
Combinatorial Methods for
Testing and Analysis of Critical
Software and Secure Systems

Rick Kuhn, Dimitris E. Simos and Raghu Kacker
National Institute of Standards and Technology, USA

SBA Research, Austria

Overview

1. Intro, empirical data and fault model
2. How it works and coverage/cost

considerations
3. Critical Software
4. Security systems

What is NIST and why are we doing this?
• US Govt agency Research on measurement and test methods

3,000 scientists, engineers, and staff including 4 Nobel laureates

• Project goal – improve cost-benefit ratio for testing
Tools used in > 1,000 organizations, especially aerospace

Why combinatorial testing? - examples
• Cooperative R&D Agreement w/ Lockheed Martin

• 2.5 year study, 8 Lockheed Martin pilot
projects in aerospace software

• Results: save 20% of test costs;
increase test coverage by 20% to 50%

Average software: testing typically 50% of total dev cost
Civil aviation: testing >85% of total dev cost (NASA rpt)

• Rockwell Collins applied NIST method and
tools on testing to FAA life-critical
standards
• Found practical for industrial use
• Enormous cost reduction

Applications
Software testing – primary application of these methods

• functionality testing and security vulnerabilities
• approx 2/3 of vulnerabilities from implementation errors

>> systems with a large number of factors that interact <<

Modeling and simulation – ensure coverage of complex cases
• measure coverage of traditional Monte Carlo sim
• faster coverage of input space than randomized input

Performance tuning – determine most effective combination
of configuration settings among a large set of factors

What is the empirical basis?
• NIST studied software failures in 15 years of

FDA medical device recall data
• What causes software failures?
• logic errors? calculation errors? inadequate

input checking? interaction faults? Etc.

Interaction faults: e.g., failure occurs if
altitude = 0 && volume < 2.2
(interaction between 2 factors)

So this is a 2-way interaction
=> testing all pairs of values can find this fault

How are interaction faults distributed?
• Interactions e.g., failure occurs if

pressure < 10 (1-way interaction)
pressure < 10 & volume > 300 (2-way interaction)
pressure < 10 & volume > 300 & velocity = 5 (3-way interaction)

• Surprisingly, no one had looked at interactions > 2-way before

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4

Interaction

%
 d

et
ec

te
d

65% of faults caused by single factor

96% of faults caused by single factor or 2-way interactions

Interesting, but that's
just one kind of
application!

Server

These faults
more complex
than medical
device
software!!

Why?

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

C
um

ul
at

iv
e

pe
rc

en
t o

f f
au

lts

Number of parameters involved in faults

FDA

Server

Browser

Curves appear
to be similar
across a variety
of application
domains.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

C
um

ul
at

iv
e

pe
rc

en
t o

f f
au

lts

Number of parameters involved in faults

FDA

Browse r

Server

NASA distributed database

Note: initial
testing
but ….
Fault profile
better than
medical
devices!

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

C
um

ul
at

iv
e

pe
rc

en
t o

f f
au

lts

Number of parameters involved in faults

FDA

Browse r

Server

NASA DB

MySQL

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

C
um

ul
at

iv
e

pe
rc

en
t o

f f
au

lts

Number of parameters involved in faults

FDA

Browse r

Server

NASA DB

MySQL

TCP/IP

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

C
um

ul
at

iv
e

pe
rc

en
t o

f f
au

lts

Number of parameters involved in faults

FDA

Browse r

Server

NASA DB

NW Sec

MySQL

Wait, there’s more

• Number of factors involved in failures is small
• No failure involving more than 6 variables has been seen

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

Cumulative proportion of faults for t = 1..6

FDA Browser Server DBMS NW Sec

MySQL MySQL2 Apache2 DSCS NeoKylin

Average (unweighted)

What causes this distribution?

One clue: branches in avionics software.
7,685 expressions from if and while statements

Comparing with Failure Data
Branch
statements

• Distribution of t-way faults in untested software seems to be similar
to distribution of t-way branches in code

• Testing and use push curve down as easy (1-way, 2-way) faults found

How does this knowledge help?
Interaction rule: When all faults are triggered by the
interaction of t or fewer variables, then testing all t-way
combinations is pseudo-exhaustive and can provide
strong assurance.

It is nearly always impossible to exhaustively test
all possible input combinations

The interaction rule says we don’t have to
(Within reason - we still have value
propagation issues, equivalence
partitioning, timing issues,
more complex interactions, . . .)

Still no silver bullet
– but validated on

real systems!

Overview

1. Intro, empirical data and fault model
2. How it works and coverage/cost

considerations
3. Critical Software
4. Security systems

Design of Experiments - background
Key features of DoE

– Blocking
– Replication
– Randomization
– Orthogonal arrays to test interactions between factors

Test P1 P2 P3
1 1 1 3
2 1 2 2
3 1 3 1
4 2 1 2
5 2 2 1
6 2 3 3
7 3 1 1
8 3 2 3
9 3 3 2

Each combination
occurs same number
of times

Example: P1, P2 = 1,2

Orthogonal Arrays for
Software Interaction Testing

Functional (black-box) testing

Hardware-software systems
Identify single and 2-way combination faults

Early papers
Taguchi followers (mid1980’s)
Mandl (1985) Compiler testing
Tatsumi et al (1987) Fujitsu
Sacks et al (1989) Computer experiments
Brownlie et al (1992) AT&T

Generation of test suites using OAs

OATS (Phadke, AT&T-BL)

What’s different about software?

Does this make any
difference?

