, or predicate variable use
coverage, counts the number of combinations of an assignment to a variable and a use of the
variable in a conditional expression, and all branches based on the value of the conditional
expression.

We use the C code fragment in Figure 2.1, derived from [84], to illustrate P-use coverage.
Variables a and b are input variables. Here, for instance, a test case (a, b) = (2, 2) covers the
P-use pair consisting of the assignment x = 2 and the use of x in x == b where x == b is true,
while a test case (a, b) = (2, 3) covers the same P-use pair where x == b is false. Similarly, a
test case (a, b) = (1, 5) covers the P-use pair consisting of the assignment x = 5 and the use of
x in x == b where x == b is true, while a test case (a, b) = (1, 4) covers the same P-use pair
where x == b is false.

6

All-use coverage is the sum of C-use and P-use coverage measures.
Fault-based testing focuses on generating tests to detect faults in software [88, 49, 23, 86].

It can often guarantee the absence of particular faults, which is an important advantage over
other testing approaches. We describe mutation analysis [23], a fault-based testing technique,
in Section 2.4.

Error-based testing focuses on checking programs at certain error-prone points. An example
is boundary testing.

2.1.3 Design of Experiment and Pairwise Testing

When the logic of a program is faulty, a region of the input domain will exhibit failures. Such
region faults are more likely to remain undetected if a test set leaves big portions of the input
domain uncovered than if test cases are distributed uniformly throughout the input domain.
This assumption is supported empirically in [12].

Design of experiment [63] focuses attention on the usage of software and attempts to generate
tests that span the entire input domain of a system. Combinatorial testing attempts to cover all
k-way combinations of input parameters. In particular, pairwise testing [75] (or 2-way testing)
is a specification-based testing criterion which requires that for each pair of input parameters of
a system, every combination of valid values of these two parameters be covered by at least one
test case. Experiments show that pairwise testing is effective for software [21].

We introduce the notation and terminology used in pairwise testing. Consider a system with
n ∧ 2 input variables. The value u of variable a is denoted by a.u. The pair of values a.u and
f.v, where a and f are different variables, is denoted by (a.u, f.v) or (f.v, a.u). A test for the
system has n values, one for each input variable. A test is said to cover a pair (a.u, f.v) if it
assigns u to a and v to f. A test set is said to cover a pair if at least one of its tests covers the
pair. We use pairwise coverage to evaluate specification-based mutation.

2.2 Fault Visibility

In black-box testing, we neither look at the code nor check the intermediate state of the program,
and rely strictly on the results (outputs) for detecting a fault. Accordingly, to detect a fault in a
program, we supply the program with some test inputs and compare the results of the execution
with the expected results, thus determining whether the results are correct.

A (visible) failure is an unacceptable result of execution on some test input; in other words,
it is observable incorrect behavior. A potential failure, or potential error, is an intermediate
incorrect result. In order for a test to detect a fault, the erroneous intermediate values must
cause an error in the outputs. In other words, a potential failure must propagate through
computations and information flow to produce a visible failure. In black-box testing, if a test
case does not cause a visible failure, it does not detect the fault.

There is an extensive body of research on conditions for detecting a fault from the program
output [28, 24, 50, 71, 86, 33]. Goradia [34] presents typical situations where a test case causes
a potential failure but not a visible failure.

•	 The faulty state variable does not participate in a computation that affects the output.
Consider this code fragment where variable output is the only visible outcome:

if (condition) {

output = state_var;

} else {

output = 10;

}

If condition is false, an incorrect value of state_var does not impact the output.

7

•	 The faulty state variable is used in an operation that affects the output, but the operation
may not be sensitive to the error represented by the incorrect state. For example, in an
expression state_var > z, the value of state_var affects its result. However, an incorrect
value of state_var may yield the correct Boolean value of the relational expression.

•	 Cancelling errors. The faulty state variable may interact with another faulty state variable
or itself and thereby yield a correct state. For example, in an expression x * y, if both x
and y have incorrect signs, the result will have correct sign.

•	 An algorithm may tolerate errors in the values of certain variables. Consider a numeric
algorithm which computes the local minimum of a polynomial in a given interval by using
an iterative procedure that terminates when a specific convergence criterion is satisfied.
At the end of each iteration, it obtains the next approximation by adding the value of a
variable step to the previous approximation. If the value of step is faulty, the algorithm
may still converge to the correct result by changing the number of iterations.

In this thesis (Section 8), we present an approach which uses a model checker to guarantee
that tests chosen cause visible output failures.

Program mutation testing in its original formulation, often referred to as strong mutation,
requires the output of a mutant program to differ from the original. Weak mutation [38], on
the other hand, only requires that the execution of a component of the mutant and the original
produce different values. In this thesis, when our goal is to guarantee visible failures, we require
strong mutation.

The RELAY model [71] defines the conditions under which a fault is detected. First, a
potential error originates at the smallest subexpression containing the fault, that is, the subex
pression evaluates incorrectly. Then the potential error propagates1 through computations and
information flow. Finally, a failure is revealed in the outputs. The model provides a mechanism
for developing failure conditions that guarantee fault detection. In particular, the propagation
conditions for Boolean operators are defined. The propagation condition guarantees that a po
tential failure is not masked out by the computation of a parent operator. We apply the RELAY
model to construct the detection conditions for mutations in predicates.

2.2.1 Relevant Work in Protocol Testing

The discipline of protocol conformance testing [11] involves testing an implementation against
the protocol specification. Often, the tester has little or no access to the internal states of a
protocol implementation because it is running on a remote machine or only its executable code
is available (no source code). Tests must be selected to cause a difference in the visible output.

Similarly, one may be interested in testing just a single component of a modular system.
The context of the component is the rest of the system. Testing the whole system results in an
unnecessarily large test set, while testing the component in isolation raises the problems of test
executability (is the test allowed by the context?) and fault visibility (is a fault masked by the
context and thus cannot be detected externally?).

These problems were addressed in [62] for the case of a system modeled as a collection
of communicating finite state machines, of which one is the specification of the component
to be tested; the rest form the context. Testing in context is reduced to testing in isolation
by way of computing an approximation of the specification in context. The approximation
is a nondeterministic finite state machine model of the component’s properties that can be
controlled and observed through the context. The behavior of every conforming deterministic
implementation is included in the approximation. The tests derived from the approximation are
executable and guarantee fault visibility. In our work we rely on a model checker to achieve
these goals.

1The term “transfer” is used in [71].

8

Finite state machine models can only specify behaviors within the domain of regular lan
guages. Wang and Liu [81] proposed a test suite generation method for protocols specified by
extended finite state machines which associate every transition with an action. The action of a
transition is any statement or expression, such as an assignment, a conditional expression, in
put/output, etc. The method assumes that the status of an implementation under test cannot be
modified or observed directly, but only by examining the sequences of input and output events.
Such observable events are recorded so that the resulting test cases can be applied directly to
implementations running on real machines. In this method, an axiom defining the semantics of
the actions is associated with each action type. Assertions (preconditions and postconditions)
are updated according to the axioms. Assertions consist of a sequence of external (input and
output) events appearing along the traversed path, a set of predicates valid at the current state
of the extended finite state machine, and variables that need to be observed through the output
events in order to confirm correctness of a preselected transition. The method detects any single
transition mutant, i.e., a mutant where one transition leads to the wrong state.

2.3 Specification-Fault-Based Testing

An advantage of testing based on specifications is the ”missing path problem” [39]. This occurs
when an implementation neglects an aspect of a problem, and there is some section of code that
should appear in the program but does not. Since there is no evidence in the code itself for this
omission, such errors are very hard to find by analyzing the code alone. However, analysis of
specifications can reveal this problem.

Specification-fault-based testing attempts to detect faults in the implementation that are
derived from misinterpreting the specification or from faults in the specification [88]. It involves
planting faults in the specification.

2.3.1 Test Generation from Logic Specifications

A number of methods have been proposed [28, 74, 76, 82] for generating test cases from spec
ifications represented by logic expressions. The methods usually hypothesize typical classes of
faults and derive test sets to detect them. A list of fault classes was summarized in [44]. It
includes:

•	 Variable Reference Fault (VRF) - a Boolean variable x is replaced with another variable y
different from x.

•	 Variable Negation Fault (VNF) - a variable x is replaced with x̄.

•	 Expression Negation Fault (ENF) - a Boolean expression p is replaced with p̄.

•	 Operator Reference Fault - a Boolean operator is replaced with another Boolean operator.

•	 Incorrect Relational Operators - a relational operator is replaced with a different relational
operator.

•	 Missing Clause Fault - a clause is omitted.

This list is short while the set of possible fault classes is very large. Most testing approaches
restrict their attention to single faults, that is, faults that involve only one syntactic change. In
particular, mutation operators model the corresponding single fault classes. In Section 3, we
define an extensive set of mutation operators.

Boolean operator (BOR) and Boolean and relational operator (BRO) testing strategies were
studied in [74] and [76]. In particular, the BOR testing strategy requires a test set to guarantee
the detection of Boolean operator faults. A strategy for generating test input from the spec
ifications represented by Boolean formulas was proposed in [82]. The authors claim that the

9

strategy is testing directly for variable negation faults. In this thesis, we show that the strategy
is stronger: it tests for stuck-at faults, which are harder-to-detect than variable negation faults.

The analytical results in [82] were obtained for Boolean logic formulas. Specifications for some
software can be written in a formal language constrained to Boolean logic expressions. However,
the specifications for complex software systems are not exclusively expressed in Boolean logic.

Specifications can be written [65] in:

1. Boolean logic.

2. Arithmetic logic, in which arithmetic equations are included with logic equations.

3. Predicate calculus, which includes quantifying operators such as ”for all”.

4. Temporal or time-based logic.

Gopal and Budd [32] introduced mutation testing based on specifications in predicate calculus
form; we briefly describe their method in Section 2.4.1. We also present temporal logic in
Section 2.5.

2.3.2 Kuhn’s Fault Hierarchy

Kuhn [43] invented the technique of predicate differences for analyzing the effects of faults in
specifications. Briefly, it is as follows. Let S denote a specification predicate hypothesized to
be correct and S ∧ a faulty version of it. A test detects the fault if and only if it causes S ∧ to
evaluate to a different value than S, formally when S ≤ S ∧ . The predicate S ≤ S∧ is referred to as
the detection condition for the fault. The predicate difference is a generalization of the Boolean
difference [70] used in hardware testing.

Several researchers [44, 79, 10, 45] used Kuhn’s technique to compare fault classes in Boolean
specifications restricted to disjunctive normal form, that is, a disjunction of terms. A term is a
conjunction of literals, a literal is an occurrence of a variable or its negation.

Kuhn [44] compared the detection conditions for variable reference fault (VRF), variable
negation fault (VNF), and expression negation fault (ENF) and proved, for specifications in
disjunctive normal form, that they form a hierarchy with respect to detectability. That is, any
test that detects a VRF for some variable also detects a VNF for the same variable, and any
test that detects a VNF for some variable also detects an ENF for the expression in which the
variable occurs. Tsuchiya and Kikuno [79] proved that a test that detects a missing clause fault
(MCF) for some variable will also detect a VNF for the same variable. Tsuchiya and Kikuno
also showed that tests that detect MCF may not be able to detect VRF, and vice versa. They
also showed that, for terms with more than one variable, any test that detects a VRF for some
variable also detects a MCF for the same variable.

Lau and Yu [45] extended the hierarchy to include several other fault classes that can occur
in Boolean specifications. They considered literal insertion fault, literal reference fault, literal
and term omission faults, literal, term, and expression negation faults. They concluded the
following:

•	 A test case that detects a literal insertion fault where a literal is inserted into a term can
also detect a literal reference fault where the same literal replaces a literal in the term.

•	 A test case that detects a literal insertion fault where a literal is inserted into a term can
also detect a term omission fault for the term.

•	 A test case that detects either a literal reference fault for some literal, a term omission
fault for the term containing the literal, or a literal omission fault for the literal can also
detect a literal negation fault for the literal.

•	 A test case that detects a literal negation fault for some literal can also detect a term
negation fault for the literal.

10

•	 A test case that detects a term negation fault for some term can also detect an expression
negation fault for the expression in which the term occurs.

All these results apply to Boolean specifications in disjunctive normal form. We study muta
tion operators which model fault classes in more general specifications. For instance, the literal
insertion fault in [45] is a special case of the clause conjunction operator when specifications are
restricted to disjunctive normal form. The clause conjunction operator is defined in Section 3.2.1.
Detection condition is an effective and concise analytical tool for studying faults (or mutations)
in formal specifications. We refine the detection conditions.

2.4 Mutation Analysis

Underlying program-based mutation testing is the “competent programmer hypothesis” [23],
which postulates that programmers write nearly correct programs. Analogously, Ammann and
Black [2] propose a “competent specifier hypothesis” stating that analysts write specifications
which are likely to be close to what is desired.

Additionally, the “coupling effect hypothesis” [23] states that test data which kill simple first
order mutants is also likely to kill higher order mutants, that is, those produced by making simul
taneous changes. Thus the coupling effect hypothesis justifies neglecting multiple faults during
mutation testing. Offutt’s empirical study [55] with several programs found strong support for
this hypothesis: any test set that detects all single faults also detects almost all double faults.

Morell [51] defined “fault coupling” as a situation in which a test set can detect faults when
they occur in isolation, but not when they occur in combination. This meaning of the term
“coupling” is the reverse of that used in the mutation testing literature. Thus, a low incidence
of fault coupling implies validity of the coupling effect hypothesis, and vice versa. Morell’s
definition supports the focus on faults as local ob jects that may interact with one another.
Wah’s theoretical study [80] modeled programs as finite functions, and concluded that fault
coupling occurs infrequently.

Researchers studied mutation operators for several programming languages. For example,
Offutt et. al [53] defined an extensive set of mutation operators for the Ada programs. The
mutation operators are separated primarily on the basis of what types of lexical elements are
modified.

Mutation analysis is expensive because of a large number of mutants generated. Selective
mutation is mutation without the operators that create the most mutants [47, 56]. We propose
combinations of mutation operators in Section 7.4.

2.4.1 Early Uses of Specification Mutation

Gopal and Budd extended program-mutation testing to specification-mutation testing in [32].
They considered specifications in predicate calculus form. Figure 2.2 presents a typical specifi
cation. There, P and S represent conditions on the input variables prior to execution (“input
conditions”), Q, R, T, and U represent conditions on the output after program execution (“out
put conditions”).

The following process is used to evaluate a specification. Given a test input, the program
is executed on the input to obtain its output. The input and output values together form a
test case. Using the test case generated on the previous step, the specification is ”executed”
by evaluating each input condition in turn. When an input condition is satisfied by the test
input, each of the associated output conditions is evaluated. If any output condition is falsified
by the test case, then an error in the program, or specification, or both is discovered and has
to be corrected. If all associated output conditions are satisfied, then the test case and the
specification match. The test inputs are selected by a method similar to the basic meaningful
impact strategy [82] which is described in Section 6.4.

11

if P then
Q
R

else if S then
T

else
U

Figure 2.2: A Sample Predicate Calculus Specification.

After the specification is evaluated, a set of mutation operators is applied to the specification
to generate mutant specifications. Each mutant is considered in turn. A test case is successful
in eliminating a mutant if there exists an input condition that is satisfied, but for which one
or more output conditions is falsified. The tester continues to supply test cases until all the
mutants are removed, or until those which remain are equivalent to the original specification.
Additionally, while supplying tests to eliminate the mutants, the tester may discover an error in
the program.

This method relies on having a working implementation, as the program must be executed
in order to generate test output.

Woodward [85] investigated mutation operators for algebraic specifications. The set of mu
tation operators was defined based on an analysis of errors in specifications made by students.

Woodward considered algebraic specifications as term-rewriting systems. A specification is
compiled into the executable code. When the executions of the original specification and a
mutant on a given test case generate two different outputs, the mutant is detected and regarded
as dead. Test adequacy is measured without executing the program.

We describe the specification-based mutation coverage metric introduced in [2] in Secti
on 2.6.2.

2.5 Temporal Logic and Model Checking

Temporal logic [66] has been used as a formal tool in both artificial intelligence and software en
gineering [29]. We are interested in temporal logic because it is commonly used as a specification
language for model checkers.

Temporal logic is an extension of classical logic for systems that evolve with time. It is used
to reason about propositions which may not be true or false once and for all, but which change
their truth values through time. The properties such as “Eventually it will be the case that p”,
“It will always be the case that p”, “As soon as q is true, it will be the case that p”, etc. can be
compactly specified in temporal logic.

Temporal logic is suitable for reasoning about concurrent systems [64]. There are several
kinds of temporal logics, two most commonly used are linear and branching [25]. In linear logic,
at each moment there is only one possible future. In branching logic, at each moment time may
split into alternate courses representing different possible futures.

A model checking specification consists of two parts. One part is a state machine defined
in terms of variables, initial values for the variables, environmental assumptions, and a descrip
tion of the conditions under which variables may change value. The other part is temporal
logic expressions over states and execution paths. A common logic for model checking is the
branching-time Computation Tree Logic (CTL) [19], which extends propositional logic with cer
tain temporal operators. Conceptually, a model checker visits all reachable states and verifies
that the temporal logic expressions are satisfied over all paths. (In practice, powerful symbolic
computations find equivalent results.) When an expression is not satisfied, the model checker
attempts to generate a counterexample in the form of a trace or sequence of states.

12

Typical formulas in CTL include the following:

•	 AG safe: All reachable states are safe.

•	 AG (request - AF response): A request is always followed by a response sometime in
the future.

We use SMV, a CTL symbolic model checker [48]. In SMV, a specification consists of one or
more modules. One module, named main, is the top level module in SMV, serving a role similar
to that of the function main in C programs. Figure 2.3 presents a short SMV example.

MODULE main
VAR

request : boolean;
state : {ready, busy};

ASSIGN
init(state) := ready;
next(state) := case

state = ready & request : busy;
1 : {ready, busy};

esac;

SPEC AG (request - AF state = busy)

Figure 2.3: An SMV Example.

The model is a Kripke structure, whose state is defined by a collection of state variables. The
transition relation of the Kripke structure, and its initial state, are determined by a collection
of parallel assignments introduced by the keyword ASSIGN.

A Kripke structure consists of a set of states, a set of transitions between states, and a
function that labels each state with a set of properties that are true in this state. Paths in a
Kripke structure model computations of the system [18].

In Figure 2.3, request is a Boolean input variable, state is a scalar variable with possible
values ready and busy. The initial value of state is ready. The next state is busy if the state is
ready and there is a request. Otherwise the next state is ready or busy nondeterministically.

The specification of the system appears as a formula in CTL under the keyword SPEC. The
CTL formula in Figure 2.3 states that whenever there is a request, state will eventually become
busy.

SMV also provides the keyword DEFINE, analogous to macro definitions.
By default, all of the assignment statements are executed in parallel and simultaneously.

However, it is possible to have a collection of processes whose actions are interleaved in the
execution sequence. This is done by preceding an instance of a module with the keyword process.

