ANNEX D: (Informative) DRBG Selection

[This will need to be revised, based on the DRBGs that are retained and the content of
Part 4.]

D.1 Choosing a DRBG Algorithm

Almost no application or system designer starts with the primary purpose of generating
good random bits. Instead, he typically starts with some goal that he wishes to
accomplish, then decides on some cryptographic mechanisms, such as digital signatures
or block ciphers that can help him achieve that goal. Typically, as he begins to
understand the requirements of those cryptographic mechanisms, he learns that he will
also have to generate some random bits, and that this must be done with great care, or he
may inadvertently weaken the cryptographic mechanisms that he has chosen to
implement. At this point, there are two things that may guide the designer's choice of a
DRBG:

a. He may already have decided to include a set of cryptographic primitives as part
of his implementation. By choosing a DRBG based on one of these primitives, he
can minimize the cost of adding that DRBG. In hardware, this translates to lower
gate count, less power consumption, and less hardware that must be protected
against probing and power analysis. In software, this translates to fewer lines of
code to write, test, and validate.

For example, a module that generates RSA signatures has available some kind of
hashing engine, so a hash-based DRBG is a natural choice.

b. He may already have decided to trust a block cipher, hash function, keyed hash
function, etc., to have certain properties. By choosing a DRBG based on similar
properties, he can minimize the number of algorithms he has to trust.

For example, an AES-based DRBG might be a good choice when a module
provides encryption with AES. Since the DRBG is based for its security on the
strength of AES, the module's security is not made dependent on any additional
cryptographic primitives or assumptions.

c. Multiple cryptographic primitives may be available within the system or
application, but there may be restrictions that need to be addressed (e.g.,code size
or performance requirements).

The DRBGs specified in this Standard have different performance characteristics,
implementation issues, and security assumptions.

D.2 DRBGs Based on Hash Functions

Two DRBGs are based on any Approved hash function: Hash DRBG, and

HMAC _DRBG. A hash function is composed of an initial value, a padding mechanism
and a compression function; the compression function itself may be expressed as
Compress (I, X), where [is the initial value, and X is the compression function input. All
of the cryptographic security of the hash function depends on the compression function,

and the compression is by far the most time-consuming operation within the hash
function.

The hash-based DRBGs in this Standard allow for some tradeoffs between performance,
security assumptions required for the security of the DRBGs, and ease of implementation.

D.21 Hash_DRBG

D.2.2 HMAC_DRBG

HMAC DRBG is a DRBG whose security is based on the assumption that HMAC is a
pseudorandom function. [I think the following needs to be either augmented to complete
the ideas, or removed. | The security of HMAC DRBG is based on an attacker getting
sequences of no more than to 2% bits, generated by the following steps:

temp = the Null string.

While (len (temp) < requested_no_of bits:
V =HMAC (K, V).
temp = temp || V.

The steps in the “While” statement iterate |_requested_no_of_bits/outlen-l times.
Intuitively, so long as V does not repeat, any algorithm that can distinguish this output
sequence from an ideal random sequence can be used in a straightforward way to
distinguish HMAC from a pseudorandom function.

Between these output sequences, both ¥ and K are updated using the following steps
(assuming no additional inputs):

K=HMAC (K, (V|| 0x01)) = Hash (opad (K) || Hash (ipad (X) || (V|| 0x01))).
V'=HMAC (X, V) = Hash (opad (K) || (Hash (ipad (X) || V)).

where:
K and V are outlen bits long,
opad (K) is K exclusive-ored with (inlen/8) bytes of 0x5c, for a total of inlen bits,
ipad (K) is K exclusive-ored with (inlen/8) bytes of 0x36, for a total of inlen bits,
outlen is the length of the hash function output block, and
inlen is the length of the hash function input block.

D.2.2.1 Implementation Properties

The only thing required to implement this DRBG is access to a hashing engine.
However, the performance of the implementation will improve enormously (by about a
factor of two!) with either a dedicated HMAC engine, or direct access to the hash
function's underlying compression function. The “critical state values” on which
HMAC_DRBG depends for its security (K and V) take up 2*outlen bits in the most

compact form, but for reasonable performance, 3*outlen bits are required in order to
precompute padded values.

D.2.2.2 Performance Properties

Each outlen-bit piece of the requested pseudorandom output requires two compression
function calls to perform the HMAC computation. Each output request also incurs
another six compression function calls to update the state.

Note that an implementation that has access only to a high-level hashing engine loses
another factor of two in performance; if the performance of the DRBG is important,
HMAC _DRBG requires either a dedicated HMAC engine or access to the compression
function that underlies the hash function. However, if performance is not an important
issue, the DRBG can be implemented using nothing but a high-level hashing engine.

D.2.3Summary and Comparison of Hash-Based DRBGs

D.2.3.1Security

It is interesting to contrast the two ways that the hash function is used in these DRBGs:
HMAC DRBG:

Vi=HMAC (K. VVy) = Hash (opad (X) || (Hash (ipad (K) || I'y)).

J5=HMAC (K. V) = Hash (opad (K) || (Hash (ipad (K) [| I})).

V3 =HMAC (K. V) = Hash (opad (X) || (Hash (ipad (KX) || 15)).

etc
as specified in Annex E.2.2.

The adversary knows many specific bits of the input to the final compression function
whose output he sees; for SHA-256. the compression function takes a total of 768 bits of
input. and the adversary knows 256 of those bits!. (This is worse for SHA-1 and SHA-
384.) On the other hand. the adversary doesn't even know the exclusive-or relationships
for outlen bits of the message input. In the case of SHA-256. this means that 256 bits are
unknown.

