APPENDIX B: Key Pair Generation

Discrete logarithm cryptography (DLC) is divided into finite field cryptography (FFC)
and elliptic curve cryptography (ECC); the difference between the two is the type of math
that is used. DSA is an example of FFC; ECDSA is an example of ECC. Other examples
of DLC are the Diffie-Hellman and MQV key agreement algorithms, which have both
FFC and ECC forms.

The most common example of integer factorization cryptography (IFC) is RSA.

This appendix specifies methods for the generation of FFC and ECC key pairs and secret
numbers, and the generation of IFC key pairs. All generation methods require the use of a
properly instantiated random bit generator (RBG) as discussed in Appendix E; the RBG
shall have a security strength equal to or greater than the security strength associated with
the key pairs and secret numbers to be generated. See SP 800-57 [1] for guidance on
security strengths and key sizes.

B.1 FFC Key Pair Generation

An FFC key pair x and y is generated for a set of domain parameters (p, q, g [,
domain_parameter_seed, counter]). Two methods are provided for the generation of the
FFC private key x and public key y; one of these two methods shall be used.

For DSA, the valid values of £ and N are provided in Section 4.2.

B.1.1 Key Pair Generation Using Extra Random Bits

In this method, 64 more bits are requested from the RBG than are needed for x so that
bias produced by the mod function in step 6 is negligible.

The following process or its equivalent may be used to generate an FFC key pair.

Input:

1. (n,q,2) The subset of the domain parameters that are used for
this process. p, g and g shall either be provided as
integers during input, or shall be converted to integers
prior to use.

2. additional input Optional additional input. The maximum length of the
additional_input shall be < 2°° bits.

Output:
1. status The status returned from the key pair generation
process. The status will indicate SUCCESS or an
ERROR.
2. (% The generated private and public keys. If an error is

encountered during the generation process, invalid
values for x and y should be returned, as represented by
Invalid x and Invalid y in the following specification. x

and y are returned as integers. The generated private
key x is in the range [1, g-1].

Process:

1.
2.
3.

5
6.
7
8

N=len (q); L =len (p).

If (L, N) is invalid, then return an ERROR, Invalid x, and Invalid y.
requested_security_strength = the security strength associated with the (L, V)
pair; see SP 800-57 [1].

Obtain a string of N+64 returned_bits from an RBG with a security strength
of requested_security_strength or more. Provide additional_input, if
available. If an ERROR status is returned, then return an ERROR, Invalid x,
and Invalid y.

. Convert returned_bits to the (non-negative) integer ¢ (see Appendix F.2.1).

x=(cmod (g-1)) + 1.

. y=¢"modp.
. Return SUCCESS, x, and y.

B.1.2 Key Pair Generation by Testing Candidates

In this method, a random number is obtained and tested to determine that it will produce
a value of x in the correct range. If x is out-of-range, another random number is obtained
(i.e., the process is iterated until an acceptable value of x is obtained.

The following process or its equivalent may be used to generate an FFC key pair.

Input:

1. 9.2 The subset of the domain parameters that are used for
this process. p, g and g shall either be provided as
integers during input, or shall be converted to integers
prior to use.

2. additional_input Optional additional input. The maximum length of the
additional_input shall be < 2*° bits.

Output:

1. status The status returned from the key pair generation
process. The status will indicate SUCCESS or an
ERROR.

2. (x,) The generated private and public keys. If an error is

encountered during the generation process, invalid
values for x and y should be returned, as represented by
Invalid x and Invalid_y in the following specification. x
and y are returned as integers. The generated private
key x is in the range [1, g-1].

Process:
1. N=len(g); L =len (p).
2. If (L, V) is invalid, then return an ERROR, /nvalid x, and Invalid y.

3. requested security strength = the security strength associated with the (L, N)
pair; see SP 800-57 [1].

4. Obtain a string of N returned_bits from an RBG with a security strength of
requested_security strength or more. Provide additional input, if available. If
an ERROR status is returned, then return an ERROR, Invalid x, and
Invalid y.

5. Convert returned_bits to the (non-negative) integer ¢ (see Appendix F.2.1).
6. If (c > g-2), then go to step 4.

7. x=c+1.

8. y=¢" 'modp.

9. Return SUCCESS, x, and y.

B.2 FFC Per-Message Secret Number Generation

DSA requires the generation of a new random number k for each message to be signed.
Two methods are provided for the generation of k; one of these two methods shall be
used.

The valid values of N are provided in Section 4.2. Let inverse (/, ¢) be a function that
computes the inverse of a (non-negative) integer & with respect to multiplication modulo
the prime number g. If £ is relatively prime to ¢, the value returned is a non-negative
integer less than g; otherwise, the function returns an error message. A technique for
computing the inverse is provided in Appendix F.1.