As explained earlier, the transition relation can be specified implicitly as a collection of
parallel assignments. It can also be specified explicitly, using the keyword TRANS, as a formula in
terms of the current and next values of state variables. Similarly, the set of possible initial states
can be specified, using the keyword INIT, as a formula in terms of the current state variables.

2.6 Software Testing and Model Checking

Although model checking began as a method for verifying hardware designs, there is growing
evidence that it can be applied to specifications for large software systems, such as TCAS II [15].
In addition to verifying properties of software, model checking is being applied to test generation
and test coverage evaluation [3, 14, 26, 30, 36, 69].

13

System
Specification

_

_ _ derive
test
reqs

. .
.

_ check
model

_ reduce _Test
Set

Figure 2.4: Automated Test Generation Method.

In both uses, one begins with selection of a test criterion. Some specification-based test cri
teria are conjunctive complementary closure partitions [14], branch coverage [30], and mutation
adequacy [1]. The overview of the test generation method in [1] is shown in Figure 2.4; we briefly
describe the method below.

One applies the chosen testing criterion to the specification to derive test requirements, i.e.,
a set of individual properties to be tested. To use a model checker, these requirements must
be represented as temporal logic formulas; “reflection” [1, 2] may be used for this purpose, see
Section 2.6.1.

To generate tests, the requirements must be negative requirements, that is, they are con
sidered satisfied if the corresponding formulas are inconsistent with the state machine. They
must also be of a form that a single counterexample demonstrates the inconsistency (exhaustive
enumeration is needed to show inconsistency of an existential requirement). For instance, if the
criterion is a simple state coverage, the negative requirements are that the machine is never in
state 1, never in state 2, etc.

When the model checker finds an inconsistent formula, it produces a counterexample. Again,
for state coverage, a counterexample gives stimulus to put the machine in state 1 (if it is reach
able), another to put the machine in state 2, etc. Since one counterexample can satisfy more
than one requirement, the set of counterexamples may be reduced. Since counterexamples have
both stimulus and expected values, they may be automatically turned into executable tests.

In addition to test generation, model checkers can also be used to evaluate coverage of a test
set. In this approach, each test is turned into an execution sequence, and the model checker
determines which requirements are satisfied by the execution.

2.6.1 Reflection

Reflection represents the state machine in temporal logic. Suppose the state machine description
contains a case statement:

next(x) := case
b1 : v1;
b2 : v2;
...
bN : vN;

esac;

In this statement, the guard b1 is first evaluated; if it is true, the target v1 is the next value for
x. To allow for nondeterminism, v1 may be a set of values. If b1 is false, b2 is evaluated, and so
forth. “b1 : v1” is called a guarded command.

Two forms of reflection were proposed in the literature; we call them direct reflection and
guard reflection. The original description of the specification-based test generation method uses

14

direct reflection [2], which expresses the guarded command “b1 : v1” in temporal logic as follows:

SPEC AG (b1 -> AX (x = v1))

If v1 is a set, we write “x in v1” instead of “x = v1”. To express the second case, we write:

SPEC AG (!b1 & b2 -> AX (x = v2))

and so forth. When the case statement is used for specifying the current value of a variable, as
in

y	 := case ... esac;

the next step operator, AX, is omitted. While easy to apply, direct reflection has some practical
limitations; we discuss one of them in Section 7.3. Since the temporal logic formulas derived
using direct reflection are positive requirements, in the next step we apply mutation to turn
them into negative requirements.

Guard reflection was proposed in [1]. We do not describe the details and derivation of this
approach here. In short, guard reflection expresses the guarded command “b1 : v1” in temporal
logic as follows:

SPEC AG (b1 <-> b1)

then applies mutation to the second occurrence of b1. This requires satisfaction of two conditions:

•	 The guards are a partition, that is, they are pairwise disjoint and their union is universally
true. Expoundment, a process that makes implicit parts of a specification explicit, helps
achieve this. Expoundment is explained in [2].

•	 The targets are pairwise disjoint, that is, if two guards have the same value for a target,
the guards are joined into one guard.

If mutation changes b1 to b1’, it was shown in [1] that under the above conditions, the CTL
formula

SPEC AG (b1 <-> b1’)

is a satisfactory implementation for mutations to b1 in the state machine, assuming that each
trace includes one additional state beyond the counterexample to the CTL formula. We use
guard reflection whenever possible in our experiments.

2.6.2 Specification-Based Mutation

In the specification based mutation analysis scheme in [3] mutation operators are applied to the
state machine or the temporal logic expressions yielding a set of mutant specifications. If the
temporal logic expressions are mutated and the state machine is unchanged, the test cases are
instances that a conforming implementation must pass. Such tests are called passing tests. If
instead the state machine is mutated, an implementation conforming to the original specification
must fail the test cases. Accordingly, such tests are called failing tests. In this thesis we focus
on the passing tests.

In the next step, the model checker processes the mutated temporal logic expressions. Mu
tants represent negative requirements, so they can be used for both test generation and evalua
tion. When the model checker finds an inconsistency, it generates a counterexample.

The set of counterexamples is reduced by eliminating duplicates and also counterexamples
which are ”prefixes” of other, longer counterexamples. The counterexamples contain both stim
ulus and expected values so they may be automatically converted to complete test cases. For a
given set of mutation operators, the procedure in [3] generates a mutation-adequate set of test
cases.

15

Mutations of logic expressions can be consistent or inconsistent with the state machine [2].
A consistent mutant is a temporal logic formula that is true over all possible traces defined
by the state machine. Consistent mutants are not useful for model-checking mutation analysis.
Inconsistent mutants are either falsifiable (demonstrably inconsistent) or nonfalsifiable (cannot
be shown inconsistent with any single trace from the state machine).

2.7 Higher-Level Specifications

SMV’s description language is at too low a level for wide-spread use. A popular system must
extract state machines from higher level descriptions such as SCR specifications [4], MATLAB
stateflows [6], or UML state diagrams. Conversion of UML specifications to SMV is discussed
in [77].

State-based specifications, such as SCR, describe the software in terms of states and transi
tions, they define preconditions and triggering events. Preconditions must be satisfied in order
for a transition to be taken. Triggering events are changes in variable values that cause the tran
sition to be taken. The values of the triggering events before transitions are called before-values
and the values after transitions are called after-values. The state that immediately precedes the
transition is the pre-state and the state that immediately follows the transition is the post-state.
In Section 7, we describe the automobile cruise control example using SCR notation.

Chapter 3

Specification Mutation Operators

Many different types of faults can occur in software. (We listed some fault classes in Section 2.3.)
Accordingly, software can be mutated in a variety of ways. The choice of mutation operators
affects the cost (number of mutants and number of tests) and effectiveness (ability to detect
faults) of mutation testing. We compare mutation operators in the following sections. But first,
in this section, we define mutation operators. We use the following overall guiding principles,
influenced by [85], to formulate mutation operators:

1. Mutation categories should model potential faults.

It is important to recognize different types of faults. In fact, each mutation operator is
designed to model faults belonging to the corresponding fault class.

2. Only simple, first order mutants should be generated.

These mutants are produced by making exactly one syntactic change to the original spec
ification. This restriction is justified by the “coupling effect” hypothesis which says that
the test sets that detect simple mutants will also detect more complex mutants.

3. Only syntactically and semantically legal mutants should be generated.

Some mutations may result in an illegal expression, such as division by 0. Such mutants
should not be generated.

4. Do not produce too many mutants.

This includes some practical restrictions. For example, we do not replace a relational
connector with its opposite, since that is the same as negating the expression. We note
these restrictions while defining the mutation operators.

3.1 Definitions

We use the following common mathematical notation throughout the thesis:

•	 A horizontal line above an operand represents negation (for example, ā).

•	 ∗ denotes disjunction, ↔ represents conjunction, - stands for implication, ≤ represents
exclusive-or, + stands for equivalence.

•	 1 and 0 are used to denote “true” and “false,” respectively.

Among the Boolean operators, negation has the highest precedence, and ↔ has higher prece
dence than other binary operators. Occasionally, when clear from the context, ↔ is omitted.

16

17

When presenting SMV specifications, we use SMV syntax: ! stands for negation, | and &
represent disjunction and conjunction, respectively, and != corresponds to ≤.

CTL has two kinds of atoms: variables and symbolic constants. Variables may be Boolean,
scalar, integer, user defined modules or an array of any of the above. The value of a scalar variable
is drawn from a finite set of constants. An integer variable takes values from an integer range.
An SMV specification may also contain symbolic constants defined by the user to represent
integers. CTL formulas can have other kinds of constructs, such as case statements, however,
those are uncommon and are not generated by reflection, so we do not consider them. Reflection
is explained in Section 2.6.1.

We apply mutation to predicates contained within CTL formulas, so we define predicates
formally.

A clause1 is one of the following, possibly negated.

•	 A Boolean variable.

•	 A scalar expression token1 op token2, where op is either = ≥or =, token1 and token2 are
either a variable of type scalar or a constant, e.g., state = busy, where state is a variable
and busy is a constant from the domain of state.

•	 A relational expression of the form E op F , where E and F are arithmetic expressions and
op is one of <, →, =, =≥ , >, or ∧.

A compound predicate consists of one or more binary Boolean operators and their operands,
and possibly negation operators and parenthesis.

A predicate 2 is either a clause or a compound predicate.
For example, x < 5 is a clause, and ((x < 5) ∗ (y > x)) ↔ (f ∗ g) is a compound predicate.
If a clause appears more than once in a predicate, we consider each occurrence to be a distinct

clause. This affects our definition of mutation operators as explained in Section 3.2.
A Boolean formula consists of Boolean variables and possibly Boolean operators and paren

thesis. In other words, a Boolean formula is a predicate with no relational or scalar expressions.

3.2 Categories of Mutation Operators

Each fault class has a corresponding mutation operator. Applying a mutation operator gives rise
to a fault in that class. For example, instances of the missing clause fault class can be generated
by a missing clause operator (MCO). Note that the abbreviation of the mutation operator ends
in O. Below we define mutation operators corresponding to common fault classes.

Abstractly, mutation operators are independent of any particular specification notation. Here
we present examples for predicates. Illustrative mutants for each operator are shown in Table 3.1
using SMV notation.

We choose not to assign an abbreviation to every mutation operator since they are hard to
remember anyway. We only name those which are necessary for further presentation.

For some mutation operators, we also list their suboperators : the statement “M1 is a subop
erator of M2 ” means that the set of mutants produced by M1 is a subset of the set of mutants
produced by M2.

We do not consider mutations of temporal operators because these mutations represent very
big semantic change, so the resulting tests tend to be trivial to detect.

We first list mutation operators that involve a clause, then later list mutation operators that
affect compound predicates. In the following mutation operators, a clause is replaced with a
(possibly empty) predicate.

1The terms condition or simple predicate are also used in the literature [74].

2Sometimes we use the term expression.

18

3.2.1 Mutations of Clauses

On the most abstract level, there are four categories of mutation operators affecting a clause.

•	 Clause Reference Operator (CRO).

Replace a clause c with another clause, d. For example, replace the specification (x <
5) ∗ (y > 3) with (z > 4) ∗ (y > 3).

•	 Clause Negation Operator (CNO).

Replace a clause c with its negation c̄.

•	 Clause Insertion Operator (CIO). Insert a clause d, that is, replace a clause c with c ∨ d,
where d is another clause, ∨ is either conjunction or disjunction. There are two suboperators
of this operator.

–	 Clause Conjunction Operator (CCO).

Replace a clause c with c ↔ d.

–	 Clause Disjunction Operator (CDO).

Replace a clause c with c ∗ d.

•	 Missing Clause Operator (MCO).

Omit a clause. For instance, replace the specification c ↔ d ∗ e with c ∗ e.

A clause is more general than a Boolean variable, but Boolean formulas are often used
for formal specification of real-world systems [46]. For this reason, testing based on Boolean
specifications is often studied exclusively [82, 16]. The results in this thesis can easily be adapted
to Boolean specifications since many mutation operators in Boolean formulas are special cases
of the mutation operators listed above. In particular, in case of Boolean specifications or when
only Boolean variables are involved in the substitution, CRO, CNO, and CIO become variable
reference operator (VRO), variable negation operator (VNO), and variable insertion operator
(VIO), respectively.

CRO may produce a very large number of mutants. Additionally, it generates some higher
order mutants such as replacing a Boolean variable with a relational expression. Therefore,
except when restricted to Boolean specifications, it should not be used for test generation. For
this reason, we consider the practical suboperators of CRO separately. We do not evaluate clause
insertion operator empirically, except for Boolean formulas in Section 7.6, so we do not consider
its suboperators separately.

Suboperators of Clause Reference Operator

•	 Operand Reference Operator (ORO).

Replace an operand, that is, a variable, a constant, or an array subscript, with another
syntactically legal operand. We give details later when we present suboperators of ORO.

•	 Relational Connector Reference Operator (RRO).

Replace a relational connector (<, →, >, ∧, =, =) with any other relational connector, ex-≥
cept its opposite. For example, do not replace < with its opposite, ∧, because that is
the same as negating the expression. Only replace = or ≥ when applied to a relational =

expression.

•	 Arithmetic Connector Reference Operator.

Replace an arithmetic connector (+, −, *, /, mod) with another arithmetic connector when
appropriate. In many cases such replacement will result in an illegal expression, the most

19

obvious being division by zero. The mutation operator is assumed to recognize such ex
ceptional cases. For our experimental base, the arithmetic connector replacement operator
generated very few mutants.

•	 Off-By-1 Operator (OFO).

In a relational expression E1operatorE2, replace the arithmetic expression E2 with E2 + 1
and with E2 − 1.

•	 Stuck-At Operator (STO).

Stuck-at-0 mutation operator replaces a clause with 0; stuck-at-1 replaces it with 1.

Suboperators of Operand Reference Operator

ORO consists of the suboperators presented below:

•	 Replace a variable with another variable of a compatible type.

Replace a Boolean variable with every other Boolean variable. Replace a scalar variable x
with every other scalar variable having the same domain as x. Replace an integer variable
with another integer variable.

•	 Replace a variable with a constant.

Replace a scalar variable with every constant from its domain. Replace an integer variable
x with every symbolic constant defined by the user to represent a number in the range of
x.

•	 Replace a constant with a variable.

Replace a constant c from the domain of a scalar variable with every scalar variable x,
such that x has c in its domain. Replace a symbolic constant c representing a number in
the range of an integer variable with every integer variable x, such that c belongs to the
range of x.

•	 Replace a constant with another constant.

Replace a constant c in domain D of a scalar variable with every other constant in D.
Replace a symbolic constant representing a number in the range R of an integer variable
with every other symbolic constant representing a number in R.

This does not replace an operand if it results in a constant (c1 operator c2) or reflexive (x
operator x) expression, since an equivalent mutant is produced by the Stuck-At mutation
operator. Also, this does not replace a number from integer variable’s range with an
other number, since this may result in too many mutants, and off-by-1 mutation operator
represents many typical mutants of this class.

•	 Array Index Reference Operator.

Replace an array index with upper and lower array bounds. Replace the index with
previous and next integer numbers.

This does not replace an array index if the previous or next integer number is outside the
array bounds.

20

One Mutation Replaces One Clause Occurrence

Most of the mutation operators involve replacing a clause. Even though the same clause may
occur more than once in an expression (for example, y occurs twice in xy ∗ (y ∗ z)), a single
mutation is a change to just one of the occurrences, not to all of them simultaneously. These
mutation operators correspond closely to faults that may occur in software specifications, where
one occurrence of a clause or a variable may be replaced as a result of an error while another
occurrence is correct. This is in contrast with hardware design, where, for example, a stuck-at
0 fault on a line of a logic circuit results in all occurrences of the corresponding clause being
replaced with 0. So whenever we refer to a clause or variable in an expression, we mean a single
occurrence of a clause or variable. This approach is also taken by [82, 79, 45].

3.2.2 Mutations of Compound Predicates

The above mutation operators replace a clause. We also introduce the operators that replace a
(possibly compound) predicate:

•	 Expression Negation Operator (ENO).

Replace an expression X with X .

This does not negate temporal expressions, such as AG and EF, since SMV does not
produce useful counterexamples from such mutants.

•	 Missing Expression Operator (MEO).

Omit a predicate. MEO includes both where a clause is missing and where a compound
predicate is missing.

•	 Logical Connector Reference Operator.

Replace a Boolean connector with another connector, e.g., replace x ↔ y with x ∗ y.

We define the following versions of the logical connector reference operator.

–	 LRO1

Replace one of the three Boolean connectors (∗, ↔, -) with the other two Boolean
connectors.

–	 LRO2

Replace ∗ with ≤, ↔ with +, - with +. The choice of the new connectors is
explained in Sections 6.3 and 7.4.

–	 LRO

Both LRO1 and LRO2, that is, perform all the mutations of LRO1 and LRO2.

•	 Associative Shift Operator (ASO).

Change the associativity of terms. For example, replace (ab) ∗ c with a(b ∗ c).

Table 3.1 contains mutants generated from a predicate “x & (y < 100) - (z = On)”, where x
is a Boolean variable, y is an integer, z is a scalar. We present the mutants using SMV notation.
We list the mutation operators in Table 3.2.

3.3 Combinations of Mutation Operators

It is unlikely that using any single mutation operator can be as effective as using all operators.
On the other hand, using all mutation operators results in a very large number of mutants.
“Law of diminishing returns” [73] suggests that a combination of a small number of mutation

21

Operator Example Mutants
ORO
CNO
ENO
LRO1

LRO2

MCO
MEO
STO
ASO
RRO
OFO

x & (y < 100) - (z = Off)
!x & (y < 100) - (z = On)
!(x & (y < 100)) - (z = On)
x & (y < 100) | (z = On)
x & (y < 100) + (z = On)

(y < 100) - (z = On)
(z = On)

x & 1 - (z = On)
x & ((y < 100) - (z = On))
x & (y <= 100) - (z = On)
x & (y < 99) - (z = On)

Table 3.1: Mutation Operators and their Illustrative Mutants.

CIO Clause Insertion Operator
CCO Clause Conjunction Operator
CDO Clause Disjunction Operator
CRO Clause Reference Operator
ORO Operand Reference Operator
STO Stuck-At Operator
MCO Missing Clause Operator
MEO Missing Expression Operator
CNO Clause Negation Operator
ENO Expression Negation Operator
LRO Logical Connector Reference Operator
ASO Associative Shift Operator
RRO Relational Connector Reference Operator
OFO Off-By-1 Operator

Table 3.2: Mutation Operators.

operators can be nearly as effective as all mutation operators combined while producing far fewer
mutants.

Therefore, we introduce some combinations of mutation operators. Applying a combination
(or a set) of mutation operators to a specification means applying each individual mutation
operator to the original specification, then collecting all the mutants generated by all individual
operators.

We consider each mutation operator combined with LRO2. We justify this choice in Sec
tions 6.3 and 7.4. A combination of ORO and LRO2 operators is called ORL, a combination of
STO and LRO2 operators is called STL, and so forth. Note that the abbreviation of an individ
ual mutation operator ends in O, and the abbreviation of the combination of the operator with
LRO2 ends in L.

