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Foreword

The Accredited Standards Committee on Financial Services (ANSI X9) has developed several
cryptographic standards to protect financial information. Many of these standards require the use of
Random Number Generators to generate random and unpredictable cryptographic keys and other critical
security parameters. This Standard, Random Number Generation, defines techniques for the generation of
random numbers that are used when other ASC standards require the use of random numbers for
cryptographic purposes.

While the techniques specified in this Standard are designed to generate random numbers, the Standard
does not guarantee that a particular implementation is secure. It is the responsibility of the financial institution
to put an overall process in place with the necessary controls to ensure that the process is securely
implemented. Furthermore, the controls should include the application with appropriate validation tests in
order to verify compliance with this Standard.

Approval of an American National Standard requires verification by ASC that the requirements for due
process, consensus, and other criteria for approval have been met by the standards developer.

Consensus is established when, in the judgment of the ASC Board of Standards Review, substantial
agreement has been reached by directly and materially affected interests. Substantial agreement means
much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and
objections be considered, and that a concerted effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not in any respect
preclude anyone, whether he has approved the standards or not from manufacturing, marketing,
purchasing, or using products, processes, or procedures not conforming to the standards.

The American National Standards Institute does not develop standards and will in no circumstances give
an interpretation of any American National Standard. Moreover, no person shall have the right or authority
to issue an interpretation of an American National Standard in the name of the American National
Standards Institute. Requests for interpretations should be addressed to the secretariat or sponsor whose
name appears on the title page of this Standard.

CAUTION NOTICE: This American National Standard may be revised or withdrawn at any time. The
procedures of the American National Standards Institute require that action be taken to reaffirm, revise, or
withdraw this Standard no later than five years from the date of approval.

Vil
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Introduction

NOTE The user's attention is called to the possibility that compliance with this Standard may require
use of an invention covered by patent rights.

By publication of this Standard, no position is taken with respect to the validity of this claim or of any
patent rights in connection therewith. The patent holder has, however, filed a statement of willingness to
grant a license under these rights on reasonable and nondiscriminatory terms and conditions to
applicants desiring to obtain such a license. Details may be obtained from the standards developer.

Suggestions for the improvement or revision of this Standard are welcome. They should be sent to the X9
Committee Secretariat, Accredited Standards Committee X9, Inc., Financial Industry Standards, P.O. Box
4035, Annapolis, MD 21403 USA.

This Standard was processed and approved for submittal to ANSI by the Accredited Standards
Committee on Financial Services, X9. Committee approval of the Standard does not necessarily imply
that all the committee members voted for its approval.

The X9 committee had the following members:
[To be supplied], X9 Chairman

Vincent DeSantis, X9 Vice-Chairman

Cynthia Fuller, Executive Director

[sabel Bailey, Managing Director

Organization Represented Representative
[X9 membership to be supplied]

The X9F subcommittee on Data and Information Security had the following members:
Richard J. Sweeney, Chairman

Organization Represented Representative
[X9F membership to be supplied]

Under ASC X9 procedures, a working group may be established to address specific segments of work
under the ASC X9 Committee or one of its subcommittees. A working group exists only to develop
standard(s) or guideline(s) in a specific area and is then disbanded. The individual experts are listed with
their affiliated organizations. However, this does not imply that the organization has approved the content
of the standard or guideline. (Note: Per X9 policy, company names of non-member participants are listed
only if, at time of publication, the X9 Secretariat received an original signed release permiiting such
company names to appear in print.)

The X9F1 Cryptographic Tool Standards and Guidelines group that developed this part of the Standard had
the following members:

Miles Smid, Chairman
Elaine Barker, Project Editor

Organization Representative
Certicom Corporation Dan Brown
Communications Security Establishment of Canada Bridget Walshe

Entrust Don Johnson
HP Susan Langford
Microsoft Niels Furguson
National Institute of Standards and Technology Elaine Barker
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National Security Agency

NTRU

Orion Security
Pitney Bowes, Inc
RSA Security

University Bank

Lily Chen
Morris Dworkin
John Kelsey
Paul Timmel
Michael Boyle
William Whyte
Miles Smid
Matt Compagna
James Randall
Steve Schmalz
Michael Talley
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Random Number Generation
Part 3: Deterministic Random Bit Generator Mechanisms

1 Scope

The Standard consists of four parts:
¢ Part 1: Overview and Basic Principles
e Part 2: Entropy Sources
e Part 3: Deterministic Random Bit Generator Mechanisms
e Part 4. Random Bit Generator Construction

Part 1 should be read for a basic understanding of this Standard before reading Part 3. This part of
ANSI X9.82 (Part 3) defines mechanisms for the generation of random bits using deterministic
methods. The DRBG mechanisms are not sufficient by themselves to define a Random Bit Generator
(RBG); Parts 2 and 4 of this Standard provide further requirements for the design of an RBG.

Part 3 includes:
1. A model for a deterministic random bit generator (DRBG),
2. Requirements for DRBG mechanisms,

3.  Specifications for DRBG mechanisms that use hash functions, block ciphers and number
theoretic problems,

4. Implementation issues, and
5. Assurance considerations.

A DRBG is based on a DRBG mechanism as specified in this part of the Standard and includes a
source of entropy input. Part 3 specifies several diverse DRBG mechanisms, all of which provided
acceptable security when this Standard was approved. However, in the event that new attacks are
found on a particular class of mechanisms, a diversity of approved mechanisms will allow a timely
transition to a different class of DRBG mechanism.

Random number generation does not require interoperability between two entities, e.g.,
communicating entities may use different DRBG mechanisms without affecting their ability to
communicate. Therefore, an entity may choose a single appropriate DRBG mechanism for its
applications; see Annex D for a discussion of DRBG selection.

The precise structure, design and development of a random bit generator is outside the scope of
this Standard.

2 Conformance

An implementation of a DRBG mechanism may claim conformance with ANS X9.82 if it implements
the mandatory provisions of Part 1 and the mandatory requirements of one or more of the DRBG
mechanisms specified in this part of the Standard. An implementation of a DRBG may claim
conformance with ANS X9.82 as an RBG if the following are implemented: the mandatory
provisions of Part 1, the mandatory requirements of one or more of the DRBG mechanisms
specified in this part of the Standard, an entropy source from Part 2 and the appropriate mandatory
requirements of Part 4.
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It is expected that conformance may be assured by a testing laboratory associated with the
Cryptographic Module Validation Program (CMVP) (see http://csre.nist.gov/cryptval). Although an
implementation may claim conformance with the Standard apart from such testing, implementation
testing through the CMVP is strongly recommended.

3 Normative References

The following referenced documents are indispensable for the application of this Standard. For
dated references, only the edition cited applies. Nevertheless, parties to agreements based on this
document are encouraged to consider applying the most recent edition of the referenced
documents indicated below. For undated references, the latest edition of the referenced document
(including any amendments) applies.

ANS X9.52-1998, Triple Data Encryption Algorithm Modes of Operation.

ANS X9.62-2005, Public Key Cryptography for the Financial Services Industry - The Elliptic Curve
Digital Signature Algorithm (ECDSA).

ANS X9.63-2000, Public Key Cryptography for the Financial Services Industry - Key Agreement and
Key Transport Using Elliptic Key Cryptography.

ANS X9.82, Part 1-200x, Overview and Basic Principles, Draft.

ANS X9.82, Part 2-200x, Entropy Sources, Draft.

ANS X9.82, Part 4-200x, RBG Constructions, Draft.

FIPS 140-2, Security Requirements for Cryptographic Modules; ASC X9 Registry 00001.
FIPS 180-2, Secure Hash Standard (SHS), August 2002; ASC X9 Registry 00003.

FIPS 197, Advanced Encryption Standard (AES), November 2001; ASC X9 Registry 00002.

FIPS 198, Keyed-Hash Message Authentication Code (HMAC), March 6, 2002; ASC X9 Registry
00004.

4 Terms and Definitions

Many of the terms used in Part 3 are defined in Part 1. Additional terms are defined in this section.
41

Bitwise Exclusive-Or

An operation on two bitstrings of equal length that combines corresponding bits of each bitstring
using an exclusive-or operation.

4.2
Conditioned Entropy Source

An entropy source that either includes a conditioning function or for which conditioning is performed
on the output of the entropy source. The conditioning function ensures that the conditioned entropy
source provides full entropy bitstrings.

4.3
Deterministic Random Bit Generator (DRBG)

An RBG that includes a DRBG mechanism and a source of entropy input. The DRBG produces a
sequence of bits from a secret initial value called a seed, along with other possible inputs. A DRBG
is often called a Pseudorandom Number (or Bit) Generator.
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4.4
DRBG Mechanism

The portion of an RBG that includes the functions necessary to instantiate and uninstantiate the
RBG, generate pseudorandom bits, (optionally) reseed the RBG and test the health of the the
DRBG mechanism.

4.5
DRBG Mechanism Boundary

A conceptual boundary that is used to explain the operations of a DRBG mechanism and its
interaction with and relation to other processes.

4.6
Entropy

A measure of the disorder, randomness or variability in a closed system. The entropy of X is a
mathematical measure of the amount of information provided by an observation of X. As such,
entropy is always relative to an observer and his or her knowledge prior to an observation. Also,
see min-entropy.

4.7
Entropy Input

The input to a DRBG mechanism of a string of bits that contains entropy; that is, the entropy input
is digitized and is assessed.

4.8
Entropy Source

A source of unpredictable data. There is no assumption that the unpredictable data has a uniform
distribution. The entropy source includes a noise source, such as thermal noise or hard drive seek
times; a digitization process; an assessment process; an optional conditioning process and health
tests. Contrast with the Source of Entropy Input.

4.9
Exclusive-or
A mathematical operation; the symbol ®, defined as:

0®0=0

0®1=1

190=1

1®1=0.
Equivalent to binary addition without carry.
410

Hash Function

A (mathematical) function that maps values from a large (possibly very large) domain into a smaller
range. The function satisfies the following properties:

1. (One-way) It is computationally infeasible to find any input that maps to any pre-specified
output;

2. (Collision free) It is computationally infeasible to find any two distinct inputs that map to the
same output.
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4.11
Health Testing

Testing within an implementation immediately prior to or during normal operation to determine that
the implementation continues to perform as implemented and as validated (if implementation
validation was performed).

4.12
Implementation Testing for Validation

Testing by an independent and accredited party to ensure that an implementation of this Standard
conforms to the specifications of this Standard.

413
Instantiation of an RBG

An instantiation of an RBG is a specific, logically independent, initialized RBG. One instantiation is
distinguished from another by a handie (e.g., an identifying number).

414
Internal State

The collection of stored information about a DRBG instantiation. This can include both secret and
non-secret information.

4.15
Personalization String

An optional string of bits that is combined with an entropy input and (possibly) a nonce to produce a
seed.

416
Prediction Resistance

Assurance that a compromise of the DRBG internal state has no effect on the security of future
DRBG outputs. That is, an adversary who is given access to all of the output sequence after the
compromise cannot distinguish it from random; if the adversary knows only part of the future output
sequence, he cannot predict any bit of that future output sequence that he has not already seen.
The complementary assurance is called Backtracking Resistance.

417

Public Key Pair

In an asymmetric (public) key cryptosystem, the public key and associated private key.
418

Random Number Generator (RNG)

A device or algorithm that outputs a sequence of binary bits that appears to be statistically
independent and unbiased. An RBG is either a DRBG or an NRBG.

419

Reseed

To aquire additional bits with sufficient entropy for the desired security strength.
4.20

Secure channel
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A path for transferring data between two entities or components that ensures confidentiality,
integrity and replay protection, as well as mutual authentication between the entities or
components. The secure channel may be provided using cryptographic, physical or procedural
methods, or a combination thereof.

4.21
Security Strength

A number associated with the amount of work (that is, the number of operations) that is required to
break a cryptographic algorithm or system; a security strength is specified in bits and is a specific
value from the set (112, 128, 192, 256) for this Standard. The amount of work needed is

2security_strengz‘h
4.22
Seed

Noun : A string of bits that is used as input to a DRBG mechanism. The seed will determine a
portion of the internal state of the DRBG, and its entropy must be sufficient to support the security
strength of the DRBG.

Verb : To aquire bits with sufficient entropy for the desired security strength. These bits will be used
as input to a DRBG mechanism to determine a portion of the initial internal state. Also see reseed.

4.23

Seedlife

The length of the seed period.

4.24

Source of Entropy Input

The source of the entropy input for a DRBG mechanism. Contrast with Entropy Source.
4.25

Working State

A subset of the internal state that is used by a DRBG mechanism to produce pseudorandom bits at
a given point in time. The working state (and thus, the internal state) is updated to the next state
prior to producing another string of pseudorandom bits.

5 Abbreviations and Symbols

The following abbreviations are used in this document.

Abbreviation Meaning
AES Advanced Encryption Standard.
ANS American National Standard
ASC Accredited Standards Committee
DRBG Deterministic Random Bit Generator.
ECDLP Elliptic Curve Discrete Logarithm Problem.
FIPS Federal Information Processing Standard.
HMAC Keyed-Hash Message Authentication Code.
NRBG Non-deterministic Random Bit Generator.




Draft ANS X9.82, Part 3 - November 2006

RBG

Random Bit Generator.

TDEA

Triple Data Encryption Algorithm.

The following symbols are used in this document.

Symbol Meaning

+ Addition.

[ X1 Ceiling: the smallest integer > X. For example, |_5-| =3, and |_5.3—l =6.

x| Floor: The largest integer less than or equal to X. For example, |5]=35,and 15.3]=
5.

XeY Bitwise exclusive-or (also bitwise addition modulo 2) of two bitstrings X and ¥ of the
same length.

XY Concatenation of two strings X and Y. X and Y are either both bitstrings, or both byte
strings.

ged (x, y) The greatest common divisor of the integers x and y.

len (a) The length in bits of string a.

xmod n The unique remainder » (where 0 < 7 < n-1) when integer x is divided by n. For
example, 23 mod 7 = 2.

@ Used in a figure to illustrate a "switch" between sources of input.

{aq, ...a3} The internal state of the DRBG at a point in time. The types and number of the a;
depends on the specific DRBG mechanism.

Oxab Hexadecimal notation that is used to define a byte (i.e., 8 bits) of information, where
a and b each specify 4 bits of information and have values from the range {0, 1,
2,...F}. For example, 0xc6 is used to represent 11000110, where ¢ is 1100, and 6
is 0110.

0" A string of x zero bits.
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6 General Discussion and Organization

Part 1 of this Standard (Random Number Generation, Part 1: Overview and Basic Principles)
describes several cryptographic applications for random numbers and specifies the characteristics
for random numbers and random number generators, introducing the concept of non-deterministic
random bit generators (NRBGs) and deterministic random bit generators (DRBGs). In addition,
Part 1 also introduces a general functional model and identifies the security properties expected for
cryptographic random number generators.

Part 2 of this Standard (Entropy Sources) discusses entropy sources used by random bit
generators. In the case of DRBGs, the entropy sources are required to obtain seeds for the DRBG.

Part 4 of this Standard (Random Bit Generator Constructions) provides guidance on combining
components to construct secure random bit generators.

This part of the Standard (Random Number Generation, Part 3: Deterministic Random Bit
Generator Mechanisms) specifies Approved DRBG mechanisms. A DRBG mechanism is an RBG
component that utilizes an algorithm to produce a sequence of bits from an initial internal state that
is determined by an input that is commonly known as a seed, which is constructed using entropy
input. Because of the deterministic nature of the process, a DRBG mechanism is said to produce
“pseudorandom” rather than random bits, i.., the string of bits produced by a DRBG mechanism is
predictable and can be reconstructed, given knowledge of the algorithm, the entropy input, the
seed and any other input information. However, if the seed and entropy input are kept secret, and
the algorithm is well designed, then the bitstrings will be unpredictable, up to the security strength
provided by the DRBG.

The seed for a DRBG mechanism requires that sufficient entropy be provided during instantiation
and reseeding (see Parts 2 and 4 of this Standard). While a DRBG mechanism may conform to this
part of the Standard (i.e., Part 3), a DRBG cannot achieve the properties specified in Part 1 unless
the source of entropy input is included as specified in Part 4. That is, the security of an RBG that
uses a DRBG mechanism is a system implementation issue; both the DRBG mechanism and its
source of entropy input must be considered.

The remaining sections of this part of the Standard are organized as follows:

— Section 7 provides a functional model for an RBG that uses a DRBG mechanism and
discusses the major components of the DRBG mechanism.

— Section 8 provides concepts and general requirements for the implementation and use of a
DRBG mechanism.

— Section 9 specifies the functions of a DRBG mechanism that are introduced in Section 8.
These functions use the DRBG algorithms specified in Section 10.

— Section 10 specifies Approved DRBG algorithms.
—— Section 11 addresses assurance issues for DRBG mechanisms.
This part of the Standard also includes the following normative annexes:
— Annex A specifies additional DRBG-specific information.
— Annex B provides conversion routines.
The following informative annexes are also included:

— Annex C discusses security considerations for selecting and implementing DRBG
mechanisms.

— Annex D provides a discussion on DRBG mechanism selection.
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— Annex E provides example pseudocode for each DRBG mechanism.

— Annex F relates the security properties identified in Part 1 to the requirements and
specifications in Part 3.

— Annex G provides a bibliography for related informational material.
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7 Functional Model
7.1 General Discussion

Figure 1 provides a functional model of an RBG (i.e., a DRBG) that is based on a DRBG
mechanism. An RBG that uses a DRBG mechanism includes a source of entropy input and,
depending on the implementation of the DRBG mechanism, includes a nonce source. The
components of this model are discussed in the following subsections.

Consuming Application

Personalization Siring Additional Input

Nonce Eniropy Input

Instantiaie Reseed
Functien Functlon

|
I i
| I
: I
: i
I |
| |
| |
' I
I
! Uninstantiaie Generaie :
I
| i
| |
| |
| |
1 |
| I
! |
! 1

Fancilon Function
Preudorandom Quiput
DRBG Mechanism

Random Bit Generator (RBG)

Figure 1: DRBG Functional Model

7.2 Functional Model Components
7.21 Entropy Input

The entropy input is provided to a DRBG mechanism for the seed (see Section 8.4.2). The entropy
input and the seed shall be kept secret. The secrecy of this information provides the basis for the
security of the DRBG. At a minimum, the entropy input shall provide the amount of entropy
requested by the DRBG mechanism. Appropriate sources for the entropy input are discussed in
Parts 2 and 4 of this Standard.

Ideally, the entropy input will have full entropy, however, the DRBG mechanisms have been
specified to allow for some bias in the entropy input by allowing the length of the entropy input to be
longer than the required amount of entropy (expressed in bits). The entropy input can be defined to
be a variable length (within limits), as well as fixed length. In all cases, the DRBG mechanism

9
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expects that when entropy input is requested, the returned bitstring will contain at least the
requested amount of entropy. Additional entropy beyond the amount requested is not required, but
is desirable.

7.2.2 Other Inputs

Other information may be obtained by a DRBG mechanism as input. This information may or may
not be required to be kept secret by a consuming application; however, the security of the DRBG
itself does not rely on the secrecy of this information. The information should be checked for
validity when possible; for example, if time is used as an input, the format and reasonableness of
the time could be checked.

During DRBG instantiation, a nonce may be required, and if used, it is combined with the entropy
input to create the initial DRBG seed. The nonce and its use are discussed in Section 8.4.2.

This Standard recommends the insertion of a personalization string during DRBG instantiation;
when used, the personalization string is combined with the entropy input bits and possibly a nonce
to create the initial DRBG seed. The personalization string shall be unique for all instantiations of
the same DRBG mechanism type (e.g., HMAC_DRBG). See Section 8.5.2 for additional discussion
on personalization strings.

Additional input may also be provided during reseeding and when pseudorandom bits are
requested. See Section 8.5.3 for a discussion of this input.
7.2.3 The Internal State

The internal state is the memory of the DRBG and consists of all of the parameters, variables and
other stored values that the DRBG mechanism uses or acts upon. The internal state contains both
administrative data (e.g., the security strength) and data that is acted upon and/or modified during
the generation of pseudorandom bits (i.e., the working state).

7.2.4 The DRBG Mechanism Functions
The DRBG mechanism functions handle the DRBG’s internal state. The DRBG mechanisms in this

Standard have five separate functions:

1. The instantiate function acquires entropy input and may combine it with a nonce and a
personalization string to create a seed from which the initial internal state is created.

2. The generate function generates pseudorandom bits upon request, using the current
internal state, and generates a new internal state for the next request.

3. The reseed function acquires new entropy input and combines it with the current internal
state and any additional input that is provided to create a new seed and a new internal
state.

4. The uninstantiate function erases the internal state.

The health test function determines that the DRBG mechanism continues to function
correctly.

10
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8. DRBG Mechanism Concepts and General Requirements
8.1 Introduction

This section provides concepts and general requirements for the implementation and use of a
DRBG mechanism. The DRBG mechanism functions are explained and requirements for an
implementation are provided.

8.2 DRBG Mechanism Functions and a DRBG Instantiation
8.2.1 DRBG Mechanism Functions

A DRBG mechanism requires instantiate, uninstantiate, generate, and health testing functions. A
DRBG mechanism may also include a reseed function. A DRBG shall be instantiated prior to the
generation of output by the DRBG. These functions are specified in Section 9.

8.2.2 DRBG Instantiations

A DRBG may be used to obtain pseudorandom bits for different purposes (e.g., DSA private keys
and AES keys) and may be separately instantiated for each purpose.

A DRBG is instantiated
using a seed and may be
reseeded; when reseeded, Instantiate; |Iniﬁa].izewiﬂlseed1 |
the seed shall be different
than the seed used for Seed period 1
instantiation. Each seed
defines a seed period for |(0pt_)Remdwiﬂlmdil
the DRBG instantiation; an
instantiation consists of one
or more seed periods that v
begin when a new seed is
acquired (see Figure 2).

Seed period 2

[ (Opt) Reseed with seed |

8.2.3 Internal States g } Seed periods 3 ton

During instantiation, an
initial internal state is
derived from the seed. The
internal state for an
instantiation includes:

Figure 2: DRBG Instantiation

1. Working state:

a. One or more values that are derived from the seed and become part of the internal
state; these values should remain secret, and

b. A count of the number of requests or blocks produced since the instantiation was
seeded or reseeded.

2. Administrative information (e.g., security strength and prediction resistance flag).

11
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The internal state shall be protected at least as well as the intended use of the pseudorandom
output bits requested by the consuming application. Each DRBG instantiation shall have its own
internal state: the internal state for one DRBG instantiation shall not be used as the internal state
for a different instantiation.

A DRBG transitions between internal states when the generator is requested to provide new
pseudorandom bits. A DRBG may also be implemented to transition in response to internal or
external events (e.g., system interrupts) or to transition continuously (e.g., whenever time is
available to run the generator).

A DRBG mechanism implementation may be designed to handle multiple instantiations. Sufficient
space must be available for the expected number of instantiations, i.e., sufficient memory must be
available to store the internal state associated with each instantiation.