B.2.1 Per-Message Secret Number Generation Using Extra Random Bits

In this method, 64 more bits are requested from the RBG than are needed for & so that
bias produced by the mod function in step 6 is not readily apparent.

The following process or its equivalent may be used to generate a per-message secret
number.

Input:

1. (p,q,2) DSA domain parameters that are generated as specified
in Section 4.3.1.

2. additional_input Optional additional input. The maximum length of the
additional input shall be < 2°° bits.

Output:

1. status The status returned from the secret number generation
process. The status will indicate SUCCESS or an
ERROR.

2. (kK" The per-message secret number k and its inverse, k. If
an error is encountered during the generation process,
invalid values for k and &' should be returned, as
represented by Invalid k and Invalid k_inverse in the
following specification. 4 and k' are in the range [1, ¢-
1].

Process:

1. N=len(q); L =len (p).

2. K (L, N) is invalid, then return an ERROR, Invalid k, and Invalid k_inverse.

3. requested security strength = the security strength associated with the (L, N)
pair; see SP 800-57 [1].

4. Obtain a string of N+64 returned_bits from an RBG with a security strength
of requested_security_strength or more. Provide additional input, if
available. If an ERROR status is returned, then return an ERROR, Invalid_k,
and Invalid k_inverse.

5. Convert returned bits to the (non-negative) integer ¢ (see Appendix F.2.1).

6. k=(cmod(g-1)) + 1.

7. (status, temp) = inverse (k, q).

8. 1fan ERROR is returned from step 7, go to step 4.

9. k' =temp mod q.

10. Return SUCCESS, k, and .

B.2.2 Per-Message Secret Number Generation by Testing Candidates

In this method, a random number is obtained and tested to determine that it will produce
a value of k in the correct range. If k is out-of-range, another random number is obtained
(i.e., the process is iterated until an acceptable value of & is obtained.

The following process or its equivalent may be used to generate a per-message secret

number.
Input:
1. (p,q,2) DSA domain parameters that are generated as specified
in Section 4.3.1.
2. additional _input Optional additional input. The maximum length of the
additional input shall be < 2*° bits.
Output:
1. status The status returned from the secret number generation

process. The status will indicate SUCCESS or an
ERROR.

2.

(k, K" The per-message secret number k and its inverse, k. If
an error is encountered during the generation process,
invalid values for k and k' should be returned, as
represented by Invalid_k and Invalid k' in the
following specification. 4 and /' are in the range [1, ¢-

1.

Process:

1.
2.
3.

5
6
7.
8
9.
10.
1.

N=len(g); . =len (p).

If (7, N) is invalid, then return an ERROR, Invalid k, and Invalid k'.
requested_security strength = the security strength associated with the (L, N)
pair; see SP 800-57 [1].

Obtain a string of N returned bits from an RBG with a security strength of
requested security strength or more. Provide additional_input, if available. If
an ERROR status is returned, then return an ERROR, Invalid_k, and

Invalid k'.

. Convert returned_bits to the (non-negative) integer ¢ (see Appendix F.2.1).
. If (¢ > g-2), then go to step 4.

k=c+1.

. (status, temp) =inverse (k, q).

[f an ERROR is returned from step 7, go to step 4.
k' =temp mod g.
Return SUCCESS, £, and £

B.3 IFC Key Pair Generation
RSA keys shall meet the following criteria in order to conform to FIPS 186-3:

1. The public exponent ¢ shall be selected with the following constraints:

(a) The public verification exponent e shall be selected prior to generating the
private prime factors p and q.

(b) The exponent e shall be an odd positive integer such that 65,537 < e¢ <
(2""-%5 _ 1), where nlen is the length of the modulus # in bits, and S is the
desired security strength.

Note that the value of e may be any value that meets constraint 1b, and that p and
q will be selected (in step 2) such that e is relatively prime to both (p-1) and (g-1).

2. Two secret and randomly generated positive primes p and g shall be selected with

the

following constraints:
(a) (p-1) and (g-1) shall be relatively prime to the public exponent e.

(b) The four numbers (p £ 1) and (g + 1) shall have prime factors (denoted as
D1, P2, q1 and ¢») that are greater than I2S+2° and less than 2””‘0!, such that:

| Comment [ebb1]: Page: 1
It was suggested that S +20 and S + 40 be used to
accommodate the different security levels

o (p-1) has a prime factor p;
e (p+1) has a prime factor p,
e (g-1) has a prime factor ¢;
e (g+1) has a prime factor g,

where the prime factors, p, pz, 1, and ¢, are randomly selected from the

. [2 5
set of prime numbers between 2° *20 and 254, .| Comment [ebb2]: Page: 1
See above comment.

