
An Extension of the FF2 FPE Scheme

Submission to NIST

Joachim Vance Mihir Bellare

VeriFone UCSD

July 2, 2014

2 FF4: An Amendment to the FF2 FPE Scheme

Contents

1 Introduction 3

2 Notation 4

3 The DFF FPE scheme 4

4 Potential attacks 6

4.1 Attack parameters and dictionary attack . 7

4.2 The subkey attack . 7

4.3 Cost of the subkey attack . 8

4.4 The suggested offset choice and scheme . 8

Submission to NIST 3

1 Introduction

A Format-Preserving Encryption (FPE) scheme [1] is a cipher that preserves in the ciphertext some
structure of the plaintext. It can be used to encrypt credit-card numbers in such a way that the
ciphertext is also a credit-card number.

An FPE scheme takes a key K, tweak T and plaintext X and deterministically computes a cipher-
text Y . The map from plaintext to ciphertext is a permutation for each choice of key and tweak.
Possession of the key and tweak allows decryption, meaning X can be recovered from K,T, Y .

FF2 is an FPE scheme in the NIST draft SP 800-38G [2]. Like the other schemes in [2], FF2 is a
Feistel construction where the round function is based on a blockcipher CIPH with a 128-bit block
length. FF2 also assumes the blockcipher has a 128-bit key. Plaintext, ciphertext and tweak are all
strings over the alphabet Σ = {0, 1, . . . , radix− 1} where radix ≥ 2 is an integer called the radix.

FF2 distinguishes itself from the other schemes by its delegation feature. It associates to each key
K and tweak T a subkey J(K,T), and the ciphertext corresponding to K,T,X is a function of
J(K,T), X alone.

Delegation is valuable because it limits direct use of the base key. Many sidechannel attacks gain
in effectiveness at recovering a key as they obtain more encryptions under it. With delegation,
the loss will be limited to the subkey so that even if encryption is compromised, it is only under
a particular tweak, not under all tweaks as would happen with compromise of the base key. By
limiting use of the base key, delegation also extends its lifetime, so that key changes, which are
cumbersome to perform, are needed less frequently.

NIST/NSA have communicated anl attack on FF2 [3] that we will call the subkey attack. Given
encryptions of a single plaintext X under different tweaks T1, . . . , TQ, the attack returns an index i
and the subkey J(K,Ti), in the time for around 2128/Q evaluations of CIPH. NIST refer to it as a
theoretical attack [3]. Indeed, this attack does not appear to compromise anticipated uses of FF2
for credit-card encryption, and would appear to be infeasible to mount in practice in anticipated
use cases. However it shows that FF2 with a 128-bit key cipher does not provide 128 bits of security
for all use cases. On this basis NIST has elected to finalize SP 800-38G without FF2 while giving
VeriFone the opportunity to propose a modification.

This document describes such a modification to FF2. It is aimed at countering the subkey attack
while preserving delegatability. The modification is small, local and cheap, so that most of the
structure of FF2 is preserved.

To better explain and conceptualize the issues, schemes and choices, we take a broad perspective.
We describe an FPE scheme DFF[OFF] (“delegatable FF”), that is parameterized by an offset
function OFF. The latter takes the base key K and tweak T to return a 128-bit binary string
OFF(K,T). Thus DFF specifies a family of FPE schemes, one for each choice of OFF. By making a
particular choice of OFF we get a particular, specific FPE scheme. FF2 is one of these, corresponding
to the trivial choice of OFF(K,T) = 0128. We propose that the amended standard be obtained as
DFF with a different choice of OFF, namely one that makes the offset depend on both K and T in
an unpredictable way via CIPH, specifically OFF(K,T) = CIPH(K,T ′) where T ′ is derived from T .

DFF serves thus to unify the prior and new versions of delegatable FPE, both of which appear
as special cases. Regardless of the choice of OFF, the scheme DFF[OFF] has the delegatability

4 FF4: An Amendment to the FF2 FPE Scheme

feature. Susceptibility to the subkey attack is however sensitive to the choice of OFF. Making its
role explicit allows us to better see how the attack might extend and make choices, such as the one
suggested, which we believe thwarts the attack.