8.2.4 Security Strengths Supported by an Instantiation

The DRBG mechanisms specified in this Standard support four security strengths: 112, 128, 192 or
256 bits. A security strength for the instantiation is requested by a consuming application during
instantiation, and the instantiate function obtains the appropriate amount of entropy for the
requested security strength. Any security strength may be requested (up to a maximum of 256
bits), but the DRBG will only be instantiated to one of the four security strengths above, depending
on the DRBG implementation. A requested security strength that is below the 112-bit security
strength or is between two of the four security strengths will be instantiated to the next highest
strength (e.g., a requested security strength of 80 bits will result in an instantiation at the 112-bit
security strength).

The actual security strength supported by a given instantiation depends on the DRBG
implementation and on the amount of entropy provided to the instantiate function in the entropy
input. Note that the security strength actually supported by a particular instantiation could be less
than the maximum security strength possible for that DRBG implementation (see Table 1). For
example, a DRBG that is designed to support a maximum security strength of 256 bits could be
instantiated to support only a 128-bit security strength if the additional security provided by the 256-
bit security strength is not required (i.e., by requesting only 128 bits of entropy during instantiation,
rather than 256 bits of entropy).

Table 1: Possible Instantiated Security Strengths

Maximum Designed 112 128 192 256
Security Strength

Possible Instantiated 112 112, 128 112,128,192 | 112, 128, 192,
Security Strengths 256

Following instantiation, requests can be made to the generate function for pseudorandom bits. For
each generate request, a security strength to be provided for the bits is requested. Any security
strength can be requested during a call to the generate function, up to the security strength of the
instantiation, e.g., an instantiation could be instantiated at the 128-bit security strength, but a
request for pseudorandom bits could indicate that a lesser security strength is actually required for
the bits to be generated. The generate function checks that the requested security strength does
not exceed the security strength for the instantiation. Assuming that the request is valid, the
requested number of bits is returned.

When an instantiation is used for multiple purposes, the minimum entropy requirement for each
purpose must be considered. The DRBG needs to be instantiated for the highest security strength
required. For example, if one purpose requires a security strength of 112 bits, and another purpose

12
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requires a security strength of 256 bits, then the DRBG needs to be instantiated to support the 256-
bit security strength.

8.3 DRBG Mechanism Boundaries

As a convenience, this Standard uses the notion of a “DRBG mechanism boundary” to explain the
operations of a DRBG mechanism and its interaction with and relation to other processes; a DRBG
mechanism boundary contains all DRBG mechanism functions and internal states required for a
DRBG. Data enters a DRBG mechanism

boundary via the DRBG’s public
interfaces, which are made available to
consuming applications.

DRBG Mechanism Boundary

Within a DRBG mechanism boundary,

1. The DRBG internal state and the Instantiate » [Iustantiate
operation of the DRBG Fanction
mechanism functions shall only |
be affected according to the
DRBG mechanism specification. Reseed Reseed

Instantiation .
2. The DRBG internal state shall Function

exist solely within the DRBG

&

&

mechanism  boundary.  The

internal state shall be contained ) > Generate

within the DRBG mechanism Request Bits Function

boundary and shall not be

accessed by non-DRBG

functions or other instantiations States

of that DRBG or other DRBGs. Test g Test

_ DRBG + Function

3. Information about secret parts of

the DRBG internal state and

mtermedlgte _valqes in Uninstantiate . .

computations involving these DRBG » Uninstantiate

secret parts shall not affect any Function

information that leaves the

DRBG mechanism boundary,
except as specified for the
DRBG pseudorandom bit

outputs.
Figure 3: DRBG Mechanism Functions Within a

Each DRBG mechanism includes one or Single Device

more cryptographic primitives (e.g., a
hash function). Other applications may
use the same cryptographic primitive as long as the DRBG's internal state and the DRBG
mechanism functions are not affected.

A DRBG mechanism'’s functions may be contained within a single device, or may be distributed
across multiple devices (see Figures 3 and 4). Figure 3 depicts a DRBG for which all functions are
contained within the same device. Figure 4 provides an example of DRBG mechanism functions
that are distributed across multiple devices. In this latter case, each device has a DRBG
mechanism sub-boundary that contains the DRBG mechanism functions implemented on that
device. The boundary around the entire DRBG mechanism shall include the aggregation of sub-
boundaries providing the DRBG mechanism functionality. The use of distributed DRBG mechanism

13
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functions may be convenient for restricted environments (e.g., smart card applications) in which the
primary use of the DRBG does not require repeated use of the instantiate or reseed functions.

Entropy Input

! |
I |
: |
| — <]
| Uninstantiate Instantiate Protected State % Generate Uninstantiate 1|
! Function Function |  Function Function =
|
| I
| |
: Test Test ll
: Function : Function :
|l . : |
; : _ ; 1
: DRBG Sub-Boundary (Instantiate) DRBG Sub-Boundary (Generate) :
B e e e e e e e R I
DRBG Boundary

Figure 4: Distributed DRBG Functions

Each DRBG mechanism boundary or sub-boundary shall contain a test function to test the
“health” of other DRBG mechanism functions within that boundary. In addition, each boundary or
sub-boundary shall contain an uninstantiate function in order to perform and/or react to health
testing.

When DRBG mechanism functions are distributed, a secure channel shall be used to protect the
internal state or parts of the internal state that are transferred between the distributed DRBG
mechanism sub-boundaries. The security provided by the secure channel shall be consistent with
the security required by the consuming application.

8.4 Seeds
8.4.1 General Discussion

When a DRBG is used to generate pseudorandom bits, entropy input is acquired in order to
generate a seed prior to the generation of output bits by the DRBG. The seed is used to instantiate
the DRBG and determine the initial internal state that is used when calling the DRBG to obtain the
first output bits.

Reseeding is a means of restoring the secrecy of future outputs of the DRBG if a seed or the
internal state becomes known. Periodic reseeding is a good way of addressing the threat of the
DRBG seed, entropy input or working state being compromised over time. In some
implementations (e.g., smartcards), an adequate reseeding process may not be possible. In these
cases, the best policy might be to replace the DRBG, obtaining a new seed in the process (e.g.,
obtain a new smart card).

8.4.2 Generation and Handling of Seeds

14
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The seed and its use by a DRBG mechanism

1.

is generated and handled as follows: (Optional)
Entro )

Seed construction for instantiation: Inpul:y Nonce Personalization
Figure 5 depicts the seed String

construction process for
instantiation. The seed material used
to determine a seed for instantiation
consists of entropy input, a nonce
and an optional personalization
string. Entropy input is always used
in the construction of a seed;
requirements for the entropy input Seed
are discussed in item 3. Except for
the case noted below, a nonce is
used; requirements for the nonce are

Figure 5: Seed Construction for Instantiation

discussed in item 7. A

gersonallzlatlon s_trlng should also Internal Entropy (Opt_i?nal)
e used, requirements for the State Iput Additional
personalization string are Value = Input
discussed in Section 8.5.2.

Depending on the DRBG
mechanism and the source of the >
entropy input, a derivation function Opt.
may be required to derive a seed df
from the seed material. However,
in certain circumstances, the
DRBG mechanism based on block Seed
cipher algorithms (see Section
10.3) may be implemented without
a derivation function. When
implemented in this manner, a
(separate) nonce (as shown in Figure 5) is not used. Note, however, that the
personalization string could contain a nonce, if desired.

Figure 6: Seed Construction for Reseeding

Seed construction for reseeding: Figure 6 depicts the seed construction process for
reseeding an instantiation. The seed material for reseeding consists of a value that is

carried in the internal state!, new entropy input and, optionally, additional input. The
internal state value and the entropy input are required; requirements for the entropy input
are discussed in item 3. Requirements for the additional input are discussed in Section
8.5.3. As in item 1, a derivation function may be required for reseeding. See item 1 for
further guidance.

Entropy requirements for the entropy input: The entropy input shall have entropy that is
equal to or greater than the security strength of the instantiation. Additional entropy may be
provided in the nonce or the optional personalization string during instantiation, or in the
additional input during reseeding and generation, but this is not required. The use of more
entropy than the minimum value will offer a security “cushion”. This may be useful if the

1 See each DRBG mechanism specification for the value that is used.

15
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assessment of the entropy provided in the entropy input is incorrect. Having more entropy
than the assessed amount is acceptable; having less entropy than the assessed amount
could be fatal to security. The presence of more entropy than is required, especially during the
instantiatiation, will provide a higher level of assurance than the minimum required entropy.

Seed length: The minimum length of the seed depends on the DRBG mechanism and the
security strength required by the consuming application. See Section 10.

Source of entropy input: The source of the entropy input shall be either:
a. An Approved NRBG,

b. An Approved DRBG, thus forming a chain of at least two DRBGs; the highest-level
DRBG in the chain shall be seeded by an Approved NRBG or an entropy source,
or

c. An appropriate entropy source.

Further discussion about the source of entropy input is provided in Parts 2 and 4 of this
Standard.

Entropy input and seed privacy: The entropy input and the resulting seed shall be handled
in a manner that is consistent with the security required for the data protected by the
consuming application. For example, if the DRBG is used to generate keys, then the
entropy inputs and seeds used to generate the keys shall (at a minimum) be protected as
well as the key.

Nonce: A nonce may be required in the construction of a seed during instantation in order
to provide a security cushion to block certain attacks. The nonce shall be either:

a. Avalue with at least (1/2 security strength) bits of entropy,

b. A value that is expected to repeat no more often than a (1/2 security strength)-
bit random string would be expected to repeat.

For case a, the nonce may be acquired from the same source and at the same time as the
entropy input. In this case, the seed could be considered to be constructed from an “extra
strong” entropy input and the optional personalization string, where the entropy for the
entropy input is equal to or greater than (3/2 security strength) bits.

The nonce ensures that the DRBG provides security_strength bits of security to the
consuming application. When a DRBG is instantiated many times without a nonce, a
compromise may become more likely. In some consuming applications, a single DRBG
compromise may reveal long-term secrets (e.g., a compromise of the DSA per-message
secret reveals the signing key).

Reseeding: Generating too many outputs from a seed (and other input information) may
provide sufficient information for successfully predicting future outputs. Periodic reseeding
will reduce security risks, reducing the likelihood of a compromise of the data that is
protected by cryptographic mechanisms that use the DRBG.

Seeds have a finite seedlife (i.e., the number of blocks or outputs that are produced during
a seed period); the maximum seedlife is dependent on the DRBG mechanism used.
Reseeding is accomplished by 1) an explicit reseeding of the DRBG by the consuming
application, or 2) by the generate function when either prediction resistance is requested,
or when the limit of the seedlife is reached.

Reseeding of the DRBG shall be performed in accordance with the specification for the
given DRBG mechanism. The DRBG reseed specifications within this Standard are
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designed to produce a new seed that is determined by both the current internal state and
newly-obtained entropy input that will support the desired security strength.

An alternative to reseeding is to create an entirely new instantiation. However, reseeding is
preferred over creating a new instantiation. If a DRBG instantiation was initially seeded
with sufficient entropy, and the source of entropy input subsequently fails without being
detected, then a new instantiation using the same (failed) source of entropy input would not
have sufficient entropy to operate securely. However, if there is an undetected failure in the
source of entropy input for an already properly seeded DRBG instantiation, the DRBG
instantiation will still retain any previous entropy when the reseed operation fails to
introduce new entropy.

9. Seed use: The seed that is used to initialize one instantiation of a DRBG shall not be
intentionally used to reseed the same instantiation or used as a seed for another DRBG
instantiation. Note that a DRBG does not provide output until a seed is available, and the
internal state has been initialized.

10. Entropy input and seed separation: The seed used by DRBG and the entropy input used to
create that seed shall not intentionally be used for other purposes (e.g., domain parameter
or prime number generation).

8.5 Other Inputs to the DRBG Mechanism
8.5.1 Discussion

Other input may be provided during DRBG instantiation, pseudorandom bit generation and
reseeding. This input may contain entropy, but this is not required. During instantiation, a
personalization string may be provided and combined with entropy input and a nonce to derive a
seed (see Section 8.5.2). When pseudorandom bits are requested and when reseeding is
performed, additional input may be provided (see Section 8.5.3).

Depending on the method for acquiring the input, the exact value of the input may or may not be
known to the user or consuming application. For example, the input could be derived directly from
values entered by the user or consuming application, or the input could be derived from information
introduced by the user or consuming application (e.g., from timing statistics based on key strokes
or movements of the computer's mouse), or the input could be the output of another RBG.

8.5.2 Personalization String

During instantiation, a personalization string should be used to derive the seed (see Section
8.4.2). The intent of a personalization string is to differentiate this DRBG instantiation from all other
instantiations that might ever be created. The personalization string should be set to some
bitstring that is as unique as possible, and may include secret information. Secret information
should not be used in the personalization string if it requires a level of protection that is greater
than the intended security strength of the DRBG instantiation. Good choices for the personalization
string contents include:

o Device serial numbers, o Network addresses,

¢ Public keys, » Special secret key values for this specific

e User identification, BREGnStantaien,

e Secret per-module or per-device 9 Epplication idetners:
values, e Protocol version identifiers,

e Timestamps, ¢ Random numbers,

17
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e Seedfiles, e Nonces.
8.5.3 Additional Input

During each request for bits from a DRBG and during reseeding, the insertion of additional input is
allowed. This input is optional, and the ability to enter additional input may or may not be included
in an implementation. Additional input may be restricted, depending on the implementation and the
DRBG mechanism. The use of additional input may be a means of providing more entropy for the
DRBG internal state that will increase assurance that the entropy requirements are met. If the
additional input is kept secret and has sufficient entropy, the input can provide more assurance
when recovering from the compromise of the entropy input, the seed or one or more DRBG internal
states.

8.6 Prediction Resistance and Backtracking Resistance

Part 1 discusses backtracking and prediction resistance. All DRBGs in this Standard have been
designed to provide backtracking resistance within an instantiation. Prediction resistance can be
provided only by ensuring that a DRBG is effectively reseeded between DRBG requests. The
DRBG mechanisms in this Standard can (optionally) be implemented to support prediction
resistance (see Section 9), and a user or application can request prediction resistance when
needed.

18
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9 DRBG Mechanism Functions
9.1 General Discussion

The DRBG mechanism functions in this Standard are specified as an algorithm (see Section 10)
and an "envelope” of pseudocode around that algorithm (defined in this section). The pseudocode
in the envelopes checks the input parameters, obtains input not provided by the input parameters,
accesses the appropriate DRBG algorithm and handles the internal state. A function need not be
implemented using such envelopes (e.g., all code may be implemented in-line), but the function
shall have equivalent functionality.

During instantiation and reseeding (see Sections 9.2 and 9.3), entropy input is acquired for
constructing a seed as discussed in Section 8.4.2. In the specifications of this Standard, a
Get_entropy_input pseudo-function is used for this purpose. The entropy input shall not be
provided by a consuming application as an input parameter in an instantiate or reseed request. The
Get_entropy_input function is not fully specified in this Standard, but has the following meaning:

Get_entropy_input: A function that is used to obtain entropy input. The function call is:
(status, entropy_input) = Get_entropy_input (min_entropy, min_ length, max_
length),

which requests a string of bits (entropy_input) with at least min_entropy bits of entropy. The
length for the string shall be equal to or greater than min_length bits, and less than or equal
to max_length bits. A status code is also returned from the function.

Note that an implementation may choose to define this functionality differently; for example, for
many of the DRBG mechanisms, the min_length = min_entropy for the Get_entropy_input
function, in which case, the second parameter could be omitted.

In the pseudocode in this section, two classes of error codes are returned: ERROR_FLAG and
CATASTROPHIC_ERROR_FLAG. These error codes are discussed in Section 11.4.7.

Comments are often included in the pseudocode in this Standard. A comment placed on a line that
includes pseudocode applies to that line; a comment placed on a line containing no pseudocode
applies to one or more lines of pseudocode immediately below that comment.

9.2 Instantiating a DRBG
A DRBG shall be instantiated prior to the generation of pseudorandom bits. The instantiate
function:

1. Checks the validity of the other input parameters,

2. Determines the security strength for the DRBG instantiation,

3. Determines any DRBG mechanism specific parameters (e.g., elliptic curve domain
parameters),

4. Obtains entropy input with entropy sufficient to support the security strength,
Obtains the nonce (if required),
Determines the initial internal state using the instantiate algorithm,
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7.

If an implemention supports multiple simultaneous instantiations of the same DRBG, a
state_handle for the internal state is returned to the consuming application (see below).

Let working state be the working state for the particular DRBG mechanism, and let min_length,
max_length, and highest_supported security strength be defined for each DRBG mechanism
(see Section 10). Let Instantiate_algorithm be a call to the appropriate instantiate algorithm for
the DRBG mechanism (see Section 10).

The following or an equivalent process shall be used to instantiate a DRBG.

Instantiate function (requested instantiation, security_strength,
prediction_resistance_flag, personalization_string):

1.

requested_instantiation_security strength: A requested security strength for the
instantiation. Implementations that support only one security strength do not require this
parameter; however, any application using that implementation must be aware of the
security strength that is supported.

2. prediction_resistance_flag: Indicates whether or not prediction resistance may be

required by a the consuming application during one or more requests for pseudorandom
bits. Implementations that always provide or never support prediction resistance do not
require this parameter. However, the user of a consuming application must determine
whether or not prediction resistance may be required by the consuming application before
electing to use such an implementation. If the prediction_resistance_flag is not needed
(i.e., because prediction resistance is always performed or is not supported), then the
prediction_resistance_flag input parameter and instantiate process step 2 are omitted,
and the prediction_resistance_flag is omitted from the internal state in step 11 of the
instantiate process.

personalization_string: An optional input that provides personalization information (see
Sections 8.4.2 and 8.5.2). The maximum length of the personalization string
(max_personalization_string length) is implementation dependent, but shall be less
than or equal to the maximum length specified for the given DRBG mechanism (see
Section 10). If the input of ‘a personalization string is not supported, then the
personalization_string input parameter and step 3 of the instantiate process are omitted,
and instantiate process step 9 is modified to omit the personalization string.

Required information not provided by the consuming application during instantiation: This
input shall not be provided by the consuming application as an input parameter during the
instantiate request.

20

1.

entropy_input: Input bits containing entropy. The maximum length of the entropy input
is implementation dependent, but shall be less than or equal to the specified maximum
length for the selected DRBG mechanism (see Section 10).

nonce: A nonce as specified in Section 8.4.2. Note that if a random value is used as the
nonce, the entropy input and nonce could be acquired using a single
Get_entropy_input call (see step 6 of the instantiate process); in this case, the first
parameter of the Get_entropy_input call is adjusted to include the entropy for the
nonce (i.e., the security strength would be increased by at least %2 security_strength),

process step 8 is omitted, and the nonce is omitted from the parameter list in process step
9.



Draft ANS X9.82, Part 3 - November 2006

Note that in some cases, a nonce will not be used by a DRBG mechanism; in this case,
step 8 is omitted, and the nonce is omitted from the parameter list in instantiate process
step 9.

Output to a consuming application after instantiation:

1. status: The status returned from the instantiate function. The status will indicate
SUCCESS or an ERROR. If an ERROR is indicated, either no state_handle or an invalid

state_handle shall be returned. A consuming application should check the sfafus to
determine that the DRBG has been correctly instantiated.

2. state handle: Used to identify the internal state for this instantiation in subsequent calls to
the generate, reseed, uninstantiate and test functions.

If a state handle is not required for an implementation because the implementation does

not support multiple simultaneous instantiations, a state_handle need not be retumed. In this
case, instantiate process step 10 is omitted, process step 11 is revised to save the only internal
state, and process step 12 is altered to omit the state_handle.

Information retained within the DRBG mechanism boundary after instantiation:

The internal state for the DRBG, including the working_state and administrative information

(see Sections 8.2.3 and 10 for definitions of the working state and administrative
information).

Instantiate Process:

Comment: Check the validity of the input
parameters.

1. If requested_instantiation_security_strength >
highest supported_security_strength, then return an ERROR_FLAG.

2. If prediction_resistance_flag is set, and prediction resistance is not supported, then
return an ERROR_FLAG.

3. If the length of the personalization_string > max - personalization_string_length,
return an ERROR_FLAG.

4  Set security_strength to the nearest security strength greater than or equal to
requested_instantiation_security_strength.

Comment: The following step is required by
the Dual_ EC_DRBG when multiple curves
are available (see Section 10.4.2.2.2).
Otherwise, the step is omitted.

5. Using the security_strength, select appropriate DRBG mechanism parameters.
Comment: Obtain the entropy input.
6. (status, entropy_input) = Get_entropy_input (security_strength, min_length,
max_length).
7. If an ERROR is returned in step 6, return a CATASTROPHIC_ERROR_FLAG.

|
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8. Obtain a nonce. Comment: This step shall include any
appropriate checks on the acceptability of the
nonce. See Section 8.4.2.

Comment: Call the appropriate instantiate
algorithm in Section 10 to obtain values for
the initial working_state.

9. initial working state = Instantiate_algorithm (entropy_input, nonce,
personalization_string).

10. Get a state_handle for a currently empty state. If an empty internal state cannot be
found, return an ERROR_FLAG.

11. Set the internal state indicated by state_handle to the initial values for the internal
state (i.e., set the working state to the values returned as initial_working_state in
step 9 and any other values required for the working_state (see Section 10), and set
the administrative information to the appropriate values (e.g., the values of
security_strength and the prediction_resistance_flag).

12. Return SUCCESS and state_handle.

9.3 Reseeding a DRBG Instantiation

The reseeding of an instantiation is not required, but is recommended whenever a consuming
application and implementation are able to perform this process. Reseeding will insert additional
entropy into the generation of pseudorandom bits. Reseeding may be:

o explicitly requested by a consuming application,
e performed when prediction resistance is requested by a consuming application,

o triggered by the generate function when a predetermined number of pseudorandom
outputs have been produced or a predetermined number of generate requests have been
made (i.e., at the end of the seedlife), or

« triggered by external events (e.g., whenever sufficient entropy is available).
If a reseed capability is not supported, a new DRBG instantiation may be created (see Section 9.2).
The reseed function:

1. Checks the validity of the input parameters,

2. Obtains entropy input with sufficient entropy to support the security strength, and

3. Using the reseed algorithm, combines the current internal state with the new entropy input
and any additional input to determine the new internal state.

Let working state be the working state for the particular DRBG instantiation, let min_length and

max_ length be defined for each DRBG mechanism, and let Reseed_algorithm be a call to the
appropriate reseed algorithm for the DRBG mechanism (see Section 10).

The following or an equivalent process shall be used to reseed the DRBG instantiation.

Reseed_function (state_handle, additional_input):

22
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1. state_handle: A pointer or index that indicates the internal state to be reseeded. If a state
handle is not used by an implementation because the implemention does not support
multiple simultaneous instantiations, a state_handle is not provided as input. Since there
is only a single internal state in this case, reseed process step 1 obtains the contents of the
internal state, and process step 6 replaces the working_state of this internal state.