(c) The private prime factor p shall be selected randomly from the primes that

satisfy (\ﬁ YU D1y < p< (2™"'2. 1), where nlen is the length of the
modulus # as specified in Table 2 for the desired security strength S.

(d) The private prime factor g shall be selected randomly from the primes that

satisfy (2)"/ D1y < ¢ < (2""/2. 1), where nlen is the length of the
modulus » as specified in Table 2 for the desired security strength S.

(e) The difference between p and g shall be > 2en/ 210,

An approved method for generating p and g with these constraints is provided in
Appendix F.5.

3. The private signature exponent d shall be selected with the following constraints
after the generation of p and ¢:

(a) The exponent d shall be a positive integer value such that 4> 2"*"? and

(b) d=e¢" mod (LCM((p-1), (g-1))).

In the extremely rare event that d < 2’2, then new values for p, g and d shall be
determined, and a different value of e may be used.

Note that there may be more than one private exponent d (satisfying d > 2"*"'?) that

corresponds to a public key (n, e). The smallest value of d shall be used.

B.4 ECC Key Pair Generation

An ECC key pair d and Q is generated for a set of domain parameters (g, FR, a, b,
[SEED]), G, n, h). Two methods are provided for the generation of the ECC private key d
and public key O; one of these two methods shall be used to generate d and Q.

For ECDSA, the valid bit-lengths of » are provided in Section 6.1.1. See ANS X9.62 for
definitions of the elliptic curve math and the conversion routines.
B.4.1 Key Pair Generation Using Extra Random Bits

In this method, 64 more bits are requested from the RBG than are needed for d so that
bias produced by the mod function in step 6 is negligible.

The following process or its equivalent may be used to generate an ECC key pair.

Input:

1. (g, FR, a, b, [SEED], G, n, h): The domain parameters that are used for this

2. additional input:

Output:

1. status

2. (4,0

Process:
1. N=len (n).

process. # is a prime number, and G is a point on the
elliptic curve.

Optional additional input. The maximum length of the
additional input shall be < 2 bits.

The status returned from the key pair generation
procedure. The status will indicate SUCCESS or an
ERROR.

The generated private and public keys. If an error is
encountered during the generation process, invalid
values for d and Q should be returned, as represented
by Invalid d and Invalid Q) in the following
specification. d is an integer, and Q is an elliptic curve
point. The generated private key d is in the range [1, n-

1].

2. If Nis invalid, then return an ERROR, Invalid_d, and Invalid Q.

3. requested security strength = the security strength associated with V; see SP

800-57 [1].

4. Obtain a string of N+64 returned_bits from an RBG with a security strength
of requested_security_strength or more. Provide additional _input, if
available. If an ERROR status is returned, then return an ERROR, Invalid d,

and Invalid Q.

. Convert returned bits to the (non-negative) integer ¢ (see Appendix F.2.1).

. 0=dG.

5
6. d=(cmod (n-1)) + 1.
7
8

. Return SUCCESS, 4, and Q.

B.4.2 Key Pair Generation by Testing Candidates

In this method, a random number is obtained and tested to determine that it will produce
a value of d in the correct range. If 4 is out-of-range, another random number is obtained
(i.e., the process is iterated until an acceptable value of d is obtained.

The following process or its equivalent may be used to generate an ECC key pair.

Input:

1. (g, FR a, b,[SEED], G, n, h): The domain parameters that are used for this

process. # is a prime number, and G is a point on the
elliptic curve.

2.

additional_input: Optional additional input. The maximum length of the
additional_input shall be < 2*° bits.

Output:

1. status The status returned from the key pair generation
procedure. The status will indicate SUCCESS or an
ERROR.

2. (d, Q) The generated private and public keys. If an error is
encountered during the generation process, invalid
values for d and Q should be returned, as represented
by Invalid d and Invalid Q in the following
specification. d is an integer, and Q is an elliptic curve
point. The generated private key d is in the range [1, »-
1].

Process:
1. N=len (n).
2. If Nis invalid, then return an ERROR, Invalid d, and Invalid Q.

3.

ol el = S ea

requested_security strength = the security strength associated with V; see SP
800-57 [1].

Obtain a string of N returned bits from an RBG with a security strength of
requested_security strength or more. Provide additional input, if available. If
an ERROR status is returned, then return an ERROR, Invalid d, and
Invalid Q.

Convert returned bits to the (non-negative) integer ¢ (sce Appendix F.2.1).
If (¢ = n-2), then go to step 4.

d=c+1.

Q=4dG.

Return SUCCESS, d, and Q.

B.5 ECC Per-Message Secret Number Generation

ECDSA requires the generation of a new random number & for each message to be
signed. Two methods are provided for the generation of k; one of these two methods shall

be used.

The valid values of » are provided in Section 6.1.1. See ANS X9.62 for definitions of the
elliptic curve math and the conversion routines.