ORO, RRO, and OFO are all suboperators of CRO. However, their application domains are
different. While ORO applies to Boolean variables and scalar expressions, RRO and OFO apply
to relational expressions. Thus applying ORO exclusively may miss some faults in the relational
expressions, while applying RRO and OFO may miss faults in Boolean variables and scalar
expressions. Therefore, we introduce a combination of ORO, LRO2, RRO, and OFO; we call it
ORL+ .

Chapter 4

Mutation Conditions

In this section, we first define mutation origination and propagation conditions, then use them
to compute mutation detection condition. In the following sections, we will use these mutation
conditions to theoretically compare mutation operators.

Since we use the following identities throughout the rest of the thesis, we present them here
together. For any predicates f , g, h:

f ↔ h ≤ g ↔ h = (f ≤ g) ↔ h (4.1)

f ↔ h ≤ h = f̄ ↔ h (4.2)

(f ∗ h) ≤ (g ∗ h) = (f ≤ g) ↔ h̄ (4.3)

(f ∗ h) ≤ h = f ↔ h̄ (4.4)
¯f ≤ h ≤ f ≤ h = 1 (4.5)

(f ∗ g) ≤ (f ↔ g) = f ≤ g (4.6)

((f ↔ g) - g) = 1 (4.7)

Identities (4.2) and (4.4) follow from (4.1) and (4.3), respectively. With these identities at
hand, we can analyze mutation conditions for various mutation operators.

4.1 Origination Condition

Suppose X is the smallest subpredicate of a specification S corresponding to a mutation, that
is, X is replaced with a predicate E. Then the origination condition for the mutation is X ≤ E,
in other words, E evaluates to a different value than X .

For example, an off-by-1 mutation may replace a specification S = (x < 5)∗a with (x < 4)∗a.
Then, the smallest subpredicate of S corresponding to the mutation is the clause (x < 5),
and the origination condition is (x < 5) ≤ (x < 4) or x = 4. On the other hand, suppose
that a logical connector reference mutation replaces the disjunction with a conjunction giving
(x < 5) ↔ a. Then, the smallest subpredicate of S corresponding to the mutation is S itself, and
the origination condition is ((x < 5) ∗ a) ≤ ((x < 5) ↔ a) which is (x < 5) ≤ a.

4.2 Propagation Condition

In what cases will the value of a predicate be affected if one part is mutated? Concretely, if R is
some predicate such as P ↔ Q, P ∗ Q, or P ≤ Q, what value of Q will let a change in the value of
P lead to a change in the value of R? For completeness, we include the case of R = P . Formally,
let R = op(P, [Q]) denote either R = P or R = P ∨ Q, where ∨ is a binary Boolean connector.

22

23

i Pi Qi opi
⎩Qi

1

2

3

vzw

vzw

z

(x + y)w

none

vw

Q1 ∗ P1

P2

P3 ↔ Q3

Q1

1

Q3

Table 4.1: Computing the Propagation Condition for Clause z in (x + y)w ∗ (vzw).

The propagation condition guarantees that the value of R will change if the value of P
changes. Denote the propagation condition for op as

Q = op(1, [Q]) ≤ op(0, [Q])⎨

An alternate but equivalent definition of Q⎨ is

Q = op(P, [Q]) ≤ op(P , [Q])⎨

For instance, when R = P ∗ Q, the propagation condition is

(P ∗ Q) ≤ (P ∗ Q) = Q by (4.3)

Using identities (4.1), (4.3) and (4.5), the propagation conditions for fundamental Boolean
operators are as follows:

1 if R = P or R = P ≤ Q

Q = Q if R = P ↔ Q⎨

Q if R = P ∗ Q

Propagation conditions for the other binary Boolean operators fall into one of the three cat
egories above, since they can be expressed using the fundamental operators without duplicating
the clause occurrences involved. That is, P - Q = P ∗ Q and P + Q = P ≤ Q.

More generally, we can define the propagation condition for a subpredicate X of some larger
predicate. It guarantees that a mutation in X is not masked by the computation of parent
expressions. In other words, it is the condition under which the value of specification S will
change if the value of its subpredicate X changes.

Let P0, . . . , Pn be predicates, such that S = P0, Pi−1 = opi(Pi, [Qi]), i = 1 . . . n, X = Pn.
The series of predicates Pi can be seen as the path in the expression tree of S from the root to
X . Each Qi is the subtree on the branch which is not on the path. The propagation condition
for a mutation in X is the conjunction of the propagation conditions for each opi:

dS
= Q1 ↔ Q⎩2 ↔ · · · ↔ Q⎩n

dX
⎩

Suppose a specification
F = (x + y)w ∗ (vzw) (4.8)

has a clause reference mutation where z is replaced with x. The propagation condition for a
mutation in z can be computed from Table 4.1. It follows that

dF
= Q1Q⎩2Q⎩3 = Q1 ↔ Q3

dz
⎩

= (x + y)w ↔ vw = (x + y ∗ w)vw = (x ≤ y)vw

24

In other words, v and w are true, and y evaluates to the same value as x̄. Putting these
values back in F and simplifying, we get (x + x̄)1 ∗ (1z1) = z̄, which is sensitive to any change
in the value of z.

There may be more than one occurrence of the same clause in a predicate, for instance,
dF

variable w occurs twice in (4.8). This makes the notation ambiguous. However, the concept
dw

of clause replacement is unambiguous since each occurrence is considered to be a distinct clause
and a mutation is a change to just one of the occurrences. Rather than use an awkward but
unambiguous notation, we trust that the reader will understand that the claims made in this
thesis have to do with replacing one clause at a time, never several clauses simultaneously.

It turns out that, given two predicates R and P on a path in the expression tree of specification
S, such that R is an ancestor of P on the path, if the propagation condition for P is satisfied,
then the propagation condition for R is guaranteed to be satisfied. This is stated formally as
Lemma 1.

Lemma 1 Let R be a subpredicate of predicate S. If P is a subpredicate of R, then

dS dS
- .

dP dR

Proof. Let P0, . . . , Pk, . . . , Pn, 0 < k < n, be predicates, such that S = P0, Pi−1 = opi(Pi, [Qi]),
i = 1 . . . n, R = Pk, P = Pn. Then

dS
= Q1 ↔ · · · ↔ Q⎩k ↔ Qk+1 ↔ · · · ↔ Q⎩n

dP
⎩ ⎧

dS
= Q1 ↔ · · · ↔ Q⎩k

dR
⎩

In view of (4.7), the Lemma holds. Q.E.D.
We use Lemma 1 to prove Theorem 2 in Section 5.

4.3 Detection Condition

The notation SX signifies that a subpredicate X of specification S is replaced with a predicate E
= S ≤ SXE. Kuhn’s original definition [44] of the detection condition for the mutation is dSX

E ,E
¯in other words, SX

E evaluates to a different value than S. For example, if E = X , an expression
negation mutation, the detection condition is dSX = S ≤ SX .

X X
For example, the detection condition for the mutation where z is replaced with x in (4.8) is

dF z = ((x + y)w ∗ (vzw)) ≤ ((x + y)w ∗ (vxw))x

It follows that, for instance, a test case (x, y, z, v, w) = (1, 0, 0, 1, 1) will detect the mutation
because this assignment of values to variables satisfies dF z .x

This illustrates a limitation of this definition: the formula is not easy to manipulate, es
pecially when one would like to prove that a property of detection conditions holds for any
specification. Proofs in [44] for the restricted case of disjunctive normal form involve manipu
lating large formulas. Our reformulation and Kuhn’s definition are semantically equivalent, but
our reformulation allows for more generally applicable, yet more succinct, proofs.

We can compute the detection condition as a conjunction of origination condition and prop
agation condition:

dSX = (X ≤ E) ↔
dS

(4.9)E dX
For example, the detection condition for the mutation where z is replaced with x in (4.8) is

dF
dF z = (z ≤ x) ↔ = (z ≤ x)(x ≤ y)vw x dz

Chapter 5

Analytical Comparison of
Mutation Operators

This section uses mutation conditions explained in Section 4 to derive the detectability rela
tionships between several mutation operators. Some practical implications of these results are
presented in Section 6.

The notation SM is used to represent the detection condition for an arbitrary mutation
produced by applying mutation operator M . The detection conditions for mutation operators
CRO, CNO, ENO, CCO, and CDO are summarized in Table 5.1. There, x is a clause in S, y is
another valid clause1, and X is an expression in S.

SCRO

SCNO

SENO

SCCO

SCDO

dSx
y

dSx
x

dSX
X

dSx
x/y

dSx
xvy

Clause Reference Operator

Clause Negation Operator

Expression Negation Operator

Clause Conjunction Operator

Clause Disjunction Operator

Table 5.1: Detection Conditions for Several Mutation Operators.

First consider the detectability relationship between clause reference operator (CRO) and
clause negation operator (CNO).

Theorem 1 If the clause replaced in SCRO is the same clause negated in SCNO, then SCRO -
SCNO. 2

Proof. By Table 5.1, we must establish that, for a predicate P and a clause x occurring in P ,
dP x - dP x holds, where y is another valid clause different from x. Rewriting with (4.9), we y x
have

dP dP
((x ≤ y) ↔) - ((x ≤ x̄) ↔)

dx dx

Since x ≤ x̄ = 1, and in view of (4.7), the theorem holds. Q.E.D.
By Theorem 1, a test case, that is, an assignment of values to variables, which makes dP x

y
true, also makes dP x true. This is stated as the following corollary. x

1While Kuhn [44] restricts y to be a variable in S, this thesis only requires Sx to be syntactically legal, that y
is, y has to be a valid clause. This applies to other mutations involving clauses.

2Some papers indicate fault class domination by an arrow. In contrast, SCRO and SCNO are predicates, and
the theorem states a logical implication.

25

26

Clause Reference Operator

ClauseClause
Conjunction Disjunction

Operator Operator

Figure 5.1: Detectability Relationship between Tests for a Clause Reference Mutation and Tests
for the Corresponding Clause Insertion Mutations.

Corollary 1 Any test case that detects a clause reference mutation for a clause in a predicate
will also detect the clause negation mutation for the same clause.

It must be noted that dP x
y - dP x in Theorem 1 does not guarantee the existence of ax

test for the clause reference mutation. For instance, if P x and P evaluate the same on their y
entire domain, then no test exists for the mutation, even though there may be a test for the
corresponding clause negation mutation. But dP x is universally false in this case, so the theorem y
is still valid. However, whenever there actually is a test case for the clause reference mutation,
that test will detect the clause negation mutation.

Another interesting detectability relationship is between clause negation operator (CNO) and
expression negation operator (ENO).

Theorem 2 If the clause negated in SCNO occurs in the expression negated in SENO, then
SCNO - SENO.

Proof. By Table 5.1, we must establish that, for a predicate P , with a clause x occurring in a
subpredicate E of P , dP x - dP E holds.x E

Rewriting with (4.9), we have

dP dP
((x ≤ x̄) ↔) - ((E ≤ E) ↔)

dx dE

Since the exclusive-or of a predicate with its negation is trivially true, this can be rewritten
as

dP dP
-

dx dE

Since clause x is a subpredicate of E, the theorem follows from Lemma 1. Q.E.D.

Corollary 2 Any test case that detects a clause negation mutation for a clause in a predicate
will also detect an expression negation mutation for an expression in which the clause occurs.

Consider the detectability relationship between the clause reference operator (CRO) and
the two clause insertion operators. Informally, tests for a clause conjunction operator (CCO)
mutation and tests for the corresponding clause disjunction operator (CDO) mutation partition
the set of test cases that detect the corresponding clause reference mutation. Figure 5.1 presents
this relationship. In terms of detection conditions, it means:

1. The disjunction of SCCO and SCDO is equivalent to SCRO .

2. SCCO and SCDO are never satisfied simultaneously.

This is formalized in Theorem 3.

27

Theorem 3 If a clause x is replaced with another clause y in SCRO , and the same clause x is
replaced with x ↔ y in SCCO, and with x ∗ y in SCDO, then

((SCCO ∗ SCDO) + SCRO) ↔ (SCCO ∗ SCDO)

Proof. By Table 5.1, we must establish that, for a predicate P and a clause x occurring in P ,

((dP x ∗ dP x) + dP x) ↔ (dP x ∗ dP x)x/y xvy y x/y xvy

where y is another valid clause different from x.
By (4.9), the detection conditions for CRO, CCO, and CDO are

dP dP
dP x = (x ≤ (x ↔ y)) ↔ = x¯ by (4.2)x/y y ↔

dx dx
dP dP

dP x = (x ≤ (x ∗ y)) ↔ = xy ↔¯ by (4.4)xvy dx dx
dP

dP x = (x ≤ y) ↔ (5.1)y dx

The disjunction of the detection conditions for CCO and CDO is

dP dP dP
dP x

x/y ∗ dP x = (x¯ ∗ ¯) = (x ≤ y) ↔ (5.2)y ↔ xy ↔xvy dx dx dx

Additionally,

dP dP dP
xȳ ↔ xy ↔ = ¯ y ∗ = 1 (5.3)∗ ¯ x ∗ y ∗ x ∗ ¯

dx dx dx

In view of (5.1), (5.2) and (5.3), the Theorem holds. Q.E.D.

Corollary 3 Any test case that detects a clause insertion mutation in a predicate which replaces
a clause x with x ∗ y or with x ↔ y, y is another valid clause, will also detect the clause reference
mutation which replaces the same clause x with y.

Corollary 4 Any test case that detects a clause reference mutation in a predicate which replaces
a clause x with another valid clause y will also detect either the clause conjunction mutation
which replaces the clause x with x ↔ y or the clause disjunction mutation which replaces the
clause x with x ∗ y, but not both.

Putting the results of this section together, Figure 5.2 depicts the hierarchy of tests that
detect various categories of mutation operators in predicates. Note that this hierarchy applies
to arbitrary predicates. It is not restricted to predicates in disjunctive normal form.

28

Expression

Negation

OperatorOperator

Negation

ClauseClause

Reference

Operator

Clause

Conjunction

 Operator

Clause

Disjunction

 Operator

Figure 5.2: Hierarchy of Mutation Operators.

Chapter 6

Applications

The hierarchy in Figure 5.2 is rather general. Why should testing researchers care? This section
presents examples of applying the hierarchy and mutation conditions to specific cases. Sec
tion 6.2 discusses how the results apply to mutations involving Boolean variables, as well as
those involving relational expressions. Section 6.3 explains and discusses previous empirical
observations about other mutation operators including logical connector reference and missing
clause operators. Section 6.4 analyzes the basic meaningful impact strategy [82].

6.1 Form of Specifications

Kuhn’s hierarchy as developed in [44] applies to specifications with formulas in disjunctive normal
form. Since actual specifications are generally not in disjunctive normal form, we originally
proposed to study to what degree the form of specification affects the tests generated. However,
since then we developed the technique that allowed us to prove that Kuhn’s hierarchy applies to
arbitrary predicates, not just those in disjunctive normal form. Therefore, we conclude that the
form of specifications does not affect the applicability of the hierarchy developed in Section 5.

6.2 Comparison of Mutations in Specific Constructs

In this section, we consider application of mutation conditions introduced in Section 4 and the
hierarchy developed in Section 5 to mutations in specific constructs: Boolean formulas and
relational expressions.

Since the results in Section 5 were proved for a more general case of clauses in predicates,
they apply directly to Boolean formulas. These specific applications generalize results in [44, 45]
which were limited to specifications in disjunctive normal form.

While fault classes, and therefore mutations, in relational expressions were thoroughly inves
tigated [28, 74], use of mutation conditions allows us to compare the mutation operators from
another, more formal, perspective. The clause reference mutation operator includes relational
connector reference mutations and off-by-1 mutations. By Corollary 1,

•	 Any test case that detects a relational connector reference mutation for a clause in a
predicate will also detect a clause negation mutation for the same clause.

•	 Any test case that detects an off-by-1 mutation for a clause in a predicate will also detect
a clause negation mutation for the same clause.

For a relational expression, there are four possible relational connector reference mutations
for each of the other relational connectors, as well as two possible off-by-1 mutations. Consider,
for instance, a specification S with a clause E < F , where E and F are arithmetic expressions.

29

30

The four relational connector reference mutations replace E < F with E → F , E > F , E ≥= F ,
1and E = F . The two off-by-1 mutations replace E < F with E < F + 1 and E < F − 1.

Mutation conditions can be used to compare these mutations. The detection condition for an
off-by-1 mutation which replaces E < F with E < F − 1 is

dSE<F = ((E < F) ≤ (E < F − 1)) ↔
dS

E<F−1 d(E < F)
dS

= (E = F − 1) ↔
d(E < F)

since E < F − 1 evaluates to a different value than E < F only when E is equal to F − 1. On the
other hand, the detection condition for a relational connector reference mutation that replaces
E < F with E > F is

dSE<F = ((E < F) ≤ (E > F)) ↔
dS

E>F d(E < F)

Since E < F and E > F are never satisfied simultaneously,

dSE<F = ((E < F) ∗ (E > F)) ↔
dS

E>F d(E < F)
dS

= (E =≥ F) ↔
d(E < F)

Since (E = F − 1) - (E ≥= F), dSE<F - dSE<F
E<F−1 E>F.

It follows that any test case that detects an off-by-1 mutation which replaces a clause E < F
with E < F − 1 will also detect a relational connector mutation which replaces the same clause
with E > F .

In a similar fashion, it is possible to derive a set of detectability relationships between rela
tional connector and off-by-1 mutations for various relational expressions.

6.3 Analysis of Previous Observations

Gopal and Budd [32] note that a logical connector reference operator (LRO) mutation, where
∗ is substituted for ↔ and vice versa, tends to be trivial to detect. Indeed, in view of (4.6), the
detection condition for such a mutation in a specification S = P ∗ Q is

dSPvQ = (P ∗ Q) ≤ (P ↔ Q) = P ≤ Q,P/Q

so this mutation is detected by any test where P and Q evaluate differently. This explains Gopal
and Budd’s observation.

The detection condition for a corresponding missing expression operator (MEO) mutation is

PvQ ¯dS = (P ∗ Q) ≤ P = P ↔ Q,P

PvQ PvQand dS - dS Hence, a test that detects an MEO mutation for an operand of an ∗ P P/Q.
connector will also detect an LRO mutation where the connector is replaced with ↔. A similar
result can be obtained when ↔ is replaced with ∗.

The above does not mean that all LRO mutants are easy to detect. In Section 3.2.2, we
introduced LRO2 mutation operator which replaces ∗ with ≤, ↔ with +, - with +. Consider
an LRO2 mutation where ∗ is replaced with ≤. The detection condition is

PvQdSP→Q = (P ∗ Q) ≤ (P ≤ Q) = P ↔ Q,

1By definition of the relational connector reference operator in Section 3.2.1, we do not replace E < F with
E 2 F , since that is the same as negating the expression.