2. additional input: An optional input. The maximum length of the additional_input
(max_additional_input_length) is implementation dependent, but shall be less than or
equal to the maximum value specified for the given DRBG mechanism (see Section 10). If
the input by a consuming application of additional_input is not supported, then the input
parameter and step 2 of the reseed process are omitted, and step 5 of the reseed process
is modified to remove the additional_input from the parameter list.

Required information not provided by the consuming application during reseeding:

1. entropy_input: Input bits containing entropy. The maximum length of the entropy_input
is implementation dependent, but shall be less than or equal to the specified maximum
length for the selected DRBG mechanism (see Section 10).

2. Internal state values required by the DRBG for reseeding, i.e., the working state and
administrative information, as appropriate.

Output to a consuming application after reseeding:

1. status: The status returned from the function. The sfatus will indicate SUCCESS or an
ERROR.

Information retained within the DRBG mechanism boundary after reseeding:
Replaced internal state values (i.e., the working_state).

Reseed Process:

Comment: Get the current internal state and
check the input parameters.

1. Using state_handle, obtain the current internal state. If state_handle indicates an
invalid or empty internal state, return an ERROR _FLAG.

2. If the length of the additional _input > max_additional_input_length, return an
ERROR_FLAG.

Comment; Obtain the entropy input.

3. (status, entropy_input) = Get_entropy_input (security_strength, min_length,
max_length).

4. Tf an ERROR is returned in step 3, return a CATASTROPHIC_ERROR_FLAG.

Comment: Get the new working_state using
the appropriate reseed algorithm in Section
10.

5. new working state = Reseed_algorithm (working_state, entropy_input,
additional_input).
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Comment: Save the new values of the internal
state.

6. Replace the working_state in the internal state indicated by state_handle with the

values of new working_state obtained in step 5.

7. Return SUCCESS.

9.4 Generating Pseudorandom Bits Using a DRBG

This function is used to generate pseudorandom bits after instantiation or reseeding (see Sections
9.2 and 9.3). The generate function:

1.
2,

Checks the validity of the input parameters,

Calls the reseed function to obtain sufficient entropy if the instantiation needs additional
entropy because the end of the seedlife has been reached or prediction resistance is
required; see Sections 9.4.2 and 9.4.3 for more information on reseeding at the end of the
seedlife and on handling prediction resistance requests.

Generates the requested pseudorandom bits using the generate algorithm. The generate
algorithm will check that two consecutive outputs are not the same.

Updates the working state.
Returns the requested pseudorandom bits to the consuming application.

9.4.1 The Generate Function

Let outlen be the length of the output block of the cryptographic primitive (see Section 10). Let
Generate_algorithm be a call to the appropriate generate algorithm for the DRBG mechanism
(see Section 10), and let Reseed_function be a call to the reseed function in Section 9.2.

The following or an equivalent process shall be used to generate pseudorandom bits.

Generate_function (state_handle, requested number_of_bils,
requested_security strength, prediction_resistance_request, additional_input):

1.
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state_handle: A pointer or index that indicates the internal state to be used. If a state
handle is not used by an implementation because the implemention does not support
multiple simultaneous instantiations, a state_handle is not provided as input. The
state_handle is omitted from the input parameter list in process step 7.1, generate
process steps 1 and 7.3 are used to obtain the contents of the internal state, and process
step 10 replaces the working_state of this internal state.

requested_number_of bits. The number of pseudorandom bits to be returned from the

generate function. The max_number_of bits_per_request is implementation dependent

but shall be less than or equal to the value provided in Section 10 for a specific DRBG
mechanism.

requested_security_strength: The security strength to be associated with the requested
pseudorandom bits. DRBG implementations that support only one security strength do not
require this parameter, however, any consuming application using that DRBG
implementation must be aware of the supported security strength.

prediction_resistance_request: Indicates whether or not prediction resistance is to be
provided during the request. DRBGs that are implemented to always support prediction
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resistance or that support prediction resistance do not require this parameter. However,
when prediction resistance is not supported, the user of a consuming application must
determine whether or not prediction resistance may be required by the application before
electing to use such a DRBG implementation.

If prediction resistance is not supported, then the prediction_resistance_request input
parameter and step 5 of the generate process is omitted, and generate process step 7 is
modified to omit the check for the prediction_resistance_request.

If prediction resistance is always performed, then the prediction_resistance_request
input parameter and generate process step 5 may be omitted, and generate process steps
7 and 8 are replaced by:

status = Reseed_function (state_handle, additional_input).
If status indicates an ERROR, then return status.
Using state_handle, obtain the new internal state.

(status, pseudorandom_bits, new_working_state) = Generate_algorithm
(working state, requested_number_of bits).

Note that if the input of additional input is not supported, then the additional_input
parameter in the Reseed call above may be omitted.

additional_input: An optional input. The maximum length of the additional_input
(max_additional_input length) is implementation dependent, but shall be less than or
equal to the specified maximum length for the selected DRBG mechanism (see Section
10). If the input of additional_input is not supported, then the input parameter, generate
process steps 4 and 7.4 and the additional_input input parameter in steps 7.1 and 8 are
omitted.

Required information not provided by the consuming application during generation:

1.

Internal state values required for generation for the working state and administrative
information, as appropriate.

Output to a consuming application after generation:

1.

2.

status: The status returned from the generate function. The status will indicate
SUCCESS or an ERROR.

pseudorandom_bits: The pseudorandom bits that were requested.

Information retained within the DRBG mechanism boundary after generation:

Replaced internal state values (i.e., the new working_state).

Generate Process:

L.

Comment Get the internal state and check the
input parameters.

Using state_handle, obtain the current internal state for the instantiation. If
state_handle indicates an invalid or empty internal state, then return an
ERROR_FLAG.

25
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10.

11.

If requested_number_of bits > max_number_of bits_per request, then return an
ERROR_FLAG.

If requested_security strength > the security_strength indicated in the internal
state, then return an ERROR_FLAG.

If the length of the additional input > max_additional_input length, then return an
ERROR_FLAG.

If prediction_resistance_request is set, and prediction_resistance_flag is not set,
then return an ERROR_FLAG.

Clear the reseed_required flag. Comment: See Section 9.4.2 for discussion.

Comment: Reseed if necessary (see Section
9.3).

If reseed required_flag is set, or if prediction_resistance_request is set, then
7.1 status = Reseed_function (state_handle, additional_input).

7.2 If status indicates an ERROR, then return status.

7.3 Using state_handle, obtain the new internal state.

7.4 additional_input = the Null string.

7.5 Clear the reseed required_flag.

Comment: Request the generation of
pseudorandom_bits using the appropriate
generate algorithm in Section 10.

(status, pseudorandom_bits, new_working_state) = Generate_algorithm
(working state, requested number_of bits, additional_input).

If status indicates that a reseed is required before the requested bits can be
generated, then

9.1 Set the reseed_required flag.
9.2 Gotostep7.

Replace the old working_state in the internal state indicated by state_handle with
the values of new_working state.

Return SUCCESS and pseudorandom_bits.

Implementation notes:

If a reseed capability is not supported, or a reseed is not desired, then generate process steps 6
and 7 are removed; and step 9 is replaced by:

9.

26

If status indicates that a reseed is required before the requested bits can be
generated, then

9.1 status = Uninstantiate_function (state_handle).
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9.2 Return an indication that the DRBG instantiation can no longer be used.
9.4.2 Reseeding at the End of the Seedlife

When pseudorandom bits are requested by a consuming application, the generate function checks
whether or not a reseed is required by comparing the counter within the internal state (see Section
8.2.3) against a predetermined reseed interval for the DRBG implementation. This is specified in
the generate process (see Section 9.4.1) as follows:

a. Step 6 clears the reseed_required flag.

b. Step 7 checks the value of the reseed_required_flag. At this time, the
reseed required _flag is clear, so step 7 is skipped unless prediction resistance was

requested by the consuming application. For the purposes of this explanation, assume that
prediction resistance was not requested.

c. Step 8 calls the Generate_algorithm, which checks whether a reseed is required. If it is
required, an appropriate status will be returned.

d. Step 9 checks the status returned by the Generate_algorithm. If the stafus indicates
that a reseed is not required, the generate process continues with step 10.

e. However, if the status indicates that a reseed is required, then the reseed_required_flag
is set, and processing continues by going back to step 7 (see steps 9.1 and 9.2).

f. The substeps in step 7 are executed. The reseed function will be called; any
additional _input provided by the consuming application in the generate request will be
used during reseeding. The new values of the internal state are acquired, any
additional input provided by the consuming application in the generate request is
replaced by a Null string, and the reseed_required flag is cleared.

g. The generate algorithm is called (again) in step 8, the check of the returned status is made
in step 9, and (presumably) step 10 is then executed.

9.4.3 Handling Prediction Resistance Requests

When pseudorandom bits are requested by a consuming application with prediction resistance, the
generate function specified in Section 9.4.1 checks that the instantiation allows prediction
resistance requests (see step 5 of the generate process); clears the reseed required flag (even

though the flag won't be used in this case); executes the substeps of generate process step 7,
resulting in a reseed, a new internal state for the instantiation, and setting the additional input to a

Null value; obtains pseudorandom bits (see generate process step 8); passes through generate

process step 9, since another reseed will not be required; and continues with generate process
step 10.

9.5 Removing a DRBG Instantiation

The internal state for an instantiation may need to be ‘released” by erasing the contents of the
internal state. The uninstantiate function:

1. Checks the input parameter for validity.

2. Empties the internal state.

27
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The following or an equivalent process shall be used to remove (i.e., uninstantiate) a DRBG
instantiation:

Uninstantiate function (stare_handle):

1. state_handle: A pointer or index that indicates the internal state to be “released”.

Output to a consuming application after uninstantiation:

1. status: The status returned from the function. The status will indicate SUCCESS or
ERROR FLAG.

Information retained within the DRBG mechanism boundary after uninstantiation:
An empty internal state.

Uninstantiate Process:
1. If state_handle indicates an invalid state, then return an ERROR_FLAG.
2. Frase the contents of the internal state indicated by state_handle.

3. Return SUCCESS.

28
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10 DRBG Algorithm Specifications
10.1 Overview

Several DRBG mechanisms are specified in this Standard. The selection of a DRBG mechanism
depends on several factors, including the security strength to be supported and what cryptographic
primitives are available. An analysis of the consuming application’s requirements for random
numbers should be conducted in order to select an appropriate DRBG mechanism. A detailed
discussion on DRBG mechanism selection is provided in Annex D. Pseudocode examples for each
DRBG mechanism are provided in Annex E. Conversion specifications required for the DRBG
mechanism implementations (e.g., between integers and bitstrings) are provided in Annex B.

10.2 Deterministic RBG Based on Hash Functions
10.2.1 Discussion

A DRBG mechanism is based on a hash function that is non-invertible or one-way. The hash-based
DRBG mechanism specified in this Standard has been designed to use any Approved hash
function and may be used by consuming applications requiring various security strengths, providing
that the appropriate hash function is used and sufficient entropy is obtained for the seed.

The maximum security strength that could be supported by each DRBG based on a hash function
is the security strength of the hash function used; see the ASC X9 Registry for hash function
usage. This Standard supports only four security strengths for DRBGs: 112, 128, 192, and 256 bits.
Table 2 specifies the values that shall be used for the function envelopes and DRBG algorithm for
each Approved hash function.

Table 2: Definitions for the Hash-Based DRBG Mechanisms

SHA-1 SHA-224 SHA-256 ‘ SHA-384 | SHA-512
Supported security strengths See ASC X9 Registry 0003
highest_supported_security_strength See ASC X9 Registry 0003
Output Block Length (outlen) 160 224 256 l 384 512
Required minimum entropy for security strength
instantiate and reseed -
Minimum entropy input length security_strength

(min_length)

Maximum entropy input length < 2% pits
(max_ length)

Seed length (seedlen) 440 440 440 888 888
Maximum personalization string length < 2% bits
(max_personalization_string_length)

Maximum additional_input length < 2% bits
(max_additional_input_length)

max_number_of bits_per_request <2" bits

Number of requests between reseeds <2%

(reseed_interval)
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(Opt) additional input

Note that since SHA-224 is based on SHA-256,
and SHA-384 is based on SHA-512, there is no
efficiency benefit for using the SHA-224 or SHA-
384.

The value for seedlen is determined by subtracting l* State »
the count field (in the hash function specification)

and one byte of padding from the hash function Key [ v ﬁe:fer
input block length; in the case of SHA-1, SHA-224

and SHA 256, seedlen = 512 - 64 - § = 440; for
SHA-384 and SHA-512, seedlen = 1024 - 128 - 8
= 888.

If = Null

UPDATE

Iterate

10.2.2 HMAC_DRBG

10.2.2.1 Discussion State :
o] v [t ] - | mmac
HMAC_DRBG uses multiple occurrences of an :
Approved keyed hash function, which is based on T

an Approved hash function. This DRBG

mechanism uses the HMAC_DRBG_Update B0 18,8 - |
function specified in Section 10.2.2.2 and the ‘—I——’
HMAC function within the

HMAC DRBG_Update function as the

derivation function during instantiation and
reseeding. The same hash function shall be used

throughout an HMAC_DRBG instantiation. The
hash function used shall meet or exceed the

additional input

A 4 b

security Arequirements of the consuming Key | v |reseed | .. TFDREE
application. counter
Figure 7 depicts the HMAC_DRBG in three I—H—l Vil ™4

stages. HMAC DRBG is specified using an
internal  function (HMAC_DRBG_Update).

This function is called by the HMAC_DRBG
instantiate, generate and reseed algorithms to
adjust the internal state when new entropy or
additional input is provided, as well as to update Figure 7: HMAC_DRBG Generate Function
the internal state after pseudorandom bits are

generated. The operations in the top portion of the

figure are only performed if the additional input is not null. Figure 8 depicts the
HMAC DRBG_Update function.

30



Draft ANS X9.82, Part 3 - November 2006 HMAC_DRBG

10.2.2.2 Specifications

rovided
10.2.2.21 HMAC_DRBG Internal State it
v it
The internal state for HMAC_DRBG consists W‘j‘m

of:

1. The working state: ‘ Rey —@
v

a. The value V of outlen bits, which L

Ke;
is updated each time another _Y'EHM‘]‘C

outlen bits of output are v

produced (where outlen s Key o0

specified in Table 2 of Section e

10.2.1).

N S T provided data o il

b. The outlen-bit Key, which is — ';

updated at least once each time ' V|| 0x01 f|provided dats

that the DRBG mechanism

generates pseudorandom bits. Ky e ‘
c. A counter (reseed_counter) that v

indicates the number of requests 2| avac |}

for pseudorandom bits since SRS S, o e i

instantiation or reseeding. L

2. Administrative information:

a. The security strength of the Figure 8: HMAC_DRBG Update Function
DRBG instantiation.

b. A prediction_resistance_flag that indicates whether or not a prediction resistance
capability is required for the DRBG instantiation.

The value of Key is the critical values of the internal state upon which the security of this DRBG
mechanism depends (i.e., Key is the “secret value” of the internal state).

10.2.2.2.2 The Update Function (CTR_DRBG_Update)

The HMAC_DRBG_Update function updates the internal state of HMAC_DRBG using the

provided_data. Note that for this DRBG mechanism, the HMAC_DRBG_Update function also
serves as a derivation function for the instantiate and reseed functions.

Let HMAC be the keyed hash function specified in FIPS 198 using the hash function selected for
the DRBG mechanism from Table 2 in Section 10.2.1.

The following or an equivalent process shall be used as the HMAC_DRBG_Update function.
HMAC_DRBG_Update (provided_data, K, V):
1. provided_data: The data to be used.
2. K: The current value of Key.
3. V:The current value of V.
Output:
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1. K: The new value for Key.

2. V: The new value for V.
HMAC_DRBG Update Process:

1. K=HMAC (X, V| 0x00 || provided_data).
V=HMAC (X, V).

If (provided_data = Null), then return K and V.
K=HMAC (K, V|| 0x01 || provided_datay).
V=HMAC (X, V).

Return K and V.

S = RIS

10.2.2.2.3 Instantiation of HMAC_DRBG

Notes for the instantiate function specified in Section 9.2:

The instantiation of HMAC _DRBG requires a call to the instantiate function specified in
Section 9.2. Process step 9 “of that function calls the instantiate algorithm specified in this
section. For this DRBG mechanism, instantiate process step 5 is omitted. The values of
highest supported_security_strength and min _length are provided in Table 2 of Section
10.2.1. The contents of the internal state are provided in Section 10.2.2.2.1.

The instantiate algorithm:
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Let HMAC_DRBG_Update be the function specified in Section 10.2.2.2.2. The output
block length (outlen) is provided in Table 2 of Section 10.2.1.

The following process or its equivalent shall be used as the instantiate algorithm for this DRBG
mechanism (see step 9 of the instantiate process in Section 9.2):

HMAC_DRBG_Instantiate_algorithm (entropy_input, nonce,
personalization_string):

1. entropy input: The string of bits obtained from the source of entropy input.
2. nonce: A string of bits as specified in Section 8.4.2.

3. personalization string: The personalization string received from the consuming
application. Note that the length of the personalization_string may be zero.

Output:

1. initial working state: The inital values for V, Key and reseed_counter (see
Section 10.2.2.2.1).

HMAC_DRBG Instantiate Process:
1. seed material = entropy_input || nonce || personalization_string.
2. Key =0x00 00...00. Comment: outlen bits.
3. ¥V =0x0101..01. Comment: outlen bits.
Comment: Update Key and V.
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4. (Key, V)=HMAC_DRBG_Update (seed_material, Key, V).
reseed_counter = 1.

6. Return V, Key and reseed_counter as the initial_working_state.
10.2.2.2.4 Reseeding an HMAC_DRBG Instantiation

Notes for the reseed function specified in Section 9.3:

The reseeding of an HMAC_DRBG instantiation requires a call to the reseed function specified
in Section 9.3. Process step 5 of that function calls the reseed algorithm specified in this

section. The values for min_length are provided in Table 2 of Section 10.2.1.

The reseed algorithm:

Let HMAC_DRBG_Update be the function specified in Section 10.2.2.2.2. The following
process or its equivalent shall be used as the reseed algorithmn for this DRBG mechanism
(see step 5 of the reseed process in Section 9.3):

HMAC_DRBG_Reseed_algorithm (working_state, entropy_input, additional_input):

1. working state: The current values for ¥, Key and reseed counter (see Section
10.2.2.2.1).

2. entropy input: The string of bits obtained from the source of entropy input.

3. additional input:- The additional input string received from the consuming
application. If the input of additional input is not supported by the implementation,
then process step 1 of the HMAC_DRBG reseed process is modified to remove the
additional_input.

Output:

1. new working state: The new values for V, Key and reseed_counter.
HMAC_DRBG Reseed Process:

1. seed material = entropy_input || additional_input.

2. (Key, V)= HMAC_DRBG_Update (seed_material, Key, V).
3. reseed counter = 1.
4

Return V, Key and reseed_counter as the new_working_state.
10.2.2.2.5 Generating Pseudorandom Bits Using HWAC_DRBG

Notes for the generate function specified in Section 9.4:

The generation of pseudorandom bits using an HMAC_DRBG instantiation requires a call to
the generate function specified in Section 9.4. Process step 8 of that function calls the
generate algorithm specified in this section. The values for outlen and
max_number of bits_per_request are provided in Table 2 of Section 10.2.1.

The generate algorithm :
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Let HMAC be the keyed hash function specified in ASC X9 Registry 00004 using the hash

function selected for the DRBG mechanism. The value for reseed _interval is defined in Table
2 of Section 10.2.1.

The following process or its equivalent shall be used as the generate algorithm for this DRBG
mechanism (see step 8 of the generate process in Section 9.4):

HMAC_DRBG_Generate_algorithm (working state, requested number of bits,

Output:

2.
3.

additional_input):

working_state: The current values for V, Key and reseed counter (see Section
10.2.2.2.1).

requested number_of bits: The number of pseudorandom bits to be returned to the
generate function.

additional_input. The additional input string received from the consuming application.
If the input of additional input is not supported by an implementation, then step 2 of
the HMAC DRBG generate process is omitted. If the implementation allows
additional input, but a given request does not provide any additional input, or
additional_input is not supported, then a Null string shall be used as the
additional_input in step 6 of the HMAC_DRBG generate process.

status: The status returned from the function. The status will indicate SUCCESS or

indicate that a reseed is.required before the requested pseudorandom bits can be
generated.

returned_bits: The pseudorandom bits to be returned to the generate function.

new_working state: The new values for V, Key and reseed counter.

HMAC_DRBG Generate Process:

1.

© N o w»

If reseed counter > reseed_interval, then return an indication that a reseed is
required.

If additional_input # Null, then (Key, V) =
HMAC_DRBG_Update(additional input, Key, V).

temp = Null.

While (len (temp) < requested_number of bits) do:

4.1 V=HMAC (Key V).

4.2 temp=temp| V.

returned_bits = Leftmost requested number of bits of temp.
(Key, V) = HMAC_DRBG_Update (additional_input, Key, V).
reseed_counter = reseed counter + 1.

Return SUCCESS, returned bits, and the new values of Key, V and
reseed_counter as the new working state).
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10.3 DRBG Mechanisms Based on Block Ciphers

10.3.1 Discussion

CTR_DRBG

A block cipher DRBG is based on a block cipher algorithm. The block cipher DPRBG mechanism
specified in this Standard has been designed to use any Approved block cipher algorithm (see the
ASC X9 Registry) and may be used by consuming applications requiring various security strengths,
providing that the appropriate block cipher algorithm and key length are used, and sufficient

entropy is obtained for the seed.

The maximum security strength that can be
supported by each DRBG based on a block
cipher is the security strength of the block cipher
and key size used; see the ASC X9 Registry for
guidance.

10.3.2 CTR_DRBG

10.3.2.1 CTR_DRBG Description

CTR_DRBG uses an Approved block cipher
algorithm in the counter mode (see ASC Registry
00002). The same block cipher algorithm and key
length shall be used for all block cipher
operations. The block cipher algorithm and key
length shall meet or exceed the security
requirements of the consuming application.

CTR _DRBG is specified using an internal
functon (CTR_DRBG_Update). Figure 9

depicts the CTR_DRBG_Update function.
This function is called by the instantiate, generate
and reseed algorithms to adjust the internal state
when new entropy or additional input is provided,
as well as to update the internal state after
pseudorandom bits are generated. Figure 10
depicts the CTR_DRBG in three stages. The
operations in the top portion of the figure are only
performed if the additional input is not null.

Table 3 specifies the values that shall be used for
the function envelopes and DRBG algorithms.