Traditional DoE
• Continuous variable results

• Small number of parameters

• Interactions typically increase
or decrease output variable

DoE for Software
• Binary result (pass or fail)

• Large number of parameters

• Interactions affect path
through program

How do these differences affect
interaction testing for software?

Not orthogonal arrays, but Covering arrays: Fixed-value
CA(N, vk, t) has four parameters N, k, v, t : It is a matrix
covers every t-way combination at least once

Key differences
orthogonal arrays: covering arrays:

6/12/19 NIST 22

• Combinations occur
same number of times

• Not always possible to
find for a particular
configuration

• Combinations occur
at least once

• Always possible to find for a
particular configuration

• Size always ≤ orthogonal
array

Let’s see how to use this in testing.
A simple example:

lThere are 10 effects,
each can be on or off
lAll combinations is 210

= 1,024 tests
lWhat if our budget is
too limited for these
tests?
lInstead, let’s look at all
3-way interactions …

l There are = 120 3-way interactions.

How Many Tests Do We Need?
10
3

0 1 1 0 0 0 0 1 1 0

OK, OK, what’s the smallest number of tests we need?

l Each triple has 23 = 8 settings: 000, 001, 010, 011, ...

l 120 x 8 = 960 combinations

l Each test exercises many triples:

A covering array of 13 tests

Each row is a test:
Each column is
a parameter:

• Developed 1990s
• Extends Design of Experiments concept
• hard optimization problem but good algorithms now

All triples in only 13 tests, covering 23 = 960 combinations 10
3

Suppose we have a system with on-off switches.

Software must produce the right response for any
combination of switch settings

Larger example - testing inputs,
combinations of variable values

34 switches

How do we test this?

= 234 = 1.7 x 1010 possible inputs = 17 billion tests

• 34 switches = 17 billion tests
• For 3-way interactions, need only
• For 4-way interactions, need only

What if no failure involves more than 3 switch
settings interacting?

33 tests
85 tests

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

Cumulative proportion of faults for t = 1..6

FDA Browser Server DBMS NW Sec

MySQL MySQL2 Apache2 DSCS NeoKylin

33 tests for this
(average) range
of fault detection

85 tests for this
(average) range
of fault detection

Number of factors involved in faults

That’s way
better than 17
billion!

Will this be effective testing?

• On average NIST ACTS is faster than other tools, generating
smaller test sets

• (there is no universal best covering array algorithm)

126001070048>1 dayNA47011625>1 dayNA65.03109416

1549313056>1 dayNA43.544580>1 dayNA18s42265

12764696>21 hour14763.541536540014843.0513634

3.079158>12 hour4720.71413102023880.364003

2.75101>1 hour1080.0011080.731200.81002

TimeSizeTimeSizeTimeSizeTimeSizeTimeSize

TVG (Open Source)TConfig (U. Ottawa)Jenny (Open Source)ITCH (IBM)NIST ACTS
T-Way

Performance of NIST ACTS tool

Traffic Collision Avoidance System (TCAS): 273241102

12 variables: 7 boolean, 2 3-value, 1 4-value, 2 10-value

Times in seconds

An Efficient Design of the IPO Algorithm

High-level optimizations for FIPO variants

FIPO benchmarks

FIPO benchmark using a CA(N;t=3,k=6,v) versus IPO implementation
in the ACTS tool (speedups relative to baseline)

New Algorithms Developed
• Quantum-inspired

evolutionary algorithms

• Neural networks and
Boltzmann machines for CA
generation

Approaches using symbolic
computation

• Number of tests: proportional to vt log n for v values, n
variables, t-way interactions

• Good news: tests increase logarithmically with the number of
parameters
=> even very large test problems are OK (e.g., 200 parameters)

• Bad news: increase exponentially with interaction strength t
=> select small number of representative values (but we always
have to do this for any kind of testing)

How many tests are needed?

However:
• coverage increases

rapidly
• for 30 boolean variables
• 33 tests to cover all

3-way combinations
• but only 18 tests to

cover about 95% of
3-way combinations

Testing inputs – combinations of
property values

Suppose we want to test a find-replace function with only two
inputs: search_string and replacement_string

How does combinatorial testing make sense in this case?

Problem example from Natl Vulnerability Database:
2-way interaction fault: single character search string in
conjunction with a single character replacement string, which
causes an "off by one overflow"

Approach: test properties of the inputs

Some properties for this test
String length: {0, 1, 1..file_length, >file_length}

Quotes: {yes, no, improperly formatted quotes}

Blanks: {0, 1, >1}

Embedded quotes: {0, 1, 1 escaped, 1 not escaped}

Filename: {valid, invalid}

Strings in command line: {0, 1, >1}

String presence in file: {0, 1, >1}

This is 213442= 2,592 possible combinations of parameter
values. How many tests do we need for pairwise (2-way)?