31

so the mutation is relatively hard to detect. This is reasonable since ∗ differs from ≤ in only one
of four positions of the truth table, while it differs from ↔ in two positions. Similarly, the other
LRO2 mutations are difficult to detect. We evaluate the effectiveness of combining mutation
operators with LRO2 in Section 7.4.

Stuck-at operator (STO) is one of the suboperators of the clause reference operator. There
fore, any test that detects a stuck-at mutation for a clause in a predicate will also detect a clause
negation mutation for the same clause. It was suggested in [44] that missing clause operator
(MCO) mutation can be regarded as a special case of variable reference mutation. However, it
is more appropriate to compare MCO with STO. For instance, if a specification contains a con
junction x ↔ y, an MCO mutant where clause y is omitted is equivalent to an STO mutant where
y is replaced with 1. Similarly, in x ∗ y or x ≤ y, an MCO mutant for clause y is equivalent to
an STO mutant where y is replaced with 0. Implication is a special case. Consider specification
S containing an implication x - y. There are two cases. First, an MCO mutant where clause
x is omitted is equivalent to an STO mutant where x is replaced with 0. Second, the detection
condition for an MCO mutant where y is omitted is

dS dS
dSx-y = ((x - y) ≤ x) ↔ = (̄x ∗ ȳ) ↔ .x dy dy

On the other hand, the detection condition for an STO mutation where y is replaced with 1 is

dS dS
dSy = ((x - y) ≤ (x - 1)) ↔ = xȳ ↔ .1 dy dy

Since xȳ - (̄x ∗ ȳ), dSy - dSx-y .1 x
To summarize, if a test generation strategy guarantees detection of both stuck-at-0 and stuck

at-1 mutations for a clause, it will also guarantee detection of the missing clause mutation for
the same clause.

6.4 On the Basic Meaningful Impact Strategy

In this section, we use mutation conditions to show that the basic meaningful impact strategy [82]
is stronger in that it tests for stuck-at mutations and not variable negation mutations as proposed
by the authors. Weyuker et al. [82] designed the meaningful impact strategy for testing Boolean
formulas in irreducible disjunctive normal form. A formula is said to be in irreducible disjunctive
normal form when none of the formula’s literals or terms can be deleted without altering the
formula’s value for some test case.

We briefly repeat here the relevant definitions. More details are in [82]. Let F be a Boolean
formula in irreducible disjunctive normal form with n variables and m product terms: p1 ∗ p2 ∗
. . . ∗ pm. Each term is a conjunction of literals. Recall that a literal is a single occurrence of a
variable or its negation.

The points of the input space are divided into two categories: true points and false points
are those sets of inputs that cause the formula to evaluate to 1 and 0, respectively. True points
for the term pi are the points of the input space that cause pi to evaluate to 1. The unique true
points for the term pi are the true points for pi which are not true points for any other term pj .
Denote the set of unique true points for pi by Ui.

Let pi,j denote the product-term obtained by complementing the jth literal of the product-
term pi. Denote the set of true points for pi,j by Di,j . Denote the points in Di,j that are false
points for F by Ni,j .

The basic meaningful impact strategy is defined as follows [82]:

1. Select one test point from each nonempty Ui of F .

2. Select one test point from each Ni,j of F .

32

Weyuker et al. [82] claim that the strategy is testing directly for variable negation mutations.
In fact, the strategy is stronger: it is testing for stuck-at mutations.

To show this, we first compute the propagation conditions for a mutation in an arbitrary
term and for a mutation in an arbitrary literal for a specification in disjunctive normal form.
Since F can be rewritten as

pi ∗ (p1 ∗ . . . ∗ pi−1 ∗ pi+1 . . . ∗ pm),

it follows that the propagation condition for a mutation in pi is

dF
= p1 ∗ . . . pi−1 ∗ pi+1 ∗ . . . pm

dpi

= p1 ↔ . . . pi−1 ↔ pi+1 ↔ . . . pm (6.1)

Let pi = l1 . . . lk, where lj denotes the jth literal in pi. Then F can be rewritten as

lj l1 . . . lj−1lj+1 . . . lk ∗ (p1 ∗ . . . ∗ pi−1 ∗ pi+1 . . . ∗ pm)

The propagation condition for a mutation in lj is

dF dF
= l1 . . . lj−1lj+1 . . . lk ↔ (6.2)

dlj dpi

In view of (6.1), the detection condition for a stuck-at-0 mutation which replaces any literal
in the term pi with 0 is

dF
(pi ≤ 0) ↔ = pi ↔ p1 ↔ . . . pi−1 ↔ pi+1 ↔ . . . pm

dpi

This defines the set Ui of unique true points for the term pi.
In view of (6.2), the detection condition for a stuck-at-1 mutation which replaces literal lj in

the term pi with 1 is
dF dF

(lj ≤ 1) ↔ = lj l1 · · · lj−1lj+1 · · · lk ↔
dlj dpi

This defines the set Ni,j , since lj l1 · · · lj−1lj+1 · · · lk defines the set Di,j of true points for pi,j .
The basic meaningful impact strategy happens to also detect the variable negation mutations

because, as we observed in Section 6.3, test cases that detect stuck-at mutations will also detect
variable negation mutations.

6.5 Clause Insertion Operator and Pairwise Testing

In this section we theoretically compare clause insertion mutation operator (CIO) and pairwise
testing for Boolean specifications. We show that a test case that detects a CIO mutation involving
a pair of variables will also cover a pair of value assignments for that pair of variables.

CIO replaces a clause a with a ↔ b, a ∗ b, a ↔ ̄b, and a ∗ ̄b for every other clause b. In general,
this could result in a huge number of mutations, so the applicability of this operator is limited.
However, the mutation operator is clearly defined for Boolean specifications.

Consider a pair of variables x and y. Consider a clause conjunction operator (CCO) mutation
which replaces an occurrence of x with x ↔ y. By Table 5.1, the detection condition for this
mutation is

dS dS
dSx

x/y = (x ≤ (x ↔ y)) = xȳ
dx dx

It follows that
dSx - x¯ (6.3)y, x/y

33

so a test that detects dSx will also cover a pair (x.1, y.0) 2 .x/y
Similarly, consider a clause disjunction operator (CDO) mutation which replaces an occur

rence of y with y ∗ x. By Table 5.1, the detection condition for this mutation is

dS dS
dSy = (y ≤ (y ∗ x)) ¯yvx	 = yx

dy dy

It follows that
dSy

yvx y, - x¯

so a test that detects dSy
yvx will also cover a pair (x.1, y.0). Similar results can be shown for

other possible value pairs. We summarize them in Theorem 4.

Theorem 4 In a Boolean specification, let x and y be two different variables.

1. Any test that detects a CCO mutation where an occurrence of	 x is replaced with x ↔ y or
a CDO mutation where an occurrence of y is replaced with x ∗ y, will also cover a pair
(x.1, y.0).

2. Any test that detects a CCO mutation where an occurrence of	 x is replaced with x ↔ ȳ or
a CCO mutation where an occurrence of y is replaced with x̄ ↔ y, will also cover a pair
(x.1, y.1).

3. Any test that detects a CDO mutation where an occurrence of x is replaced with x ∗ ȳ or
a CDO mutation where an occurrence of y is replaced with x̄ ∗ y, will also cover a pair
(x.0, y.0).

We must note that, for instance, (6.3) does not guarantee the existence of a test for the clause
conjunction mutation. If the detection condition for the mutation is universally false, then no
test exists for the mutation. Our experiments, detailed in Section 7.5, show that clause insertion
mutation operator achieves very high pairwise coverage.

6.6 Limitations of Theoretical Comparison

The hierarchical detectability relationship between mutation operators does not always guarantee
that the harder-to-detect operator is more effective than the easier-to-detect operator. The
following describes such situations.

•	 A mutation operator generates no mutants.

Consider operand reference operator (ORO) and clause negation operator (CNO). Since
ORO is a suboperator of clause reference operator (CRO), it follows from Corollary 1 that
ORO is harder to detect than CNO. However, if a system has only one variable, operand
reference operator (ORO) does not generate any mutants, whereas clause negation operator
(CNO) generates a mutant where the variable occurrence is negated. This mutant is likely
to produce a test case, whereas ORO produces no test cases. This is unlikely to happen
in specifications of reasonable size.

•	 No test exists for a mutant.

Again, consider ORO and CNO mutation operators. Consider a specification S = a(a + b).
The detection condition for a CNO mutant where the first occurrence of a is negated is
dSa = (a + b), and a possible test is (a, b) = (1, 1). However, the detection condition for an a
ORO mutant where the first occurrence of a is replaced with b is dSa = (a≤b)(a + b) = 0, b

2This notation is explained in Section 2.1.3.

34

in other words, the detection condition is universally false, so this mutant is equivalent to
the original and does not produce any test.

As we mentioned in Section 5, the hierarchical detectability relationship between mutation
operators does not guarantee the existence of a test for a harder-to-detect mutation. It
only guarantees that if there is a test case for a harder-to-detect mutation, it will detect
the corresponding easier-to-detect mutation.

We can augment the harder-to-detect mutation operator in the following way. First apply
the harder-to-detect mutation operator and produce tests for those mutants. Whenever a
harder-to-detect mutant is equivalent to the original, generate the corresponding mutant
from the easier-to-detect mutation operator in the hierarchy and produce a test for that
mutant. This approach was suggested by Lau and Yu [45]. It can guarantee detection of
the mutants from the easier-to-detect mutation operator.

Note that the specification S = a(a + b), as well as other examples that we were able to
come up with, is rather unnatural: it is equivalent to ab. Since the same test is usually
derived from a number of mutants, in practice it is unlikely that a test set that detects all
mutants from the harder-to-detect mutation operator does not detect mutants from the
easier-to-detect operator.

•	 An easier-to-detect operator produces more tests.

Consider CNO and expression negation operator (ENO). By corollary 2, CNO is harder
to detect than ENO. ENO generates all the mutants that CNO does, but also additional
mutants. Consider a specification S = a ∗ b. There are two CNO mutants. The detection
condition for a CNO mutant where a is negated is

= (a ∗ b) ≤ (ā ∗ b) = b̄, dSa
a

and a possible test is (a, b) = (1, 0). Similarly,

dSb = (a ∗ b) ≤ (a ∗ ̄b) = ā,
b

and a possible test is (a, b) = (0, 1). So CNO produces two tests. ENO generates the
two CNO mutants and an additional mutant where the whole expression is replaced. The
detection condition for this mutant is universally true, any test will satisfy it. The test
generation process may choose to produce a test which is different from the two tests
produced by the CNO mutants, so that ENO produces three tests. While the test set
produced by ENO is not more effective at detecting the expression negation mutants than
the test set produced by CNO, it may be more effective at detecting mutations produced
by other mutation operators.

The degree of difference in effectiveness can be studied empirically. We show in Section 7
that CNO is almost as effective in practice as ENO while generating far fewer mutants.

For some mutation operators, we can prove that whenever a mutant from an easier-to-detect
mutation operator produces a test, the corresponding mutant from a harder-to-detect operator is
guaranteed to produce a test. Consider stuck-at-operator (STO) and CNO. STO is a suboperator
of CRO, so by Corollary 1, STO is harder to detect than CNO. The detection condition for stuck
at-0 mutation which replaces clause x with 0 in specification S is

dS dS
dSx

0 = (x ≤ 0) ↔ = x .
dx dx

Similarly, the detection condition for the corresponding stuck-at-1 mutation is

dS
dSx

1 = x̄ .
dx

35

Assume that there is a test for the corresponding CNO, that is,

dS
dSx

x =
dx

dS
is not universally false. Since at least one of x and x̄ will satisfy , at least one of dS

dx
x
0 and

dSx
1 is not universally false. Therefore, there is a test for either stuck-at-0 or stuck-at-1 fault.

This implies that the tests for STO are adequate for detecting CNO mutants.

Chapter 7

Empirical Comparison of
Mutation Operators

Aside from the special situations listed in Section 6.6, the theoretical comparison does not
provide a quantitative measure of the differences between the mutation operators. Additionally,
the detection conditions for some mutation operators are incomparable. In this section, we
empirically compare the effectiveness and cost of mutation operators and sets of operators by
evaluating their coverage and the number of mutants they generate.

We developed a tool for generating mutations of SMV specifications, using the SMV parser.
It allows us to selectively apply mutation operators. Resulting individual mutations may be
left in individual SMV files or combined into a single file for faster model checking. The tool is
described in Appendix A.

We now describe the experimental base and also provide some details of experiment setup.

7.1 Cruise Control

Many variations of the automobile cruise control specification exist in the literature [41, 5, 4].
We use the specification from [5]. This version of the specification does not model throttle and
has four modes: Off - ignition is off, Inactive - ignition is on, cruise control system is off, Cruise
- cruise control system is controlling the speed, Override - cruise control system is on but not
controlling the speed. The system starts in Off.

The system’s environmental conditions indicate whether the automobile’s ignition is on (Ig
nited), the engine is running (EngRun), the automobile is going too fast to be controlled (Toofast),
the brake pedal is being pressed (Brake), and whether the cruise control level is set to Activate,
Deactivate, or Resume.

Each row in Table 7.1 specifies a conditioned event that activates a transition from the mode
on the left to the mode on the right. A table entry of @T or @F under a column header C
represents a triggering event @T(C) or @F(C). “@T(C)” means C must change from false to
true for the transition to be taken, and “@F(C)” means C must change from true to false. A
table entry of t under a column header C means the transition can only be taken if C is true.
Similarly, an entry of f means it can only be taken if C is false. If the value of a condition C
does not affect a conditioned event, the table entry is marked with a hyphen “-” (“don’t care”
condition).

The SMV specification of cruise control was derived in [3]. For example, row 8 of Table 7.1
states that if cruise control is in mode Cruise, when Ignited is true, EngRun is true, Toofast is
false, and if Deactivate changes from false to true, cruise control will change into mode Override.
In the SMV transition model, this is represented as follows:

36

37

Previous Igni- Eng- Too- Brake Acti- Deac- Resume New
Mode ted Run fast vate tivate Mode

Off @T - - - - - - Inactive
Inactive @F - - - - - - Off

t t - f @T - - Cruise
Cruise @F - - - - - - Off

t @F - - - - - Inactive
t - @T - - - -
t t f @T - - - Override
t t f - - @T -

Override @F - - - - - - Off
t @F - - - - - Inactive
t t - f @T - - Cruise
t t - f - - @T

Table 7.1: SCR Specifications for the Cruise Control System.

next(CruiseControl) := case
...
CruiseControl=Cruise & Ignited & EngRun & !Toofast &
!(Enum1=Deactivate) & next(Enum1)=Deactivate : Override;
...

esac;

Since the cruise control level can be set to only one value at a time, the specification has a
scalar variable Enum1 with domain: {Activate, Deactivate, Resume}. The guard in the above
guarded command is reflected into temporal logic as follows:

PCruiseControl=Cruise & PIgnited & PEngRun & !PToofast &
!(PEnum1=Deactivate) & Enum1=Deactivate

Ammann et. al [3] introduced extra variables, such as PCruiseControl, Pignited, representing
the values from the previous state, in order to reflect the triggering events in temporal logic.
Recall that a triggering event specifies two values: a before-value and an after-value.

7.1.1 Reflection Details

The case structure for CruiseControl variable has 12 guarded commands, one for each row of
Table 7.1. We start by making the targets of these commands pairwise disjoint. This involves
combining the guarded commands which have the same targets. Since CruiseControl has four
modes, we get four guarded commands. We then expound to recast the guards to be a partition.
Recall that expoundment is a process that makes implicit parts of a specification explicit.

Consider the transitions that lead to mode Off. Rows 2, 4, and 9 of Table 7.1 explicitly
describe the transitions from the other 3 modes to mode Off. All of the three transitions have
the same triggering event: changing the value of Ignited to False, the transitions do not depend
on the value of other environmental conditions. For example, the guard for transition from
Override to Off is

PCruiseControl=Override & PIgnited & !Ignited

There is also an implicit transition from Off to itself. CruiseControl remains in mode Off un
less the value of Ignited changes to True. After combining the guards by OR-ing them, then
simplifying, we get the following formula for guard1:

PIgnited & !Ignited | PCruiseControl=Off & (PIgnited | !Ignited)

Then the reflected formula to be mutated is

38

SPEC AG AX (guard1 <-> (PIgnited & !Ignited |
PCruiseControl=Off & (PIgnited | !Ignited)))

The next step temporal operator (AX) is needed to avoid generating counterexamples which
pinpoint an inconsistency in the initial step where the before-values for variables are meaningless.
We then apply mutation operators to the right hand side of the equivalence connector. The
guards for transitions to the other three modes are derived similarly. Note that we do not
modify the state machine itself.

7.2 Other Specifications

Cruise control lacks certain features which we would like to study. To broaden the experimental
base, we choose four additional specifications with the following features:

•	 Three specifications have relational expressions.

•	 Trusted OS is a large specification.

•	 TCAS/Siemens has an internal state which is large relative to the number of inputs and
outputs.

•	 TCAS II/Boolean is a set of Boolean specifications which was studied extensively in testing
research.

For each sample specification, we apply guard reflection whenever possible. We also apply
direct reflection to the cases where guard reflection is not possible or useful, such as DEFINE
declarations which do not contain case statements. Guard reflection and direct reflection are
explained in Section 2.6.1.

Safety Injection

Safety injection [7] describes a part of a nuclear reactor safety system. If the water pressure
is too low, extra water is injected, unless overridden. The system is overridden depending on
the pressure, whether the override is blocked, and whether it is reset. The SMV specification of
safety injection is given in [3].

TCAS/Siemens

TCAS, aircraft collision avoidance, is a part of a set of C programs that came originally from
Siemens Corporate Research [40] and was subsequently modified by Rothermel and Harrold [72].
These programs are used in research on program testing, so they come with extensive test suites
and sets of faulty versions. There are 12 input variables specifying parameters of own aircraft
and another aircraft and one output variable, alt_sep, a resolution advisory to maintain safe
altitude separation between the two aircrafts. The program computes intermediate values and
prints alt_sep to the standard output.

The program has minimal documentation, and we wrote a formal specification for it.

Trusted OS

This is a portion of a trusted operating system [87]. The simplified model consists of one process
and one file. Files have an owner, a group, and a security level. Files also have permission bits
to allow a file to be read or written by the owner, anyone in the group, and others. Processes
have a user and group, and may have privileges to raise or lower the security level of a file. The
experiment concentrated on testing a command for changing the security level of a file.

39

ORO Operand Reference Operator
STO Stuck-At Operator
MEO Missing Expression Operator
MCO Missing Clause Operator
LRO Logical Connector Reference Operator
ENO Expression Negation Operator
CNO Clause Negation Operator
ASO Associative Shift Operator
OFO Off-By-1 Operator
RRO Relational Connector Reference Operator

Table 7.2: Mutation Operators.

U - I Unique
Mutants Mutants Traces

Cruise Control 1104 384 51
Safety Injection 615 135 22
TCAS/Siemens 1020 448 82
Trusted OS 7224 2276 422

Table 7.3: Number of Mutants and Traces for the State-based Specifications.