Table 3: Definitions for the CTR_DRBG

provided data——— @

1

Key| V

Figure 9: CTR_DRBG Update Function

3 Key AES-128 AES-192 AES-256
TDEA
Supported security strengths See ASC X9 Registry
highest_supported_security_strength See ASC X9 Registry
Output block length (outlen) 64 128 128 128
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CTR_DRBG

3 Key
TDEA

AES-128 AES-192

AES-256

Key length (keylen)

168

128

192

256

Required minimum entropy for instantiate and
reseed

security strength

Seed length (seedlen = outlen + keylen)

232

256

320

384

If a derivation function is used:

a. Minimumentropy input length (min
_length)

security strength

b. Maximum entropy input length (max
_length)

< 2% pits

¢. Maximum personalization string length
(max_personalization_string_length)

< 2% pits

d. Maximum additional_input length
(max_additional_input_length)

< 2% pits

If a derivation function is not used:

a. Minimum entropy input length (min
_length = outlen + keylen)

seedlen

b. Maximum entropy input length (max
_length) (outlen + keylen)

seedlen

¢. Maximum personalization string length
(max_personalization_string_length)

seedlen

d. Maximum additional_input length
(max_additional_input length)

seedlen

max_number_of bits_per request

Number of requests between reseeds
(reseed_interval)

The CTR_ DRBG may be implemented to use the block cipher derivation function specified in
Section 10.5.3 during instantiation and reseeding. However, the DRBG imechanism is specified to
allow an implementation tradeoff with respect to the use of this derivation function. The use of the
derivation function is optional if either of the following is available to provide entropy input when

requested:

e An Approved RBG with a security strength equal to or greater than the required security
strength of the CTR_DRBG instantiation, or

e An Approved conditioned entropy source.
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Otherwise, the derivation functon shall be used. Table 3 provides lengths required for the
entropy_input, personalization_string and additional_input for each case.

When a derivation function is not o
used by an implementation, the (O sdditionalinpul
seed construction shall not use a
nonce? (see Section 8.4.2). ————
When using TDEA as the selected ”;:‘J,‘é‘ﬁé%“
block cipher algorithm, the keys
shall be handied as 64-bit blocks susdlen M
containing 56 bits of key and 8 bits
of parity as specified for the TDEA " UPDATE
engine in ANS X9.52. P
reseed
10.3.2.2 Specifications KoY | V| counter |
10.3.2.2.1 CTR_DRBG Internal
State
The internal state for CTR_DRBG | :
consists of: Iterate
1. The working_state:
— 4+ 4
a. The value V of outlen T n, ,
bits, which is updated State ; —
each time another Key | v |7eseed | . Block
outlen bits of output are __jconnier ‘: Encrypt | |
produced (see Table 3 i
in Section 10.3.2.1). D SO '
b. The keylen-bit Key, Bum ] - |
which is updated
whenever a .
predetermined number i
of output blocks are
generated. 8
c. A counter
(reseed_counter) that
indicates the number of [ Staie vy v
requests for 2
pseudorandom bits dl M iy SERSE
since instantiation or ] v
reseeding. L—+~—1
2. Administrative information:

Figure 10: CTR-DRBG

2 The specifications in this Standard do not accommodate the special treatment required for a nonce in this case.
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a. The security_strength of the DRBG instantiation.

b. A prediction_resistance flag that indicates whether or not a prediction resistance
capability is required for the DRBG instantiation.

The values of ¥ and Key are the critical values of the internal state upon which the security of this
DRBG mechanism depends (i.e., V and Key are the “secret values” of the internal state).

10.3.2.2.2 The Update Function (CTR_DRBG_Update)

The CTR_DRBG_Update function updates the internal state of the CTR_DRBG using the
provided_data. The values for outlen, keylen and seedlen are provided in Table 3 of Section

10.3.2.1. The block cipher operation in step 2.2 of the CTR_DRBG_Update process uses the
selected block cipher algorithm (also see Section 10.5.4).

The following or an equivalent process shall be used as the CTR_DRBG_Update function:
CTR_DRBG_Update (provided_data, Key, V):

1. provided_data: The data to be used. This must be exactly seedlen bits in length; this

length is guaranteed by the construction of the provided_data in the instantiate,
reseed and generate functions.

2. Key: The current value of Key.

3. V:The current value of V.
Output:

1. K: The new value for Key.

2. V:The new value for V.
CTR_DRBG Update Process:

1. temp = Null.

2. While (len (temp) < seedlen) do
2.1 V=(V+1)mod 27",
2.2 output_block = Block_Encrypt (Key, V).
2.3 temp =temp || output block.
temp = Leftmost seedlen bits of temp.
temp = temp @ provided data.
Key = Leftmost keylen bits of temp.
V' = Rightmost outlen bits of temp.

N e AW

Return the new values of Key and V.
10.3.2.2.3 Instantiation of CTR_DRBG

Notes for the instantiate function specified in Section 9.2:
38
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The instantiation of CTR_DRBG requires a call to the instantiate function specified in
Section 9.2. Process step 9 of that function calls the instantiate algorithm specified in this
section. For this DRBG mechanism, step 5 of the instantiate function is omitted. The values of

highest supported_security strength and min _length are provided in Table 3 of Section
10.3.2.1. The contents of the internal state are provided in Section 10.3.2.2.1.

The instantiate algorithm:

For this DRBG mechanism, there are two cases for the processing. In each case, let
CTR_DRBG_Update be the function specified in Section 10.3.2.2.2. The output block

length (outlen), key length (keylen), seed length (seedlen) and security strengths for the
block cipher algorithms are provided in Table 3 of Section 10.3.2.1.

10.3.2.2.3.1 The Process Steps for Instantiation When Full Entropy is Available for the
Entropy Input, and a Derivation Function is Not Used

The following process or its equivalent shall be used as the instantiate algorithm for this DRBG
mechanism:

CTR_DRBG_Instantiate_algorithm (entropy_input, personalization_siring):
1. entropy input: The string of bits obtained from the source of entropy input.

2. personalization_string: The personalization string received from the consuming
application. Note that the length of the personalization_string may be zero.

Output:

1. initial working state: The inital values for V, Key, and reseed_counter (see
Section 10.3.2.2.1).

CTR_DRBG Instantiate Process:
1. temp = len (personalization string).

Comment: Ensure that the length of the
personalization_string is exactly seedlen bits.
The maximum length was checked in Section
9.2, processing step 3, using Table 3 to define
the maximum length.

2. If (temp < seedlen), then personalization string = personalization strin
seedlenptemp p - &=P - &
0 =

seed material = entropy_input @ personalization_string.
Key = ('@, Comment: keylen bits of zeros.
Y = (oulen, Comment: outlen bits of zeros.

(Key, V)= CTR_DRBG_Update (seed material, Key, V).

reseed counter = 1.

® N W

Return 7, Key, and reseed_counter as the initial working state.
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10.3.2.2.3.2 The Process Steps for Instantiation When a Derivation Function is Used

Let Block Cipher_df be the derivation function specified in Section 10.5.3 using the chosen
block cipher algorithm and key size.

The following process or its equivalent shall be used as the instantiate algorithm for this DRBG
mechanism:

CTR_DRBG _Instantiate_algorithm (entropy_input, nonce, personalization_string):
1. entropy_input: The string of bits obtained from the source of entropy input.
2. nonce: A string of bits as specified in Section 8.4.2.

3. personalization_string: The personalization string received from the consuming
application. Note that the length of the personalization_string may be zero.

Output:

1. initial working state: The inital values for V, Key, and reseed_counter (see
Section 10.3.2.2.1).

CTR_DRBG Instantiate Process:
1. seed material = entropy_input || nonce || personalization_string.

Comment: Ensure that the length of the
seed _material is exactly seedlen bits.

seed material = Block_Cipher_df (seed_material, seedlen).
Key = 0fn. Comment: keylen bits of zeros.
y = (oulen, Comment: outlen bits of zeros.

(Key, V) = CTR_DRBG_Update (seed_material, Key, V).

reseed _counter = 1.

S O T

Return V, Key, and reseed_counter as the initial_working_state.
10.3.2.2.4 Reseeding a CTR_DRBG Instantiation

Notes for the reseed function specified in Section 9.3:

The reseeding of a CTR_DRBG instantiation requires a call to the reseed function specified
in Section 9.3. Process step 5 of that function calls the reseed algorithm specified in this
section. The values for min _length are provided in Table 3 of Section 10.3.2.1.

The reseed algorithm:

For this DRBG mechanism, there are two cases for the processing. In each case, let
CTR_DRBG_Update be the function specified in Section 10.3.2.2.2. The seed length
(seedlen) is provided in Table 3 of Section 10.3.2.1.
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10.3.2.2.41 The Process Steps for Reseeding When Full Entropy is Available for the
Entropy Input, and a Derivation Function is Not Used

The following process or its equivalent shall be used as the reseed algorithm for this DRBG
mechanism (see step 5 of the reseed process in Section 9.3):

CTR_DRBG_Reseed_algorithm (working_state, entropy_input, additional_inpur):

1. working state: The current values for V, Key, previous_output block and
reseed counter (see Section 10.3.2.2.1).

2. entropy input: The string of bits obtained from the source of entropy input.

3. additional input. The additional input string received from the consuming application.

If the input of additional input is not supported by an implementation, then reseed
process steps 1 to 3 below are replaced by:

seed _material = entropy _input.
That is, steps 1-3 collapse into the above step.
Output :
1. new_working state: The new values for V, Key, and reseed_counter.
CTR_DRBG Reseed Process
1. temp = len (additional_input).

Comment: Ensure that the length of the
additional_input is exactly seedlen bits. The
maximum length was checked in Section 9.3,
processing step 2, using Table 3 to define the
maximum length.

If (temp < seedlen), then additional_input = additional_input || seedien - temp

2
3. seed material = entropy input @ additional_input.

4. (Key, V)= CTR_DRBG_Update (seed_material, Key, V).
5. reseed counter =1.

6

Return V, Key and reseed counter as the new_working_state.
10.3.2.2.4.2 The Process Steps for Reseeding When a Derivation Function is Used

Let Block Cipher_df be the derivation function specified in Section 10.5.3 using the chosen
block cipher algorithm and key size.

The following process or its equivalent shall be used as the reseed algorithm for this DRBG
mechanism (see reseed process step 5 of Section 9.3):

CTR_DRBG_Reseed_algorithm (working_state, entropy_input, additional_input):

1. working state: The current values for V, Key, previous_output block and
reseed counter (see Section 10.3.2.2.1).
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2. entropy_input: The string of bits obtained from the source of entropy input.

3. additional input. The additional input string received from the consuming application.

If the input of additional input is not supported by an implementation, then reseed
process steps 1 to 3 below are replaced by:

seed _material = entropy_input.
That is, steps 1-3 collapse into the above step.
Output :
1. new working state: The new values for V, Key, and reseed counter.
CTR_DRBG Reseed Process:
1. seed material = entropy_input || additional_input.

Comment: Ensure that the length of the
seed_material is exactly seedlen bits.

seed material = Block_Cipher_df (seed material, seedlen).
(Key, V)= CTR_DRBG_Update (seed material, Key, V).

reseed _counter = 1.

I

Return V, Key, and reseed_counter as the new_working_state.
10.3.2.2.5 Generating Pseudorandom Bits Using CTR_DRBG

Notes for the generate function specified in Section 9.4:

The generation of pseudorandom bits using a CTR_DRBG instantiation requires a call to the
generate function specified in Section 9.4. Process step 8 of that function calls the generate
algorithm specified in this section. The values for max number of bits per request,
max_additional_input_length, and outlen are provided in Table 3 of Section 10.3.2.1. If the
derivation function is not used, then the maximum allowed length of additional_input =
seedlen.

For this DRBG mechanism, there are two cases for the processing.For each case, let
CTR _DRBG_Update be the function specified in Section 10.3.2.2.2, and let
Block Encrypt be the function specified in Section 10.5.4. The seed length (seedlen) and
the value of reseed_interval are provided in Table 3 of Section 10.3.2.1.

10.3.2.2.5.1 The Process Steps for Generating Pseudorandom Bits When a Derivation
Function is Not Used for the DRBG Implementation

The following process or its equivalent shall be used as the generate algorithm for this DRBG
mechanism (see step 8 of the generate process in Section 9.4.1):

CTR_DRBG_Generate_algorithm (working state, requested_number_of  bits,
additional_input):

1. working state: The current values for V, Key, and reseed _counter (see Section
10.3.2.2.1).
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2. requested number of bits: The number of pseudorandom bits to be returned to the
generate function.

3. additional_input. The additional input string received from the consuming application.
If additional input will never be allowed, then step 2 becomes:

additional_input = 0°@%e",

Output:
1. status: The status returned from the function. The stafus will indicate SUCCESS, or

indicate that a reseed is required before the requested pseudorandom bits can be
generated.

2. returned bits: The pseudorandom bits returned to the generate function.
3. working state: The new values for V, Key, and reseed_counter.

CTR_DRBG Generate Process:

1. Ifreseed counter > reseed interval, then return an indication that a reseed is
required.

2. If (additional input # Null), then

Comment: Ensure that the length of the
additional _input is exactly seedlen bits. The
maximum length was checked in Section
9.4.1, processing step 4, using Table 3 to
define the maximum length. If the length of
the additional input is < seedlen, pad with
zero bits.

2.1 temp =len (additional input).

2.2 If (temp < seedlen), then
additional _input = additional_input ||

2.3 (Key, V)= CTR_DRBG_Update (additional_input, Key, V).
Oseedlen'

Oseedlen - temp

Else additional input =
temp = Null.
4. While (len (temp) < requested number of bits) do:
4.1 V=(V+1)mod 2%
4.2  output block = Block_Encrypt (Key, V).
4.3  temp = temp || output block.
5. returned bits = Leftmost requested number_of bits of temp.

Comment: Update for backtracking
resistance.
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6. (Key, V)= CTR_DRBG_Update (additional input, Key, V).

7. reseed counter =reseed counter + 1.

8. Return SUCCESS and returned _bits; also return Key, V, and reseed_counter as
the new_working state.

10.3.2.2.5.2 The Process Steps for Generating Pseudorandom Bits When a Derivation
Function is Used for the DRBG Implementation

The Block_Cipher_df is specified in Section 10.5.3 and shall be implemented using the chosen
block cipher algorithm and key size.

The following process or its equivalent shall be used as generate algorithm for this DRBG
mechanism (see step 8 of the generate process in Section 9.4.1):

CTR_DRBG_Generate_algorithm (working state, requested number_of bits,
additional_inpuf):

1. working state: The current values for V, Key, and reseed counter (see Section
10.3.2.2.1).

2. requested number of bits: The number of pseudorandom bits to be retumed to the
generate function.

3. additional input. The additional input string received from the consuming application.
If additional _input will never be allowed, then step 2 becomes:
additional _input = 07",
Output:

1. status: The status returned from the function. The status will indicate SUCCESS, or
indicate that a reseed is required before the requested pseudorandom bits can be
generated.

2. returned_bits: The pseudorandom bits returned to the generate function.
3. working state: The new values for V, Key, and reseed_counter.
CTR_DRBG Generate Process:

1. Ifreseed counter > reseed interval, then return an indication that a reseed is
required.

2. If (additional_input # Null), then
2.1 additional_input = Block_Cipher_df (additional_input, seedlen).
2.2 (Key, V)=CTR_DRBG_Update (additional_input, Key, V).
Else additional _input = 0°*%".
3. temp = Null.
4. While (len (temp) < requested_number_of bits) do:
41 V=(V+1)mod 2"
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4.2 output_block = Block_Encrypt (Key, V).
4.3  temp = temp || output_block.
5. returned_bits = Leftmost requested_number_of bits of temp.

Comment: Update for backtracking
resistance.

6. (Key, V) = CTR_DRBG_Update (additional_input, Key, V).
7. reseed counter = reseed counter + 1.

8. Return SUCCESS and returned bits; also return Key, V, and reseed_counter as
the new_working_state.
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10.4 DRBG Mechanisms Based on Number Theoretic Problems
10.4.1 Discussion

A DRBG can be designed to take advantage of number theoretic problems (e.g., the discrete
logarithm problem). If done correctly, such a generator’s properties of randomness and/or
unpredictability will be assured by the difficulty of finding a solution to that problem. Section 10.4.2
specifies a DRBG mechanism based on the elliptic curve discrete logarithm problem.

10.4.2 Dual Elliptic Curve Deterministic RBG (Dual_EC_DRBG)

10.4.2.1 Discussion

The Dual EC_DRBG is based on the following hard problem, sometimes known as the “elliptic
curve discrete logarithm problem” (ECDLP): given points P and Q on an elliptic curve of order 7,
find a such that Q = aP.

Dual EC_DRBG uses an initial seed that is 2 * security_strength bits in length to initiate the
generation of outlen-bit pseudorandom strings by performing scalar multiplications on two points in
an elliptic curve group, where the curve is defined over a field approximately 2" in size. For all the
NIST curves given in this Standard for the DRBG, m is at least twice the security stength, and
never less than 256. Throughout this DRBG mechanism specification, m will be referred to as
seedlen: the term “seedlen” is appropriate because the internal state of Dual EC_DRBG is
used as a “seed” for the random block it produces. Figure 11 depicts the Dual EC_DRBG.

seed- )

]
Instant. or
reseed only

O-lo x (@RS Lrlo Q) PRt

[Optional]
additional input 4®_T f t
00— P Q Pseudorandom

h

Bits

If additional input = Null

Figure 11: Dual_EC_DRBG

The instantiation of this DRBG mechanism requires the selection of an appropriate elliptic curve
and curve points specified in Annex A.1 for the desired security strength. The seed used to
determine the initial value (s) of the DRBG mechanism shall have entropy that is at least

security _strength bits. Further requirements for the seed are provided in Section 8.2. This DRBG
mechanism uses the derivation function specified in Section 10.5.2 during instantiation and
reseeding.

Backtracking resistance is inherent in the algorithm, even if the internal state is compromised. As
shown in Figure 12, Dual EC_DRBG generates a seedlen-bit number for each step 7 =
1,2,3,..., as follows:

46




Draft ANS X9.82, Part 3 - November 2006 Dual_EC_DRBG

$i= @ x(si-1 *P))
ri=@(x(si ¥ Q) ). SO Sl SZ L —

Each arrow in the figure represents an Elliptic Curve
scalar multiplication operation, followed by the
extraction of the x coordinate for the resulting point
and for the random output 7; followed by truncation to

produce the output (formal definitions for ¢ and x are rl rz
given in Section 10.4.2.2.4). Following a line in the
direction of the arrow is the normal operation;
inverting the direction implies the ability to solve the
ECDLP for that specific curve. An adversary's ability .
to invert an arrow in the figure implies that the Figure 12: Dual_EC_DRBG
adversary has solved the ECDLP for that specific Backtracking Resistance

elliptic curve. Backtracking resistence is built into the

design, as knowledge of s does not allow an adversary to determine s¢ (and so forth) unless the
adversary is able to solve the ECDLP for that specific curve. In addition, knowledge of »; does not

allow an adversary to determine 5| (and so forth) unless the adversary is able to solve the ECDLP
for that specific curve.

Table 4 specifies the values that shall be used for the envelope and algorithm for each curve.
Complete specifications for each curve are provided in Annex A.1. Note that all curves can be
instantiated at a security strength lower than the curve's highest possible security strength. For
example, the highest security strength that can be supported by curve P-384 is 192 bits; however,
this curve can alternatively be instantiated to support only the 112 or 128-bit security strengths).

Table 4: Definitions for the Dual_EC_DRBG

P-256 P-384 P-521
Supported security strengths See the ASC X9 Registry
Size of the base field (in bits), 256 384 521
references throughout as seedlen
highest _supported_ See the ASC X9 registry
security_strength
Output block length (max_outlen = 240 368 504
largest multiple of 8 less than (size
of the base field) - (13 + log; (the
cofactor))
Required minimum entropy for security strength
instantiate and reseed
Minimum entropy input length security strength
(min_length)
Maximum entropy input length < 2" bits
(max _length)
Maximum personalization string < 2" pits
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P-256 P-384 P-521
length
(max_personalization_string_length)
Maximum additional input length < 2" bits
(max_additional_input_length)
Length of the initial seed 2 x security_strength
Appropriate hash functions SHA-1, SHA-224, | SHA-224, SHA-256, | SHA-256,
SHA-256, SHA- | SHA-384, SHA-512 | SHA-384,
384, SHA-512 SHA-512

max_number_of bits_per request

max_outlen x reseed_interval

Number of blocks between
reseeding (reseed_interval)

< 2% plocks

10.4.2.2 Specifications

10.4.2.2.1 Dual_EC_DRBG Internal State

The internal state for Dual_EC_DRBG consists of:

1. The working state:

a. A value (5) that determines the current position on the curve.

b. The elliptic curve domain parameters (seedlen, p, a, b, n), where seedlen is the
length of the seed; p is the prime that defines the base field F); a and b are two field

elements that define the equation of the curve; and # is the order of the point G. If only
one curve will be used by an implementation, these parameters need not be present in

the working_state.

c. Two points P and QO on the curve (see Annex A.1); the generating point G specified in
Annex A.1 for the chosen curve will be used as P. If only one curve will be used by an
implementation, these points need not be present in the working_state.

d. A counter (reseed counter) that indicates the number of blocks of random produced
by the Dual EC_DRBG since the initial seeding or the previous reseeding.

2. Administrative information:

a. The security strength provided by the instance of the DRBG instantiation,

b. A prediction_resistance_flag that indicates whether prediction resistance is required

by the DRBG instantiation.

The value of s is the critical value of the internal state upon which the security of this DRBG
mechanism depends (i.e., s is the “secret value” of the internal state).
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10.4.2.2.2 Instantiation of Dual_EC_DRBG

Notes for the instantiate function specified in Section 9.2:

The instantiation of Dual EC_DRBG requires a call to the instantiate function specified in
Section 9.2. Process step 9 of that function calls the instantiate algorithm in this section.

In process step 5 of the instantiate function, the following step shall be performed to select an
appropriate curve if multiple curves are available.

5. Using the security_strength and Table 4 in Section 10.4.2.1, select the smallest
available curve that has a security strength > security_strength.

The values for seedlen, p, a, b, n, P, Q are determined by that curve.

It is recommended that the default values be used for P and Q as given in Annex A.1.
However, an implementation may use different pairs of points, provided that they are verifiably
random, as evidenced by the use of the procedure specified in Annex A.2.1 and the self-test
procedure described in Annex A.2.2.

The values for highest_supported_security strength and min_length are determined by
the selected curve (see Table 4 in Section 10.4.2.1).

The instantiate algorithm :

Let Hash_df be the hash derivation function specified in Section 10.5.2 using an appropriate
hash function from Table 4 in Section 10.4.2.1. Let seedlen be the appropriate value from
Table 4.

The following process or its equivalent shall be used as the instantiate algorithm for this DRBG
mechanism (see step 9 of the instantiate process in Section 9.2):

Dual EC_DRBG_Instantiate_algorithm (entropy_input, nonce,
personalization_string):

1. entropy input: The string of bits obtained from the source of entropy input.
2. nonce: A string of bits as specified in Section 8.4.2.