We need only 19 tests for pairwise, 67 for 3-way, 218 for 4-way

Testing configurations – combinations of
settings
• Example: application to run on any configuration of OS, browser,

protocol, CPU, and DBMS

• Very effective for interoperability testing

Testing Smartphone Configurations

int HARDKEYBOARDHIDDEN_NO;
int HARDKEYBOARDHIDDEN_UNDEFINED;
int HARDKEYBOARDHIDDEN_YES;
int KEYBOARDHIDDEN_NO;
int KEYBOARDHIDDEN_UNDEFINED;
int KEYBOARDHIDDEN_YES;
int KEYBOARD_12KEY;
int KEYBOARD_NOKEYS;
int KEYBOARD_QWERTY;
int KEYBOARD_UNDEFINED;
int NAVIGATIONHIDDEN_NO;
int NAVIGATIONHIDDEN_UNDEFINED;
int NAVIGATIONHIDDEN_YES;
int NAVIGATION_DPAD;
int NAVIGATION_NONAV;
int NAVIGATION_TRACKBALL;
int NAVIGATION_UNDEFINED;
int NAVIGATION_WHEEL;

int ORIENTATION_LANDSCAPE;
int ORIENTATION_PORTRAIT;
int ORIENTATION_SQUARE;
int ORIENTATION_UNDEFINED;
int SCREENLAYOUT_LONG_MASK;
int SCREENLAYOUT_LONG_NO;
int SCREENLAYOUT_LONG_UNDEFINED;
int SCREENLAYOUT_LONG_YES;
int SCREENLAYOUT_SIZE_LARGE;
int SCREENLAYOUT_SIZE_MASK;
int SCREENLAYOUT_SIZE_NORMAL;
int SCREENLAYOUT_SIZE_SMALL;
int SCREENLAYOUT_SIZE_UNDEFINED;
int TOUCHSCREEN_FINGER;
int TOUCHSCREEN_NOTOUCH;
int TOUCHSCREEN_STYLUS;
int TOUCHSCREEN_UNDEFINED;

Some Android configuration options:

Configuration option values
Parameter Name Values # Values

HARDKEYBOARDHIDDEN NO, UNDEFINED, YES 3

KEYBOARDHIDDEN NO, UNDEFINED, YES 3

KEYBOARD 12KEY, NOKEYS, QWERTY, UNDEFINED 4

NAVIGATIONHIDDEN NO, UNDEFINED, YES 3

NAVIGATION DPAD, NONAV, TRACKBALL, UNDEFINED,
WHEEL

5

ORIENTATION LANDSCAPE, PORTRAIT, SQUARE, UNDEFINED 4

SCREENLAYOUT_LONG MASK, NO, UNDEFINED, YES 4

SCREENLAYOUT_SIZE LARGE, MASK, NORMAL, SMALL, UNDEFINED 5

TOUCHSCREEN FINGER, NOTOUCH, STYLUS, UNDEFINED 4

Total possible configurations:

3 x 3 x 4 x 3 x 5 x 4 x 4 x 5 x 4 = 172,800

Number of configurations generated for t-way
interaction testing, t = 2..6

t # Configs % of Exhaustive

2 29 0.02

3 137 0.08

4 625 0.4

5 2532 1.5

6 9168 5.3

ACTS - Defining a new system

Variable interaction strength

Constraints

Covering array output

Output options
Mappable values

Degree of interaction
coverage: 2
Number of parameters: 12
Number of tests: 100

0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 0 1 1 1 1
2 0 1 0 1 0 2 0 2 2 1 0
0 1 0 1 0 1 3 0 3 1 0 1
1 1 0 0 0 1 0 0 4 2 1 0
2 1 0 1 1 0 1 0 5 0 0 1
0 1 1 1 0 1 2 0 6 0 0 0
1 0 1 0 1 0 3 0 7 0 1 1
2 0 1 1 0 1 0 0 8 1 0 0
0 0 0 0 1 0 1 0 9 2 1 1
1 1 0 0 1 0 2 1 0 1 0 1
Etc.

Human readable
Degree of interaction coverage: 2
Number of parameters: 12
Maximum number of values per
parameter: 10
Number of configurations: 100

Configuration #1:

1 = Cur_Vertical_Sep=299
2 = High_Confidence=true
3 = Two_of_Three_Reports=true
4 = Own_Tracked_Alt=1
5 = Other_Tracked_Alt=1
6 = Own_Tracked_Alt_Rate=600
7 = Alt_Layer_Value=0
8 = Up_Separation=0
9 = Down_Separation=0
10 = Other_RAC=NO_INTENT
11 = Other_Capability=TCAS_CA
12 = Climb_Inhibit=true

CAGen: A FIPO webUI tool

CAGen: Array Generation

Available Tools
• Covering array generator – basic tool for test input or

configurations;
• Input modeling tool – design inputs to covering array

generator using classification tree editor; useful for
partitioning input variable values

• Fault location tool – identify combinations and sections of
code likely to cause problem

• Sequence covering array generator – new concept; applies
combinatorial methods to event sequence testing

• Combinatorial coverage measurement – detailed analysis of
combination coverage; automated generation of supplemental
tests; helpful for integrating c/t with existing test methods

ACTS Users > 3,000 organizations

Information
Technology

Defense

Finance

Telecom

Overview

1. Intro, empirical data and fault model
2. How it works and coverage/cost

considerations
3. Critical Software
4. Security systems

Case study example: Subway control system

Real-world experiment
by grad students, Univ.
of Texas at Dallas

Original testing by
company: 2 months

Combinatorial
testing by U. Texas
students: 2 weeks

Result: approximately
3X as many bugs found,
in 1/4 the time
=> 12X improvement

Results

Number of
test cases

Number of
bugs found Did CT find all original bugs?

Package 1
Original 98 2 -

CT 49 6 Yes

Package 2
Original 102 1 -

CT 77 5 Yes

Package 3
Original 116 2 -

CT 80 7 Miss 1

Package 4
Original 122 2 -

CT 90 4 Yes

IoT example – smart house home assistant

Configuration testing for an IoT device

Setting parameters of IoT sensors via CT

Research question – validate interaction rule?

• DOM is a World Wide Web
Consortium standard for
representing and interacting
with browser objects

• NIST developed conformance
tests for DOM

• Tests covered all possible
combinations of discretized
values, >36,000 tests

• Question: can we use the
Interaction Rule to increase
test effectiveness the way we
claim?