TCAS II/Boolean

Weyuker et. al [82] selected 20 transition specifications from the specification of TCAS II, an
aircraft collision avoidance system described by Leveson et. al [46]. Figure B.1 in Appendix B
lists these Boolean specifications. We chose to include these specifications in our study although
they are not state-based specifications. Boolean specifications are often used to specify complex
systems, and TCAS II/Boolean has been studied by many researchers [82, 16, 42].

7.3 Evaluation of Mutation Operators

We ran experiments on the sample SMV specifications to compare the mutation operators in
terms of the number of mutants and test cases produced and the specification coverage. We list
mutation operators in Table 7.2. These operators, as well as LRO1 and LRO2, are defined in
Section 3.2.

Table 7.3 gives the total number of mutants, the number of semantically unique, inconsistent
(U-I) mutants, and the number of unique test cases or traces generated by applying all mutation
operators to the sample specifications. Since CNO mutants are a subset of ENO mutants, and
MCO mutants are a subset of MEO mutants, we do not include CNO and MCO mutants in the
total number of mutants.

We use the specification-based coverage metric introduced in [2]. We exclude all consistent
mutants. We also exclude all but one copy of inconsistent mutants which are semantic duplicates
of other mutants, e.g., those which always evaluate to the same result. Let N be the number of
semantically unique, inconsistent (U-I) mutants generated by all operators for a given example
(the number of U-I mutants is much smaller than the total number of mutants, see Table 7.3).
We turn the unique traces from each operator into constrained finite state machines, then SMV
finds which mutants are killed. Let k be the number of mutants killed. The coverage is k .

N
We present details of experiments in Tables 7.4, 7.5, 7.6, and 7.7. As in Table 7.3, “Mutants”

is the total number of mutants generated by each operator, including consistent and duplicate
mutants. “UTs” is the number of unique traces generated by SMV after duplicate traces and
prefixes are removed.

40

Operator Mutants UTs Coverage
ORO 442 34 95.8
STO 148 29 96.1
MEO 132 33 96.9
MCO 70 26 94.0
LRO 198 32 94.8
LRO1 132 24 92.7
LRO2 66 18 78.4
ENO 140 20 82.8
CNO 74 16 82.0
ASO 44 19 90.1

Table 7.4: Cruise Control Scores of Mutation Operators.

Operator Mutants UTs Coverage
ORO 469 73 97.8
STO 134 28 92.9
MEO 80 24 91.5
MCO 52 21 87.3
LRO 120 23 90.2
LRO1 80 14 83.5
LRO2 40 14 77.5
ENO 116 19 82.1
CNO 67 19 82.1
ASO 11 5 54.7
OFO 26 9 56.2
RRO 56 18 64.7

Table 7.5: TCAS/Siemens Scores of Mutation Operators.

Results for RRO and OFO do not appear for Cruise Control, since it does not have any
relational expressions.

Figure 7.1 shows mutation coverage plotted against percentage of total mutants. The data
points represent averages for the four state-based specifications. Figure 7.1(a) presents the results
for all mutation operators, while Figure 7.1(b) provides a magnified view of the results for the
mutation operators with average mutation coverage ranging from 78.03% for LRO2 to 90.88%
for STO. “Utopia” marks the best outcome: 100% coverage at no cost. All plots in this thesis
were generated using Dataplot [27].

Discussion

As shown in Figure 7.1, operand reference operator (ORO) generates by far the largest number of
mutants, but provides the best coverage of any single operator. Stuck-at operator (STO), missing
expression operator (MEO), and logical connector reference operator (LRO) provide second best
coverage while generating far fewer mutants. Missing clause operator (MCO) provides less
coverage while generating even fewer mutants. Clause negation operator (CNO) and expression
negation operator (ENO) get less coverage than MCO, while ENO generates many more mutants.
Several other operators generate very few mutants, and their coverage is low. We consider LRO2

further in Section 7.4.
To explain why ORO generates far more mutants than any other single operator, we note

that if the number of atoms (variables and constants) in a specification is V and the number of
value references is R, ORO results in O(V * R) mutants, whereas CNO, LRO, MCO, STO, ASO

41

Operator Mutants UTs Coverage
ORO 140 11 90.4
STO 82 9 88.9
MEO 74 9 88.9
MCO 37 6 81.5
LRO 111 9 88.9
LRO1 74 6 83.0
LRO2 37 5 83.0
ENO 78 7 83.7
CNO 41 7 83.7
ASO 22 5 80.7
OFO 36 7 67.4
RRO 72 8 66.7

Table 7.6: Safety Injection Scores of Mutation Operators.

Operator Mutants UTs Coverage
ORO 3949 373 98.2
STO 696 94 85.7
MEO 614 71 81.5
MCO 322 55 76.5
LRO 921 114 85.0
LRO1 614 71 82.0
LRO2 307 74 73.3
ENO 671 59 76.0
CNO 348 59 76.0
ASO 81 19 53.5
OFO 134 24 56.8
RRO 88 16 45.5

Table 7.7: Trusted OS Scores of Mutation Operators.

42

100

95

90

85

80

75

70

65

60

55

0 10 20 30 40 50

UTOPIA

ORO

STO

LRO

MCO

MEO

ENOCNO

RRO

OFO

ASO

LRO

LRO

M
U

T
A

T
IO

N
 C

O
V

E
R

A
G

E
M

U
T

A
T

IO
N

 C
O

V
E

R
A

G
E

M

U
T

A
T

IO
N

 C
O

V
E

R
A

G
E

PERCENTAGE OF TOTAL MUTANTS

(a) All Operators

9595
UTOPIA

00 55 1010 1515 2020

9090

8585

8080

7575

PERCENTAGE OF TOTAL MUTANTSPERCENTAGE OF TOTAL MUTANTS

(b) Some Operators (Magnified View)

Figure 7.1: Cost-effectiveness of Mutation Operators (Average for the State-based Specifica
tions).

43

and RRO result in O(R) mutants.
Cruise control has an unusually high coverage for ASO. The reason is that the reflected CTL

formulas are relatively long and contain a large number of logical connectors and parenthesis,
so that there are many ASO mutants. ASO often generates mutants which are hard to detect;
however, for most specifications it generates very few mutants.

In [10], STO, CNO, and ENO had similar coverage. The reason for this discrepancy is the
use of direct reflection in [10], as opposed to guard reflection in this study. Direct reflection
tends to disfavor STO. Consider the following CTL formula produced by direct reflection:

AG (x & y -> AX (w = 1))

Stuck-at-0 mutation of x or y will result in a mutant which is always consistent with a state
machine. In general, only the mutants where the left hand side of implication is true may produce
counterexamples. Guard reflection does not have this limitation.

As we explained in Section 6.6, the hierarchical detectability relationship between mutation
operators does not always guarantee that the harder-to-detect operator is more effective than
the easier-to-detect operator. For instance, while CNO is harder to detect than ENO, the
latter generates more mutants and therefore may produce produce more tests. However, the
experimental results show that this has only minimal impact. In practice, there are very few
cases where CNO cannot detect a mutant which ENO can detect.

7.4 Evaluation of Mutation Operator Sets

We are interested in finding sets of operators which improve upon the coverage of corresponding
individual operators without generating too many mutants.

As we showed in Section 6.3, an LRO2 mutation is difficult to detect. (Recall that LRO2

replaces ∗ with ≤, ↔ with +, - with +.) Truth tables provide an intuitive explanation for
such a selection. Consider a specification S = P ∗ Q. Table 7.8 presents its truth values in
terms of P and Q; it also gives the truth values for 4 functions each differing from S in exactly
one truth value. The last 3 columns could be produced by several semantically close mutants.
For example, stuck-at-0 operator which replaces Q with 0 produces the same mutant as missing
expression operator which omits Q. However, it is hard to think of any other mutation operator
that produces the same truth values as P ≤ Q. This uniqueness suggests that LRO2 will be a
useful addition to other mutation operators.

P Q P ∗ Q P ≤ Q P Q 1 ∗ Q
1
0
1
0

1
1
0
0

1
1
1
0

0
1
1
0

1
0
1
0

1
1
0
0

1
1
1
1

Table 7.8: Truth values for P ∗ Q and its Close Mutants.

To compare the combinations of mutation operators, we evaluate the specification-based cov
erage of resulting test sets using the mutation coverage metric. We present details of experiments
in Tables 7.9, 7.10, 7.11, and 7.12. The column names are the same as in corresponding Tables
for mutation operators in Section 7.3. LRO already includes LRO2 operator so its results are
unchanged from Section 7.3.

Figure 7.2 shows mutation coverage of each mutation operator set plotted against its percent
age of total mutants. The data points represent averages for the four state-based specifications.

In Table 7.13, we present average mutation coverage of individual mutation operators and
mutation operator sets for these specifications. Coverage of ORL+, which is not shown in Ta
ble 7.13, is 99.5%. Additionally, Figure 7.3 visually compares the average mutation coverage of

44

Operator Set Mutants UTs Coverage
ORL+ 508 45 98.4
ORL 508 45 98.4
STL 214 42 98.4
MEL 198 42 98.4
MCL 136 39 96.6
LRO 198 32 94.8
ENL 206 27 92.5
CNL 140 27 92.5
ASL 110 28 93.8
OFL 66 18 78.4
RRL 66 18 78.4

Table 7.9: Cruise Control Scores of Mutation Operator Sets.

Operator Set Mutants UTs Coverage
ORL+ 591 81 99.8
ORL 509 78 98.9
STL 174 36 95.1
MEL 120 32 94.0
MCL 92 30 92.0
LRO 120 23 90.2
ENL 156 28 92.0
CNL 107 28 92.0
ASL 51 17 80.1
OFL 66 20 79.7
RRL 96 26 82.4

Table 7.10: TCAS/Siemens Scores of Mutation Operator Sets.

Operator Set Mutants UTs Coverage
ORL+ 285 22 100.0
ORL 177 14 91.8
STL 119 11 90.4
MEL 111 11 90.4
MCL 74 10 88.2
LRO 111 9 88.9
ENL 115 9 88.9
CNL 78 9 88.9
ASL 59 9 89.6
OFL 73 10 88.9
RRL 109 11 88.2

Table 7.11: Safety Injection Scores of Mutation Operator Sets.

45

Operator Set Mutants UTs Coverage
ORL+ 4478 419 99.9
ORL 4256 417 99.9
STL 1003 139 88.9
MEL 921 119 85.8
MCL 629 109 82.8
LRO 921 114 85.0
ENL 978 111 85.0
CNL 655 111 85.0
ASL 388 85 77.1
OFL 441 87 76.5
RRL 395 83 74.2

Table 7.12: Trusted OS Scores of Mutation Operator Sets.

the mutation operator sets and their corresponding individual mutation operators. For example,
it shows, side-by-side, coverage of the mutation operator set RRL and its corresponding individ
ual operator RRO. Note that ORO is an individual operator that corresponds to both ORL and
ORL+ .

100100

M
U

T
A

T
IO

N
 C

O
V

E
R

A
G

E
M

U
T

A
T

IO
N

 C
O

V
E

R
A

G
E

9595

9090

8585

8080

7575

PERCENTAGE OF TOTAL MUTANTSPERCENTAGE OF TOTAL MUTANTS

UTOPIA

00 1010 2020 3030 4040 5050 6060

Figure 7.2: Cost-effectiveness of Mutation Operator Sets (Average for the State-based Specifi
cations).

We also evaluated mutation coverage for the set of 20 specifications from TCAS II/Boolean.
In the case of Boolean specification, the action of mutation operators is simpler, for example,
ORO replaces a variable occurrence with another variable. In Table 7.14, we present aver
age mutation coverage of individual mutation operators and mutation operator sets for TCAS
II/Boolean specifications. The details for each individual specification as well as the averages
can be found in Appendix B.

Discussion

Combining an operator with LRO2 increases its effectiveness with a modest increase in the
number of mutants generated. ORL and ORL+ generate the biggest number of mutants and
provide excellent coverage. ORL+ always provides perfect or nearly perfect coverage. STL and

46

Figure 7.3: Average Mutation Scores of Operator Sets and Corresponding Individual Operators
for the State-based Specifications.

ORO STO MEO MCO LRO ENO CNO ASO OFO RRO
95.5 90.9 89.7 84.8 89.7 81.2 81.0 69.8 60.1 59.0

ORL STL MEL MCL LRO ENL CNL ASL OFL RRL
97.3 93.2 92.1 89.9 89.7 89.6 89.6 85.1 80.9 80.8

Table 7.13: Average Mutation Coverage of Mutation Operators and Sets for the State-based
Specifications.

MEL get second best coverage while generating far fewer mutants. Combining with LRO2 results
in a more pronounced improvement for the less effective operators. For example, while the gap
in effectiveness between missing clause operator (MCO) and clause negation operator (CNO) is
moderate, the gap between MCL and CNL is very small.

The results for the TCAS II/Boolean specifications differ slightly from the results for the
state-based specifications, however, the relative merits of the mutation operators are similar.

7.5 Pairwise Coverage

In the previous sections, we used mutation coverage to compare mutation operators and operator
sets. In this section, we compare them using an approximation of pairwise coverage to get an
independent indication of their quality.

Pairwise testing was described in Section 2.1.3. We introduce an approximation of pairwise
coverage for SMV specifications here. Let x and y be two variables in an SMV specification. Let
the domain of x have values c1 . . . cn, the domain of y have values d1 . . . dm, where n > 1, m > 1.

ORO STO MEO MCO LRO ENO CNO ASO
95.9 93.7 94.2 81.1 80.9 77.1 75.6 65.0

ORL STL MEL MCL LRO ENL CNL ASL
99.7 97.6 97.6 87.4 80.9 84.0 84.0 81.8

Table 7.14: Average Mutation Coverage of Mutation Operators and Sets for TCAS II/Boolean.

47

Then the following set of requirements will cover all combinations of values for x and y:

AG(!(x = ci)|!(y = dj)),

where 1 → i → n, 1 → j → m.
Note that if a variable is of type Boolean, its domain has two values, 0 and 1. For integer

variables, it is possible to get a very large number of requirements; partitioning the domain
would be necessary.

Let N be the total number of combinations of valid values for all pairs of variables. Let k be
kthe number of combinations covered by a test set. The pairwise coverage of the test set is .
N

In the case of state-based specifications, the same variable at different time steps can be
considered as different variables. This implies that to cover all variables, we need to give tests
that assign all possible values to all variables at all steps. However, the number of time steps
can be infinite and any limit on the number of steps is arbitrary. In designing the technique of
reflection, Ammann et. al [3] introduced extra variables representing the values from a previous
state. Therefore, the sample SMV specifications contain sets of state variables for two time
steps. Accordingly, our approximation of pairwise coverage is a strong measure as it requires
tests for all combinations of every pair of variables for two time steps.

In Table 7.15, we present pairwise coverage of all mutation operators, individual mutation
operators, and mutation operator sets for cruise control example.

All ORO STO MEO MCO LRO ENO CNO ASO
98.2 95.6 93.8 95.1 93.0 95.4 77.6 75.8 88.7

ORL STL MEL MCL LRO ENL CNL ASL
97.7 96.4 96.4 95.6 95.4 93.3 93.3 94.6

Table 7.15: Pairwise Coverage of Mutation Operators and Sets for Cruise Control.

We also evaluated pairwise coverage for the set of 20 specifications from TCAS II/Boolean. In
Table 7.16, we present average pairwise coverage of all mutation operators, individual mutation
operators, and mutation operator sets for TCAS II/Boolean specifications. The details for each
individual specification can be found in Appendix B.

All ORO STO MEO MCO LRO ENO CNO ASO
94.4 91.8 81.2 81.9 79.5 82.8 70.7 69.0 65.2

ORL STL MEL MCL LRO ENL CNL ASL
94.0 86.7 86.7 86.3 82.8 83.8 83.8 82.9

Table 7.16: Average Pairwise Coverage of Mutation Operators and Sets for TCAS II/Boolean.

Kobayashi et. al [42] performed the reverse experiment, where tests are generated using
several test generation techniques, including pairwise testing, and then evaluated using mutation
coverage. They generated tests for the 20 transition specifications in TCAS II/Boolean. They
used the mutation operators ORO, ENO, LRO, and ASO for the mutation coverage metric.
Their experiments show that pairwise testing gets low mutation coverage. We must note that
the number of tests generated by pairwise testing (cost of testing) is also low.

Discussion

Specification-based mutation analysis gets high pairwise coverage. This implies that mutation
generates tests which tend to cover the entire domain of the system. This gives us more confidence
in specification-based mutation.

48

As Tables 7.15 and 7.16 show, ORL gets pairwise coverage which is almost as high as that
of all operators combined. The relative pairwise coverage of different mutation operators follows
the pattern that we noticed earlier for their relative mutation coverage.

In the next section, we point out a mutation operator that can achieve almost perfect pairwise
coverage.

7.6 Getting Almost Perfect Pairwise Coverage

In Section 6.5, we theoretically compared clause insertion operator (CIO) and pairwise testing
for Boolean specifications. In particular, if a test detects a CIO mutation, it will also cover a
pair of value assignments for the corresponding pair of variables. However, there is no guarantee
that such a test for a particular CIO mutation exists. We evaluate the pairwise coverage of CIO
for the 20 Boolean specifications from TCAS II/Boolean.

Table B.8 in Appendix B presents the number of mutants, number of tests and pairwise
coverage for clause insertion mutation operator for every specification as well as the averages.
As noted above, this operator generates a very large number of mutants and a large number of
tests. The perfect pairwise coverage is achieved for 9 out of 20 specifications, while the average
coverage is 98.4%.

One of the specifications, for which the perfect pairwise coverage was not achieved, is speci
fication number 20 (see Figure B.1):

S = ēf ḡā(bc ∗ ̄bd)

The following pairs are not covered by the CIO adequate test set:

(a.1, e.1), (a.1, f.0), (a.1, g.1), (e.1, f.0), (e.1, g.1), (f.0, g.1)

Consider the pair (a.1, e.1). There is one occurrence of a and one occurrence of e in the
specification. This corresponds to case 2 of Theorem 4. The detection condition for the clause
conjunction operator mutation where e is replaced with e ↔ ā is

dSe = eafḡā(bc ∗ ̄bd) = 0,e/ā

so there is no test for this mutation. Similarly, there is no test for the CCO mutation where a
is replaced with a ↔ ē.

7.7 Summary

We evaluated the relative merits of mutation operators and combinations of mutation operators
using mutation coverage and pairwise coverage. The effectiveness of operators depends partly on
the form of the temporal logic formulas, in particular, having longer formulas with more logical
connectors tends to increase the relative effectiveness of associative shift operator (ASO) and
logical connector reference operator (LRO). The experimental results support our hypothesis
that even though the hierarchy of mutation operators proved in Section 5 does not generally
imply subsumption, harder-to-detect mutation operators generate tests which are more effective
than those generated by easier-to-detect mutation operators.

