Appendix G: (Informative) DRBG Selection

Almost no application or system designer starts with the primary purpose of generating
good random bits. Instead, he typically starts with some goal that he wishes to
accomplish, then decides on some cryptographic mechanisms, such as digital signatures
or block ciphers that can help him achieve that goal. Typically, as he begins to
understand the requirements of those cryptographic mechanisms, he learns that he will
also have to generate some random bits, and that this must be done with great care, or he
may inadvertently weaken the cryptographic mechanisms that he has chosen to
implement. At this point, there are three things that may guide the designer's choice of a
DRBG:

a. He may already have decided to include a set of cryptographic primitives as part
of his implementation. By choosing a DRBG based on one of these primitives, he
can minimize the cost of adding that DRBG. In hardware, this translates to lower
gate count, less power consumption, and less hardware that must be protected
against probing and power analysis. In software, this translates to fewer lines of
code to write, test, and validate.

For example, a module that generates RSA signatures has available some kind of
hashing engine, so a hash-based DRBG is a natural choice.

b. He may already have decided to trust a block cipher, hash function, keyed hash
function, etc., to have certain properties. By choosing a DRBG based on similar
properties, he can minimize the number of algorithms he has to trust.

For example, an AES-based DRBG might be a good choice when a module
provides encryption with AES. Since the DRBG is based for its security on the
strength of AES, the module's security is not made dependent on any additional
cryptographic primitives or assumptions.

c. Multiple cryptographic primitives may be available within the system or
application, but there may be restrictions that need to be addressed (e.g.,code size
or performance requirements).

The DRBGs specified in this Standard have different performance characteristics,
implementation issues, and security assumptions.

G.1 Hash_DRBG

Hash DRBG is a DRBG based on using an approved hash function in a kind of counter
mode. It is descended from the FIPS 186 DRBG. Each Generate request is met by
starting a counter from the current secret state 7 and iterating it to generate each
successive # bits of output requested, where 7 is the number of bits in the hash output.

At the end of the Generate request, the secret state V' is updated in a way that prevents
backtracking.

Performance. Within a Generate request, each » bits of output require one hash
computation. This makes Hash_DRBG twice as fast as HMAC DRBG. Each Generate
request, one additional hash computation and some additions are done.



Security. Hash_DRBG’s security depends on the underlying hash function’s behavior
when processing a sequence of sequential integers. If the hash function were replaced by
a random oracle, Hash_ DRBG would be secure. It is difficult to relate the properties of
the hash function required by Hash .DRBG with common properties such as collision
resistance, preimage resistance, or pseudorandomness. There are known problems with
Hash_DRBG when the DRBG is instantiated with insufficient entropy, and then
provided enough entropy to reach a secure state via additional input to the Generate
function.

Resources. Hash DRBG requires access to a hashing engine, and the ability to do
addition with seedlen-bit integers. Hash DRBG makes extensive use of the hash-based
derivation function, hash_df.

G.2 HMAC_DRBG

HMAC_DRBG is a DRBG built around the use of some approved hash function in the
HMAC construction. To generate pseudorandom bits from a secret key (Key) and a
starting value ¥, the DRBG computes

V=HMAC (Key, V).

At the end of a generation request, the DRBG regenerates Key and ¥, each requiring one
HMAC computation.

Security. The security of HMAC_DRBG is based on the assumption that an approved
hash function used in the HMAC construction is a pseudorandom function family.
Informally, this just means that when an attacker doesn’t know the key used, HMAC
outputs look random, even given knowledge and control over the inputs. In general, even
relatively weak hash functions seem to be quite strong when used in the HMAC
construction. On the other hand, there is not a reduction proof from the hash function’s
collision resistance properties to the security of the DRBG; the security of
HMAC_DRBG depends on somewhat different properties of the underlying hash
function. Note, however, that the pseudorandomness of HMAC is a widely used
assumption in designing cryptographic protocols.

Performance. HMAC DRBG produces pseudorandom outputs considerably more
slowly than the underlying hash function processes inputs; for SHA-256, a long generate
request produces output bits at about 1/4 of the rate that the hash function can process
input bits. Each generate request also involves additional overhead equivalent to
processing 2048 extra bits with SHA-256. Note, however, that hash functions are
typically quite fast; few if any applications are expected to need output bits faster than
HMAC DRBG can provide them.

Resources. Any entropy input source may be used with HMAC_DRBG, as it uses
HMAC to process all its inputs. HMAC_DRBG requires access to an HMAC
implementation for optimal performance. However, a general-purpose hash
implementation can always be used to implement HMAC. Any implementation requires
the storage space required for the internal state (see Section 10.1.2.2.1).