Let inverse (/, ») be a function that computes the inverse of a (non-negative) integer &
with respect to multiplication modulo the prime number #. If & is relatively prime to n,
the value returned is a non-negative integer less than n; otherwise, the function returns an
error message. A technique for computing the inverse is provided in Appendix F.1.

B.5.1 Per-Message Secret Number Generation Using Extra Random Bits

In this method, 64 more bits are requested from the RBG than are needed for £ so that
bias produced by the mod function in step 6 is not readily apparent.

The following process or its equivalent may be used to generate a per-message secret

number.
Input:

1. (g, FR a, b, [SEED), G, n, h): The domain parameters that are used for this
process. # is prime number, and G is a point on the
elliptic curve.

2. additional input: Optional additional input. The maximum length of the
additional input shall be < 2*° bits.

Output:

1. status The status returned from the key pair generation
procedure. The status will indicate SUCCESS or an
ERROR.

2. (kK" The generated private and public keys. If an error is
encountered during the generation process, invalid
values for k and k' should be returned, as represented
by Invalid k and Invalid k inverse in the following
specification. £ and k' are integers. k and k™ are
integers in the range [1, #-1].

Process:

1. N=len (g).

2. If Nis invalid, then return an ERROR, Invalid k, and Invalid k_inverse.

3. requested security strength = the security strength associated with /V; see SP
800-57 [1].

4. Obtain a string of N+64 returned_bits from an RBG with a security strength
of requested_security strength or more. Provide additional input, if
available. If an ERROR status is returned, then return an ERROR, Invalid k,
and Invalid k_inverse.

5. Convert returned bits to the non-negative integer ¢ (see Appendix F.2.1).

6. k=(cmod(g-1))+1.

7. (status, temp) = inverse (k, n).

8. If an ERROR is returned from step 7, go to step 4.

9. k" =temp mod n.

10. Return SUCCESS, k, and k.

B.5.2 Per-Message Secret Number Generation by Testing Candidates

In this method, a random number is obtained and tested to determine that it will produce
a value of £ in the correct range. If £ is out-of-range, another random number is obtained
(i.e., the process is iterated until an acceptable value of & is obtained.

The following process or its equivalent may be used to generate a per-message secret

number.

Input:

1. (g9 FR a b, [SEED)], G, n, h): The domain parameters that are used for this

2. additional_input.

Output:

1. status

2. (kK"

Process:
1. N=len (g).

process. # is a prime number, and G is a point on the
elliptic curve.

Optional additional input. The maximum length of the
additional_input shall be < 2*° bits.

The status returned from the key pair generation
procedure. The status will indicate SUCCESS or an
ERROR.

The generated private and public keys. If an error is
encountered during the generation process, invalid
values for k and & should be returned, as represented
by Invalid k and Invalid k_inverse in the following
specification. k and " are intewers. kand &' are
integers in the range [1, n-1].

2. If Nis invalid, then return an ERROR, Invalid k, and Invalid k inverse.

3. requested security strength = the security strength associated with V; see SP

800-57 [1].

4. Obtain a string of N returned bits from an RBG with a security strength of
requested_security strength or more. Provide additional _input, if available. If
an ERROR status is returned, then return an ERROR, Invalid k, and

Invalid k_inverse.

. Convert returned bits to the (non-negative) integer ¢ (see Appendix F.2.1).
. If (¢ > n-2), then go to step 4.

. (status, temp) = inverse (k, n).

5
6
7. k=c+1.
8
9

If an ERROR is returned from step 7, go to step 4.

10. £ = temp mod n.

I1. Return SUCCESS, k, and &'.

F.1 Computation of the Inverse Value

This algorithm or an algorithm that produces an equivalent result shall be used to
compute the multiplicative inverse z! mod a for z with 0 <z < g, where 0 <z! < ¢,
where a is a prime number. In this Standard, z is either £ or s, and a is either g or ».

Input:
1. z Comment: The value to be inverted mod « (i.e., either k or
s).
2. a Comment: The domain parameter and (prime) modulus
(i.e., either g or n).
Output:
1. status Comment: The status returned from this function, where
the status is either SUCCESS or ERROR.
2. 7! Comment: The multiplicative inverse of z mod g, if it
exists.
Process:
1. Verify that a and z are positive integers such that z < a; if not, return an

SRR BNV

ERROR.

Seti=a,j=z,x2=1,x=0,,=0,andy; — 1.

quotient = |_ ilj].

remainder = i —(je quotient).

x = X3 —(x| @ quotient).

y — y2 —()h ® quotient).

Seti —j,j = remainder, x> = x\,x; =x,y2 =y, and y; = y.
If (j > 0), then go to step 3. '

If (i # 1), then return an ERROR.

10. Return SUCCESS and y,.