We found that combinations of operators proposed in Section 3.3 are considerably more
effective than the corresponding individual mutation operators with only a moderate increase in
the number of mutants generated. ORL+ gets the best coverage but generates a lot of mutants.
MEL and STL have good coverage and generate far fewer mutants, so we suggest their use as
an alternative to ORL+ when the latter is prohibitively expensive.

The mutation operators get good pairwise coverage. Clause insertion operator (CIO) gets
almost perfect pairwise coverage but generates a very large number of mutants. Now we turn
our attention to the use of specification mutation for testing programs.

Chapter 8

Guaranteeing Fault Visibility

Specification-based testing is a black-box technique, that is, it assumes that the code is not
known. Thus, failures in the code can only be detected in external responses. While a test
produced using specification-based mutation testing will catch the corresponding failure in some
state, there is no guarantee that the test will cause a visible failure. This reduces the usefulness
of a mutation-adequate test suite produced using reflection, for example. We describe a method
producing tests that guarantee fault visibility.

8.1 State Machine (SM) Duplication

Suppose a model checker compares the external behavior of the original and mutated state
machines. Any counterexamples produced must exhibit failures, that is, inputs must be chosen
to manifest differences in the outputs. To facilitate this comparison, we begin by duplicating the
state machine and insuring that the duplicate always takes the same transition as the original.
Then we can mutate the duplicate to implement the mutation testing criterion.

More formally, let S M be the description of the original state machine. Let S Md be a
duplicate of S M containing a mutation, or syntactic change. S M and S Md have separate sets
of output variables. We combine the two machines into a single state machine S M + . We then
assert that the values of the outputs of S M and S Md are identical over S M + . If S Md has an
observable fault, the model checker will produce a counterexample leading to the state where
S M and S Md differ in a value for the output.

From that counterexample, we can construct a test case containing values for inputs and the
expected values for the outputs from the original state machine, S M .

8.2 Handling Nondeterminism

If the specification allows nondeterministic behavior, the expected outputs might not be adequate
as an oracle. Nevertheless, the tests are expected to cause some faulty implementations to exhibit
failures.

If there are any nondeterministic transitions in the original state machine, S M and a naively
duplicated S Md embedded in S M + are allowed to make different choices. For example, the
statement in Figure 8.1 means that the next value for var may be either 1 or 2 if condition is
true.

Nondeterminism is expressed in the state machine description language of SMV by giving
a set of values for the result of an expression. When a variable is assigned a set of values, all
possible values are explored independently of each other. If S M is duplicated naively, SMV
could provide a counterexample that chooses one value of a variable in S M and another value
of the corresponding variable in S Md, that is, the “difference” arises from accidental differences

49

50

next(var) := case

condition : {1, 2};

1 : 0;

esac;

Figure 8.1: Nondeterminism in SMV

or differences in execution, not from semantic differences. We must force S M and S Md to make
the same choices when they have a nondeterministic choice. We achieve this by declaring a new
variable globally for each nondeterministic choice. We modify both S M and S Md to choose
depending on this common global variable.

For the assignment statement in Figure 8.1, we declare a common unconstrained variable:
coin : {1, 2};. We then modify both S M and S Md to have this statement:

next(var) := case

condition : coin;

1 : 0;

esac;

While this method is general, it is excessive for variables without explicit transition, such as
inputs: there are still no guards or formulas to mutate. In this case, we can simply move decla
rations of such variables into the main module and pass them to S M and S Md as parameters.

8.3 An Illustrative Example

We use the example model in Figure 8.2(a), derived from [67], to illustrate the method of SM
duplication. Variables d, b, and f are inputs and are not constrained. The variables e and a are
intermediate variables. The statement init(e) := 0; sets e to 0 initially. The next value of
e is 1 if the guard f = On is true, otherwise it is 0. We consider the output to be the variable
out, which has possible values Low and High. Its value is High if a is greater than 10, otherwise
it is Low.

As Figure 8.2(b) illustrates, we rename main to original1, move declarations of input vari
ables into the new main module, instantiate the original and duplicate modules (S M and
S Md, respectively) in the new main, and pass inputs as parameters. If we wish to avoid passing
each parameter separately, we can use a feature of SMV that allows to pass an instance of a
module (main in this case) as a parameter.

The CTL formula asserts that outputs of the original and mutant modules are always the
same. If there are several output variables, the assertions can be given in different ways, such
as in Figure 8.3. If there is one SPEC formula for each output, as in Figure 8.3(b), more coun
terexamples are likely. The conjunction in Figure 8.3(a) makes the model checker find one
counterexample for each mutant. That counterexample needs only have one output differ be
tween the original and the mutant. In contrast, with one formula per output, the model checker
tries to find a counterexample for each output for each mutant. Since a mutant rarely affects
all outputs, counterexamples would not be found for all mutants and outputs. We have not
investigated the number of unique counterexamples produced or differences in coverage from the
two styles.

Assignment statements in the duplicate module from Figure 8.2(b) are candidates for mu
tation. Since we mutate the state machine description instead of temporal logic formulas, some
mutations may result in a semantically invalid SMV model. Two cases are common. First,
a mutation operator replacing one variable with another may generate a mutant containing a

1All modules of the original state machine description must be renamed for duplication.

51

MODULE main
VAR
d: 0..5; b: 0..11; f: {On, Off};

out: {Low, High};

a: 0..16; e: 0..1;

ASSIGN
init(e) := 0;
next(e) := case
f = On : 1;
1 : 0;

esac;

a := e * d + b;

out := case

a > 10 : High;
1 : Low;

esac;

(a) An SMV Example.

MODULE original(d, b, f)
VAR
out: {Low, High};
a: 0..16; e: 0..1;

ASSIGN
... same transitions as in Figure 7 ...

MODULE duplicate(d, b, f)
VAR
out: {Low, High};
a: 0..16; e: 0..1;

ASSIGN
... same as original, to be mutated ...

MODULE main
VAR
d: 0..5; b: 0..11; f: {On, Off};

good : original(d, b, f);

mutant : duplicate(d, b, f);

SPEC AG (good.out = mutant.out)

(b) After Duplication.

Figure 8.2: A Duplication Example.

52

SPEC AG (good.out1 = mutant.out1 & good.out2 = mutant.out2 & ...)

(a) A Combined Formula

SPEC AG (good.out1 = mutant.out1)
SPEC AG (good.out2 = mutant.out2)

...

(b) One Formula per Output

Figure 8.3: Specifying Multiple Outputs.

circular dependency. Our tools use SMV’s built-in analysis to automatically remove such mu
tants from further consideration. Second, the value of an expression on the right hand side of
an assignment in the mutant may be outside of the range of the variable on the left hand side.
Consider a mutant of an assignment for variable a in Figure 8.2(a):

a := e * (d + 1) + b;

The right hand side of the mutant may evaluate to a value that is greater than the maximum
allowed value of a, which was declared to be 16. To fix this, we change the declaration of a in
the mutant to expand its range when needed.

8.4 Duplicating Processes

The example only shows synchronous composition of modules. In case of interleaving, introduced
by the keyword process in SMV, special care must be taken to ensure that the processes of
original and duplicate machines follow each other in an orderly fashion.

We can assign the original and mutant processes unique id numbers, for instance, 0 and 1.
We pass Boolean variables, turn and valid, to the processes. Turn is initially 0. Each process
changes it so that on the next step it is equal to the id of the other process. Variable valid
becomes false if the processes are ever executed out of order, thus telling SMV to disregard other
orderings.

The following CTL formula asserts that outputs of the original and mutant modules are the
same after the second process executes, if the processes executed in order.

AG (turn = 0 & valid -> good.out = mutant.out)

8.5 Sharing Independent Variables

Some parts of the model may not depend on the variable affected by a particular mutation.
These parts do not need to be duplicated. Strictly speaking, for any particular mutation, we
need only duplicate the variable whose assignment is being mutated and any dependent variables.
Dependency determinations can stop at output variables. Such dependency can be determined
using program slicing [78]. If the model has many modules, only the module with the mutation
and any dependent modules need to be duplicated. For large models with limited feedback, this
may save enough model checking time to be worth the dependency analysis.

In Section 9.1, we evaluate the effectiveness of SM duplication at detecting seeded faults in
an implementation of TCAS/Siemens.

Chapter 9

Program-Based Coverage

A comparison of the specification-based mutation analysis with commonly accepted criteria
is needed. Up to this point, we did not consider the actual programs corresponding to the
formal specifications. However, our goal is to reduce the number of faults in the programs.
Therefore, we study usefulness of the tests generated from formal specifications for detecting bugs
in the corresponding implementations. Additionally, we evaluate the program-based structural
coverage of the tests.

We use two C programs for our experiments: TCAS/Siemens and Cruise Control. They were
described in Section 7. Cruise control was implemented by Jeff Offutt. It has 6 procedures and
258 non-blank non-comment lines of code. TCAS/Siemens has 9 procedures and 135 non-blank
non-comment lines of code.

We chose cruise control because it is a reactive system commonly studied in software test
ing. We chose TCAS/Siemens because it is a transformational system with large intermediate
state. Both programs were written by others and come with sets of faulty versions. This makes
our experiments more ob jective. Block and decision coverage of specification-based tests for a
different implementation of cruise control (in Java) was examined in [3].

9.1 Effectiveness in Detecting Faults

Our goal is to reduce the number of faults in programs. Therefore, we ran experiments to
evaluate the effectiveness of the methods for detecting seeded faults. TCAS/Siemens program
comes with 39 faulty versions derived by manually seeding realistic faults. 26 versions have single
mutations such as replacing a constant with another constant, replacing ∧ with >, or dropping
a condition. The rest involve either multiple changes or more complex changes. Cruise control
program comes with 25 faulty versions; the faults were inserted by Jeff Offutt [57].

We use ORL+ to generate tests. ORL+ is a combination of operand reference operator
(ORO), LRO2 (recall that LRO2 replaces ∗ with ≤, ↔ with +, - with +), relational connector
reference operator (RRO), and off-by-1 operator (OFO). For TCAS/Siemens, we compare two
methods: guard reflection and SM duplication. For cruise control, we use guard reflection. We
explain guard reflection in Section 2.6.1 and SM duplication in Section 8.

Method Mutants UTs Coverage
TCAS/Siemens Guard Refl. 591 81 59%

SM Dupl. 273 56 100%
Cruise control Guard Refl. 508 45 76%

Table 9.1: Effectiveness in Detecting Seeded Faults.

53

54

In Table 9.1, “Mutants” is the total number of syntactically valid mutants, including con
sistent and duplicate mutants, “UTs” is the number of unique counterexamples or tests after
duplicates and prefixes of longer counterexamples are removed. “Coverage” is the number of
faulty versions detected by the method divided by the total number of faulty versions.

For TCAS/Siemens, we use NIST’s Test Assistant for Ob jects (TAO) [8] to turn the coun
terexamples into concrete test cases. When provided with the correspondence between specifi
cation variables and function calls on the implementation level, TAO generates code to create
new test instances, call the interface functions to set and get values, make sure the specified
conditions hold, and report any differences between produced and expected results.

For cruise control, we wrote Perl scripts to turn the counterexamples into concrete test cases.
Table 9.1 shows that, for TCAS/Siemens, SM duplication detects 100% of faulty versions

while guard reflection detects only 59% of the faults. We attribute the magnitude of the difference
to a relatively large intermediate state of the program. The SM duplication method generated
fewer mutants and test cases than guard reflection, yet it is much more effective in detecting
seeded faults. The method duplicates the state machine thus increasing the size of the state
space. The TCAS/Siemens specification is relatively small, so the limits of scalability have not
been addressed.

The time required to generate tests for TCAS/Siemens using the guard reflection method
was 3.5 seconds; SM duplication took 9 seconds. We used a 1.7 GHz Pentium 41 PC with 1 GB
of RAM running Red Hat Linux. The SM duplication method took considerably longer due to
the overhead of starting SMV and building the state machine model for every new mutant.

For cruise control, 5 of 25 seeded faults are not related to the functional specifications. The
program has two modes set by a global option. In the first mode, the program always starts in the
initial state, Off, and only the changes in test inputs can lead to other states (Inactive, Cruise,
or Override). In the second mode, the test explicitly sets the state. We did not generate any
tests that explicitly set the state, so those 5 seeded faults cannot be found. The two remaining
faults are not found because of the difference in details of the semantics of the specification and
the program. The program allows to set a variable without triggering an event. For instance,
while in the state Cruise, the program can change the variable Ignited to False and still remain
in Cruise. In contrast, in the SMV specification, changing Ignited to False will always trigger
an event that will change the state to Off.

9.2 Structural Coverage Results

We use the tests generated using the set of mutation operators ORL+, as in Section 9.1. For
TCAS/Siemens, we use the method of SM duplication, whereas for cruise control, we use guard
reflection.

We apply several structural measures: block, decision, C-use, and P-use coverage. These
measures are defined in Section 2.1. The coverage is measured using ATAC [37]. We present the
results in Table 9.2.

For TCAS/Siemens, 1 of 106 blocks is unreachable. 5 of 50 decisions are infeasible. For
example, in a fragment

Own_Above_Threat() && Cur_Vertical_Sep >= MINSEP
&& Up_Separation >= ALIM()

the value of Cur Vertical Sep >= MINSEP is never false, since this fragment can be executed
only if Cur Vertical Sep > MAXALTDIFF (MAXALTDIFF is greater than MINSEP).

The test cases cover 99 blocks and 44 decisions. The remaining 6 blocks and 1 decision are in
the function main and they get executed only when there is a wrong number of input parameters.
So these blocks and the decision are not related to the specification, that is, the specification does

1Pentium is a registered trademark of Intel Corporation.

55

Block Decision C-use P-use
TCAS/Siemens total 106 50 43 34

feasible
covered

105
99

45
44

42
42

31
30

coverage (%) 94.3 97.8 100 96.8
Cruise Control total 186 173 45 150

feasible
covered

184
155

172
125

45
34

149
103

coverage (%) 84.2 72.7 75.6 69.1

Table 9.2: Structural Coverage.

not model the case of wrong number of arguments. 42 of 43 C-uses are covered, 30 of 34 P-uses
are covered. All of the uncovered C-uses and P-uses are in the uncovered blocks/decisions.

For cruise control, 2 of 186 blocks are unreachable. 155 blocks were covered. The remaining
blocks were not related to the functional specification. In particular, they are concerned with a
command option, checking for error opening a file, interactive mode, and checking for incorrect
input variable name. The remaining decisions, C-uses, and P-uses were not covered because of
the differences in details of the semantics of the program and the specification.

In summary, these experiments show that tests generated by specification-based mutation
cover the parts of the implementation corresponding to the specification thoroughly. If the
program has large intermediate state, the method of SM duplication is much more effective for
detecting seeded faults. The program-based coverage of tests derived from specifications depends
on the degree of the difference between the specification and the program.

Chapter 10

Conclusions

We believe that this work supports our hypothesis that specification-based mutation analysis
can be used to economically generate effective tests. The main contributions of this thesis are
as follows:

•	 We define an extensive set of mutation operators and implement a mutation generator tool
for SMV specifications.

•	 We construct detection condition for a mutation, which replaces a subpredicate X with
another predicate E in specification S, as a conjunction of origination condition and prop
agation condition:

dSX = (X ≤ E) ↔
dS

E dX

This allows us to prove that the hierarchy of mutation operators holds for arbitrary pred
icates, not just those in disjunctive normal form.

•	 We use our theoretical technique to extend the hierarchy of mutation operators. Addition
ally, our technique can be used in the future to compare other mutation operators.

•	 Based on analysis and empirical evaluation, we recommend mutation operators and sets of
mutation operators that yield good test coverage at a reduced cost. In particular, ORL+

provides the best coverage while generating many mutants. STL and MEL get second best
coverage while generating far fewer mutants.

•	 We evaluate program-based coverage of tests generated by specification-based mutation;
the tests cover the parts of the program corresponding to the specification thoroughly.

•	 To improve the effectiveness for programs with large intermediate state, we devise a method
which uses a model checker to guarantee that tests cause detectable output failures. The
method is thorough at detecting typical program faults.

•	 We use our theoretical technique to analyze existing testing methods, in particular, the
basic meaningful impact strategy [82] is stronger in that it tests for stuck-at mutations and
not variable negation mutations as proposed by the authors.

•	 We find that, for Boolean specifications, clause insertion mutation operator gets almost
perfect pairwise coverage.

56

Appendix A

Mutation Generator

To study the mutation operators, we developed an extensible tool for systematically making
small syntactic changes to SMV [48] specifications. In what follows, “SMV” refers to SMV
version 2.5 from Carnegie Mellon University, available at http://www.cs.cmu.edu/~modelcheck.

A.1 Overview

The mutation tool uses portions of SMV code: the parser, abstract syntax tree manipulation
routines and low level functionalities, such as dynamic memory allocation and manipulation of
data structures (e.g., hash tables).

Mutation generator performs the following steps:

1. Parse a given SMV file and build a tree data structure in memory.

2. Process the tree to extract information necessary for performing mutations, e.g., collect
information about types and domains of variables.

3. For each selected mutation operator, traverse the tree invoking the corresponding mutation
routine. When the routine recognizes an opportunity for a mutation, it creates a mutant.
The mutant is then written to a file.

Resulting individual mutants may be left in individual SMV files, written to a single file, or
divided between several files of size no larger than a user defined value. Leaving all mutants in
individual files yields a large number of files. The overhead of starting a new SMV process for each
mutant is intolerable even for specifications of moderate size. Since SMV builds a state machine
transition relation for a given input file only once and checks CTL formulas independently, using
an option that writes mutations into a single file results in very efficient processing.

The tool allows the user to selectively apply mutation operators. It can be extended with
new operators. In addition, the mutation generator optionally mutates state machines to gen
erate tests which a correct implementation should fail. The source code and documentation are
available from the author.

A.2 Requirements

Since many mutants are usually generated and mutant generation is only a part of a larger
testing process, efficiency is a very important general requirement.

The mutation engine had to satisfy the following requirements.

57

http://www.cs.cmu.edu/~modelcheck

58

•	 Generate only syntactically and semantically legal mutants.

It is theoretically possible to use SMV to check whether a mutant is legal. However, this is
undesirable as SMV may take a long time to execute or may crash on an invalid statement.
The mutation engine tries to predict and avoid generating illegal mutants, in some cases
preferring to err on the side of not generating some legal mutants. For example, if there is
a chance that a mutation will result in division by 0, we do not generate a mutant.

Note that a state machine mutation may result in an invalid mutant, if restrictions on the
structure of the “case” statements are not met.

•	 Allow users to apply the mutation operators selectively.

•	 For efficient processing, output all mutants to one file, but also retain an option to write
each mutant in an individual file.

•	 Provide an option to generate mutant SPECs directly from the guards found in the ASSIGN
declarations.

•	 Optionally generate failing tests by mutating state machines.

•	 For flexibility, provide many additional options, such as the ability to avoid mutating
variables of a certain type.

•	 For efficiency, determine variable type without instantiating its container module.