Algorithm Choices. The choice of algorithms that may be used by HMAC_DRBG is
discussed in Section 10.1.1.



G.3 CTR_DRBG

CTR_DRBG is a DRBG based on using an Approved block cipher in counter mode. At
the time of this writing, only three-key TDEA and AES are approved for use within ANS
X9.82. Pseudorandom outputs are generated by encrypting successive values of a

counter; after a generate request, a new key and new starting counter value are generated.

Security. The security of CTR_DRBG is directly based on the security of the
underlying block cipher, in the sense that, so long as some limits on the total number of
outputs are observed, any attack on CTR_DRBG represents an attack on the underlying
block cipher.

Constraints on Outputs. For shown in Table 3 of Section 10.2.2.1, for each of the three
AES Kkey sizes, up to 2*® generate requests may be made, each of up to 2" bits, with a
negligible chance of any weakness that does not represent a weakness in AES. This
tracks with the situation for most other DRBGs. However, the smaller block size of
TDEA imposes more stringent constraints; each generate request is limited to 25 bits,
and at most 2*% such requests may be made.

Performance. For large generate requests, CTR_DRBG produces outputs at the same
speed as the underlying block cipher encrypts data. Furthermore, CTR_DRBG is
parallelizeable. At the end of each generate request, work equivalent to between two and
four block encryptions is done to derive new keys and counters for the next generation
request.

Resources. CTR_DRBG may be implemented with or without a derivation function.

With a derivation function, CTR_DRBG can process additional inputs for Generate
requests in the same way as any other DRBG, but at a cost in performance because of the
use of the block cipher derivation function. Such an implementation may be seeded by
any approved entropy source.

Without a derivation function, CTR_DRBG is more efficient, but less flexible. Such an
implementation must be seeded by a conditioned entropy source or another RBG, and can
accept additional input and personalization strings of less than seedlen bits.

CTR_DRBG requires access to a block cipher engine, including the ability to change
keys, and the storage space required for the internal state (see Section 10.2.2.2.1).

Algorithm Choices. The choice of algorithms that may be used by CTR_DRBG is
discussed in Section 10.2.1.

G.4 DRBGs Based on Hard Problems

[[I’ve rewritten this to be consistent in style with the rest of this section.]]

The Dual EC DRBG bases its security on a number-theoretic problem which is widely
believed to be hard. For the types of curves used in the Dual_EC_DRBG, the Elliptic
Curve Discrete Logarithm Problem has no known attacks that are better than the "meet-
in-the-middle" attacks, with a work factor of sqrt (2™).

Random bits are produced in blocks of bits representing the x-coordinates on an elliptic
curve.



Performance. Each block produced requires two point multiplications on an elliptic
curve—a fair amount of computation. Applications such as IKE and SSL are encouraged
to aggregate all their needs for random bits into a single call to Dual EC_DRBG, and
then parcel out the bits as required during the protocol exchange. A C language structure,
for example, is an ideal vehicle for this.

This algorithm is decidedly less efficient to implement than the other DRBGs. However,
in those cases where security is the utmost concern, as in SSL or IKE exchanges, the
additional complexity is not usually an issue. Except for dedicated servers, time spent on
the exchanges is just a small portion of the computational load; overall, there is no impact
on throughput by using a number-theoretic algorithm. As for SSL or IPSEC servers, more
and more of these servers are getting hardware support for cryptographic primitives like
modular exponentiation and elliptic curve arithmetic for the protocols themselves. Thus,
it makes sense to utilize those same primitives (in hardware or software) for the sake of
high-security random numbers.

Constraints on OQutputs.

Because of the various security strengths allowed by this Standard there are multiple
curves available, with differing block sizes. The size is always a multiple of 8, about 16
bits less than a curve’s underlying field size. Blocks are concatenated and then truncated,
if necessary, to fullfil a request for any number of bits up to a maximum per call of
10,000 times the block length. The smallest blocksize is 216, meaning that at least 2M
bits can be requested on each call.)

Resources. The Dual EC_DRBG implementation needs access to a hashing engine,
and an engine for doing point multiplication on an elliptic curve. In addition, some
integer arithmetic support is needed.

To avoid unnecessarily complex implementations, note that every curve in the Standard
need not be available to an application. To improve efficiency, there has been much
research done on the implementation of elliptic curve arithmetic; descriptions and source
code are available in the open literature.

As a final comment on the implementation of the Dual_ EC_DRBG, note that having
fixed base points offers a distinct advantage for optimization. Tables can be precomputed
that allow 7P to be attained as a series of point additions, resulting in an 8 to 10-fold
speedup, or more, if space permits.