Document Object Model Events
Original test set:

Event Name Param. Tests
Abort 3 12
Blur 5 24
Click 15 4352
Change 3 12
dblClick 15 4352
DOMActivate 5 24
DOMAttrModified 8 16
DOMCharacterDataMo
dified

8 64

DOMElementNameCha
nged

6 8

DOMFocusIn 5 24
DOMFocusOut 5 24
DOMNodeInserted 8 128
DOMNodeInsertedIntoD
ocument

8 128

DOMNodeRemoved 8 128
DOMNodeRemovedFrom
Document

8 128

DOMSubTreeModified 8 64
Error 3 12
Focus 5 24
KeyDown 1 17
KeyUp 1 17

Load 3 24
MouseDown 15 4352
MouseMove 15 4352
MouseOut 15 4352
MouseOver 15 4352
MouseUp 15 4352
MouseWheel 14 1024
Reset 3 12
Resize 5 48
Scroll 5 48
Select 3 12
Submit 3 12
TextInput 5 8
Unload 3 24
Wheel 15 4096
Total Tests 36626

Exhaustive testing of
equivalence class values

Document Object Model Events
Combinatorial test set:

t Tests % of
Orig.

Test Results

Pass Fail

2 702 1.92% 202 27
3 1342 3.67% 786 27
4 1818 4.96% 437 72
5 2742 7.49% 908 72

6 4227 11.54
% 1803 72

All failures found using < 5% of
original exhaustive test set

Modeling & Simulation

1. Aerospace - Lockheed Martin –
analyze structural failures for
aircraft design

2. Network defense/offense
operations - NIST – analyze
network configuration for
vulnerability to deadlock

Problem: unknown factors
causing failures of F-16 ventral fin

LANTIRN =
Low Altitude
Navigation &
Targeting
Infrared for
Night

It’s not supposed to look like this:

Can the problem factors be found efficiently?

Original solution: Lockheed Martin engineers spent many months with
wind tunnel tests and expert analysis to consider interactions that could
cause the problem
Combinatorial testing solution: modeling and simulation using ACTS

Parameter Values
Aircraft 15, 40
Altitude 5k, 10k, 15k, 20k, 30k, 40k, 50k

Maneuver

hi-speed throttle, slow accel/dwell, L/R 5 deg
side slip, L/R 360 roll, R/L 5 deg side slip, Med
accel/dwell, R-L-R-L banking, Hi-speed to Low,
360 nose roll

Mach (100th) 40, 50, 60, 70, 80, 90, 100, 110, 120

Results
• Interactions causing problem included Mach points .95

and .97; multiple side-slip and rolling maneuvers
• Solution analysis tested interactions of Mach points,

maneuvers, and multiple fin designs
• Problem could have been found much more efficiently

and quickly
• Less expert time required

• Spreading use of combinatorial testing in the
corporation:

• Community of practice of 200 engineers
• Tutorials and guidebooks
• Internal web site and information forum

Example: Network Simulation

• “Simured” network simulator
• Kernel of ~ 5,000 lines of C++ (not including GUI)

• Objective: detect configurations that can
produce deadlock:

• Prevent connectivity loss when changing network
• Attacks that could lock up network

• Compare effectiveness of random vs.
combinatorial inputs

• Deadlock combinations discovered
• Crashes in >6% of tests w/ valid values (Win32

version only)

Simulation Input Parameters
Parameter Values

1 DIMENSIONS 1,2,4,6,8
2 NODOSDIM 2,4,6
3 NUMVIRT 1,2,3,8
4 NUMVIRTINJ 1,2,3,8
5 NUMVIRTEJE 1,2,3,8
6 LONBUFFER 1,2,4,6
7 NUMDIR 1,2
8 FORWARDING 0,1
9 PHYSICAL true, false
10 ROUTING 0,1,2,3
11 DELFIFO 1,2,4,6
12 DELCROSS 1,2,4,6
13 DELCHANNEL 1,2,4,6
14 DELSWITCH 1,2,4,6

5x3x4x4x4x4x2x2
x2x4x4x4x4x4
= 31,457,280
configurations

Are any of them
dangerous?

If so, how many?

Which ones?

Network Deadlock Detection
Deadlocks
Detected:

combinatorial

t Tests 500 pkts
1000
pkts

2000
pkts

4000
pkts

8000
pkts

2 28 0 0 0 0 0
3 161 2 3 2 3 3
4 752 14 14 14 14 14

Average Deadlocks Detected:
random

t Tests 500 pkts
1000
pkts

2000
pkts

4000
pkts

8000
pkts

2 28 0.63 0.25 0.75 0. 50 0. 75
3 161 3 3 3 3 3
4 752 10.13 11.75 10.38 13 13.25

Network Deadlock Detection
Detected 14 configurations that can cause deadlock:

14/ 31,457,280 = 4.4 x 10-7

Combinatorial testing found more deadlocks than
random, including some that might never have been
found with random testing

Why do this testing? Risks:
• accidental deadlock configuration: low
• deadlock config discovered by attacker: much higher

(because they are looking for it)

Event Sequence Testing

Event Description
a connect range finder
b connect telecom
c connect satellite link
d connect GPS
e connect video
f connect UAV

• Suppose we want to see if a system works correctly regardless
of the order of events. How can this be done efficiently?

• Can we produce compact tests such that all t-way sequences
covered (possibly with interleaving events)?

• Failure reports often say something like: 'failure
occurred when A started if B is not already connected'.