2 Notation

We let Σ = Zradix = {0, 1, . . . , radix − 1} be an alphabet. Members of Σ are referred to as digits
or symbols. The size radix of Σ is referred to as the number of digits or the radix. A string is a
finite sequence of symbols from Σ, and the set of all strings is denoted Σ∗. By len(X) we denote
the length, meaning number of symbols, in a string X. The i-th digit of a string X will be denoted
X[i], for i = 1, . . . , len(X), and we let X[a . . . b] = X[a] . . . X[b] for a ≤ b. By Σn we denote the set
of all strings of length n. Plaintexts, ciphertexts and tweak will be strings over Σ. (For simplicity
we set the plaintext and tweak alphabets to be the same, although the original FF2 specification
allowed them to differ.)

If s1, s2, . . . , sn are binary strings then s1‖s2‖ . . . ‖sn denotes their concatenation. If N < 28i is
a non-negative integer then [N]i denotes its encoding as a string of i ≥ 1 bytes. If X ∈ Σ∗ and
m = len(X) then NUMradix(X) is the integer representing X, namely

NUMradix(X) =
m−1∑
i=0

X[m− i] · radixi .

By convention, NUMradix(X) = 0 if X = ε is the empty string, meaning the string of length 0.

If X is a binary string then NUM2(X) is the integer it represents, and again NUM2(X) = 0 if X
is the empty binary string. If 0 ≤ c < radixm is an integer then STRm

radix(c) is the string X in Σm

that represents c, namely such that NUMradix(X) = c.

Function RADm take input a 128-bit string S and return its representation as a string in Σm,
computed by first converting S to an integer I = NUM2(S), computing the integer I modulo radixm

to get a remainder R, and then returning STRm
radix(R).

CIPH : {0, 1}128 × {0, 1}128 → {0, 1}128 denotes an approved blockcipher such as AES.

3 The DFF FPE scheme

The DFF[OFF] scheme is shown in Fig. 1. Parameters of the algorithm include:

• radix ∈ [2 . . . 28] defining the input, output and tweak alphabet Σ = {0, . . . , radix− 1}

• Integer minlen ≥ 2 such that radixminlen ≥ 100

• Integer maxlen ≥ minlen such that maxlen ≤ 2b120/ log2(radix)c if radix is a power of two, and
maxlen ≤ 2b98/ log2(radix)c if radix is not a power of two

• maxTlen < b104/ log2(radix)c

• Function OFF that given key K and tweak T returns a string OFF(K,T) ∈ {0, 1}128. Different
specific FPE schemes are obtained by different choices of OFF.

Submission to NIST 5

Algorithm DFF[OFF].Enc(K,T,X)

n← len(X) ; t← len(T)
P ← [radix]1‖[t]1‖[n]1‖[NUMradix(T)]13

T ′ ← [0]3‖[NUMradix(T)]13

J ← CIPH(K,P) ; J ′ ← OFF(K,T)
Z ← FEISTEL(J, J ′, X)
Return Z

Algorithm FEISTEL(J, J ′, X)

u← bn/2c ; v ← n− u
A← X[1 . . . u] ; B ← X[u + 1 . . . n]
For i = 0, . . . , 9 do

Q← [i]1‖[NUMradix(B)]15

Y ← CIPH(J, J ′ ⊕ Q) ; y ← NUM2(Y)
If i is even then m← u else m← v
c← (NUMradix(A) + y) mod radixm

C ← STRm
radix(c)

A← B ; B ← C
Return A‖B

Algorithm DFF[OFF].Dec(K,T, Z)

n← len(Z) ; t← len(T)
P ← [radix]1‖[t]1‖[n]1‖[NUMradix(T)]13

T ′ ← [0]3‖[NUMradix(T)]13

J ← CIPH(K,P) ; J ′ ← OFF(K,T)

X ← FEISTEL−1(J, J ′, Z)
Return X

Algorithm FEISTEL−1(J, J ′, Z)

u← bn/2c ; v ← n− u
A← Z[1 . . . u] ; B ← Z[u + 1 . . . n]
For i = 9, . . . , 0 do