IHMAC_DRBG allows an adversary to precisely know many bits of the input to the

compression functions. but not to know complete exclusive-or or additive relationships
between these bits of input.

1 The innermost hash function provides outlen bits of input after its two compression function calls on ipad
(K) and V. The outermost hash function also requires two compression functions: the first operates on opad
(K) and produces outlen bits that are used as the chaining value for the final compression function on the
result from the innermost hash function concatenated with the hash function padding. Therefore, the input
to the final compression function is the length of the chaining value (outlen bits) + the length of the ouput
from the innermost hash function (outlen bits) + the length of the padding (inlen - outlen bits). In the case
of SHA-256, where inlen = 512, and outlen = 256, the length of the input to the last compression function
is 768 bits, of which only the padding bits are known (256 bits).

D.2.3.2 Performance / Implementation Tradeoffs

HMAC DRBG (with access to the hash function’s compression function):

Request overhead: six compression functions?.

Cost for outlen bits of pseudorandom output: two compression functions.

Memory required for the critical state values K and V: 3*outlen bits when
precomputation is used .

HMAC DRBG (hash engine access only):

Request overhead: eight compression function calls?.

Cost for outlen bits of pseudorandom output: four compression functions?.

Memory required for the critical state values K and V: 2*outlen bits. since
precomputation is unavailable.

Additional inputs provided during pseudorandom bit generation add considerably to the
request overhead. Instantiation and reseeding are somewhat more expensive than
pseudorandom output generation: however. these relatively rare operations can afford to
be somewhat more expensive to minimize the chances of a successful attack.

D.3 DRBGs Based on Block Ciphers
D.34 The Two Constructions: CTR and OFB

This standard describes DRBGs_based on block ciphers using the CTR-mode. The CTR
mode guarantees that short cycles cannot occur in a single output request.The security of

2 Two compression functions for each HMAC computation, and two compression functions for
precomputation.

3 There are two HMAC computations, each requiring two hash function calls. Each hash computation
requires two compression function calls.

4 The single HMAC computation requires four compression functions as explained in the previous
footnote.

the DRBGs relates in a very simple and clean way to the security of the block cipher in
its intended applications. This is a fundamental difference between the CTR_DRBG and
a hash function-based DRBG. where the DRBG's security is ultimately based on
pseudorandomness properties that do not form a normal part of the requirements for hash
functions. An attack on any of the hash-based DRBGs does not necessarily represent a
weakness in the hash function; however, for these block cipher-based constructions. a
weakness in the DRBG is directly related to a weakness in the block cipher.

D.3.2 Choosing a Block Cipher

The choice of the block cipher algorithm to be used is a security issue. At present, only
TDEA and AES are approved block cipher algorithms.

Consider a sequence of the maximum permitted number of generate requests. each
producing the maximum number of DRBG outputs from each generate call. Assuming
that the block cipher behaves like a pseudorandom permutation family. the probability of
distinguishing the full sequence of ouiput bytes is:

1. For AES-128. there are a maximum of 22° blocks (i.e., 2** bytes = 2* bits)
generated per Generate (...) request, 2* total Generate (...) requests allowed. 928
possible keys. and 2'?® possible starting blocks.

a. The expected probability of an internal collision in a sequence of 228 random
128-bit blocks is about 27, Thus. the probability of seei% an internal
collision in any of the Generate (...) sequences is about 2 2, _This probability
is low enough that it does not provide an efficient way to distinguish between
DRBG outputs and ideal random outputs.

b. The probability of a key colliding between any two Generate (...) requests in
the sequence of 232 such requests is never larger than about 2% This is also
neglioible. (For AES-192 and AES-256. this probability is even smaller.)

2. For three-key TDEA with 168-bit keys and 64-bit blocks. things are a bit
different: There are 2'® Generate (...) requests allowed. and a maximum of 2k
blocks (i.c., 2'® bytes = 2'” bits) generated per Generate (...) request. (Nu!te that

Asecury leve 2

this breaks the more general model in this document of assuming 2
innocent operations.) In this case:

a. The probability of an internal collision is never higher than about 251 per
Generate (...) request, and with only 2'® such requests allowed, the
probability of ever seeing such an internal collision in a sequence of requests
is never more than about 2°°. (Note that if more requests are allowed, as
required by the 2“0 “**/? bound assumed elsewhere in the document, there
would be an unacceptably high probability of this event happening at least

once.)

b. The expected probability of an internal collision in a sequence of 21 64-bit

blocks is about 2%, Thus. the probability of ever seeing an internal collision
in 2'¢ output sequences is still an acceptably low 222 (Note that if more

Generate (...) requests are allowed, there would be an unacceptably high

probability of this happening. leading to an efficient distinguisher between
this DRBG's outputs and ideal random outputs.

c. The probability of a key colliding between any two of the 2'% Generate (...)
requests is about 277, which is negligible.

To summarize: block size matters. The limits on the numbers of Generate (...) requests
and the number of output bits per request require frequent reseeding of the DRBG.
Furthermore, the limits guarantee that even with reseeding. an adversary that is given a
really long sequence of DRBG outputs from several reseedings cannot distinguish that
output sequence from random reliably. The CTR_DRBG used with TDEA is suitable for
low-throughput applications. but not for applications requiring really large numbers of

DRBG outputs. For concreteness, if an application is going to require more than P2

output bytes (2*° bits) in its lifetime, that application should not use a block cipher
DRBG with TDEA.

D.3.3 Conditioned Entropy Sources and the Derivation Function

n function