Sequence Covering Array
• With 6 events, all sequences = 6! = 720 tests

• Only 10 tests needed for all 3-way sequences,
results even better for larger numbers of events

• Example: .*c.*f.*b.* covered. Any such 3-way seq covered.
Test Sequence

1 a b c d e f
2 f e d c b a
3 d e f a b c
4 c b a f e d
5 b f a d c e
6 e c d a f b
7 a e f c b d
8 d b c f e a
9 c e a d b f

10 f b d a e c

Sequence Covering Array Properties
• 2-way sequences require only 2 tests (write in any order, reverse)

• For > 2-way, number of tests grows with log n, for n events

• Simple greedy algorithm produces compact test set

• Application not previously described in CS or math literature

0

50

100

150

200

250

300

5 10 20 30 40 50 60 70 80

2-way

3-way

4-way

Number of events

Tests

Combinatorial methods and test
coverage

Review of some structural coverage criteria:

• Statement coverage: % of source statements exercised by the test set.

• Decision or branch coverage: % of branches evaluated to both true and
false in testing. When branches contain multiple conditions, branch
coverage can be 100% without instantiating all conditions to true/false.

• Condition coverage: % of conditions within decision expressions that
have been evaluated to both true and false. Note - 100% condition
coverage does not guarantee 100% decision coverage.

• Modified condition decision coverage (MCDC): every condition in a
decision has taken on all possible outcomes at least once, each
condition shown to independently affect the decision outcome, each
entry and exit point traversed at least once

A new perspective on test coverage
• Test coverage has traditionally

been defined using graph-based
structural coverage criteria:

• statement (weak)
• branch (better)
• etc.

• Based on paths through the code

weaker

stronger

What about
the data?

Subsumption relationships of
structural coverage criteria

Combinatorial Coverage
Tests Variables

a b c d

1 0 0 0 0

2 0 1 1 0

3 1 0 0 1

4 0 1 1 1

Variable pairs Variable-value
combinations
covered

Coverage

ab 00, 01, 10 .75

ac 00, 01, 10 .75

ad 00, 01, 11 .75

bc 00, 11 .50

bd 00, 01, 10, 11 1.0

cd 00, 01, 10, 11 1.0

100% coverage of 33% of combinations
75% coverage of half of combinations
50% coverage of 16% of combinations

bd 00, 01, 10, 11

cd 00, 01, 10, 11

ab 00, 01, 10

ac 00, 01, 10

ad 00, 01, 11

bc 00, 11

Variable
pairs

Variable-value
combinations
covered

Coverage

ab 00, 01, 10 .75

ac 00, 01, 10 .75

ad 00, 01, 11 .75

bc 00, 11 .50

bd 00, 01, 10, 11 1.0

cd 00, 01, 10, 11 1.0

bd
00

, 0
1,

 1
0,

 11

cd
00

, 0
1,

 1
0,

 11

ab
00

, 0
1,

 1
0

ac
00

, 0
1,

 1
0

ad
00

, 0
1,

 1
1

bc
00

, 1
1

Rearranging
the table

Graphing Coverage Measurement

100% coverage of 33% of
combinations
75% coverage of half of
combinations
50% coverage of 16% of
combinations

Bottom line:
All combinations
covered to at
least 50%

What else does this chart show?

Tested combinations => code works for these

Untested combinations
(look for problems here)

Spacecraft software example
82 variables, 7,489 tests, conventional test design
(not covering arrays)

Additional coverage metrics

Application to testing and assurance

• Useful for providing a measurable value with
direct relevance to assurance

• To answer the question:
How thorough is this test set?
We can provide a defensible answer

Examples:
• Fuzz testing (random values) – good for finding bugs

and security vulnerabilities, but how do you know
you’ve done enough?

• Contract monitoring – How do you justify testing has
been sufficient? Identify duplication of effort?

From t-way coverage
to structural coverage

• t-way coverage ensures branch coverage (and therefore
statement coverage) under certain conditions

• Branch Coverage Condition: 100% branch coverage for t-way
conditionals if Mt + Bt >1

Implications: we can achieve full branch coverage as a
byproduct of combinatorial testing, even without a
complete covering array

Does combinatorial testing produce good
structural coverage?

Experiment (Czerwonka)
• Statement coverage: 64% to 76%
• Branch coverage: 54% to 68%

• Both increased with t-way interaction
strength

• Diminishing returns with additional increases
in t.

Some different experimental results

Experiment (Bartholomew), phase 1
Statement coverage: 75%
Branch coverage: 71%
MCDC coverage: 68%

Experiment phase 2
Statement coverage: 100%
Branch coverage: 100%
MCDC coverage: 100%

Why? What changed?

• Input model was changed
• Relatively little effort – 4 hours to get full

statement and branch coverage
• Ad hoc, application dependent changes
• MCDC coverage required more work, but

successful – 16 hours – and huge
improvement over conventional methods

• Can we generalize results, provide
guidance for testers?

• Next research area

How do we automate checking
correctness of output?

• Creating test data is the easy part!

• How do we check that the code worked correctly
on the test input?

• Crash testing server or other code to ensure it does not crash for any
test input (like ‘fuzz testing’)

- Easy but limited value

• Built-in self test with embedded assertions – incorporate assertions in
code to check critical states at different points in the code, or print out
important values during execution

• Full scale model-checking using mathematical model of system and
model checker to generate expected results for each input - expensive
but tractable

Using model checking to produce tests

The system can never
get in this state!

Yes it can, and
here’s how …

l Model-checker test
production:
if assertion is not true,
then a counterexample
is generated.

l This can be
converted to a test
case.