3. personalization_string: The personalization string received from the consuming
application. Note that the length of the personalization_string may be zero.

Output:
1. s The initial secret value for the initial working_state.
2. reseed counter: The initialized block counter for reseeding.
Dual EC_DRBG Instantiate Process:
1. seed material = entropy _input || nonce || personalization_string.

Comment: Use a hash function to ensure that
the entropy is distributed throughout the bits,
and s is m (i.e., seedlen) bits in length.

2. s=Hash _df (seed material, seedlen).
3. reseed counter = 0.
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4. Return s, and reseed counter for the initial_working_stafte.
10.4.2.2.3 Reseeding of a Dual_EC_DRBG Instantiation

Notes for the reseed function specified in Section 9.3:

The reseed of Dual EC_DRBG requires a call to the reseed function specified in Section
9.3. Process step 5 of that function calls the reseed algorithm in this section. The values for
min _length are provided in Table 4 of Section 10.4.2.1.

The reseed algorithm :

Let Hash_df be the hash derivation function specified in Section 10.5.2 using an appropriate
hash function from Table 4 in Section 10.4.2.1.

The following process or its equivalent shall be used to reseed the Dual EC_DRBG
process after it has been instantiated (see step 5 of the reseed process in Section 9.3):

Dual EC_DRBG_Reseed_algorithm (s, entropy_input, additional_input):
1. s The current value of the secret parameter in the working_state.
2. entropy_input: The string of bits obtained from the source of entropy input.

3. additional input. The additional input string received from the consuming application.
If the input of a additional_input is not supported by an implementation, then the

additional_input term is removed from step 1 of the reseed process, so that step 1
becomes:

seed _material = pad8 (s) || entropy_input.
Output:
1. s: The new value of the secret parameter in the new_working_state.
2. reseed counter: The re-initialized block counter for reseeding.

Dual_ EC_DRBG Reseed Process

Comment: pad8 returns a copy of s padded
on the right with binary 0’s, if necessary, to a
multiple of 8.

1. seed material = pad8 (s) || entropy_input || additional_input_string.
s = Hash_df (seed _material, seedlen).

reseed _counter = 0.

Sl

Return s and reseed counter for the new_working_state.
10.4.2.2.4 Generating Pseudorandom Bits Using Dual_EC_DRBG

Notes for the generate function specified in Section 9.4:

The generation of pseudorandom bits using a Dual EC_DRBG instantiation requires a call
to the generate function specified in Section 9.4. Process step 8 of that function calls the
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generate algorithm specified in this section. The values for
max_number_of bits_per request and max_outlen are provided in Table 4 of Section
10.4.2.1. outlen is the number of pseudorandom bits taken from each x-coordinate as the
Dual_EC_DRBG steps. For performance reasons, the value of outlen should be set to the
maximum value as provided in Table 5. However, an implementation may set outlen to any
multiple of 8 bits less than or equal to max outlen. The bits that become the

Dual EC_DRBG output are always the rightmost bits, i.e., the least significant bits of the x-
coordinates. Annex C contains additional information regarding the statistical and distributional
implications related to the truncation of the x-coordinates.

The generate algorithm:

Let Hash_df be the hash derivation function specified in Section 10.5.2 using an appropriate

hash function from Table 4 in Section 10.4.2.1. The value of reseed interval is also provided
in Table 4.

The following are used by the generate algorithm:

a. pad8 (bitstring) returns a copy of the bitstring padded on the right with binary 0's, if
necessary, to a multiple of 8.

b. Truncate (bitstring, in_len, out len) inputs a bitstring of in_len bits, returning a
string consisting of the leftmost out len bits of bitstring. If in_len < out_len, the

bitstring is padded on the right with (out len - in_len) zeroes, and the result is
returned.

c. x(A4) is the x-coordinate of the point 4 on the curve, given in affine coordinates. An
implementation may choose to represent points internally using other coordinate
systems; for instance, when efficiency is a primary concern. In this case, a point shall

be translated back to affine coordinates before x() is applied.

d. o (x) maps field elements to non-negative integers, taking the bit vector representation
of a field element and interpreting it as the binary expansion of an integer.

The precise definition of @(x) used in steps 6 and 7 of the generate process below
depends on the field representation of the curve points. In keeping with the convention
of FIPS 186-2, the following elements will be associated with each other (note that, in

this case, m denotes the size of the base field):
B: cmillemall - |lc1] co, abitstring, with ¢y being leftmost.
Zi oem2™ 4 42 et e e Z:
Fa:cn2™ + .. 422 + 2+ ¢ modp € F,;

Thus, any field element x of the form F, will be converted to the integer Z or bitstring
B, and vice versa, as appropriate.

e. *is the symbol representing scalar multiplication of a point on the curve.

The following process or its equivalent shall be used to generate pseudorandom bits (see step
8 of the generate process in Section 9.4).

Dual EC_DRBG_Generate_algorithm (working state, requested number_of bits,
additional_input):

51



Draft ANS X9.82, Part 3 - November 2006 Dual_EC_DRBG

working state: The current values for s, seedlen, p, a, b, n, P, Q, and
reseed counter (see Section 10.4.2.2.1).

requested_number of bits: The number of pseudorandom bits to be returned to the
generate function.

additional _input: The additional input string received from the consuming application.
If the input of additional input is not supported by an implementation, then step 2 of
the generate process becomes:

additional_input = 0.

Alternatively, generate steps 2 and 9 are omitted, the additional input term is
omitted from step 5, and the “go to step 5" in step 12 is to the step that now sets 7 = s.

Output:

1.

2.
3.
4.

status: The status returned from the function. The status will indicate SUCCESS, or
an indication that a reseed is required before the requested pseudorandom bits can be
generated.

returned_bits: The pseudorandom bits to be returned to the generate function.
s: The new value for the secret parameter in the new working_state.

reseed counter: The updated block counter for reseeding.

Dual EC_DRBG Generate Process:

52

Comment: Check whether a reseed is
required.

requested _number of _bits

If (reseed _counter + { D >reseed_interval, then

outlen
return an indication that a reseed is required.

Comment: If additional_input is Null, set to
seedlen zeroes; otherwise, Hash_df to
seedlen bits.

If (additional_input_string = Null), then additional_input =0
Else additional_input = Hash_df (pad8 (additional_input_string), seedlen).

Comment: Produce requested no_of bits,
outlen bits at a time:

temp = the Null string.

i=0.

t =s @ additional _input. Comment: ¢ is to be interpreted as a seedlen-
bit unsigned integer. To be precise, ¢ should

be reduced mod #; the operation * will effect
this.
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6. s=0o(x(t *P)). Comment: s is a seedlen-bit number. Note
that the conversion of @(x) is discussed in
item d above; this also applies to step 7.

7. r =¢o(x(s *Q)). Comment: r is a seedlen-bit number.
8. temp = temp || (rightmost outlen bits of 7).

9. additional _input=0 Comment: seedlen zeroes;
additional_input_string is added only on the
first iteration.

10. reseed_counter = reseed_counter + 1.
11.i=i+1.
12. If (len (temp) < requested _number_of bits), then go to step 5.
13 returned_bits = Truncate (temp, i x outlen, requested_number_of bits).
14. s = o( x(s *P)).
15. Return SUCCESS, returned bits, and s, and reseed counter for the
new_working state.
10.5 Auxilliary Functions

10.5.1 Discussion

Derivation functions are internal functions that are used during DRBG instantiation and reseeding
to either derive internal state values or to distribute entropy throughout a bitstring. Two methods
are provided. One method is based on hash functions (see Section 10.5.2), and the other method
is based on block cipher algorithms (see 10.5.3). The block cipher derivation function uses a

Block_Cipher_Hash function that is specified in Section 10.5.4.

The presence of these derivation functions in this Standard does not implicitly approve these
functions for any other application.

10.5.2 Derivation Function Using a Hash Function (Hash_df)

This derivation function is used by the Dual EC_DRBG specified Section 10.4.2. The hash-
based derivation function hashes an input string and returns the requested number of bits. Let
Hash be the hash function used by the DRBG mechanism, and let outlen be its output length.

The following or an equivalent process shall be used to derive the requested number of bits.
Hash_df (input_string, no_of bits_to_return):
1. input_string: The string to be hashed.

2. no_of bits to_return: The number of bits to be returned by Hash_df. The maximum
length (max_number of bits) is implementation dependent, but shall be less than or
equal to (255 x outlen). no_of bits to_return is represented as a 32-bit integer.

Output:
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1. status: The status returned from Hash_df. The status will indicate SUCCESS or
ERROR_FLAG.

2. requested bits : The result of performing the Hash_df.

Hash_df Process:
1. temp = the Null string.

2. len= ‘Vno_of_bll‘s _lo _return-’ .

outlen
counter = an 8-bit binary value representing the integer "1".
4, Fori=1tolendo

Comment : In step 5.1, no_of bits_to_return
is used as a 32-bit string.

4.1 temp = temp || Hash (counter || no_of bits_to_return || input_string).
4.2  counter = counter + 1.
requested_bits = Leftmost (no_of bits_to_return) of temp.

6. Return SUCCESS and requested_bits.

10.5.3 Derivation Function Using a Block Cipher Algorithm (Block_Cipher_df)

This derivation function is used by the CTR_DRBG that is specified in Section 10.3.2. Let BCC
be the function specified in Section 10.5.4. Let outlen be its output block length, which is a multiple
of 8 bits for the Approved block cipher algorithms, and let keylen be the key length.

The following or an equivalent process shall be used to derive the requested number of bits.
Block Cipher_df (input_string, no_of bits_to_return) :
1. input_string: The string to be operated on. This string shall be a muitiple of 8 bits.

2. no_of bits _to_return: The number of bits to be returned by Block_Cipher_df. The

maximum length (max_number_of bits) is 512 bits for the currently approved block
cipher algorithms.

Output:

1. status: The status returned from Block_Cipher_df. The status will indicate
SUCCESS or ERROR_FLAG.

2. requested bits: The result of performing the Block_Cipher_df.
Block_Cipher_df Process:

1. If (number of bits to return> max_number_of bils), then return an
ERROR_FLAG.
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2

10.

L =len (input_string)/8. Comment: L is the bitstring represention of
the integer resulting from len (input_string)/8.
L shall be represented as a 32-bit integer.
. N=number_of bits_to_return/8. Comment : N is the bitstring represention of

the integer resulting from
number _of bits_to_return/8. N shall be
represented as a 32-bit integer.

Comment: Prepend the string length and the
requested length of the output to the
input_string.

S=L| N|| input_string || 0x80.

Comment : Pad S with zeros, if necessary.
While (len (S) mod outlen) = 0, S =S || 0x00.

Comment : Compute the starting value.

temp = the Null string.

i =0l Comment : i shall be represented as a 32-bit
integer, i.c., len (i) = 32.
K = Leftmost keylen bits of 0x00010203...1D1EIF.

While len (femp) < keylen + outlen, do

9.1 V=] goulen-len(® Comment: The 32-bit integer represenation of
i is padded with zeros to outlen bits.

9.2 temp =temp || BCC (K, (IV || S)).
93 i=i+1l.

Comment: Compute the requested number of
bits.

K = Leftmost keylen bits of temp.

11. X= Next outlen bits of temp.

12.
13.

14.
15.

temp = the Null string.

While len (temp) < number_of bits to_return, do

13.1 X=Block_Encrypt (X, X).

13.2 temp =temp || X.

requested_bits = Leftmost number_of bits_to_return of temp.
Return SUCCESS and requested _bits.
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10.5.4 BCC Function
Block Encrypt is used for convenience in the specification of the BCC function. This function is
not specifically defined in this Standard, but has the following meaning:

Block Encrypt: A basic encryption operation that uses the selected block cipher algorithm.
The function call is:

output_block = Block_Encrypt (Key, input_block)

For TDEA, the basic encryption operation is called the forward cipher operation (see ANS
X9.52); for AES, the basic encryption operation is called the cipher operation (see ASC X9
Registry 00002). The basic encryption operation is equivalent to an encryption operation on a
single block of data using the ECB mode.

For the BCC function, let outlen be the length of the output block of the block cipher algorithm to
be used.

The following or an equivalent process shall be used to derive the requested number of bits.
BCC (Key, data) :
1. Key: The key to be used for the block cipher opeation.

2. data: The data to be operated upon. Note that the length of dafa must be a multiple of
outlen. This is guaranteed by Block Cipher_df process steps 4 and 8.1 in Section
10.5.3.

Output:
1. output_block: The result to be returned from the Block_Cipher_Hash operation.
BCC Process:

1. chaining value = 0°“"",

Comment: Set the first chaining value to
outlen zeros.
2. n=len (data)loutlen.

3. Starting with the leftmost bits of data, split the data into » blocks of outlen bits,
each forming block, to block,.

4, Fori=1tondo
4.1 input block= chaining value ® block; .
4.2 chaining value = Block_Encrypt (Key, input_block).
output _block = chaining_value.

6. Return output block.
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11 Assurance

11.1 Overview

A user of a DRBG for cryptographic purposes
requires assurance that the generator actually

produces random and unpredictable bits. The Desig]l < Evaluation
user needs assurance that the design of the _
generator, its implementation and its use to : l J,

support cryptographic services are adequate
to protect the user's information. In addition, Standards
the user requires assurance that the generator

continues to operate correctly. The assurance l l
strategy for the DRBG mechanisms in this

Standard is depicted in Figure 13. Implementaﬁon < Validation

The design of each DRBG mechanism in this l
Standard has received an evaluation of its

security properties prior to its selection for Ovperational Tests
inclusion in this Standard. p

The accuracy of an implementation of a DRBG
process may be asserted by an implementer. ]
However, this Standard requires that an Figure 13: DRBG Assurance Strategy
implementation shall be designed to allow

validation testing, including documenting design assertions about how the DRBG mechanism
operates (see Section 11.2). This shall include mechanisms for testing all detectable error
conditions.

An implementation should be validated for conformance to this Standard (see Section 11.3). The
consuming application or cryptographic service that uses a DRBG mechanism should also be
validated and periodically tested for continued correct operation. However, this level of testing is
outside the scope of this Standard. Such validations provide a higher level of assurance that the
DRBG mechanism is correctly implemented. Validation testing for DRBG mechanisms consists of
testing whether or not the DRBG mechanism produces the expected result, given a specific set of
input parameters (e.g., entropy input). Implementations used directly by consuming applications
should aiso be validated against conformance to FIPS 140-2.

Health tests on the DRBG mechanism shall be implemented within a DRBG mechanism boundary
or sub-boundary in order to determine that the process continues to operate as designed and
implemented. See Section 11.4 for further information.

Note that any entropy input used for testing (either for validation testing or health testing) may be
publicly known. Therefore, entropy input used for testing shall not knowingly be used for normal
operational use.

11.2 Minimal Documentation Requirements

A set of documentation shall be developed that will provide assurance to users and (optionally)
validators that the DRBG mechanisms in this Standard have been implemented properly. Much of
this documentation may be placed in a user's manual. This documentation shall consist of the
following as a minimum:

e Document the method for obtaining entropy input.
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e Document how the implementation has been designed to permit implementation validation
and health testing.

e Document the type of DRBG mechanism (e.g., HMAC_DRBG, Dual_EC_DRBG), and the
cryptographic primitives used (e.g., SHA-256).

e Document the security strengths supported by the implementation.

e Document features supported by the implemention (e.g., prediction resistance, the
available elliptic curves, etc.).

e |f DRBG mechanism functions are distributed, specify the mechanisms that are used to
protect the confidentiality and integrity of the internal state or parts of the internal state that
are transferred between the distributed DRBG mechanism sub-boundaries.

e In the case of the CTR_DRBG, indicate whether a derivation function is provided. if a
derivation function is not used, document that the implementation can only be used if full
entropy input is available:

e Document any support functions other than health testing.

o Document the periodic intervals at which health testing is performed for the generate
function and provide a justification for the selected intervals (see Section 11.4.4).

e Document how the integrity of the health tests will be determined subsequent to
implementation validation.

11.3 Implementation Validation Testing

A DRBG mechanism shall be tested for conformance to this Standard. Regardless of whether or
not validation testing is obtained by an implementer, a DRBG mechanism shall be designed to be
tested to ensure that the product is correctly implemented; this will allow validation testing to be
obtained by a consumer, if desired. A testing interface shall be available for this purpose in order
to allow the insertion of input and the extraction of output for testing.

Implementations to be validated shall include the following:
o Documentation specified in Section 11.2.

o Any documentation or results required for validation testing.
11.4 Health Testing
11.4.1 Overview

A DRBG implementation shall perform self-tests to obtain assurance that the DRBG continues to
operate as designed and implemented (health testing). The testing function(s) within a DRBG
mechanism boundary (or sub-boundary) shall test each DRBG mechanism function within that
boundary (or sub-boundary), with the possible exception of the test function itself. Note that testing
may require the creation and use of an instantiation for testing purposes only. A DRBG
implementation may optionally perform other self-tests for DRBG functionality in addition to the
tests specified in this Standard.

All data output from the DRBG mechanism boundary (or sub-boundary) shall be inhibited while
these tests are performed. The results from known-answer-tests (see Section 11.4.2) shall not be
output as random bits during normal operation.
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11.4.2 Known-Answer Testing

Known-answer testing shall be conducted as specified below. A known-answer test involves
operating the DRBG mechanism with data for which the correct output is already known and
determining if the calculated output equals the expected output (the known answer). The test fails
if the calculated output does not equal the known answer. In this case, the DRBG mechanism shall
enter an error state and output an error indicator (see Section 11.4.7).

Generalized known-answer testing is specified in Sections 11.4.3 to 11.4.6. Testing shall be
performed on all implemented DRBG mechanism functions, with the possible exception of the test
function itself. Documentation shall be provided that addresses the continued integrity of the health
tests (see Section 11.2).

11.4.3 Testing the Instantiate Function

Known-answer tests on the instantiate function shall be performed prior to creating each
operational instantiation. However, if several instantiations are performed in quick succession using
the same security strengrth and prediction_resistance _flag parameters, then the testing may
be reduced to testing only prior to creating the first instantiation using that parameter set until such
time as the succession of instantiations is completed. Thereafter, other instantiations shall be
tested as specified above.

The security strength and prediction_resistance_flag to be used in the operational invocation
shall be used during the test. Representative fixed values and lengths of the entropy_input,
nonce and personalization_string (if supported) shall be used; the value of the entropy input
used during testing shall not be intentionally reused during normal operations (either by the

instantiate or the reseed functions). Error handling shall also be tested, including whether or not
the instantiate function handles an error from the source of entropy input correctly.

If the values used during the test produce the expected results, and errors are handled correctly,
then the instantiate function may be used to instantiate using the tested values of

security strength and prediction_resistance_flag.

An implementation should provide a capability to test the instantiate function on demand.
11.4.4 Testing the Generate Function

Known-answer tests shall be performed on the generate function before the first use of the
function in an implementation (i.e., the first use ever) and at reasonable intervals defined by the
implementer. The implementer shall document the intervals and provide a justification for the
selected intervals.

The known-answer tests shall be performed for each implemented security_strength.
Representative fixed values and lengths for the requested_number_of bits and
additional_input (if supported) and the working state of the internal state value (see Sections
8.2.3 and 10) shall be used. If prediction resistance is supported, then each combination of the
security strength, prediction_resistance_request and prediction_resistance_flag shall be
tested. The error handling for each input parameter shall also be tested, and testing shall include
setting the reseed counter to meet or exceed the reseed_interval in order to check that the
implementation is reseeded or that the DRBG is “shut down”, as appropriate.

If the values used during the test produce the expected results, and errors are handled correctly,
then the generate function may be used during normal operations.

59



Draft ANS X9.82, Part 3 - November 2006

Bits generated during health testing shall not be output as pseudorandom bits.

An implementation should provide a capability to test the generate function on demand.

11.4.5 Testing the Reseed Function

A known-answer test of the reseed function shall use the security_strength in the internal state of
the instantiation to be reseeded. Representative values of the entropy_input and
additional_input (if supported) and the working state of the internal state value shall be used (see
Sections 8.2.3 and 10). Error handling shall also be tested, including an error in obtaining the
entropy_input (e.g., the entropy_input source is broken).

If the values used during the test produce the expected results, and errors are handled correctly,
then the reseed function may be used to reseed the instantiation.

Self-test shall be performed as follows:

1, When prediction resistance is supported in an implementation, the reseed function shall be
tested whenever the generate function is tested (see above).

2. When prediction resistance is not supported in an implementation, the reseed function
shall be tested whenever the reseed function is invoked and before the reseed is
performed on the operational instantiation.

An implementation should provide a capability to test the reseed function on demand.
11.4.6 Testing the Uninstantiate Function

The uninstantiate function shall be tested whenever other functions are tested. Testing shall
attempt to demonstrate that error handling is performed correctly, and the internal state has been
erased.

11.4.7 Error Handling
11.4.71 General Discussion

The expected errors are indicated for each DRBG mechanism function (see Sections 9.2 - 9.5) and
for the derivation functions in Section 10.5. The error handling routines should indicate the type of
error.

11.4.7.2 Errors Encountered During Normal Operation

Many errors during normal operation may be caused by a consuming application’s improper DRBG
request; these errors are indicated by ERROR_FLAG in the pseudocode. In these cases, the
consuming application user is responsible for correcting the request within the limits of the user’s
organizational security policy. For example, if a failure indicating an invalid requested security
strength is returned, a security strength higher than the DRBG or the DRBG instantiation can
support has been requested. The user may reduce the requested security strength if the
organization's security policy allows the information to be protected using a lower security strength,
or the user shall use an appropriately instantiated DRBG.

Catastrophic errors (i.e., those errors indicated by the CATASTROPHIC_ERROR_FLAG in
the pseudocode) detected during normal operation shall be treated in the same manner as an
error detected during health testing (see Section 11.4.7.3).
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11.4.7.3 Errors Encountered During Health Testing

Errors detected during health testing shall be perceived as catastrophic DRBG failures.

When a DRBG fails a health test or a catastrophic error is detected during normal operation, the
DRBG shall enter an error state and output an error indicator. The DRBG shall not perform any
DRBG operations while in the error state, and pseudorandom bits shall not be output when an
error state exists. When in an error state, user intervention (e.g., power cycling of the DRBG) shall
be required to exit the error state, and the DRBG shall be re-instantiated before the DRBG can be
used to produce pseudorandom bits. Examples of such behavior include:

o A test deliberately inserts an error, and the error is not detected, or

e A different result is returned from the instantiate, reseed, generate or uninstantiate
function than was expected.
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Annex A: (Normative) Application-Specific Constants

A.1 Constants for the Dual_EC_DRBG

The Dual EC_DRBG requires the specifications of an elliptic curve and two points on the elliptic
curve. One of the following curves and with associated points shall be used in applications
requiring certification under ASC X9 Registry 00001. More details about these curves may be
found in FIPS PUB 186-3, the Digital Signature Standard [1].