Q← [i]1‖[NUMradix(B)]15

Y ← CIPH(J, J ′ ⊕ Q) ; y ← NUM2(Y)
If i is even then m← u else m← v
c← (NUMradix(A)− y) mod radixm

C ← STRm
radix(c)

A← B ; B ← C
Return A‖B

Figure 1: The DFF[OFF] FPE scheme. The enciphering function is DFF[OFF].Enc and the
deciphering function is DFF[OFF].Dec. FEISTEL,FEISTEL−1 are subroutines. The function OFF is
a parameter.

OFF(K,T) Remarks

OFF1 0128 FF2, subject to subkey attack

OFF2 CIPH(K,T ′) Designed to resist subkey attack

Figure 2: Some choices of OFF for DFF[OFF]. Here T ′ = [0]3‖[NUMradix(T)]13. The proposal for
the standard is DFF[OFF2] with OFF2 being the second choice shown.

Inputs to the encipher algorithm are:

• 128-bit key K, binary string

• Plaintext X ∈ Σ∗ such that len(X) ∈ [minlen . . .maxlen]

• Tweak T ∈ Σ∗ such that len(T) ∈ [0 . . .maxTlen]

Inputs to the decipher algorithm are:

• 128-bit key K, binary string

• Ciphertext Z ∈ Σ∗ such that len(Z) ∈ [minlen . . .maxlen]

• Tweak T ∈ Σ∗ such that len(T) ∈ [0 . . .maxTlen]

6 FF4: An Amendment to the FF2 FPE Scheme

Algorithm DFF[OFF2].Enc(K,T,X)

n← len(X) ; t← len(T)
P ← [radix]1‖[t]1‖[n]1‖[NUMradix(T)]13

T ′ ← [0]3‖[NUMradix(T)]13

J ← CIPH(K,P) ; J ′ ← CIPH(K,T ′)
Z ← FEISTEL(J, J ′, X)
Return Z

Algorithm FEISTEL(J, J ′, X)

u← bn/2c ; v ← n− u
A← X[1 . . . u] ; B ← X[u + 1 . . . n]
For i = 0, . . . , 9 do

Q← [i]1‖[NUMradix(B)]15

Y ← CIPH(J, J ′ ⊕ Q) ; y ← NUM2(Y)
If i is even then m← u else m← v
c← (NUMradix(A) + y) mod radixm

C ← STRm
radix(c)

A← B ; B ← C
Return A‖B

Algorithm DFF[OFF2].Dec(K,T, Z)

n← len(Z) ; t← len(T)
P ← [radix]1‖[t]1‖[n]1‖[NUMradix(T)]13

T ′ ← [0]3‖[NUMradix(T)]13

J ← CIPH(K,P) ; J ′ ← CIPH(K,T ′)

X ← FEISTEL−1(J, J ′, Z)
Return X

Algorithm FEISTEL−1(J, J ′, Z)

u← bn/2c ; v ← n− u
A← Z[1 . . . u] ; B ← Z[u + 1 . . . n]
For i = 9, . . . , 0 do

Q← [i]1‖[NUMradix(B)]15

Y ← CIPH(J, J ′ ⊕ Q) ; y ← NUM2(Y)
If i is even then m← u else m← v
c← (NUMradix(A)− y) mod radixm

C ← STRm
radix(c)

A← B ; B ← C
Return A‖B

Figure 3: The DFF[OFF2] FPE scheme obtained by instantiating the offset function of DFF
by the OFF2 function of Fig. 2. The enciphering function is DFF[OFF2].Enc and the deciphering
function is DFF[OFF2].Dec. The FEISTEL,FEISTEL−1 subroutines are the same as in Fig. 1, shown
again for completeness.

DFF is a generalization of FF2, capturing the latter as DFF[OFF] with OFF(K,T) = 0n. Fig. 2 shows
this together with our new, suggested choice of OFF. The FF2 scheme is subject to the subkey attack
of Section 4. The new choice of OFF is designed to evade the attack and the suggestion for the
standard is DFF[OFF2]. The resulting FPE scheme is shown explicitly in Fig. 3 for completeness.