This restriction is necessary because a specification may contain many instances of a mod
ule. Since actual parameters for different instances of the same module may have different
types, it becomes impossible to determine some variable types correctly. In these rare
cases, some legal mutants may not be generated.

•	 Minimize the memory requirements.

Since a parse tree may be very large, avoid storing a lot of information with every node of
the parse tree.

•	 Optimize the speed of the mutant generation component.

Since the parse tree is traversed once for every mutation operator, the type of expressions
corresponding to each node should not be determined on the fly, instead, it should be
precomputed and stored in the parse tree. This is at odds with the previous requirement.

•	 In order to speed up the development, reuse existing code.

We reused the parser and low level data structures with associated routines: storage man
agement, tree nodes, hash tables.

A.3 Components

Interaction of the tool components is pictured below.

specification _ Parse _
Collect
symbol

info

_ Generate
mutants

_mutants

When given a specification, the tool first parses it to create an abstract syntax tree and save
the blocks of code which are not mutated. Then the symbol information is collected from the
parse tree. Additionally, the tool identifies the locations in the parse tree of the declarations to
be mutated. After that, the mutants are generated by applying a set of mutation operators.

59

A.3.1 Data Structures

After parsing an input SMV specification, the tool builds a symbol table. Since SMV repre
sents the state machine transition relation by ordered binary decision diagrams (OBDD) [13], it
encodes every variable as a collection of Boolean variables. Mutation generator, however, uses
type information to perform mutations. Hence, we designed the symbol table data structures
and associated routines specifically for the mutation engine.

A module table contains an entry for each MODULE declaration. Each module table entry
contains, in particular, a symbol classification table with an entry for each symbol in the module:
a variable (from a VAR declaration), a macro (from a DEFINE declaration), a formal argument.

For effeciency, both module table and symbol classification table are implemented using
SMV’s hash table data structure.

A.3.2 Parsing

Parsing functionality, a lexical analyzer and a parser, was provided in the Carnegie Melon Uni
versity’s version of SMV.

We modified the SMV’s lex source code to recognize the parts of input file which are not
mutated. To read and write those parts in correct order, we save the starting line numbers of
new declarations as they appear in the SMV file. We used the SMV context-free grammar (yacc
productions) without change.

First, the parse tree is generated using the functions from SMV. After that, the program
reads the blocks of input which are not mutated and saves them in an array.

The program expects a valid SMV specification as an input; therefore, it does not check for
semantic errors. Most error messages are lexical or syntactical.

A.3.3 Mutant Generation

SPEC and ASSIGN are the declarations considered for mutation. Keyword ASSIGN introduces
a collection of parallel assignments which determine the transition relation of the state machine
and its initial state (or states). The specification of the system appears as a formula in CTL
under the keyword SPEC.

By default, the SPECs found in an SMV file are mutated. If the SMV specification lacks
SPECs, these can be generated by reflecting [2] the state machine declaration.

Optionally, the mutation engine can implement mutations of guards found in the ASSIGN
declarations as SPECs, e.g., if ASSIGN declaration contains the following:

next(a) := case
b1 : v1;
b2 : v2;
...

esac;

then generate temporal formulas of the form: SPEC AG (b1 + b1’), where b1’ is a mutant of
b1. b1, ... are called guards and v1, ... are called targets. b1, b2, ... must form a partition, v1,
v2, ... must be pairwise disjoint, “case” statements must be flat.

Finally, the tool can apply mutation operators directly to the state machine (guards and
targets of the ASSIGN declarations).

Basic tree operations

To create a mutant, a subtree of the parse tree is modified by applying one of several subtree
operations. This is followed by outputting the mutant. After that, an inverse operation is applied
to the mutant to restore the original tree. The process is repeated for each mutant.

60

Below is a list of the basic tree operations. After each operation, we give examples of mutation
operators relying on the operation. Here, we classify mutation operators based on the underlying
tree operations.

1. Replace a leaf node with another leaf node. The operation is an inverse of itself.

Operand reference operator (ORO) replaces a symbol name contained in a leaf node with
another name. The symbol name represents an operand.

Examples of ORO are variable replacement, constant replacement, constant set element
replacement, user specified token replacement.

2. Replace a subtree (or a leaf node) with a leaf node.

Stuck-at operator replaces a subtree representing a clause with a leaf node representing 0
(false) or 1(true).

For the array index reference operator, a subtree representing an array index is replaced
with a node representing an array bound or an incremented or decremented value of the
index.

3. Change the type of an internal node. The operation is an inverse of itself.

Relational, arithmetic, and logical connector reference operators replace a connector with
another connector.

4. Enlarge a subtree, that is, replace a node with a larger subtree containing the original node
as its subtree.

Off-by-1 operator replaces a node representing an arithmetic expression e with a node

representing e + 1 and a node representing e − 1.

Clause negation operator and expression negation operator insert a “negation” node be
tween a node representing a predicate and its parent node.

“Contract”, below, is the inverse operation.

5. Contract a subtree, that is, replace an internal node with its child.

Missing clause operator and missing expression operator replace a subtree representing an
expression with one of its children. The other child is the removed expression.

Other operators using this basic tree operation are removal of a subexpression from an
arithmetic expression, and integer set element removal.

“Contract” operation is an inverse of “enlarge” operation.

6. Rotate a subtree. Left and right rotations are inverse operations.

Associative shift mutation rotates a subtree.

7. Swap subtrees. The operation is an inverse of itself.

Operand interchange mutation swaps operands of a non-commutative operation.

Appendix B

Details of Experiments for TCAS
II/Boolean

Figure B.1 lists the set of transition specifications reported in [82]. We call this set of specifi
cations TCAS II/Boolean. It originates from the specification of TCAS II, an aircraft collision
avoidance system described by Leveson et. al [46]. The variables represent clauses, such as
Own-Tracked-Altitude ∧ 15500.

Table B.1 presents the number of variables, as well as the number of mutants and the number
of unique traces generated by applying all mutation operators to TCAS II/Boolean specifications.

We evaluated mutation coverage for TCAS II/Boolean specifications. Table B.2 gives the
number of mutants for individual mutation operators, as well as the distribution of mutants
by operator. Table B.3 gives the number of tests generated by individual mutation operators.
Table B.4 presents mutation coverage of individual mutation operators. Table B.5 presents
mutation coverage of each mutation operator combined with LRO2 operator.

We also evaluated pairwise coverage for TCAS II/Boolean specifications. Table B.6 presents
pairwise coverage of all mutation operators combined and of individual mutation operators for
every specification as well as the average coverage. Table B.7 presents pairwise coverage of each
mutation operator combined with LRO2 operator. Finally, Table B.8 presents the number of
mutants, number of tests, and pairwise coverage for clause insertion mutation operator for every
specification as well as the averages.

61

62

1 (ab)(dē f̄ ∗ d̄e ̄f ∗ d̄ē f̄)(ac(d ∗ e)h ∗ a(d ∗ e)h̄ ∗ b(e ∗ f))
2 (a((c ∗ d ∗ e)g ∗ af ∗ c(f ∗ g ∗ h ∗ i)) ∗ (a ∗ b)(c ∗ d ∗ e)i)

↔(ab) (cd) (ce) (de) (f g) (f h) (f i) (gh) (hi)
3 (a(̄d ∗ ē ∗ de(f̄ ghī ∗ ḡhi) (f̄ glk ∗ ḡ ̄ik))

∗(f̄ ghī ∗ ḡhi) (f̄ glk ∗ ḡ ̄ik)(b ∗ c ̄m ∗ f))(a ̄bc̄ ∗ ābc̄ā ̄bc)
4 a(b̄ ∗ c̄)d ∗ e

5 a(b̄ ∗ c̄ ∗ bc(̄f ghī ∗ ḡhi) (f̄ glk ∗ ḡ ̄ik)) ∗ f
6 (āb ∗ a ̄b)(cd)(f ̄g ̄h ∗ f̄ gh̄ ∗ f̄ ̄g ̄h)(j k)((ac ∗ bd)e(f ∗ (i(gj ∗ hk))))
7 (āb ∗ a ̄b)(cd) (gh) (j k)((ac ∗ bd)e(̄i ∗ ḡ ̄k ∗ j̄(h̄ ∗ k̄)))
8 (āb ∗ a ̄b)(cd) (gh)((ac ∗ bd)e(f g ∗ f̄ h))
9 (cd)(ēf ̄gā(bc ∗ ̄bd))
10 a ̄bc̄dēf(g ∗ ḡ(h ∗ i))(j k ∗ j̄ l ∗ m)
11 a ̄bc̄((f(g ∗ ḡ(h ∗ i))) ∗ f(g ∗ ḡ(h ∗ i)) ̄dē)(j k ∗ j̄ l ̄m)
12 a ̄bc̄(f(g ∗ ḡ(h ∗ i))(ēn̄ ∗ d) ∗ n̄)(j k ∗ j̄ l ̄m)
13 a ∗ b ∗ c ∗ c̄ ̄def ̄g ̄h ∗ i(j ∗ k)l̄
14 ac(d ∗ e)h ∗ a(d ∗ e)h̄ ∗ b(e ∗ f)
15 a((c ∗ d ∗ e)g ∗ af ∗ c(f ∗ g ∗ h ∗ i)) ∗ (a ∗ b)(c ∗ d ∗ e)i
16 a(̄d ∗ ē ∗ de(f̄ ghī ∗ ḡhi) (f̄ glk ∗ ḡ ̄ik))

∗(f̄ ghī ∗ ḡhi) (f̄ glk ∗ ḡ ̄ik)(b ∗ c ̄m ∗ f)
17 (ac ∗ bd)e(f ∗ (i(gj ∗ hk)))
18 (ac ∗ bd)e(̄i ∗ ḡ ̄k ∗ ̄j(h̄ ∗ k̄))
19 (ac ∗ bd)e(f g ∗ f̄ h)
20 ēf ̄gā(bc ∗ ̄bd)

Figure B.1: Transition Specifications of TCAS II/Boolean.

Var-s Mutants Traces
1 7 372 34
2 9 652 63
3 12 977 85
4 5 65 12
5 9 360 53
6 11 568 52
7 10 402 62
8 8 291 29
9 7 156 16

10 13 328 44
11 13 443 65
12 14 394 64
13 12 269 39
14 7 191 35
15 9 327 48
16 12 784 117
17 11 221 49
18 10 209 53
19 8 152 31
20 7 124 15

Table B.1: Number of Variables, Mutants, and Traces for TCAS II/Boolean.

63

Spec ALL ORO STO MEO MCO ENO CNO LRO ASO
1 372 138 46 44 23 45 23 66 11
2 652 288 72 70 36 71 36 105 11
3 977 506 92 90 46 91 46 135 18
4 65 20 10 8 5 9 5 12 2
5 360 160 40 38 20 39 20 57 7
6 568 280 56 54 28 55 28 81 15
7 402 189 42 40 21 41 21 60 10
8 291 119 34 32 17 33 17 48 9
9 156 60 20 18 10 19 10 27 3

10 328 180 30 28 15 29 15 42 5
11 443 240 40 38 20 39 20 57 10
12 394 221 34 32 17 33 17 48 10
13 269 143 26 24 13 25 13 36 3
14 191 72 24 22 12 23 12 33 6
15 327 144 36 34 18 35 18 51 10
16 784 407 74 72 37 73 37 108 14
17 221 110 22 20 11 21 11 30 8
18 209 99 22 20 11 21 11 30 7
19 152 63 18 16 9 17 9 24 6
20 124 48 16 14 8 15 8 21 3

Avg 364.2 174.3 37.7 35.7 18.9 36.7 18.9 53.5 8.4
Prct 100.0 47.9 10.4 9.8 5.2 10.1 5.2 14.7 2.3

Table B.2: Number of Mutants for TCAS II/Boolean.

Spec ALL ORO STO MEO MCO ENO CNO LRO ASO
1 34 30 16 19 12 16 13 17 7
2 63 49 27 29 14 20 18 28 8
3 85 78 21 22 14 20 17 22 8
4 12 9 8 7 5 6 5 7 2
5 53 45 18 18 13 16 14 17 6
6 52 45 21 24 18 20 15 21 6
7 62 55 20 21 16 17 15 23 7
8 29 23 15 17 13 14 11 15 6
9 16 11 11 12 10 7 6 10 3

10 44 35 16 19 13 11 8 16 4
11 65 55 19 19 16 11 11 20 7
12 64 56 17 18 14 12 9 19 7
13 39 31 15 15 12 7 7 18 3
14 35 28 13 16 10 12 9 16 6
15 48 38 17 18 12 12 10 22 7
16 117 101 38 39 28 32 28 34 11
17 49 42 15 18 11 15 11 13 7
18 53 43 14 17 10 13 9 15 7
19 31 26 12 14 9 12 9 10 5
20 15 11 10 10 8 6 5 9 3

Avg 48.3 40.5 17.1 18.6 12.9 13.9 11.5 17.6 6.0

Table B.3: Number of Tests for TCAS II/Boolean.

64

Spec ORO STO MEO MCO ENO CNO LRO ASO
1 98.7 94.3 95.5 87.9 91.1 89.8 87.9 76.4
2 96.9 94.1 94.3 81.6 78.8 78.5 87.3 65.5
3 96.6 90.8 91.6 67.7 85.7 82.8 83.2 55.9
4 92.9 95.2 92.9 88.1 83.3 81.0 90.5 54.8
5 96.3 93.2 93.2 74.7 88.3 86.4 85.2 55.6
6 97.1 92.5 93.4 89.2 87.1 82.2 83.0 65.6
7 96.8 94.1 94.5 82.7 82.7 81.8 88.6 68.2
8 95.6 93.4 94.8 89.0 85.3 83.1 82.3 73.5
9 93.3 93.3 94.7 89.3 81.3 80.0 82.7 72.0

10 94.7 94.7 96.5 88.8 72.9 71.2 78.8 51.8
11 96.4 91.6 91.6 83.1 64.3 64.3 72.3 58.6
12 97.0 92.8 93.2 82.7 69.6 68.3 74.7 74.7
13 95.7 90.8 90.8 84.7 59.5 59.5 81.0 46.0
14 96.0 95.2 96.8 91.9 79.8 78.2 85.5 67.7
15 95.5 91.0 91.6 78.7 61.2 60.7 89.3 70.2
16 97.1 94.8 95.0 70.4 82.0 80.5 72.0 50.1
17 96.5 96.5 97.1 71.8 61.2 60.0 66.5 78.2
18 94.3 94.3 95.5 75.8 75.2 73.2 73.9 67.5
19 96.4 96.4 97.3 62.7 79.1 77.3 73.6 73.6
20 94.2 94.2 94.2 81.2 73.9 72.5 79.7 73.9

Avg 95.9 93.7 94.2 81.1 77.1 75.6 80.9 65.0

Table B.4: Mutation Coverage of Mutation Operators for TCAS II/Boolean.

Spec ORL STL MEL MCL ENL CNL LRO ASL
1 100.0 96.8 96.8 92.4 93.6 93.6 87.9 85.3
2 100.0 97.5 97.5 86.4 87.3 87.3 87.3 79.9
3 100.0 94.5 94.5 81.5 90.8 90.8 83.2 80.7
4 100.0 100.0 100.0 97.6 92.9 92.9 90.5 81.0
5 99.4 96.3 96.3 81.5 92.0 92.0 85.2 82.7
6 99.6 95.0 95.0 92.1 89.6 89.6 83.0 83.8
7 99.5 97.7 97.7 86.8 86.4 86.4 88.6 81.4
8 99.3 97.1 97.1 92.7 87.5 87.5 82.3 89.0
9 100.0 100.0 100.0 97.3 88.0 88.0 82.7 90.7

10 100.0 100.0 100.0 94.1 79.4 79.4 78.8 82.3
11 99.2 94.8 94.8 86.3 69.5 69.5 72.3 74.3
12 100.0 96.6 96.6 87.3 74.7 74.7 74.7 86.9
13 99.4 96.3 96.3 90.2 75.5 75.5 81.0 67.5
14 100.0 100.0 100.0 97.6 84.7 84.7 85.5 76.6
15 100.0 95.5 95.5 83.7 77.0 77.0 89.3 76.4
16 99.6 97.3 97.3 76.6 84.9 84.9 72.0 69.6
17 99.4 99.4 99.4 84.1 81.8 81.8 66.5 87.1
18 98.7 98.7 98.7 80.9 83.4 83.4 73.9 80.9
19 99.1 99.1 99.1 70.9 81.8 81.8 73.6 88.2
20 100.0 100.0 100.0 87.0 79.7 79.7 79.7 91.3

Avg 99.7 97.6 97.6 87.4 84.0 84.0 80.9 81.8

Table B.5: Mutation Coverage of Mutation Operator Sets for TCAS II/Boolean.

65

Spec ALL ORO STO MEO MCO ENO CNO LRO ASO
1 97.6 97.6 91.7 91.7 90.5 86.9 86.9 89.3 78.6
2 100.0 100.0 97.2 97.2 86.1 90.3 90.3 95.1 73.6
3 93.2 91.7 76.1 76.9 73.9 72.0 67.4 77.3 59.9
4 90.0 85.0 80.0 80.0 77.5 67.5 67.5 82.5 42.5
5 95.1 94.4 81.2 81.2 81.2 75.0 75.0 84.0 71.5
6 99.5 97.3 82.7 85.9 81.8 84.1 78.2 87.7 64.5
7 100.0 97.2 82.2 82.8 80.6 80.0 78.3 87.8 74.4
8 100.0 95.5 82.1 84.8 80.4 83.0 77.7 83.9 75.0
9 84.5 78.6 78.6 79.8 77.4 56.0 54.8 78.6 50.0

10 86.9 82.7 75.6 77.6 75.0 53.9 51.9 73.7 54.2
11 88.1 86.9 76.9 76.9 76.6 59.9 59.9 77.6 59.6
12 89.3 88.5 72.8 72.8 72.5 54.7 54.4 73.3 62.6
13 84.5 82.2 75.8 75.8 75.8 42.4 42.4 78.4 48.5
14 100.0 97.6 85.7 85.7 85.7 73.8 73.8 88.1 70.2
15 97.9 96.5 84.7 84.7 79.2 68.8 68.8 88.9 70.8
16 99.2 98.1 87.9 87.9 87.9 79.2 79.2 89.0 76.5
17 99.1 95.0 77.7 78.6 76.8 77.3 72.3 80.9 75.0
18 100.0 96.7 79.4 80.6 77.8 73.3 72.2 83.9 75.0
19 100.0 95.5 78.6 80.4 76.8 80.4 75.9 79.5 72.3
20 83.3 78.6 77.4 77.4 76.2 54.8 53.6 76.2 50.0

Avg 94.4 91.8 81.2 81.9 79.5 70.7 69.0 82.8 65.2

Table B.6: Pairwise Coverage of Mutation Operators for TCAS II/Boolean.