A.1.1 Curves over Prime Fields

Each of following mod p curves is given by the equation:
32 =x-3x + b (mod p)
Notation:
p - Order of the field F}, , given in decimal.

r - order of the Elliptic Curve Group, in decimal . Note that » is used here for consistency with
FIPS 186-3 but is referred to as 7 in the description of the Dual EC_DRBG.

a — (-3) in the above equation.
b - coefficient above.

The x and y coordinates of the base point, ie generator G, are the same as for the point
P.

A.1.1.1 Curve P-256

p = 11579208921035624876269744694940757353008614\
3415290314195533631308867097853951

r = 11579208921035624876269744694940757352999695\
5224135760342422259061068512044369

b= 5ac635d8 aa3a93e7 b3ebbd55 769886bc 651d06b0 ccbh3b0f6 3bce3c3e
27d2604b

Px = 6b17d1f2 el2c4247 f8bcebeb 63a440f2 77037d81 2deb33al
£4213945 d898c296
Py = 4fe342e2 fela7f9b 8eeTebda 7c0f9%el6 2bce3357 6b3ldece

cbb64068 37bf51£5
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Ox = c97445f4 5cdef9f0 d3eObele 585fc297 235b82b5 be8ff3ef
ca67c598 52018192
Oy = b28ef557 ba3ldfcb dd2lac46 e2a9le3c 304fd4dcb 87058ada

2cb81515 1610046

A.1.1.2 Curve P-384

p = 39402006196394479212279040100143613805079739\
27046544666794829340424572177149687032904726\
6088258938001861606973112319

F = 39402006196394479212279040100143613805079739\

27046544666794690527962765939911326356939895\
6308152294913554433653942643

b=b3312fa7 e23eceTed 988e056b e3£82d19 181d9cbe fe814112 0314088f

5013875a ¢656398d 8a2edl19d 2a85c8ed d3ecZaef

Px = aa87ca22 be8b0537 8eblc7le. £320ad74 6eld3b62 8ba79b98
59f741e0 82542a38 5502f25d bf55296c 3ab45e38 72760ab’
Py = 3617deda 96262c6f 5d9%9e98bf 9292dc29 f8f41dbd 289%9al4d’c

e9da3113 b5f0b8cO 0a60blce 1d7e¢819d 7a431d7c 90ealeSf

Ox = 8e722de3 125bddb0 5580164b fe20b8b4 32216a62 926c¢5750
2ceede3l c47816ed dle89769 124179d0 b6951064 28815065

Oy = 023b1660 dd701d08 39fd45ee c36f9ee’ b32e13b3 15dc0261
0aalb636 e346df67 1£790£84 c5e09b05 674dbb7e 45c803dd

A.1.1.3 Curve P-521

p = 68647976601306097149819007990813932172694353\
00143305409394463459185543183397656052122559\
64066145455497729631139148085803712198799971\
6643812574028291115057151

F = 68647976601306097149819007990813932172694353\
00143305409394463459185543183397655394245057\
74633321719753296399637136332111386476861244\
0380340372808892707005449
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b=051953eb 9618elc9 alf92%a2 1alb6854 Oeea2da7 25b99%b31 5£3b8b48
9918efl10 9e156193 95lec7e9 37bl652c Obd3bblb £073573d f£883d2c3

4flef451 £d46b503 £00

Px c6858e06
21f828af

de3348b3

b70404eS
606b4d3d
cl856a42

11839296
46817afb
761353c7

a78%a3bc
dl17273e6
086a272c

1b9fa3eb
ad272650
b24c3edf

18d683cé6
7dd08add
a0f85fe2

1f3bdbab
37e£f91b8
ad4d26d2c

85295d9%a
1dcOb813
Tb69b58 £

cd9e3ech
baaldbbe
9bf97eTe

0045c8ab
62c97ee’”
24088be9

b6576369
4c3b3f4c
4d0c8c01

1110d1df
2c8d5¢39
90666529

662395b4
T7efe59
31c2e5bd

fb42c7dl
2995ef42
4769fdl6

dac8efba
lebchbl2
591f0beb6

1£9430ef
c32d0e00
11e45777

429c6481
28feldcl
66

39053£b5
27a2ffa8

bd998£54
640c550b
650

449579b4
9013£ad0

ecofabd4
22ddbal7
f63

£2276171
T£722943

8442c501 8976f£34
433092b7 d327c0e7
Sde

A.2 Using Alternative Points in the Dual_EC_DRBG()

The security of Dual EC_DRBG requires that the points P and () be properly generated. To
avoid using potentially weak points, the points specified in Annex A.1 should be used. However,
an implementation may use different pairs of points provided that they are verifiably random, as
evidenced by the use of the procedure specified in Annex A.2.1 below, and the self-test procedure
in Annex A.2.2. An implementation that uses alternative points generated by this Approved method
shall have them “hard-wired” into its source code, or hardware, as appropriate, and loaded into the
working state at instantiation. To conform to this Standard, alternatively generated points shall
use the procedure given in Annex A.2.1, and verify their generation using Annex A.2.2.

A.2.1 Generating Alternative P,Q

The curve shall be one of the curves that is specified in Annex A.1 of this Standard, and shall be
appropriate for the desired security strength, as specified in Table 4, Section 10.4.2.1.

The points P and Q shall be valid base points for the selected elliptic curve that are generated to

be verifiably random using the procedure specified in ANS X9.62. The following input is required for
each point:

An elliptic curve E = (F), a, b), cofactor h, prime n, a bit string domain_parameter seed?,
and hash function Hash(). The curve parameters are given in Annex A of this Standard. The

domain_parameter_seed shall be different for each point, and the minimum length m of each
domain _parameter_seed shall conform to Section 10.4.1, Table 4, under “Seed length”. The

3 Called a SEED in ANS X9.62.
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bit length of the domain_parameter_seed may be larger than m. The hash function shall be
SHA-512 in all cases.

If the output from the ANS X9.62 generation procedure is ‘“failure’, a different
domain_parameter seed shall be used for the point being generated.

Otherwise, the output from the generate procedure in ANS 9.62 shall be used.
A.2.2 Additional Self-testing Required for Alternative P,Q

To insure that the points P and Q have been generated appropriately, additional self-test
procedures shall be performed whenever the instantiate function is invoked. Section 11.4.2
specifies that known-answer tests on the instantiate function be performed prior to creating an
operational instantiation. As part of these tests, an implementation of the generation procedure
specified in ANS X9.62 shall be called for each point (i.e., P and Q) with the appropriate
domain_parameter seed value that was used to generate that point. The point returned shall be
compared with the corresponding stored value of the point. If the generated value does not match
the stored value, the implementation shall halt with an error condition.
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ANNEX B : (Normative) Conversion and Aukxilliary Routines
B.1 Bitstring to an Integer
Bitstring_to_integer (b1, by, ..., by):
1. by, by, ..., by  The bitstring to be converted.

Output:
1. X The requested integer representation of the bitstring.

Process:
1. Let (b, by,..., by) be the bits of b from leftmost to rightmost.

2. x=320p,.
=1

3. Return x.

In this Standard, the binary length of an integer x is defined as the smallest integer 7 satisfying x <
2",

B.2 Integer to a Bitstring
Integer_to_bitstring (x):
1. x The non-negative integer to be converted.

Output:

1. by, by, ..., b, The bitstring representation of the integer x.

Process:

1. Let (b1, by, ..., by) represent the bitstring, where by =0 or 1, and b; is the most
significant bit, while b, is the least significant bit.

2. For any integer # that satisfies x <2”, the bits b; shall satisfy:
X = 22(""')17; :
i=1

3. Retum by, b2, ..., ba.

In this Standard, the binary length of the integer x is defined as the smallest integer » that satisfies
x<2"

B.3 Integer to a Byte String
Integer to_byte_string (x):
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1. A non-negative integer x, and the intended length n of the byte string satisfying

27> x.
Output:
1. Abyte string O of length 7 bytes.
Process:
1. Let Oy, O;,..., O, be the bytes of O from leftmost to rightmost.
2. The bytes of O shall satisfy: -

x =3 280+ O;
fori=1ton.
3. Return O.

B.4 Byte String to an Integer

Byte_string to_integer (O):

1. A byte string O of length 7 bytes.
Output:

1. A non-negative integer x.

Process:

1. Let Oy, O, ..., O, be the bytes of O from leftmost to rightmost.

2. xis defined as follows:
x =3 20,
fori=1rton.

3. Returnx.
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Annex C: (Informative) Security Considerations
C.1 Extracting Bits in the Dual_EC_DRBG (...)

C.1.1 Potential Bias Due to Modular Arithmetic for Curves Over F,

Given an integer x in the range 0 to 2N-1, where N is any positive integer, the " bit of x depends

x
solely upon whether L?J is odd or even. Exactly % of the integers in this range have the property

that their 7 bit is 0. But if x is restricted to Fp, i.e., to the range 0 to p-1, this statement is no
longer true.

By excluding the k = s — p values p, p+1, ..., 2N _1 from the set of all integers in Zy, the ratio of
ones to zeroes in the 7" bit is altered from oML 2N 45 a value that can be no smaller than (2N'1
- k) 2M1 For all the primes p used in this Standard, k2" is smaller than 2!, Thus, the ratio of
ones and zeroes in any bit is within at least 231 6 1.0.

To detect this small difference from random, a sample of at least 2% outputs is required before the
observed distribution of 1's and O's is more than one standard deviation away from flat random.
This effect is dominated by the bias addressed below in Annex C.1.2.

C.1.2 Adjusting for the Missing Bit(s) of Entropy in the x Coordinates.

In a truly random sequence, it should not be possible to predict any bits from previously observed
bits. With the Dual EC_DRBG, the full output block of bits produced by the algorithm is
“missing” some entropy. Fortunately, by discarding some of the bits, those bits remaining can be
made to have nearly “full strength”, in the sense that the entropy that they are missing is negligibly
small.

To illustrate what can happen, suppose that the curve with P-256 is selected, and that all 256 bits

produced were output by the generator, i.e. that outlen = 256 also. Suppose also that 255 of these
bits are published, and the 256" bit is kept “secret’. About % the time, the unpublished bit could
easily be determined from the other 255 bits. Similarly, if 254 of the bits are published, about % of
the time the other two bits could be predicted. This is a simple consequence of the fact that only

about 1/2 of all 2™ bitstrings of length m occur in the list of all x coordinates of curve points.

The "abouts" in the preceding example can be made more precise, taking into account the
difference between 2™ and p, and the actual number of points on the curve (which is always within
2 * p'/z of p). For the curves in Annex A.1, these differences won't matter at the scale of the results,
so they will be ignored. This allows the heuristics given here to work for any curve with "about”
(2™)/f points, where /=1 is the curve's cofactor. For all the curves in this Standard, the cofactor f

=1.
The basic assumption needed is that the approximately (2™)/(2f) x coordinates that do occur are

"uniformly distributed": a randomly selected m-bit pattern has a probability 1/2f of being an x
coordinate. The assumption allows a straightforward calculation, albeit approximate, for the entropy
in the rightmost (least significant) m-d bits of Dual_EC_DRBG output, with d<<m.

2d
The formulais £ = —Z [2'"‘dbinomprob(2d,z,2d —j)]pj log, p;, where E is the entropy.

J=0
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For each 0 <j §2d, the term in braces represents the approximate number of bitstrings b of length
(m-d) such that there are exactly j points whose x-coordinates have their (m-d) least significant
bits equal to b; z = (2f-1)/2f is the probability that any particular string occurs in an x coordinate; p;

= (7*2/)/2" is the probability that a member of the jth category occurs. Note that the j=0 category
contributes nothing to the entropy (randomness).

The values of E for d-up to 16 are:
log2(f): 0 d: 0 entropy: 255.00000000 m-d: 256

log2(f): 0 d: 1 entropy: 254.50000000 m-d: 255
log2(f): 0 d: 2 entropy: 253.78063906 m-d: 254
log2(f): 0 d: 3 entropy: 252.90244224 m-d: 253
log2(f): 0 d: 4 entropy: 251.95336161 m-d: 252
log2(f): 0 d: 5 entropy: 25097708960 m-d: 251
log2(f): 0 d: 6 entropy: 249.98863897 m-d: 250
log2(f): 0 d: 7 entropy: 248.99434222 m-d: 249
log2(f): 0 d: 8 entropy: 247.99717670 m-d: 248
log2(H): 0 d: 9 entropy: 246.99858974 m-d: 247
log2(f): 0 d: 10 entropy: 245.99929521 m-d: 246
log2(f): 0 d: 11 entropy: 244.99964769 m-d: 245
log2(f): 0 d: 12 entropy: 243.99982387 m-d: 244
log2(f): 0 d: 13 entropy: 242.99991194 m-d: 243

log2(f): 0 d: 14 entropy: 241.99995597 m-d: 242
log2(f): 0 d: 15 entropy: 240.99997800 m-d: 241
log2(f): 0 d: 16 entropy: 239.99998900 m-d: 240

The analysis above uses Shannon entropy. As discussed elsewhere in this Standard, min-
entropy is a more appropriate measure of randomness than Shannon entropy, at least for
the purposes of security. If the analysis above is repeated for min-entropy, then one finds
that about 1 bit of min-entropy is missing for most values of d <m/2. The main reason for

this is that the case of j = 2% is expected to occur, provided that d <m/2. Therefore the

maximum probability for a particular bit string of length m-d is pd = 241'm \which gives a

min-entropy of m-d-1. An adversary attempting to guess the value of the bit string of
length m-d, would choose a string such thatj = 2¢. On the other hand, generally speaking,
the security strength associated with an m-bit elliptic curve is only m bits, which implies
that only m/2 bits of min-entropy are required. Therefore, the loss of a single bit of min-
entropy may be deemed acceptable here because the min-entropy would still be well over
what is needed.

Observations:
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a) The table starts where it should, at 1 missing bit;

b) The missing entropy rapidly decreases;

c) For the curves in this Standard, d=13 leaves 1 bit of information in every 10,000 (m-13)-
bit outputs (i.e., one bit of entropy is missing in a collection of 10,000 outputs).

Based on these calculations, for the mod p curves, it is recommended that an implementation shall
remove at least the leftmost (most significant) 13 bits of every m-bit output.

For ease of implementation, the value of d should be adjusted upward, if necessary, until the
number of bits remaining, m-d= outlen, is a multiple of 8. By this rule, the recommended number
of bits discarded from each x-coordinate will be either 16 or 17. As noted in Section 10.4.2.2.4, an

implementation may decide to truncate additional bits from each x-coordinate, provided that the
number retained is a multiple of 8.

Because only half of all values in [0, 1,..., p-1] are valid x-coordinates on an elliptic curve defined

over F,, it is clear that full x-coordinates should not be used as pseudorandom bits. The solution
to this problem is to truncate these x-coordinates by removing the high order 16 or 17 bits. The
entropy loss associated with such truncation amounts has been demonstrated to be minimal (see
the above chart).

When 16 high-order bits of a random x-coordinate have been removed, an adversary that is given
the remaining bits has a probability of about % + 1/641 of guessing correctly whether the bits given
are truly random or derived from a random x-coordinate. Shannon entropy of 239.999989 out of a
maximum of 240 does not guarantee indistinguishability. One 90,000™ of a bit missing does not
translate into a 1/90,000 advantage for a distinguishing adversary, but rather a 1/640 advantage.
When it is crucial that an adversary cannot distinguish the DRBG output from a random output,
such as when it is used as a stream cipher, then more bits should be truncated from the x-
coordinate, accordingly.

One might wonder if it would be desirable to truncate more than this amount. The obvious
drawback to such an approach is that increasing the truncation amount hinders the performance.
However, there is an additional reason that argues against increasing the truncation. Consider the

case where the low s bits of each x-coordinate are kept. Given some subinterval I of length 2°
contained in [0, p), and letting N(/) denote the number of x-coordinates in , recent results on the
distribution of x-coordinates in [0, p) provide the following bound:

N(7) _2 < k*log” p

(p/2) P Jr

where k is some constant derived from the asymptotic estimates given in [2]. For the case of P-
521, this is roughly equivalent to:

l N(I)_ 2(3-1) I < k *2277’

where the constant & is independent of the value of 5. For s < 2277, this inequality is weak and
provides very little support for the notion that these truncated x-coordinates are uniformly
distributed. On the other hand, the larger the value of s, the sharper this inequality becomes,
providing stronger evidence that the associated truncated x-coordinates are uniformly distributed.
Therefore, by keeping truncation to an acceptable minimum, the performance is increased, and
certain guarantees can be made about the uniform distribution of the resulting truncated quantities.
Further discussion of the uniformity of the truncated x-coordinates is found in [3], where the form of
the prime defining the field is also taken into account.
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ANNEX D: (Informative) DRBG Mechanism Selection
D.1 Choosing a DRBG Algorithm

Almost no application or system designer starts with the primary purpose of generating good
random bits. Instead, the designer typically starts with a goal that he wishes to accomplish, then
decides on some cryptographic mechanisms, such as digital signatures or block ciphers that can
help achieve that goal. Typically, as the requirements of those cryptographic mechanisms are
better understood, he learns random bits will need to generated, and that this must be done with
great care so that the cryptographic mechanisms will be weakened. At this point, there are three
things that may guide the designer's choice of a DRBG mechanism:

a. He may already have decided to include a set of cryptographic primitives as part of his
implementation. By choosing a DRBG mechanism based on one of these primitives, he
can minimize the cost of adding that DRBG mechanism. In hardware, this translates to
lower gate count, less power consumption, and less hardware that must be protected
against probing and power analysis. In software, this translates to fewer lines of code to
write, test, and validate.

For example, a module that generates RSA signatures has an available hash function, so a
hash-based DRBG mechanism is a natural choice.

b. He may already have decided to trust a block cipher, hash function, keyed hash function,
etc., to have certain properties. By choosing a DRBG mechanism based on similar
properties, he can minimize the number of algorithms he has to trust.

For example, an AES-based DRBG mechanism might be a good choice when a module
provides encryption with AES. Since the security of the module is dependent on the
strength of AES, the module's security is not made dependent on any additional
cryptographic primitives or assumptions.

c. Multiple cryptographic primitives may be available within the system or application, but
there may be restrictions that need to be addressed (e.g..code size or performance
requirements).

For example, a module with support for both hash functions and block ciphers might use
the CTR_DRBG if the ability to parallelize the generationnof random bits is needed.

The DRBG mechanisms specified in this Standard have different performance characteristics,
implementation issues, and security assumptions.

D.2 HMAC_DRBG

HMAC_DRBG is built around the use of some approved hash function in the HMAC

construction. To generate pseudorandom bits from a secret key (Key) and a starting value ¥, the
HMAC_DRBG mechanism computes

7'=HMAC (Key, V).

At the end of a generation request, the HMAC_DRBG generates a new Key and V, each
requiring one HMAC computation.
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Performance. HMAC_DRBG produces pseudorandom outputs considerably more slowly than
the underlying hash function processes inputs; for SHA-256, a long generate request produces
output bits at about 1/4 of the rate that the hash function can process input bits. Each generate
request also involves additional overhead equivalent to processing 2048 extra bits with SHA-256.
Note, however, that hash functions are typically quite fast; few if any consuming applications are

expected to need output bits faster than HMAC_DRBG can provide them.

Security. The security of HMAC_DRBG is based on the assumption that an Approved hash
function used in the HMAC construction is a pseudorandom function family. Informally, this means
that when an attacker doesn’t know the key used, HMAC outputs look random, even given
knowledge and control over the inputs. [n general, even relatively weak hash functions seem to be
quite strong when used in the HMAC construction. On the other hand, there is not a reduction
proof from the hash function’s collision resistance properties to the security of the DRBG; the
security of HMAC_DRBG ultimately relies on the pseudorandomness properties of the
underlying hash function. Note that the pseudorandomness of HMAC is a widely used assumptions
in designs.

Constraints on Outputs. As shown in Table 2 of Section 10.2.1, for each hash function, up to 2%
generate requests may be made, each of up to 2™ bits.

Resources. HMAC_DRBG requires access to a dedicated HMAC implementation for optimal
performance. However, a general-purpose hash function implementation can always be used to
implement HMAC. Any implementation requires the storage space required for the internal state
(see Section 10.2.2.2.1).

Algorithm Choices. The choice of hash functions that may be used by HMAC DRBG is
discussed in Section 10.2.1.

D.3 CTR_DRBG

CTR_DRBG is based on using an Approved block cipher algorithm in counter mode. At the
present time, only three-key TDEA and AES are approved for use in this DRBG mechanism.
Pseudorandom outputs are generated by encrypting successive values of a counter; after a
generate request, a new key and new starting counter value are generated.

Performance. For large Generate requests, CTR_DRBG produces outputs at the same speed
as the underlying block cipher algorithm encrypts data.  Furthermore, CTR_DRBG is
parallelizeable. At the end of each Generate request, work equivalent to 2, 3 or 4 encryptions is
performed, depending on the choice of underlying block cipher algorithm, to generate new keys
and counters for the next Generate request.

Security. The security of CTR_DRBG is directly based on the security of the underlying block
cipher algorithm, in the sense that, so long as some limits on the total number of outputs are
observed, any attack on CTR_DRBG represents an attack on the underlying block cipher
algorithm.

Constraints on Outputs. As shown in Table 3 of Section 10.3.2.1, for each of the three AES key
sizes, up to 2*® generate requests may be made, each of up to 2" bits, with a negligible chance of
any weakness that does not represent a weakness in AES. However, the smaller block size of
TDEA imposes more constraints: each generate request is limited to 2" bits, and at most 2% such
requests may be made.

Resources. CTR_DRBG may be implemented with or without a derivation function.
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When a derivation function is used, CTR_DRBG can process the personalization string and any
additional input in the same way as any other DRBG mechanism, but at a cost in performance
because of the use of the derivation function (as opposed to not using the derivation function; see
below). Such an implementation may be seeded by any Approved source of entropy input that may
or may not provide full entropy.

When a derivation function is not used, CTR_DRBG is more efficient when the personalization
string and any additional input are provided, but is less flexible because the lengths of the
personalization string and additional input cannot exceed seedlen bits. Such implementations must
be seeded by a source of entropy input that provides full entropy (e.g., an Approved conditioned
entropy source or Approved NRBG).

CTR_DRBG requires access to a block cipher algorithm, including the ability to change keys, and
the storage space required for the internal state (see Section 10.3.2.2.1).

Algorithm Choices. The choice of block cipher algorithms and key sizes that may be used by
CTR_DRBG is discussed in Section 10.3.2.1.

D.4 DRBGs Based on Hard Problems

The Dual EC_DRBG generates pseudorandom outputs by extracting bits from elliptic curve
points. The secret, internal state of the DRBG is a value s that is the x-coordinate of a point on an
elliptic curve. Outputs are produced by first computing 7 to be the x-coordinate of the point s*P
and then extracting low order bits from the x-coordinate of the elliptic curve point #*Q.