Black & Ammann, 1999

Testing inputs
| Traffic Collision Avoidance

System (TCAS) module
• Used in previous testing research
• 41 versions seeded with errors
• 12 variables: 7 boolean, two 3-value, one 4-

value, two 10-value
• All flaws found with 5-way coverage
• Thousands of tests - generated by model

checker in a few minutes

Tests generated
t

2-way:
3-way:
4-way:
5-way:
6-way:

0

2000

4000

6000

8000

10000

12000

2-way 3-way 4-way 5-way 6-way

T
e
s
ts

Test cases
156
461

1,450
4,309

11,094

Results

Detection Rate for TCAS Seeded
Errors

0%

20%

40%

60%

80%

100%

2 way 3 way 4 way 5 way 6 way

Fault Interaction level

Detection
rate

• Roughly consistent with data on large systems

• But errors harder to detect than real-world examples

Tests per error

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

2 w ay 3 w ay 4 w ay 5 w ay 6 w ay

Fault Interaction level
T

es
ts Tests per error

Bottom line for model checking based combinatorial testing:
Expensive but can be highly effective

Tradeoffs
l Advantages

- Tests rare conditions
- Produces high code coverage
- Finds faults faster
- May be lower overall testing cost

l Disadvantages
- Expensive at higher strength interactions (>4-way)
- May require high skill level in some cases (if formal

models are being used)

Problem: how to test implementation
correctness against specification for problems
with these characteristics:
• Large number of rules
• Large number of variables
• Small set of possible outputs

Pseudo-exhaustive
testing solution using
covering arrays:
• Convert conditions/rules in

requirements to k-DNF form
• Determine dependencies
• Partition according to these

dependencies
• Exhaustively test the inputs on

which an output is dependent
• Detects add, change, delete of

conditions up to k, large class
of errors for conditions with m
terms, m > k

New approaches to oracle problem
Two layer covering arrays -
fully automated after definition
of equivalence classes
• Define boundaries of

equivalence classes
• Approx half of faults detected

with no human intervention
• We envision this type of

checking as part of the build
process; can be used in parallel
with static analysis, type
checking

Overview

1. Intro, empirical data and fault model
2. How it works and coverage/cost

considerations
3. Critical software
4. Security systems

Combinatorial Security Testing

Large scale automated software testing for security
• Complex web applications

• Linux kernels
• Protocol testing & crypto alg. validation
• Hardware Trojan horse (HTH) detection

Web security: Models for vulnerabilities

Sample of XSS and SQLi vulnerabilities found

Security Protocol Testing

X.509 certificates for TLS

CoveringCerts: 2-way test set for certificates

Example: Test translation

Errors observed for TLS implementations

SCAs for browser fingerprinting
• Identification of user browser can be used offensively/defensively
• Custom TLS handshakes are created using SCAs

• Classification based only on behavior analysis

SCAs for browser fingerprinting: evaluation

Recommendations on TLS cipher suites

Combinatorial coverage of TLS registry

KERIS: security models of API function calls

Reproducing kernel security vulnerabilities

Malicious hardware logic detection

Combinational Trojans

Triggering Hardware Trojan horses

Optimized test sets and test execution

Detecting Hardware Trojan horses

Summary
• Software failures are triggered by a small number of

factors interacting – 1 to 6 in known cases

• Therefore covering all t-way combinations, for small t, is
pseudo-exhaustive and provides strong assurance

• Strong t-way interaction coverage can be provided using
covering arrays

• Combinatorial testing is practical today using existing
tools for real-world critical software & security systems

• Combinatorial methods have been shown to provide
significant cost savings with improved test coverage,
and proportional cost savings increases with the size
and complexity of problem

Rick Kuhn & Raghu Kacker Dimitris Simos
{kuhn,raghu.kacker}@nist.gov dsimos@sba-research.org

http://csrc.nist.gov/acts
https://matris.sba-research.org/research/cst/

Please contact us
if you’re interested!

Crash Testing
• Like “fuzz testing” - send packets or other input
to application, watch for crashes

• Unlike fuzz testing, input is non-random;
cover all t-way combinations

• May be more efficient - random input generation
requires several times as many tests to cover the
t-way combinations in a covering array
Limited utility, but can detect
high-risk problems such as:

- buffer overflows
- server crashes

Embedded Assertions
Assertions check properties of expected result:

ensures balance == \old(balance) - amount
&& \result == balance;

•Reasonable assurance that code works correctly across
the range of expected inputs

•May identify problems with handling unanticipated inputs

•Example: Smart card testing
• Used Java Modeling Language (JML) assertions
• Detected 80% to 90% of flaws

New method using
two-layer covering arrays

Consider equivalence classes
Example: shipping cost based on distance d and weight w, with

packages < 1 pound are in one class, 1..10 pounds in another,
> 10 in a third class.

Then for cost function f(d,w),

f(d, 0.2) = f(d, 0.9),
for equal values of d.

But
f(d, 0.2) ≠f(d, 5.0),

because two different weight classes are involved.

Using the basic property of equivalence classes

when a1 and a2 are in the same equivalence class,
f(a1,b,c,d,…) ≈ f(a2,b,c,d,…),

where ≈ is equivalence with respect to some predicate.

If not, then
- either the code is wrong,
- or equivalence classes are not defined correctly.

Can we use this property for testing?
Let’s do an example: access control. access is allowed if

(1) subject is employee & time is in working hours on a weekday; or
(2) subject is an employee with administrative privileges; or
(3) subject is an auditor and it is a weekday.