DFF[OFF] supports delegation, regardless of the choice of OFF. The delegated information would be
(J,OFF(K,T)). Plaintext X and this delegated information suffice to compute DFF[OFF].Enc(K,
T,X), the base key K not being directly used. The delegated information can be precomputed for
a given tweak T and then DFF[OFF].Enc(K,T,X) can be computed for any given X without access
to K. If a terminal is encrypting with a fixed choice of tweak, it need not even store K. This limits
the use of the base key, with ensuing increase in resistance to certain kinds of attacks including
sidechannel attacks.

4 Potential attacks

We discuss potential attacks on DFF, including the subkey attack on some instances of DFF[OFF],
including FF2, meaning the first choice of offset function from Fig. 2. We discuss how the suggested
choice of offset function protects against the attack.

Submission to NIST 7

Adversary SKA(X,T1, . . . , TQ, Z1, . . . , ZQ)

i← 0 ; c← 0
While (i = 0) do

Jc ← STR128
2 (c) ; Z ← FEISTEL(Jc, X)

i← Find(Z,Z1, . . . , ZQ)
If i > 0 then J ← Jc else c← c + 1

Return (Ti, J)

Figure 4: The subkey attack on FF2.

4.1 Attack parameters and dictionary attack

The adversary is assumed to have access to an encryption oracle DFF[OFF].Enc(K, ·, ·), where K
is the target key. It can invoke this oracle on any tweak T and input X of its choice to get back
Y = DFF[OFF].Enc(K,T,X). We denote by Q = 2q the number of queries the adversary makes to
this oracle, called encryption queries.

We regard the input length n and radix radix as fixed, these being any permissible choices. The
space of possible inputs is then Σn = Zn

radix. We let R = radixn denote its size, meaning the number
of possible inputs. We let {I1, . . . , IR} denote a listing of all possible inputs.

Any FPE scheme is subject to an unavoidable dictionary attack which breaks the scheme in R
encryption queries and almost no offline work. In the case of DFF, it works as follows. The adversary
picks any tweak T of its choice and queries Yi = DFF[OFF].Enc(K,T, Ii) for all i = 1, . . . , R. Having
the table (Y1, . . . , YR), it can subsequently decrypt any ciphertext Y encrypted under tweak T , by
simply finding i such that Y = Yi and returning Ii as the decryption.

4.2 The subkey attack

Recall that FF2 = DFF[OFF] for OFF(K,T) = 0128. We describe the NIST/NSA attack on FF2
from [3]. We call it the subkey attack. We then discuss the effectiveness of the attack. Below we
denote by FF2.Enc and FF2.Dec the encryption and decryption algorithms of FF2, respectively.

The adversary picks a plaintext X and distinct non-empty tweaks T1, . . . , TQ. It then uses its
encryption oracle to obtain encipherings Zi = FF2.Enc(K,Ti, X) for i = 1, . . . , Q. Here Q = 2q, the
number of encryption queries, is the number of tweak-ciphertext pairs that the adversary has, and
is a parameter of the attack.

The attack, denoted SKA, is shown in Fig. 4. Here STR128
2 (c) is the 128-bit binary string corre-

sponding to integer c. Algorithm Find, on input Z,Z1, . . . , ZQ, searches for Z in the list Z1, . . . , ZQ,
returning some value i such that Z = Zi if such a value exists, and returning 0 otherwise.

To explain the attack, first let

Pi = [radix]1‖[len(Ti)]
1‖[len(X)]1‖[NUMradix(Ti)]

13 and J(Ti) = CIPH(K,Pi)

for i = 1, . . . , Q. We call J(T1), . . . , J(TQ) the target subkeys. Knowledge of J(Ti) allows decryption
of any ciphertext enciphered under tweak Ti. Indeed, if Z ′ = FF2.Enc(K,Ti, X

′) is encrypted under

8 FF4: An Amendment to the FF2 FPE Scheme

Ti, and one knows J(Ti), one can recover X ′ = FEISTEL−1(J(Ti), Z
′). However, possession of J(Ti)

does not allow decryption of ciphertexts enciphered under a tweak different from Ti, meaning J(Ti)
is of limited use to an attacker.