Performance. Due to the elliptic curve arithmetic involved in this DRBG mechanism, this algorithm
generates pseudorandom bits more slowly than the other DRBG mechjansms in this Standard. It
should be noted, however, that the design of this algorithm allows for certain performance-
enhancing possibilities. First, note that the use of fixed base points allows a substantial increase in
the performance of this DRBG mechanism via the use of tables. By storing multiples of the points
P and Q, the elliptic curve multiplication can be accomplished via point additions rather than
multiplications, a much less expensive operation. In more constrained environments where table
storage is not an option, the use of so-called Montgomery Coordinates of the form (X : Z) can be
used as a method to increase performance, since the y-coordinates of the computed points are not

required. Alternatively, Jacobian or Projective Coordinates of the form (X, ¥, Z) can speed up the
elliptic curve operation. These have been shown to be competitive with Montgomery for the NIST
curves, and are straightforward to implement.

A given implementation of this DRBG mechanism need not include all three of the curves specified
in Annex A.1. Once the designer decides upon the strength required by a given application, he can
then choose to implement the single curve that most appropriately meets this requirement. For a
common level of optimization expended, the higher strength curves will be slower and tend toward
less efficient use of output blocks. To mitigate the latter, the designer should be aware that every
distinct request for random bits requires the computational expense of at least two elliptic curve
point multiplications.

Applications requiring large blocks of random bits (such as IKE or SSL), can thus be implemented
most efficiently by first making a single call to the Dual_EC_DRBG for all the required bits, and
then appropriately partitioning these bits as required by the protocol. For applications that already
have hardware or software support for elliptic curve arithmetic, this DRBG mechanism is a natural
choice, as it allows the designer to utilize existing capabilities to generate random numbers.
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Security. The security of Dual EC_DRBG is based on the Elliptic Curve Discrete Logarithm
Problem that has no known attacks better than the meet-in-the-middle attacks. For an elIiEJtic curve
defined over a field of size 2™, the work factor of these attacks is approximately 2”‘/, so that
solving this problem is computationally infeasible for the curves in this Standard. The
Dual EC_DRBG is the only DRBG mechanism in this Standard whose security is related to a
hard problem in number theory.

Constraints on Outputs. For any one of the three elliptic curves listed in Annex A.1, a particular
instance of Dual_EC_DRBG may generate at most 2% output blocks before reseeding, where the
size of the output blocks is discussed in Section 10.4.2.2.4. Since the sequence of output blocks is
expected to cycle in approximately sqrt(rn) bits (where 7 is the (prime) order of the particular elliptic
curve being used), this is quite a conservative reseed interval for any one of the three possible
curves.

Resources. Any source of entropy input may be used with Dual EC_DRBG, provided that it is

capable of generating at least min_entropy bits of entropy in a string of max_length = 21 pits.
This DRBG mechanism also requires an appropriate hash function (see Table 4) that is used
exclusively for producing an appropriately-sized initial state from the entropy input at instantiation
or reseeding. An implementation of this DRBG mechanism must also have enough storage for the
internal state (see 10.4.2.2.1). Some optimizations require additional storage for moderate to large
tables of pre-computed values.

Algorithm Choices. The choice of appropriate elliptic curves and points used by
Dual_ EC_DRBG is discussed in Annex A.1.

D.5 Summary for DRBG Selection

Table D-1 provides a summary of the DRBG mechanisms in this Standard.
Table 1: DRBG Mechanism Summary

, Dominating Cost/Block Constraints (max.)
HMAC_DRBG 4 hash function calls 2% calls of 2" bits
CTR_DRBG (TDEA) 1 TDEA encrypt 2% calls of 2" bits
CTR_DRBG (AES) 1 AES encrypt 2% calls of 2'° bits
Dual EC_DRBG 2 EC points 2% blocks
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ANNEX E: (Informative) Example Pseudocode for Each DRBG Mechanism
E.1 Preliminaries

The internal states in these examples are considered to be an array of states, identified by
state_handle. A particular state is addressed as internal_state (state_handle), where the value
of state handle begins at 0 and ends at n-1, and 7 is the number of internal states provided by
an implementation. A particular element in the internal state is addressed by internal state

(state_handle).element. In an empty internal state, all bitstrings are set to Null, and all integers
are setto 0.

For each example in this annex, arbitary values have been selected that are consistent with the
allowed values for each DRBG mechanism, as specified in the appropriate table in Section 10.

The pseudocode in this annex does not include the necessary conversions (e.g., integer to
bitstring) for an implementation. When conversions are required, they must be accomplished as
specified in Annex B.

The following routine is defined for these pseudocode examples:

Find_state_space (): A function that finds an unused internal state. The function returns a
status (either “Success” or a message indicating that an unused internal state is not available)
and, if status = “Success”, a state_handle that points to an available internal_state in the
array of internal states. If status # “Success”, an invalid state_handle is returned.

When the uninstantantiate function is invoked in the following examples, the function specified in
Section 9.5 is called.

E.2 HMAC_DRBG Example

E.2.1 Discussion

This example of HMAC_DRBG uses the SHA-256 hash function. Reseeding and prediction
resistance are not supported. The nonce for instantiation consists of a random value with
security_strength/2 bits of entropy; the nonce is obtained by increasing the call for entropy bits
via the Get entropy_input call by security strength/2 bits (ie, by adding

security strength/2 bits to the security strength value). The HMAC_DRBG_Update
function is specified in Section 10.2.2.2.2.

A personalization string is supported, but additional input is not. A total of 3 internal states are
provided. For this implementation, the functions and algorithms are written as separate routines.

Also, the Get_entropy_input function uses only two input parameters, since the first two
parameters (as specified in Section 9) have the same value.

The internal state contains the values for V, Key, reseed _counter, and security_strength, where
V and C are bitstrings, and reseed_counter and security_strength are integers.

In accordance with Table 2 in Section 10.2.1, security strengths of 112, 128, 192 and 256 bits may
be instantiated. Using SHA-256, the following definitions are applicable for the instantiate and
generate functions and algorithms:

1. highest supported_security strength =256.
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8.

E.2.2

Output block (outlen) = 256 bits.

Required minimum entropy for the entropy input at instantiation = 3/2 security strength
(this includes the entropy required for the nonce).

Seed length (seedlen) = 440 bits.
Maximum number of bits per request (max_number of bits_per_request) = 7500 bits.
Reseed_interval (reseed_ interval) = 10,000 requests.

Maximum length of the personalization string (max_personalization_string_length) =
160 bits.

Maximum length of the entropy input (max _length) = 1000 bits.

Instantiation of HMAC_DRBG

This implementation will return a text message and an invalid state handle (-1) when an error is
encountered.

HMAC DRBG_Instantiate_function:

Input: integer (requested_instantiation_security_strength), bitstring

personalization_string.

Output: string status, integer state_handle.

Process:

Check the validity of the input parameters.

1. If (requested_instantiation_security_strength > 256), then Return (“Invalid
requested_instantiation_security_strength”, -1).

2. If (len (personalization_string) > 160), then Return (“Personalization_string
too long”, -1)

Comment: Set the security_strength to
one of the valid security strengths.

3. If (requested _security strength < 112), then security_strength =112
Else (requested _security strength < 128), then security strength =128
Else (requested_ security_strength < 192), then security _strength =192
Else security strength = 256.

Comment: Get the entropy_input and
the nonce.

4, min_entropy = 1.5 x security_strength.

(status, entropy_input) = Get_entropy_input (min_entropy, 1000).
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6. If (status = “Success”), then Return (“Catastrophic failure of the entropy
source:” || status, -1).

Comment: Invoke the instantiate algorithm.
Note that the entropy_input contains the
nonce.

7. (V, Key, reseed_counter) = Instantiate_algorithm (entropy_input,
personalization_string).

Comment: Find an unused internal state and
save the initial values.

8. (status, state_handle) = Find_state_space ().
9. If (status # “Success™), then Return (“No available state space:” || status, -1).
10. internal_state (state_handle) = {V, Key, reseed_counter, security strength}.
11. Return (“Success” and state_handle).
Instantiate_algorithm (...):
Input: bitstring (entropy_input, personalization_string).
Output: bitstring (V, Key), integer reseed_counter.
Process:
1. seed material = entropy_input || personalization_string.
Set Key to outlen bits of zeros.
Set V to outlen/8 bytes of 0x01.
(Key, V) = HMAC_DRBG_Update (seed_material, Key, V).

reseed_counter = 1.

o LB

Return (V, Key, reseed _counter).
E.2.3 Generating Pseudorandom Bits Using HWAC_DRBG

The implementation returns a Null string as the pseudorandom bits if an error has been detected.
HMAC DRBG_Generate_function:
Input: integer (state_handle, requested_no_of bits, requested_security strength).
Output: string (status), bitstring pseudorandom _bits.
Process:
Comment: Check for a valid state handle.

1. If ((state_handle < 0) or (state_handle > 2) or (internal_state (state_handle) =
{Null, Null, 0, 0}), then Return (“State not available for the indicated
state_handle”, Null).
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2. Get the internal state.
2.1 V= internal_state (state_handle).V.
2.2 Key = internal_state (state_handle).Key.
2.3 security strength = internal_state (state_handle).security strength.
2.4 reseed counter = internal_state (state_handle).reseed_counter.

Comment: Check the validity of the rest of
the input parameters.

3. If (requested no_of bits >7500), then Return (“Too many bits requested”,
Null).

4. If (requested security strength > security_strength), then Return (“Invalid
requested_security strength”, Null).

Comment: Invoke the generate algorithm.

5. (status, pseudorandom_bits, V, Key, reseed_counter) =
HMAC DRBG_Generate_algorithm (V, Key, reseed_counter,
requested_number of bits).

6. If (status = “Reseed required”), then Return (“DRBG can no longer be used.
Please re-instantiate or reseed”, Null).

7. Update the changed state values.
7.1 internal_state (state_handle).V="V.
7.2 internal state (state_handle).Key = Key.
7.3 internal_state (state_handle).reseed_counter = reseed_counter.
8. Return (“Success”, pseudorandom_bits).
HMAC DRBG_Generate_algorithm:
Input: bitstring (¥, Key), integer (reseed_counter, requested_number_of_bits).
Output: string status, bitstring (pseudorandom_bits, V, Key), integer reseed_counter.
Process:

1 If (reseed_counter > 10,000), then Return (“Reseed required”, Null, V, Key,
reseed_counter).

2. temp = Null.
While (len (temp) < requested_no_of bits) do:
3.1 V=HMAC (Key, V).
3.2 temp=temp| V.
4. pseudorandom_bits = Leftmost (requested_no_of bits) of temp.
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5. (Key, V)= HMAC_DRBG_Update (Null, Key, V).
6. reseed _counter = reseed counter + 1.

7. Return (“Success”, pseudorandom_bits, V, Key, reseed_counter).

E.3 CTR_DRBG Example Using a Derivation Function

E.3.1 Discussion

This example of CTR_DRBG uses AES-128. The reseed and prediction resistance capabilities
are supported, and a block cipher derivation function using AES-128 is used. Both a
personalization string and additional input are supported. A total of 5 internal states are available.
For this implementation, the functions and algorithms are written as separate routines.

AES ECB_Encrypt is the Block_Encrypt function (specified in Section 10.5.3) that uses
AES-128 in the ECB mode.

The nonce for instantiation (instantiation nonce) consists of a 32-bit incrementing counter. The
nonce is initialized when the DRBG is instantiated (e.g., by a call to the clock or by setting it to a
fixed value) and is incremented for each instantiation.

The internal state contains the values for V, Key, reseed_counter, and security_strength, where
V and Key are bitstrings, and all other values are integers. Since prediction resistance is known to
be supported, there is no need for prediction_resistance_flag in the internal state.

In accordance with Table 3 in Section 10.3.2.1, security strengths of 112 and 128 bits may be
supported. Using AES-128, the following definitions are applicable for the instantiate, reseed and
generate functions:

1. highest_supported security_strength = 128.
2. Output block length (outlen) = 128 bits.
3. Key length (keylen) = 128 bits.

4. Required minimum entropy for the entropy input during instantiation and reseeding =
security strength.

5. Minimum entropy input length (min _length) = security_strength bits.
6. Maximum entropy input length (max _length) = 1000 bits.

Maximum personalization string input length
(max_personalization_string_input_length) = 800 bits.

8. Maximum additional input length (max _additional _input_length) = 800 bits.
9. Seed length (seedlen) = 256 bits.
10. Maximum number of bits per request (max_number_of bits_per_request) = 4000 bits.

11. Reseed interval (reseed_interval) = 100,000 requests.

E.3.2 The CTR_DRBG_Update Function
CTR_DRBG_Update:
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Input: bitstring (provided_data, Key, V).
Output: bitstring (Key, V).
Process:

1. temp = Null.

2. While (len (temp) <256) do
3.1 V=(V+1)mod2",
3.2 output_block= AES_ECB_Encrypt (Key, V).
3.3  temp = temp || output_block.
temp = Leftmost 256 bits of temp.
temp = temp @ provided_data.
Key = Leftmost 128 bits of temp.
V= Rightmost 128 bits of femp.
Return (Key, V).

© N o v e

E.3.3 Instantiation of CTR_DRBG Using a Derivation Function

This implementation will return a text message and an invalid state handle (-1) when an error
is encountered. Block_Cipher_df is the derivation function in Section 10.5.3, and uses AES-
128 in the ECB mode as the Block_Encrypt function.

Note that this implementation does not include the prediction_resistance_flag in the input
parameters, nor save it in the internal state, since prediction resistance is known to be
supported.

CTR_DRBG_Instantiate function:

Input: integer (requested_instantiation_security strength), bitstring
personalization_string.

Output: string status, integer state_handle.
Process:

Comment: Check the validity of the input
parameters.

1. If (requested_instantiation_security_strength>128) then Return (“Invalid
requested_instantiation_security_strength”, -1).

2. If (len (personalization_string) > 800), then Return (“Personalization_string
too long”, -1).

3. If (requested_instantiation_security_strength < 112), then security_strength =
112
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10.

11.

Else security strength = 128.
Comment: Get the entropy input.

(status, entropy_input) = Get_entropy_input (security_sirength,
security_strength, 1000).

If (status # “Success”), then Return (“Catastrophic failure of the entropy
source” || status, -1).

Comment: Increment the nonce; actual coding
must ensure that the nonce wraps when its
storage limit is reached, and that the counter
pertains to all instantiations, not just this one.

instantiation_nonce = instantiation_nonce + 1.
Comment: Invoke the instantiate algorithm.

(V, Key, reseed_counter) = CTR_DRBG_Instantiate_algorithm
(entropy_input, instantiation_nonce, personalization_string).

Comment: Find an available internal state and
save the initial values.

(status, state_handle) = Find_state_space ().

If (status # “Success”), then Return (“No available state space:” || status, -1).
Comment: Save the internal state.

Save the internal state.

10.1 internal_state (state_handle).V="V.

10.2 internal_state_(state_handle).Key = Key.

10.3 internal_state_(state_handle).reseed_counter = reseed_counter.

10.4 internal_state_(state_handle).security_strength = security strength.

Return (“Success”, state_handle).

CTR_DRBG_Instantiate_algorithm:

Input: bitstring (entropy_input, nonce, personalization_string).

82

Output: bitstring (¥, Key), integer (reseed_counter).

Process:

1.

2
3.
4

seed_material = entropy_input || nonce || personalization_string.

. seed material = Block_Cipher_df (seed_material, 256).

Key=0", Comment: 128 bits.
V=02, Comment: 128 bits.
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5. (Key, V)= CTR_DRBG_Update (seed_material, Key, V).
6. reseed counter = 1.

7. Return (V, Key, reseed counter).
E.3.4 Reseeding a CTR_DRBG Instantiation Using a Derivation Function

The implementation is designed to return a text message as the stafus when an error is
encountered.

CTR_DRBG_Reseed_function:
Input: integer (state_handle), bitstring additional_input.
Output: string status.
Process:

Comment: Check for the validity of
state_handle.

1. If ((state_handle < 0) or (state_handle > 4) or (internal_state(state_handle) =
{Null, Null, 0, 0}), then Return (“State not available for the indicated
state_handle”™).

2. Get the internal state values.
2.1 V=internal state (state_handle).V.
2.2  Key=internal state (state_handle).Key.
2.3 security strength = internal_state (state_handle).security_strength.

3. If (len (additional_input) > 800), then Return (“additional_input too long”).

4. (status, entropy_input) = Get_entropy_input (security_strength,
security _strength, 1000).

6. If (status # “Success”), then Return (“Catastrophic failure of the entropy
source:” || status).

Comment: Invoke the reseed algorithm.

7. (V, Key, reseed_counter) = CTR_DRBG_Reseed_algorithm (V, Key,
reseed_counter, entropy_input, additional_input).

8. Save the internal state:
8.1 internal_state (state_handle).V="V.
8.2 internal state (state_handle).Key = Key.
8.3 internal_state (state_handle). reseed_counter = reseed_counter.
8.4 internal state (state_handle). security _strength = security_strength.

9. Return (“Success”).
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CTR_DRBG_Reseed_algorithm (...):

Input: bitstring (¥, Key), integer (reseed_counter), bitstring (entropy_input,
additional _input).

Output: bitstring (V, Key), integer (reseed_counter).
Process:
1. seed material = entropy_input || additional_input.
seed material = Block_Cipher_df (seed material, 256).
(Key, V) = CTR_DRBG_Update (seed_material, Key, V).

reseed counter = 1.

= e B

Return V, Key, reseed_counter).

E.3.5 Generating Pseudorandom Bits Using CTR_DRBG

The implementation returns a Null string as the pseudorandom bits if an error has been detected.
CTR_DRBG_Generate_function:

Input: integer (state_handle, requested_no_of bits, requested_security_strength,
prediction_resistance_request), bitstring additional_input.

Output: string status, bitstring pseudorandom_bits.
Process:
Comment: Check the validity of state_handle.

1. If ((state_handle < 0) or (state_handle > 4) or (internal_state (state_handle) =
{Null, Null, 0, 0}), then Return (“State not available for the indicated
state_handle”, Null).

2. Get the internal state values.
2.1 V=internal state (state_handle).V.
2.2 Key=internal_state (state_handle).Key.
2.3 security_strength = internal_state (state_handle).security_strength.
2.4 reseed counter = internal_state (state_handle).reseed_counter.

Comment: Check the rest of the input
parameters.

3. If (requested no_of bits > 4000), then Return (“Too many bits requested”,
Null).

4. If (requested_security strength> security_strength), then Return (“Invalid
requested_security _strength”, Null).
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5.

10.

11.

If (len (additional_input) > 800), then Return (“additional_input too long”,
Null).

reseed required_flag = 0.
If ((reseed_required_flag = 1) OR (prediction_resistance_flag = 1)), then

7.1 status= CTR_DRBG_Reseed_function (state_handle,
additional _inpuf).

7.2 If (status # “Success”), then Return (status, Null).
7.3  Get the new working state values.
7.3.1 V= internal_state (state_handle).V.
7.3.2 Key = internal_state (state_handle).Key.
7.3.3 reseed counter = internal_state (state_handle).reseed_counter.
7.4  additional_input = Null.
7.5 reseed required flag=0.

Comment: Generate bits using the generate

algorithm.

(status, pseudorandom_bits, V, Key, reseed_counter) =
CTR_DRBG_Generate_algorithm (V, Key, reseed_counter,
requested_number of bits, additional_input).

If (status = “Reseed required”), then

9.1 reseed required flag=1.

9.2 Gotostep7.

Update the internal state.

10.1 internal state (state_handle).V="V.

10.2 internal_state (state_handle).Key = Key.

10.3 internal_state (state_handle). reseed_counter = reseed_counter.
10.4 internal_state (state_handle). security_strength = security_strength.

Return (“Success”, pseudorandom_Dbits).

CTR_DRBG_Generate_algorithm (...):

Input: bitstring (¥, Key), integer (reseed_counter, requested_number_of bits)

bitstring additional _input.

Output: string status, bitstring (returned_bits, V, Key), integer reseed_counter.

Process:
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1. If (reseed counter > 100,000), then Return (“Reseed required”, Null, V,
Key, reseed counter).

2. If (additional_input # Null), then
2.1 additional _input = Block_Cipher_df (additional input, 256).
2.2  (Key, V) = CTR_DRBG_Update (additional_input, Key, V).
Else additional input = 0*°.
temp = Null.
4. While (len (temp) < requested number of bits) do:
41 V=W+1)mod2
4.2 output block=AES_ECB_Encrypt (Key, V).
4.3 temp = temp || output_block.
5. returned bits = Leftmost (requested number of bits) of temp.
6. (Key, V)=CTR_DRBG_Update (additional input, Key, V)
7 reseed counter =reseed counter + 1.
8

Return (“Success”, returned bits, V, Key, reseed_counter).

E.4 CTR_DRBG Example Without a Derivation Function

E.4.1 Discussion

This example of CTR_DRBG is the same as the previous example except that a derivation

function is not used. As in Annex E.3, the CTR_DRBG uses AES-128. The reseed and
prediction resistance capabilities are available. Both a personalization string and additional input
are supported. A total of 5 internal states are available. For this implementation, the functions and

algorithms are written as separate routines. AES ECB_Encrypt is the Block Encrypt
function (as specified in Section 10.5.4) that uses AES-128 in the ECB mode.

The nonce for instantiation (instantiation _nonce) consists of a 32-bit incrementing counter that is
the leftmost bits of the personalization string (Section 8.5.2 states that when a derivation function is
used, the nonce, if used, is contained in the personalization string). The nonce is initialized when
the DRBG is instantiated (e.g., by a call to the clock or by setting it to a fixed value) and is
incremented for each instantiation.

The internal state contains the values for V, Key, reseed _counter, and security strength, where
V and Key are strings, and all other values are integers. Since prediction resistance is known to be
supported, there is no need for prediction resistance_flag in the internal state.

In accordance with Table 3 in Section 10.3.2.1, security strengths of 112 and 128 bits may be
supported. The definitions are the same as those provided in Annex E.3, except that to be
compliant with Table 3, the maximum size of the personalization_string is 224 bits in order to

accommodate the 32-bits of the instantiation _nonce (i.e., len (instantiation nonce) + len
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(personalization_string) must be < seedlen, where seedlen = 256 bits). In addition, the
maximum size of any additional_input is 256 bits (i.e., len (additional_input < seedlen)).

E.4.2 The CTR_DRBG_Update Function
The update function is the same as that provided in Annex E.3.2.

E.4.3 Instantiation of CTR_DRBG Without a Derivation Function

The instantiate function (CTR_DRBG_Instantiate_function) is the same as that provided in
Annex E.3.3, except for the following:

e Step 2 is replaced by:

If (len (personalization_string) > 224), then Return (“Personalization_string too long", -

1).

e Step 6 is replaced by :
instantiation_nonce = instantiation_nonce + 1.
personalization_string = instantiation_nonce || personalization_string.

The instantiate algorithm (CTR_DRBG_Instantiate_algorithm) is the same as that provided
in Annex E.3.3, except that steps 1 and 2 are replaced by:

temp = len (personalization_string).

If (temp < 256), then personalization_string = personalization_string || 26-temp.

seed material = entropy_input @ personalization_string.