Spec ORL STL MEL MCL ENL CNL LRO ASO
1 97.6 94.0 94.0 94.0 91.7 91.7 89.3 88.1
2 100.0 97.9 97.9 95.1 95.8 95.8 95.1 93.1
3 93.2 78.4 78.4 76.5 78.0 78.0 77.3 76.5
4 90.0 90.0 90.0 90.0 85.0 85.0 82.5 77.5
5 95.1 85.4 85.4 85.4 84.7 84.7 84.0 82.6
6 98.6 90.5 90.5 90.5 87.7 87.7 87.7 87.3
7 98.9 89.4 89.4 89.4 88.9 88.9 87.8 88.9
8 98.2 88.4 88.4 88.4 85.7 85.7 83.9 87.5
9 84.5 84.5 84.5 84.5 78.6 78.6 78.6 79.8

10 86.9 80.8 80.8 80.5 74.7 74.7 73.7 77.6
11 88.1 79.8 79.8 79.5 77.2 77.2 77.6 78.2
12 89.3 78.6 78.6 78.3 73.3 73.3 73.3 77.5
13 84.1 81.8 81.8 81.8 78.0 78.0 78.4 78.8
14 100.0 89.3 89.3 89.3 88.1 88.1 88.1 85.7
15 97.9 89.6 89.6 88.2 84.0 84.0 88.9 82.6
16 98.9 90.9 90.9 90.9 90.2 90.2 89.0 89.4
17 98.2 87.7 87.7 87.7 86.4 86.4 80.9 84.1
18 98.9 88.9 88.9 88.9 87.8 87.8 83.9 86.1
19 98.2 86.6 86.6 85.7 84.8 84.8 79.5 81.2
20 83.3 82.1 82.1 81.0 76.2 76.2 76.2 76.2

Avg 94.0 86.7 86.7 86.3 83.8 83.8 82.8 82.9

Table B.7: Pairwise Coverage of Mutation Operator Sets for TCAS II/Boolean.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

66

Spec Mutants UTs Coverage
552 44 100.0

1152 82 100.0
2024 103 98.5

80 18 100.0
640 63 100.0

1120 66 99.1
756 83 99.4
476 32 99.1
240 16 92.9
720 68 93.0
960 136 98.4
884 139 98.9
572 93 97.3
288 49 100.0
576 70 99.3

1628 235 100.0
440 77 100.0
396 80 100.0
252 45 100.0
192 20 92.9

Avg 697.4 76.0 98.4

Table B.8: Pairwise Coverage of Clause Insertion Operator for TCAS II/Boolean.

Bibliography

[1] Paul Ammann, Paul E. Black, and Wei Ding. Model checkers in software testing. Technical
Report NIST-IR-6777, U.S. National Institute of Standards and Technology, February 2002.

[2] Paul E. Ammann and Paul E. Black. A specification-based coverage metric to evaluate test
sets. In Proceedings of the Fourth IEEE International High-Assurance Systems Engineering
Symposium (HASE 99), pages 239–248. IEEE Computer Society, November 1999. Also
NIST IR 6403.

[3] Paul E. Ammann, Paul E. Black, and William Ma jurski. Using model checking to generate
tests from specifications. In Proceedings of the Second IEEE International Conference on
Formal Engineering Methods (ICFEM’98), pages 46–54. IEEE Computer Society, December
1998.

[4] Joanne M. Atlee and M. A. Buckley. A logic-model semantics for SCR software requirements.
In Proceedings of the 1996 International Symposium on Software Testing and Analysis, pages
280–292, January 1996.

[5] Joanne M. Atlee and J. Gannon.	 State-based model checking of event-driven system re
quirements. IEEE Transactions on Software Engineering, 19(1):24–40, January 1993.

[6] Chonlawit Banphawatthanarak, Bruce H. Krogh, and Ken Butts. Symbolic verification of
executable control specifications. In Proceedings of the 10th IEEE International Symposium
on Computer Aided Control System Design (jointly with the 1999 Conference on Control
Applications), pages CACSD–581–586, Kohala Coast - Island of Hawai’i, Hawai’i, Aug 1999.

[7] Ramesh Bharadwa j and Constance L. Heitmeyer.	 Model checking complete requirements
specifications using abstraction. Memorandum Report NRL/MR/5540-97-7999, U.S. Naval
Research Laboratory, Washington, DC 20375, November 1997.

[8] Paul E. Black.	 Modeling and marshaling: Making tests from model checker counterex
amples. In Proceedings of the 19th Digital Avionics Systems Conference (DASC), volume
1.B.3, pages 1–6, Philadelphia, Pennsylvania, Oct 2000. IEEE.

[9] Paul E. Black, Vadim Okun, and Yaacov Yesha. Mutation of model checker specifications
for test generation and evaluation. In Mutation 2000 Symposium, pages 24–30, San Jose,
CA, October 2000.

[10] Paul E. Black, Vadim Okun, and Yaacov Yesha. Mutation operators for specifications. In
15th IEEE International Conference on Automated Software Engineering (ASE2000), pages
81–88, Grenoble, France, September 2000. IEEE Computer Society.

[11] G. Bochmann and A. Petrenko.	 Protocol testing: Review of methods and relevance for
software testing. In Proceedings of the 1994 International Symposium on Software Testing
and Analysis, pages 109–124, 1994.

67

68

[12] R. Browmlie, J. Prowse, and M. S. Phadke. Robust testing of AT&T PMX/StarMAIL using
OATS. AT &T Technical Journal, 71(3):41–47, May/June 1992.

[13] Randal E. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams.
ACM Computing Surveys, 24(3):293–318, June 1992.

[14] John Callahan, Francis Schneider, and Steve	 Easterbrook. Automated software testing
using model-checking. In Proceedings of the 1996 SPIN Workshop, Rutgers, NJ, Aug 1996.
Also WVU Technical Report #NASA-IVV-96-022.

[15] William Chan, Richard J. Anderson, Paul Beame, Steve Burns, Francesmary Modugno,
David Notkin, and Jon D. Reese. Model checking large software specifications. IEEE
Transactions on Software Engineering, 24(7):498 – 520, July 1998.

[16] T. Y. Chen and M. F. Lau. Test case selection strategies based on boolean specifications.
Software Testing, Verification and Reliability, 11(3):165–180, September 2001.

[17] J. J. Chilenski and S. P.	 Miller. Applicability of modified condition/decision coverage to
software testing. Software Engineering Journal, pages 193–200, September 1994.

[18] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

[19] Edmund M. Clarke, Jr., E. Allen Emerson, and A. Prasad Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM Transactions on
Programming Languages and Systems, 8(2):244–263, April 1986.

[20] Lori A. Clarke, Andy Podgurski, Debra J. Richardson, and Steven J. Zeil. A formal eval
uation of data flow path selection criteria. IEEE Transactions on Software Engineering,
15(11):1318–1332, November 1989.

[21] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton.	 The AETG system: An
approach to testing based on combinatorial design. IEEE Transactions on Software Engi
neering, 23(7):437–443, July 1997.

[22] Steve Cornett.	 Code Coverage Analysis. Bullseye Testing Technology,
http://www.bullseye.com/coverage.html (accessed 15 January 2004).

[23] Richard A. DeMillo, Richard J. Lipton, and Frederick G. Sayward.	 Hints on test data
selection: Help for the practicing programmer. IEEE Computer, 11(4):34–41, April 1978.

[24] Richard A. DeMillo and A. Jefferson Offutt. Constraint-based automatic test data genera
tion. IEEE Transactions on Software Engineering, 17(9):900–910, September 1991.

[25] E. Allen Emerson and Joseph Y. Halpern.	 “Sometimes” and “not never” revisited: On
branching versus linear time temporal logic. Journal of the ACM, 33(1):151–178, January
1986.

[26] André Engels, Loe Feijs, and Sjouke Mauw. Test generation for intelligent networks using
model checking. In Ed Brinksma, editor, Proceedings of the Third International Work
shop on Tools and Algorithms for the Construction and Analysis of Systems. (TACAS’97),
volume 1217 of Lecture Notes in Computer Science, pages 384–398. Springer-Verlag, April
1997.

[27] J. J. Filliben and A. Heckert. Dataplot. U.S. National Institute of Standards and Technology,
http://www.itl.nist.gov/div898/software/dataplot (accessed 20 January 2004).

[28] Kenneth A. Foster.	 Error sensitive test cases analysis (ESTCA). IEEE Transactions on
Software Engineering, 6(3):258–264, May 1980.

http://www.itl.nist.gov/div898/software/dataplot
http://www.bullseye.com/coverage.html

69

[29] Antony P. Galton, editor. Temporal Logics and Their Applications. Academic Press, 1987.

[30] Angelo Gargantini and Constance Heitmeyer. Using model checking to generate tests from
requirements specifications. In Proceedings of the Joint 7th European Software Engineering
Conference and 7th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, Toulouse, France, September 1999.

[31] John B. Goodenough and Susan L. Gerhart. Toward a theory of test data selection.	 IEEE
Transactions on Software Engineering, 1(2):156–173, June 1975.

[32] Ajei Gopal and Tim Budd.	 Program testing by specification mutation. Technical Report
TR 83-17, University of Arizona, November 1983.

[33] Tarak Goradia.	 Dynamic Impact Analysis: Analyzing Error Propagation in Program Exe
cutions. PhD thesis, Dept. of Computer Science, New York University, 1988.

[34] Tarak Goradia.	 Dynamic impact analysis: A cost-effective technique to enforce error-
propagation. In Proceedings of the 1993 International Symposium on Software Testing and
Analysis, pages 171–181, 1993.

[35] Kelly J. Hayhurst, Dan S. Veerhusen, John J. Chilenski, and Leanna K. Rierson. A prac
tical tutorial on modified condition/decision coverage. Technical Report NASA/TM-2001
210876, NASA, May 2001.

[36] Hyoung Seok Hong, Insup Lee, Oleg Sokolsky, and Sung Deok Cha. Automatic test genera
tion from statecharts using model checking. Technical Report MS-CIS-01-07, University of
Pennsylvania, 2001.

[37] J. R. Horgan and S. A. London. ATAC: A data flow coverage testing tool for c. In Symposium
on Assessment of Quality Software Development Tools, pages 2–10, New Orleans, LA, May
1992.

[38] W. E. Howden. Weak mutation testing and completeness of test sets.	 IEEE Transactions
on Software Engineering, 8(4):371–379, July 1982.

[39] William E. Howden.	 Reliability of the path analysis testing strategy. IEEE Transactions
on Software Engineering, 2(3):208–215, 1976.

[40] Monica Hutchins, Herb Foster, Tarak Goradia, and Thomas Ostrand. Experiments on the
effectiveness of dataflow- and controlflow-based test adequacy criteria. In Proceedings of the
Sixteenth International Conference on Software Engineering, pages 191–200, May 1994.

[41] J. Kirby Jr.	 Example NRL/SCR software requirements for an automobile cruise control
and monitoring system. Technical Report TR-87-07, Wang Institute of Graduate Studies,
July 1987.

[42] Noritaka Kobayashi, Tatsuhiro Tsuchiya, and Tohru Kikuno.	 Non-specification-based ap
proaches to logic testing for software. Information and Software Technology, 44(2):113–121,
February 2002.

[43] D. Richard Kuhn. A technique for analyzing the effects of changes in formal specifications.
The Computer Journal, 35(6):574–578, 1992.

[44] D. Richard Kuhn.	 Fault classes and error detection in specification based testing. ACM
Transactions on Software Engineering Methodology, 8(4):411–424, October 1999.

[45] M. F. Lau and Y. T. Yu.	 On the relationships of faults for boolean specification based
testing. In 2001 Australian Software Engineering Conference, pages 21–28. IEEE CS Press,
August 2001.

70

[46] N. G. Leveson, M. P.E. Heimdahl, H. Hildreth, and J. Reese. Requirements specification for
process control systems. IEEE Transactions on Software Engineering, SE-20(9):684–707,
September 1994.

[47] Aditya Mathur.	 Performance, effectiveness, and reliability issues in software testing. In
Fifteenth Annual International Computer Software and Applications Conference, pages 604–
605, Tokyo, Japan, September 1991.

[48] Ken L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[49] Harlan D. Mills. On the statistical validation of computer programs. In Software Produc
tivity, pages 71–81, Boston, 1983. Little, Brown. Also Technical Report FSC 72-6015, IBM
Federal Systems Division, 1972.

[50] Larry J. Morell. A Theory of Error-Based Testing. Dissertation, Dept. of Computer Science,
University of Maryland, August 1984.

[51] Larry J. Morell.	 Theoretical insights into fault-based testing. Contractor Report NASA
CR-183277, NASA, 1988.

[52] S. Ntafos.	 A comparison of some structural testing strategies. IEEE Transactions on
Software Engineering, 14(6):868–874, June 1988.

[53] A. J. Offutt, J. Voas, and J. Payne. Mutation operators for Ada. Technical Report ISSE
TR-96-09, George Mason University, October 1996.

[54] A. J. Offutt and J. M. Voas.	 Subsumption of condition coverage techniques by mutation
testing. Technical Report ISSE-TR-96-01, George Mason University, January 1996.

[55] A. Jefferson Offutt. Investigations of the software testing coupling effect. ACM Transactions
on Software Engineering Methodology, 1(1):3–18, January 1992.

[56] A. Jefferson Offutt, A. Lee, G. Rothermel, R. Untch, and C. Zapf.	 An experimental de
termination of sufficient mutation operators. ACM Transactions on Software Engineering
Methodology, 5(2):99–118, April 1996.

[57] Jeff Offutt, Shaoying Liu, Aynur	 Abdurazik, and Paul Ammann. Generating test data
from state-based specifications. Software Testing, Verification and Reliability, 13(1):25–53,
March 2003.

[58] Jeff Offutt, Yiwei Xiong, and Shaoying Liu.	 Criteria for generating specification-based
tests. In Proceedings of the Fifth IEEE Fifth International Conference on Engineering of
Complex Computer Systems (ICECCS ’99), pages 119–131, Las Vegas, NV, October 1999.
IEEE Computer Society Press.

[59] Vadim Okun, Paul E. Black, and Yaacov Yesha.	 Testing with model checker: Insuring
fault visibility. In Nikos E. Mastorakis and Petr Ekel, editors, Proceedings of 2002 WSEAS
International Conference on System Science, Applied Mathematics and Computer Science,
and Power Engineering Systems, pages 1351–1356, Rio de Janeiro, Brazil, Oct 2002.

[60] Vadim Okun, Paul E. Black, and Yaacov Yesha. Testing with model checker: Insuring fault
visibility. Technical Report NIST-IR, U.S. National Institute of Standards and Technology,
July 2002.

[61] Vadim Okun, Paul E. Black, and Yaacov Yesha. Comparison of fault classes in specification-
based testing. Information and Software Technology, 2004. To Appear.

71

[62] A. Petrenko, N. Yevtushenko, G. Bochmann, and R. Dssouli. Testing in context: framework
and test derivation. Special Issue on Protocol Engineering of Computer Communication,
1997.

[63] M. S. Phadke.	 Quality Engineering Using Robust Design. Prentice-Hall, Englewood Cliffs,
NJ, November 1989.

[64] A. Pnueli. The temporal logic of programs. In Proceedings of the 19th Annual Symposium
on Foundations of Computer Science, pages 46–57, New York, 1977.

[65] R. M. Poston.	 Automating Specification-Based Software Testing. IEEE Computer Society
Press, 1996.

[66] A. Prior. Past, Present, and Future. Oxford University Press, London, 1967.

[67] Scott Ranville, 2002. Personal Communication.

[68] S. Rapps and E. Weyuker. Selecting software test data using data flow information.	 IEEE
Transactions on Software Engineering, 11(4), April 1985.

[69] Sanjay Rayadurgam and Mats P.E. Heimdahl.	 Coverage based test-case generation us
ing model checkers. In 8th Annual IEEE International Conference and Workshop on the
Engineering of Computer Based Systems (ECBS), Washington, DC, April 2001.

[70] I. S. Reed. Boolean difference calculus and fault finding. SIAM Journal Applied Mathemat
ics, 24(1):134–143, January 1973.

[71] D. J. Richardson and M. C. Thompson. An analysis of test data selection criteria using the
relay model of fault detection. IEEE Transactions on Software Engineering, 19(6):533–553,
June 1993.

[72] Gregg Rothermel and Mary Jean Harrold. Empirical studies of a safe regression test selection
technique. IEEE Transactions on Software Engineering, 24(6):401–419, 1998.

[73] W. J. Spillman and E. Lang. The Law of Diminishing Returns. 1924.

[74] Kuo-Chung Tai.	 Theory of fault-based predicate testing for computer programs. IEEE
Transactions on Software Engineering, 22(8):552–562, August 1996.

[75] Kuo-Chung Tai and Yu Lei. A test generation strategy for pairwise testing.	 IEEE Trans
actions on Software Engineering, 28(1):1–3, January 2002.

[76] Kuo-Chung Tai, M. A. Vouk, Amit Paradkar, and P. Lu. Evaluation of a predicate-based
software testing strategy. IBM Systems Journal, 33(3):445–457, 1994.

[77] Meyer C. Tanuan. Automated analysis of unified modeling language (UML) specifications.
M. S. paper, University of Waterloo, 2001.

[78] F. Tip. A survey of program slicing techniques. Programming languages, 3:121–189, 1995.

[79] Tatsuhiro Tsuchiya and Tohru Kikuno.	 On fault classes and error detection in specifica
tion based testing. ACM Transactions on Software Engineering Methodology, 11(1):58–62,
January 2002.

[80] K. S. How Tai Wah.	 A theoretical study of fault coupling. Software Testing, Verification
and Reliability, 10(1):3–45, March 2000.

72

[81] Chang-Jia Wang and Ming T. Liu. A test suit generation method for extended finite state
machines using axiomatic semantics approach. In R. J. Linn, Jr. and M.U. Uyar, editors,
Protocol Specification Testing and Verification, XII, pages 29–43. Elsevier Science Publishers
B.V. (North-Holland), 1992.

[82] Elaine Weyuker, Tarak Goradia, and Ashutosh Singh. Automatically generating test data
from a boolean specification. IEEE Transactions on Software Engineering, 20(5):353–363,
May 1994.

[83] Elaine J. Weyuker, Stewart N. Weiss, and Dick Hamlet.	 Comparison of program testing
strategies. In Proceedings of the Fourth Symposium on Software Testing, Analysis, and
Verification, pages 1–10. ACM Press, 1991.

[84] W. E. Wong. On Mutation and Data Flow. PhD thesis, Purdue University, West Lafayette,
IN, 1993.

[85] M.R. Woodward.	 Errors in algebraic specifications and an experimental mutation testing
tool. Software Engineering Journal, pages 211–224, July 1993.

[86] Steven J. Zeil. Perturbation techniques for detecting domain errors. IEEE Transactions on
Software Engineering, 15(6):737–746, June 1989.

[87] Dan Zhou and Paul E. Black.	 Translating HOL to specifications for the model checker
SMV. In TPHOLs 2001, supplemental proceedings, pages 400–415, Edinburgh, Scotland,
September 2001.

[88] Hong Zhu, Patrick A. V. Hall, and John H. R. May.	 Software unit test coverage and
adequacy. ACM Computing Surveys, 29(4):366–427, December 1997.