The attack will try to find J(Ti) for some i. The attacker will not be able to dictate the value of i for
which it is successful. This will, rather, emerge from the attack, effectively being a random value in
the range 1, . . . , Q. The attack searches through the key space for subkeys, testing each candidate
subkey Jc by seeing if the result Z of FEISTEL on X with the candidate subkey Jc matches some
ciphertext in its given list Z1, . . . , ZQ. If so, meaning Z = Zi, then it is likely that Jc = J(Ti). The
attack returns Ti and J = Jc.

4.3 Cost of the subkey attack

Since there are Q = 2q target subkeys, we expect that the loop will be successful after 2128/Q =
2128−q iterations. Each iteration costs 10 CIPH computations plus the time to run Find. The latter
can be made much less than Q steps by using data structures such as hash tables or binary search,
and we will accordingly neglect this cost entirely. (This is perhaps giving the attacker too much
credit, for merely the memory management is likely to have some cost for large Q.) The result is
a cost estimate of 10 · 2128−q ≥ 2131−q CIPH operations. The memory cost is O(Q).

NIST refer to the subkey attack as a theoretical one. Cryptographers generally consider an effort
of 280 to be prohibitive, and a system is considered secure if the adversary effort is estimated to be
of this magnitude. This is the effort corresponding to the current parameter choices for pubic-key
cryptography, namely 1024 bit RSA keys or 160-bit EC keys. If we adopt the same metric, then the
subkey attack can be considered ineffective in practice as long as 2131−q ≥ 280. In other words, for
the attack to be effective, it must be that q ≥ 131− 80 = 51. That is, the adversary would need to
collect at least Q = 251 ≈ 2.251 quadrillion tweak-ciphertext pairs, all under one, same plaintext.
Obtaining this is not easy, particularly in the context of payment systems. It requires long-term
access to an encryption device. For example Verifone devices allow at most 1,000 encryptions per
hour, so obtaining even 237 of them would take over 100,000 years. We also note that the attack
does not recover the key K, but only allows decryption under some tweak over which the attacker
has little control.

For the attack to be non-trivial, meaning better than the unavoidable dictionary attack discussed
above, we need Q ≤ R, which means that the attack is effective only when the input space is large,
the opposite of the typical application setting for FPE. Also, the tweak space needs to be large.

NIST’s position is that when using an underlying blockcipher CIPH with a 128-bit key, one should
obtain 128 bits of security for the FPE scheme for all uses, a goal that FF2 does not meet. DFF[OFF]
is here suggested as an extension that, for appropriate choices of OFF, is aimed at countering the
attack while preserving delegatability.

4.4 The suggested offset choice and scheme

The subkey attack on FF2 crucially exploits the fact that the FEISTEL computation is not tweak
dependent. To prevent the subkey attack or variants, we allow the Feistel round function to depend
on the tweak via the offset. Specifically we consider DFF[OFF] with OFF(K,T) = CIPH(K,T ′), the

Submission to NIST 9

2nd choice from Fig. 2. We believe this will circumvent the subkey attack, restoring the algorithm
to a 128-bit strength for all uses, and making it suitable for inclusion in SP 800-38G. The reason
is that the the Feistel computation must be repeated for each candidate tweak in the attack.

References

[1] M. Bellare, T. Ristenpart, P. Rogaway and T. Stegers. Format Preserving Encryption. Proceed-
ings of SAC 2009, Springer LNCS Vol. 5867, 2009. IACR Cryptology ePrint Archive Report
2009/251.

[2] Morris Dworkin. Recommendation for Block Cipher Modes of Operation: Methods for Format-
Preserving Encryption. NIST Special Publication 800-38G. Draft, July 2013.

[3] NIST Computer Security Division News, Explanation of Changes to Draft Special Publication
800-38G, June 27, 2014. csrc.nist.gov/news_events/