E.4.4 Reseeding a CTR_DRBG Instantiation Without a Derivation Function

The reseed function (CTR_DRBG_Reseed_function) is the same as that provided in Annex
E.3.4, except that step 3 is replaced by:

If (len (additional_inpuf) > 256), then Return (“additional _input too long”).

The reseed algorithm (CTR_DRBG_Reseed_algorithm) is the same as that provided in Annex
E.3.4, except that steps 1 and 2 are replaced by:

temp = len (additional_input).
If (temp < 256), then additional_input = additional_input || 256-temp
seed_material = entropy_input @ additional_input.

E.4.5 Generating Pseudorandom Bits Using CTR_DRBG

The generate function (CTR_DRBG_Generate_function) is the same as that provided in
Annex E.3.5, except that step 5 is replaced by :

If (len (additional_input) > 256), then Return (“additional_input too long”, Null).

87



Draft ANS X9.82, Part 3 - November 2006

The generate algorithm (CTR_DRBG_Generate_algorithm) is the same as that provided in
Annex E.3.5, except that step 2.1 is replaced by:

temp = len (additional_input).
If (temp < 256), then additional_input = additional_input || 07*"™.

E.5 Dual EC_DRBG Example

E.5.1 Discussion

This example of Dual EC_DRBG allows a consuming application to instantiate using any of the

three prime curves. The elliptic curve to be used is selected during instantiation in accordance with
the following:

requested_instantiation_security_strength | Elliptic Curve
<112 P-256
113 -128 P-256
129 — 192 P-384
193 — 256 P-521

A reseed capabilty is available, but prediction resistance is supported. Both a
personalization_string and an additional_input are allowed. A total of 10 internal states are
provided. For this implementation, the algorithms are provided as inline code within the functions.

The nonce for instantiation (instantiation_nonce) consists of a random value with
security strength/2 bits of entropy; the nonce is obtained by a separate call to the
Get_entropy_input routine than that used to obtain the entropy input itself. Also, the
Get_entropy_input function uses only two input parameters, since the first two parameters (the
min_entropy and the min_length) have the same value.

The internal state contains values for s, seedlen, p, a, b, n, P, Q, reseed counter and
security strength.

In accordance with Table 4 in Section 10.4.2, security strengths of 112, 128, 192 and 256 bits may
be supported. SHA-256 has been selected as the hash function. The following definitions are
applicable for the instantiate, reseed and generate functions:

1. highest supported_security strength = 256.
2. Output block length (outlen) = max_outlen. See Table 4.

3. Required minimum entropy for the entropy input at instantiation and reseed =
security strength.

4. Maximum entropy input length (max _length) = 1000 bits.

5. Maximum personalization string length (max_personalization_string_length) = 800
bits.

6. Maximum additional input length (max_additional input length) = 800 bits.
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7. Seed length (seedlen): =2 x security strength.

8. Maximum number of bits per request (max_number of bits per request) = 1000
bits.

9. Reseed interval (reseed_interval) = 2% blocks.

E.5.2 Instantiation of Dual_EC_DRBG

This implementation will return a text message and an invalid state handle (-1) when an ERROR
is encountered. Hash_df is specified in Section 10.5.2.

Dual EC_DRBG_Instantiate_function:

Input: integer (requested_instantiation security strength), bitstring
personalization_string.

Output: string status, integer state_handle.
Process:

Comment : Check the validity of the input
parameters.

1. If (requested instantiation_security strength > 256) then Return (“Invalid
requested_instantiation_security strength”, -1).

2. If (len (personalization_string) > 800), then Return (“personalization_string
too long”, -1).

Comment : Select the prime field curve in
accordance with the
requested_instantiation_security strength.

3. Ifrequested instantiation_security strength <112), then
{security strength=112; seedlen = 224; outlen = 240}
Else if (requested_instantiation_security strength < 128), then
{security strength=128; seedlen = 256; outlen = 240}
Else if (requested_instantiation security strength <192), then
{security strength=192; seedlen =384; outlen = 368}
Else {security strength =256, seedlen = 512; outlen = 504}.

4. Select the appropriate elliptic curve from Annex A using the Table in Annex
F.5.1 to obtain the domain parameters p, a, b, n, P, and Q.

Comment: Request entropy input.

5. (status, entropy input) = Get_entropy_input (security_strength, 1000).
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Comment: Check the input parameters.

1. If ((state_handle <0) or (state_handle > 9) or (internal_state
(state_handle).security strength = 0)), then Return (“State not available for the
state_handle”).

2. If (len (additional_inpur) > 800), then Return (“additional_input too long”).
3. Get the appropriate state values for the indicated state_handle.

3.1 s=internal state (state_handle).s.

3.2 seedlen = internal_state (state_handle).seedlen.

3.3 security strength = internal_state (state_handle).security_strength.

Comment: Request new entropy input with
the appropriate entropy and bit length.

4. (status, entropy_inpuf) = Get_entropy_input (security_strength, 1000).

5. If (status # “Success™), then Return (“Catastrophic failure of the entropy
source:”|| status).

Comment: Perform the reseed algorithm.
6. seed material = pad8 (s) || entropy_input || additional_input.
7. s=Hash_df (seed material, seedlen).
8. Update the changed values in the state.
8.1 internal state (state handle).s = s.
8.2 internal state.reseed_counter = 0.

9. Return (“Success”).
E.5.4 Generating Pseudorandom Bits Using Dual_EC_DRBG

The implemenation returns a Null string as the pseudorandom bits if an error is encountered.
Dual EC_DRBG_Generate_function:

Input: integer (state_handle, requested_security_strength, requested _no_of  bits),
bitstring additional input.

* Qutput: string status, bitstring pseudorandom_bits.
Process:
Comment: Check for an invalid state_handle.

1. If ((state_handle < 0) or (state_handle > 9) or (internal_state (state_handle) =
0)), then Return (“State not available for the state_handle”, Null).
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2. Get the appropriate state values for the indicated state _handle.
2.1 s=internal_state (state_handle).s.
2.2 seedlen = internal_state (state_handle).seedlen.
2.3 P =internal_state (state_handle).P.
2.4 Q = internal_state (state_handle).Q.
2.5 security strength = internal_state (state_handle).security _strength.
2.6 reseed counter = intefnal_state (state_handle).reseed counter.

Comment: Check the rest of the input
parameters.

3. If (requested number of bits > 1000), then Return (“Too many bits
requested”, Null).

4. If (requested security strength > security strength), then Return (“Invalid
requested_strength”, Null).

5. If (len (additional input) > 800), then Return (“additional_input too long”,
Null).

Comment: Check whether a reseed is
required.

requested number of bits

6. If (reseed counter +[ -l> 2%2), then

outlen
6.1 Dual EC_ DRBG Reseed_function (state_handle, additional_input).
6.2 If (status # “Success”), then Return (status).

6.3 s = internal state (state_handle).s, reseed counter = internal_state
(state_handle).reseed_counter.

6.4 additional input = Null.
Comment: Execute the generate algorithm.
7. 1f (additional_input = Null) then additional_input = 0
Comment: additional input set to m zeroes.
Else additional_input = Hash_df (pad8 (additional_input), seedlen).

Comment: Produce requested no_of bits,
outlen bits at a time:

8. temp = the Null string.

92



Draft ANS X9.82, Part 3 - November 2006

9. i=0.

10. t=s @ additional_input.

11. s = o( x(t * P)).

12.r = ¢(x(s *Q)).

13. temp = temp || (rightmost outlen bits of r ).

Oseedlen

14. additional input= Comment: seedlen zeroes; additional input

is added only on the first iteration.

15. reseed counter = reseed_counter + 1.
16.i=i+ 1.
17. If (len (temp) < requested no_of bits), then go to step 10.
18. pseudorandom_bits = Truncate (femp, i x outlen, requested no_of bits).
19. Update the changed values in the state.

19.1 internal_state.s = ¢( x(s * P))..

19.2 internal_state.reseed counter = reseed_counter.

20. Return (“Success”, pseudorandom_bits).
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ANNEX F: (Informative) DRBG Provision of RBG Security Properties
F.1 Introduction

Part 1 of this Standard identifies several security properties that are required for cryptographic
random number generators. This annex discusses how these properties are provided by the DRBG
mechanisms in this part of the Standard or points to sections in Part 3 or in other parts of the
Standard that will provide appropriate guidance for fulfilling the security properties.

F.2 Security Strengths

Part 1 identifies four security strengths that RBGs support : 112, 128, 192 and 256 bits. These
security strengths may be supported in Part 3 by requesting the appropriate security strength
during instantiation and generation (see Sections 8.2.4, 9.2 and 9.4), and by the use of an
appropriate source of entropy input (see Part 4).

F.3 Entropy and Min-Entropy

Part 1 defines the use of min-entropy to measure the amount of entropy needed to support a given

security strength. Part 3 requests the entropy via the use of a Get_entropy_input call (see
Section 9.1). Part 4 provide guidance on supporting this call.

F.4 Backtracking Resistance and Prediction Resistance

Part 1 defines backtracking and prediction resistance. As indicated in Section 8.6, the DRBG
mechanisms in Part 3 have been designed to support backtracking resistance. Prediction
resistance may be provided using a DRBG when:

1. A reseed capability is available that can obtain the appropriate amount of entropy required
to support the security strength of the instantiation during each call for entropy input (see
Section 9.3),

2. A prediction resistance flag that is used as input during instantiation indicates that
prediction resistance may be required for the instantiation (see Section 9.2), and

3. A prediction resistance request is made in a generate request (see Section 9.4).
F.5 Indistinguishability and Unpredictability
Part 1 states that this Standard requires indistinguishability from random, in addition to
unpredictability for RBG output. The DRBG mechanisms in this Standard have been designed to
provide these properties when provided with sufficient entropy as discussed in Part 4.

F.6 Desired RBG Output Properties

Part 1 states that the output of a cryptographically secure RBG has the following desired
properties:

1. Under reasonable assumptions, it is not feasible to distinguish the output of the RBG from
true random numbers that are uniformly distributed with or without replacement.
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Informally, all possible outputs occur with equal probability, and a series of outputs appears
to conform to a uniform distribution.

2. Given only a sequence of output bits, it is not feasible to compute or predict any other
output bit, either past or future. Note that this is different from both prediction resistance
and backtracking resistance.

3. The outputs of an RBG are statistically unique. That is, the output values either (A) are
allowed to repeat with a negligible probability or (B) are prohibited from repeating (whether
by being selected without replacement or by discarding duplicates) to meet application
requirements for a specified class of outputs. Note that option B will impose constraints on
the minimum output size and maximum cryptoperiod.

The DRBG mechanisms in this Standard have been designed to provide these properties when
provided with sufficient entropy as discussed in Parts 2 and 4.

F.7 Desired RBG Operational Properties

The desired operational properties of an RBG are as follows:

1. The RBG does not generate bits unless the generator has been assessed to possess
sufficient entropy.

The Get_entropy_input call (see Section 9.1) is used during instantiation to obtain
sufficient entropy to support the desired security strength. This property is supported if:

a. The source of entropy input is designed and implemented as required in Parts 2
and 4 of this Standard,

b. Entropy input is not returned during instantiation unless the requested amount of
entropy has been obtained (see Section 9.2).

2. When an error is detected, the RBG either (a) enters a permanent error state, or (b) is able
to recover from a loss or compromise of entropy if the permanent error state is deemed
unacceptable for the application requirements.

Part 3 specifies the conditions that must be tested for each DRBG mechanism function
(see Sections 9.2, 9.3 and 9.4), the tests to be made during health testing (see Section
11.4) and the handling of any errors detected (see Section 9.7).

3. The design and implementation of an RBG has a defined logical protection boundary. The
RBG needs to be protected in a manner that is consistent with the use and sensitivity of
the output for the consuming application.

Part 3 uses a conceptual DRBG mechanism boundary to provide this property.
Requirements for the DRBG mechanism boundary are provided in Section 8.3.

4. The probability that the RBG can “misbehave” in some pathological way that violates the
output requirements (e.g., constant output or small cycles; that is, looping such that the
same output is repeated) is sufficiently small.

Assurance of this property may be obtained when an RBG implementation is validated as
discussed in Sections 2 and 11.3 of Part 3, and in Parts 2 and 4.

5. The RBG design includes methods to prohibit predictable influence, manipulation, or side-
channel observation as appropriate, depending on the threat model.

Assurance of this property may be obtained when an RBG implementation is validated as
discussed in Sections 2 and 11.3 of Part 3, and in Parts 2 and 4.

6. The RBG oulput does not directly leak secret information to an adversary observer.
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Assurance of this property may be obtained when an RBG implementation is validated for as
discussed in Section 2 and 11.3 of Part 3, and in Parts 2 and 4.

The RBG can be run in known-answer test mode. All portions that can have known-
answer tests are tested in this mode. When an RBG is in known-answer test mode, the
RBG is not capable of being used to generate output bits and does not use any stored
secret information; however, it may use non-secret information for testing purposes.

The health testing of a DRBG mechanism is discussed in Sections 9.6 and 11.4.
An RBG is designed to support backlracking resistance.

The DRBG mechanisms in Part 3 have been designed to support backtracking resistance
(see Section 8.6).

An RBG may support prediction resistance.

A DRBG mechanism may be designed and implemented to support prediction resistance.
See Annex F.4 for additional information.
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ANNEX G: (Informative) DRBG Mechanism Security Properties
G.1 Overview

The security properties of the three DRBG mechanisms specified in this Standard may be used to
specify the assumptions that may be made by the developers of consuming applications. A
maximum number of output bits per Generate call, and a maximum number of Generate calls have
been specified for each DRBG mechanism. These numbers allow a specification of the expected
level of resistance to attacks that involve collecting large numbers of outputs and searching for
internal collisions or the lack of collisions in the output.

G.2 HMAC_DRBG

HMAC_DRBG, with an n-bit MAC, a maximum of 2*® Generate requests, and a maximum of 2"°x n
bits of output for each request, cannot be distinguished from random substantially more easily than
guessing an n-bit secret key.

Using an Approved »-bit hash function in the HMAC construction, HMAC_DRBG provides # bits of
security. The DRBG mechanism generates up to 2*° sequences of outputs, each of up to 2'% n-bit
HMAC outputs. This provides a pool of 2% output values. Distinguishing this set of 2** output

values from an ideal random sequence is no easier than guessing an »-bit HMAC key.

The best known distinguisher for this DRBG mechanism relies on the fact that each Generate
request uses HMAC with a single key in OFB-mode to generate up to 2'® blocks of output. In each
2" plock output sequence, the probability of an internal collision (a repeated output value) is

approximately 2°'" . After 2*® such output sequences, the probability that of an internal collision is

about2 ™" . For SHA-1, n = 160, there is about a pad probability of such a collision. If a collision
occurs, the outputs will repeat after the collision, making distinguishing the outputs from random
very easy. Internal collisions between different Generate requests are not generally an issue, since
each Generate request uses a new HMAC key. The probability of any two keys colliding when »n =
160 is about 2°%°.

G.3 CTR_DRBG

Two block cipher algorithms are currently Approved for use with CTR_DRBG: AES and three-key
TDEA.

e CTR_DRBG using AES, with a k-bit key, a maximum of 2*® generate requests and a
maximum of 2" bits of output for each request, cannot be distinguished from random
substantially more easily than guessing a k-bit AES key.

o CTR_DRBG using three-key TDEA, with a maximum of 2*” generate requests and a
maximum of 2" bits of output for each request, cannot be distinguished from random
substantially more easily than guessing a 112-bit random key4.

CTR_DRBG using an »-bit block cipher with a -bit key and an s-bit security strength, provides s
bits of security.

4 Three-key TDEA uses a 192-bit key; this is approximately equivalent to a 112-bit random key
because of shortcut attacks on three-key TDEA.
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e Using AES, CTR_DRBG has a 128-bit block and a key length (equivalently, a maximum
security strength) of 128, 192, or 256 bits. The DRBG mechanism generates up to 24°
sequences of outputs of at most 2'? 128-bit blocks per sequence. This provides a total of
2% 128-bit outputs that may be generated from a single DRBG instantiation. Distinguishing
the full sequence of outputs from an ideal random sequence is not significantly easier than
guessing the k-bit AES key.

e Using three-key TDEA, CTR_DRBG has a 64-bit block, a key length of 168 bits, and a
security strength of 112 bits. The DRBG mechanism generates up to 2 output sequences
of at most 2 64-bit blocks per sequence. Distinguishing the full sequence of outputs from
an ideal random sequence is not significantly easier than guessing a 112-bit key.

The best known distinguishing attacks that do not use any properties of the block ciphers are
based on the fact that in counter mode, an »-bit block never repeats within the same Generate call.
This provides a property by which an ideal random sequence might be distinguished from a
CTR_DRBG sequence.

o AES: Consider a random sequence of 2'2 128-bit values (i.e., 2'® blocks, each block
consisting of 128 bitsg. The probability of a collision (i.e., a pair of 128-bit blocks that is
repeated) is about 2212 = 271%_ After 2% such values, the probability is about 2°* that a
sequence of 2*® blocks, each consisting of 2'% 128-bit values, would contain at least one
collision. This provides a distinguisher with an advantage of 2°*® against CTR_DRBG with
AES.

o Three-key TDEA: Consider a random sequence of 27 64-bit blocks (i.e., 2’ blocks, each
block consisting of 64 bits). The probability of a collision (i.e., a pair of 64-bit blocks that is
repeated) is about 2'%%* = 2°%'. After 2% such outputs, the probability is about 27"° that a
random sequence of 2% blocks of 2 64-bit values each would include at least one such
collision. This provides a distinguisher with an advantage of 2°%° against CTR_DRBG with
TDEA.

In both cases, consider the possibility of cycling. Each generate call uses a new key. Assuming
that each key is random, the probability of a collision on the key for CTR_DRBG with AES is
expected to be about 2 for 128-bit keys, 2% for 192-bit keys, and 27'%° for 256-bit keys. For three-
key TDEA, the probability of a key collision in any of the 2% Generate calls allowed for a single
DRBG instance is about 2",

If two Generate calls have the same key, this leads to a potentially detectable situation if and only if
the counter values used in the two Generate calls overlap. For AES, this occurs with a probability
of 28 for a 128-bit key; for three-key TDEA, the probability is 2°’. Thus, a total probability of
detectable key collisions for the maximum size and number of Generate requests per DRBG
instantiation using three-key TDEA is 277", and for AES is 27*° with 128-bit keys.

G.4 Dual_EC_DRBG

The Dual_EC_DRBG is the only DRBG mechanism in this Standard whose security is based on
the difficulty of solving a known "hard" problem. That is, determining the internal state of the
Dual_EC_DRBG from observed output is equivalent to solving the Elliptic Curve discrete log
problem, for which no subexponential algorithms have been found, despite decades of effort.

Assuring that the internal state of a DRBG cannot be determined by observing some of its output is
clearly the most important test that a deterministic algorithm must pass. Failure to do this would
completely compromise the security of the cryptographic protocols that rely on the unpredictability
of the unseen outputs. It is this feature that sets the Dual_EC_DRBG apart from the other DRBGs:
no other DRBG mechanism in the Standard can relate the difficulty of determining its internal state
from known outputs to a mathematically difficult problem.
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However, there are other notions of "secure random" in the literature. In 1984, Blum and Micali
introduced the notion of a cryptographically secure random number generator, defining it as one
that passes the next-bit test. There exists no polynomial-time algorithm that, given n bits of output

from the generator, can predict the (n+1)* bit with a probability that is significantly greaterS than
1/2. The only DRBG mechanism that attempts to quantify its score on the next-bit test is the
Dual_EC_DRBG.

The Dual_EC_DRBG produces bits in blocks: an (unknowable, initially non-deterministic) x-
coordinate ‘s’ on an elliptic curve over GF(p) is used as a scalar multiplier to jump to another point
sP on the curve. Its x-coordinate, in turn, jumps to another point (sP)x * Q. That point's x-coordinate
is truncated by removing the high-order ‘d’ bits, and the remaining bits are output as a block of
random bits. The process then iterates using s = (sP)y, effecting a random walk on the curve. The
value ‘d’ defaults to 16 (17 for the P521 curve, to get a multiple of 8), but can be varied by the
implementation, as apprpriate. The default was chosen as a compromise between the maximum
efficiency (d=0) and the maximum entropy (d=curvesize-1).

The next-bit issue is addressed in Annex C. That discussion focuses on what is (by far) the worst
case of the next-bit test: After all but one bit in a truncated x-coordinate is observed, the next bit
can be predicted. A formula for the entropy in a truncated x-coordinate is derived, from which the
probability of predicting that ‘next bit' can be computed.

[Note that if the ‘next bit' in a next-bit test occurs in the next block of output, the bit is part of a
different x-coordinate on the curve. That there is no information about this bit from the previous x-
coordinate can be inferred from the difficulty of the EC discrete log problem. So the only concern is
about a ‘next bit’ in the same x-coordinate.]

For the P256 curve, Annex C provides a table of computed values using the entropy formula for ‘d’
between 0 and 16; the other P curves have essentially identical tables. The calculated entropy in
each 240-bit block of the Dual_EC_DRBG output using the P256 curve is 239.9999890. This could
be interpreted to say that, given 239 bits of a block, there are .0000110 bits of information about
the 240-th bit. Said differently, more than 90,000 full blocks, or nearly 22 million bits, would have to
be observed in order to distinguish Dual_EC_DRBG output from a true random source. If that's not
sufficient for an application, the definition of the Dual_EC_DRBG allows ‘d" to be increased, and the
formula can be used to set the truncation parameter to whatever level of indistinguishability might
deemed to be needed. No other DRBG in this Standard addresses this issue.

Before resetting ‘d’ one might ask: "Should | be concerned about the .0000110 ‘missing’ bits of
entropy in blocks of the Dual_EC_DRBG output?" Firstly, most applications choosing to use this
DRBG for key generation, key establishment and other cryptographic functions requiring secure
random bits will not be hiding that fact. Thus, there will be no need to "distinguish" that the
Dual_EC_DRBG is being used rather than some other DRBG. If the Dual_EC_DRBG output is
being used as a one-time pad, that is, as a stream cipher, on a large amount of data, for which an
adversary knows the data takes one of two values, then the adversary will be able to exploit the
missing bits to determine from the ciphertext which of the two values the encrypted data is.

More importantly, 1 ‘missing’ bit of entropy in 22,000,000 bits does not give a cryptanalyst any
meaningful advantage in guessing a secret key comprised of such bits, certainly not a key of any
reasonable size. Furthermore, there have not been any monobit or polybit biases found in
Dual_EC_DRBG output. It is this type of bias that "Bleichenbacher"-type attacks use. [Granted,
there is a tiny bias remaining in the truncated output blocks, due to the modular arithmetic. The

5 The definition does not attempt to assign a numerical value to this term.
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NIST primes used by this DRBG reduce the modular bias to a negligible size, and the truncation
only reduces that further. This is addressed in Annex C.]
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