Equivalence classes for time of day and day of the week

time = minutes past midnight (0..0539), (0540..1020), (1021..1439).
Days of the week = weekend and weekdays,

designated as (1,7) and (2..6) respectively.

Code we want to test
int access_chk() {

if (emp && t >= START && t <= END &&
d >= MON && d <= FRI) return 1;

else

if (emp && p) return 2;

else

if (aud && d >= MON && d <= FRI)
return 3;

else

return 0;

}

Establish equivalence classes
emp: boolean

day: (1,7), (2,6)
A1 A2

time:(0,100,539),(540,1020),(1021,1439)
B1 B2 B3

priv: boolean

aud: boolean

emp (bool) : 0,1
day (enum) : A1,A2
time (enum): B1,B2,B3
priv (bool): 0,1
aud (bool) : 0,1

All of these should be equal

Eq. class
A1

Eq. class
B1

These should also be equal

Eq. class
A2

Eq. class
B1

Now we’re
using class
A2

Covering array
Primary
array:
0,A2,B1,1,1
1,A1,B1,0,0
0,A1,B2,1,0
1,A2,B2,0,1
0,A1,B3,0,1
1,A2,B3,1,0

One
secondary
array
for each

row

Class A2 = (2,6)
Class B1 = (0,539)

emp: boolean
day: (1,7), (2,6)

A1 A2
time: (0,539),(540,1020),(1021, 1439)

B1 B2 B3
priv: boolean
aud: boolean

0 2 0 1 1
0 6 0 1 1
0 2 539 1 1
0 6 539 1 1

Run the tests

Correct code
output:

3333
0000
0000
1111
0000
2222

Faulty code:
if (emp && t>=START &&
t==END
&& d>=MON && d<=FRI) return
1;
Faulty code output:

3333
0000
0000
3311
0000
2222

What’s happening here?

Input
domain

Incorrect
boundary

We simply
detect
inconsistency
between
partitions

Can this really work on practical code?

Primary x
secondary #tests total

faults
detected

3-way x 3-way 285x8 2280 6
4-way x 3-way 970x8 7760 22

Experiment: TCAS code (same used in earlier model checking
tests)
• Small C module, 12 variables
• Seeded faults in 41 variants

• Results:

• More than half of faults detected
• Large number of tests -> but fully automated, no human

intervention
• We envision this type of checking as part of the build process;

can be used in parallel with static analysis, type checking

Next Steps
Realistic trial use

Different constructions for secondary array, e.g., random values

Formal analysis of applicability – range of applicability/effectiveness,
limitations, special cases

Determine how many faults can be detected this way

Develop tools to incorporate into build process

Input Model Considerations

• Nearly all testing requires selecting representative
values from input parameters

• Examples: distance, angle, dollars, etc.
• Most software has this issue
• Affects number of tests produced in covering array
• How can we improve input modeling process?

Classification tree

Test designer evolves to:

Finished tree -> test parameters

ComTest tool to speed up this process

Learning and Applying Combinatorial Testing

Tutorials:
• “Practical Combinatorial Testing”, NIST publication

– case studies and examples, 82 pages;
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-142.pdf

• Youtube – search “pairwise testing” or “combinatorial testing”;
several good videos

• “Pairwise Testing in the Real World: Practical Extensions to
Test-Case Scenarios”, Jacek Czerwonka, Microsoft
https://msdn.microsoft.com/en-us/library/cc150619.aspx

Learning and Applying Combinatorial Testing

Web sites:
• csrc.nist.gov/acts – tutorials, technical papers, free and

open source tools

• pairwise.org - tutorials, links to free and open source tools

• Air Force Institute of Technology – statistical testing for
systems and software
http://www.afit.edu/STAT/page.cfm?page=713

Model checking example
-- specification for a portion of tcas - altitude separation.
-- The corresponding C code is originally from Siemens Corp. Research
-- Vadim Okun 02/2002
MODULE main
VAR

Cur_Vertical_Sep : { 299, 300, 601 };
High_Confidence : boolean;

...
init(alt_sep) := START_;

next(alt_sep) := case
enabled & (intent_not_known | !tcas_equipped) : case

need_upward_RA & need_downward_RA : UNRESOLVED;
need_upward_RA : UPWARD_RA;
need_downward_RA : DOWNWARD_RA;
1 : UNRESOLVED;

esac;
1 : UNRESOLVED;

esac;
...
SPEC AG ((enabled & (intent_not_known | !tcas_equipped) &
!need_downward_RA & need_upward_RA) -> AX (alt_sep = UPWARD_RA))
-- “FOR ALL executions,
-- IF enabled & (intent_not_known
-- THEN in the next state alt_sep = UPWARD_RA”

Computation Tree Logic
The usual logic operators,plus temporal:

A φ - All: φ holds on all paths starting from the
current state.

E φ - Exists: φ holds on some paths starting from
the current state.

G φ - Globally: φ has to hold on the entire
subsequent path.

F φ - Finally: φ eventually has to hold
X φ - Next: φ has to hold at the next state
[others not listed]

execution paths
states on the execution paths

SPEC AG ((enabled & (intent_not_known |
!tcas_equipped) & !need_downward_RA & need_upward_RA)
-> AX (alt_sep = UPWARD_RA))

“FOR ALL executions,
IF enabled & (intent_not_known
THEN in the next state alt_sep = UPWARD_RA”

What is the most effective way to integrate
combinatorial testing with model checking?

• Given AG(P -> AX(R))
“for all paths, in every state,

if P then in the next state, R holds”

• For k-way variable combinations, v1 & v2 & ... &
vk

• vi abbreviates “var1 = val1”

• Now combine this constraint with assertion to produce
counterexamples. Some possibilities:

1. AG(v1 & v2 & ... & vk & P -> AX !(R))

2. AG(v1 & v2 & ... & vk -> AX !(1))

3. AG(v1 & v2 & ... & vk -> AX !(R))

What happens with these assertions?
1. AG(v1 & v2 & ... & vk & P -> AX !(R))

P may have a negation of one of the vi, so we get
0 -> AX !(R))

always true, so no counterexample, no test.
This is too restrictive!

2. AG(v1 & v2 & ... & vk -> AX !(1))
The model checker makes non-deterministic choices for
variables not in v1..vk, so all R values may not be covered
by a counterexample.
This is too loose!

3. AG(v1 & v2 & ... & vk -> AX !(R))
Forces production of a counterexample for each R.
This is just right!

Example: where covering arrays come in
attributes: employee , age, first_aid_training, EMT_cert, med_degree
rule: “If subject is an employee AND 18 or older AND: (has first aid

training OR an EMT certification OR a medical degree), then authorize”
policy:

emp && age > 18 && (fa || emt || med) → grant
else → deny

(emp && age > 18 && fa) ||
(emp && age > 18 && emt) ||
(emp && age > 18 && med)

3-DNF so a 3-way covering
array will include
combinations that instantiate
all of these terms to true

Rule structure
attributes: employment_status and time_of_day
rule: “If subject is an employee and the hour is between 9 am and 5 pm, then

allow entry.”
policy structure:

R1 → grant
R2 → grant
…
Rm → grant
else → deny

Positive testing (easy) Negative testing (hard)
• test set DTEST = covering array of

strength k, for the set of attributes
included in R

• constraints specified by ~R
• ensures that all deny-producing

conjunctions of attributes tested
• masking is not a consideration –

because of problem structure
– deny is issued only after all grant

conditions have been evaluated
– masking of one combination by

another can only occur for DTEST
when a test produces a response of
grant

– if so, an error has been
discovered; repair and run test set
again

Generating test array for all 3-way negative cases

!((emp && age > 18 && fa) ||
(emp && age > 18 && emt) ||
(emp && age > 18 && med))

emp age fa emt med
TRUE TRUE FALSE FALSE FALSE
TRUE FALSE TRUE TRUE TRUE
TRUE FALSE FALSE TRUE FALSE
FALSE TRUE TRUE FALSE TRUE
FALSE TRUE FALSE TRUE TRUE
FALSE FALSE TRUE FALSE FALSE
FALSE FALSE FALSE FALSE TRUE
FALSE TRUE TRUE TRUE FALSE
TRUE FALSE TRUE FALSE TRUE
FALSE FALSE FALSE TRUE FALSE
TRUE FALSE FALSE FALSE TRUE
TRUE FALSE TRUE FALSE FALSE

All 3-way combinations of these
variables except for positive cases

Covering array generator

constraint

output

Number of tests
for positive tests, Gtest: one test for

each term in the rule set, for for m
rules with p terms each , mp

for negative tests, Dtest: one covering
array per rule, where each attribute
in the rule is a factor

easily practical for huge numbers of
tests when evaluation is fast - access
control systems have to be

k v n m N tests #GTEST #DTEST
3 2 50 20 36 80 720

50 200 1800
100 20 45 80 900

50 200 2250
4 50 20 306 80 6120

50 200 15300
100 20 378 80 7560

50 200 18900
6 50 20 1041 80 20820

50 200 52050
100 20 1298 80 25960

50 200 64900
4 2 50 20 98 80 1960

50 200 4900
100 20 125 80 2500

50 200 6250
4 50 20 1821 80 36420

50 200 91050
100 20 2337 80 46740

50 200 116850
6 50 20 9393 80 187860

50 200 469650
100 20 12085 80 241700

50 200 604250

Fault detection properties

tests from GTEST and DTEST will detect added, deleted, or altered faults with up
to k attributes

if more than k attributes are included in faulty term F, some faults are still
detected, for number of attributes j > k

j > k and correct term C is not a subset of F: detected by GTEST

j > k and C is a subset of F: not detected by DTEST; possibly detected by
GTEST; higher strength covering arrays for DTEST can detect

generalized to cases with more than grant/deny outputs; suitable for
small number of outputs which can be distinguished
(in principle can be applied with large number of outputs)

Summarizing:
Comparison with Model-based Testing

0 1 0 0 1 1 1 model
checker

0 1 0 0 1 1 1 grant

model-based:

generate input data
(covering array,
random, ad hoc)

for each set of
inputs determine
expected decision

pseudo-
exhaustive:

rules

generate covering arrays
with constraint from rules

rules

test
array –
grant

covering
array –
deny

Use model checker to determine expected
result for specified conditions:

Use covering array generator to determine
expected result for all t-way conditions:

Sample of XSS and SQLi vulnerabilities found

Oracle-free testing

Fuzz testing – send random values until system fails, then
analyze memory dump, execution traces

Metamorphic testing – e.g. cos(x) = cos(x+360), so
compare outputs for both, with a difference indicating
an error.

Partial test oracle – e.g., insert element 𝑥 in data
structure S, check 𝑥 ∈ 𝑆

Some current approaches:

ERIS: Combinatorial Kernel Testing

Combinatorial methods for TLS testing

Input models for TLS messages

Test execution framework (TEF)

Case study for Hardware Trojan horses

USAF test plan coverage – shockingly good!

All 5-way combinations
covered to at least 50%

