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Random Number Generation
Part 3: Deterministic Random Bit Generator Mechanisms

Contribution of the U.S. Federal Government and not subject to copyright

1 Scope
This part of ANSI X9.82 defines techniques for the generation of random bits using
deterministic methods. This part includes:

1. A model for a deterministic random bit generator,

2. Requirements for deterministic random bit generator mechanisms,

3. Specifications for deterministic random bit generator mechanisms that use hash
functions, block ciphers and number theoretic problems,

4. Implementation issues, and
5. Assurance considerations.

The precise structure, design and development of a random bit generator is outside the
scope of this standard.

2 Conformance

An implementation of a deterministic random bit generator (DRBG) may claim
conformance with ANSI X9.82 if it implements the mandatory provisions of Part 1, the
mandatory requirements of one or more of the DRBG mechanisms specified in this part of
the Standard, and the appropriate mandatory requirements of Part 4.

Conformance can be assured by a testing laboratory associated with the Cryptographic
Module Validation Program (CMVP) (see hitp://csre.nist.gov/cryptval). Although an
implementation may claim conformance with the Standard apart from such testing,
implementation testing through the CMVP is strongly recommended.

3 Normative references

The following referenced documents are indispensable for the application of this
document. For dated references, only the edition cited applies. Nevertheless, parties to
agreements based on this document are encouraged to consider applying the most recent
edition of the referenced documents indicated below. For undated references, the latest
edition of the referenced document (including any amendments) applies.

ANS X9.52-1998, Triple Data Encryption Algorithm Modes of Operation.
ANS X9.62-2000, Public Key Cryptography for the Financial Services Industry - The Elliptic
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Curve Digital Signature Algorithm (ECDSA).

ANS X9.63-2000, Public Key Cryptography for the Financial Services Industry - Key
Agreement and Key Transport Using Elliptic Key Cryptography.

ANS X9.82, Part 1-200x, Overview and Basic Principles, Draft.

ANS X9.82, Part 2-200x, Entropy Sources, Draft.

ANS X9.82, Part 4-200x, RBG Constructions, Draft.

FIPS 180-2, Secure Hash Standard (SHS), August 2002; ASC X9 Registry 00003.

FIPS 197, Advanced Encryption Standard (AES), November 2001; ASC X9 Registry 00002,

FIPS 198, Keyed-Hash Message Authentication Code (HMAC), March 6, 2002; ASC X9
Registry 00004,
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4 Terms and definitions

For the purposes of this part of the standardError! Reference source not found., the
following terms and definitions apply.

4.
Algorithm

A clearly specified mathematical process for computation; a set of rules that, if followed,
will give a prescribed result.

4,
Approved

Approved in an ANSI X9 standard or the ANSI X9 registry or by a process specified in an
ANSI X9 standard, technical guideline or the ANSI X9 registry.

4,
Backtracking Resistance

The assurance that the output sequence from an RBG remains indistinguishable from an
ideal random sequence even to an attacker who compromises the RBG in the future, up to
the claimed security level of the RBG. For example, an RBG that allowed an attacker to
"backtrack” from the current working state to generate prior outputs would not provide
backtracking resistance. The complementary assurance is called Prediction Resistance.

4.
Biased

A bit string (or number) that is chosen from a sample space is said to be biased if one bit
string (or number) is more likely to be chosen than another bit string (or number). Contrast
with unbiased.

4,
Bit String

A bit string is an ordered sequence of 0°s and 1’s. The leftmost bit is the most significant
bit of the string and is the newest bit generated. The rightmost bit is the least significant bit
of the string.

4.
Bitwise Exclusive-or

An operation on two bitstrings of equal length that combines corresponding bits of each

11
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bitstring using an exclusive-or operation.
4.
Block Cipher

A symmetric key cryptographic algorithm that transforms a block of information at a time
using a single cryptographic key. For a block cipher algorithm, the length of the input
block is the same as the length of the output block.

4,
Consuming Application

The application that uses random numbers or bits obtained from an Approved random bit
generator

4.

Cryptographic Key (Key)

A parameter that determines the operation of a cryptographic function such as:
1. The transformation from plain text to cipher text and vice versa,
2. The synchronized generation of keying material,
3. A digital signature computation or validation.

4,

Cryptographic Module

A set of hardware, software, firmware, or some combination thereof that implements
cryptographic logic, including cryptographic algorithms. A device wherein cryptographic
functions (e.g., encryption, authentication, and key generation) are performed.

4,
Cryptographically strong

A mechanism is said to be cryptographically strong when it has an assessed strength (in
accordance with an Approved security level) against an attack by an adversary.

4.
Deterministic Algorithm

An algorithm that, given the same inputs, always produces the same outputs.

12
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4.
Deterministic Random Bit Generator (DRBG)

An RBG that uses a deterministic algorithm to produce a pseudorandom sequence of bits
from a secret initial value called a seed (which contains entropy and possibly a
personalization string) along with other possible inputs. Additional non-deterministic
inputs may allow periodic reseeding. The outputs do not always contain full entropy,
contrast this with an NRBG. A DRBG is oflen called a Pseudorandom Number (or Bit)
Generator. A DRBG has an assessed security level and is designed with the goal of
requiring an adversary to do at least the amount of work associated with that security level
in order to successfully predict even one bit of it’s output or distinguish the output from an
ideal random sequence.

4.

DRBG Boundary

A physical or virtual boundary in which all implemented DRBG processes are contained.

4.
Entropy

A measure of the disorder, randomness or variability in a closed system. The entropy of X
is a mathematical measure of the amount of information provided by an observation of X.
Also, see min-entropy.

4.
Entropy Input

The input to an RBG of a string of bits that contains entropy, that is, the entropy input is
digitized and is assessed. For an NRBG, this is obtained from an entropy source. Fora
DRBG, this is included in the seed material.

4,
Entropy Input Source

A source of unpredictable data, such as thermal noise or hard drive seek times. There is no
assumption that the unpredictable data has a uniform distribution.

4.
Equivalent Process

Two processes are equivalent if, when the same values are input to each process (either as
input parametets or as values made available during the process), the same output is
produced.

13
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4.

Exclusive-or

A mathematical operation, symbol @, defined as:

060=0
o0®1=1
1®0=1and
1d1=0.

Equivalent to binary addition without carry.
4.

Full entropy

Each bit of a bitsting is independent of every other bit of that bitstring.
4,

Hash Function

A (mathematical) function that maps values from a large (possibly very large) domain into
a smaller range. The function satisfies the following properties:

1. (One-way) It is computationally infeasible to find any input that maps to any pre-
specified output;

2. (Collision free) It is computationally infeasible to find any two distinct inputs that
map to the same output.

4,
Implementation

An implementation of an RBG s a cryptographic device or portion of a cryptographic
device that is the physical embodiment of the RBG design, for example, some code
running on a computing platform. An implementation may be designed to handle more
than one instatniation at a time.

4,
Implementation Testing for Validation

Testing by an independent party to ensure that an implemention of a standard conforms to
the specifications of that standard.

14
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4,
Instantiation of an RBG

An instantiation of an RBG is a specific, logically independent, initialized RBG. One
instantiation is distinguished from another by a handle (identifying number). An
implementation of an RBG may support multiple instantiations to allow for the separation
of differing uses of the outputs. An instantiation has one or more instances.

4,
Internal State

The collection of stored information inside an instantiation of an RBG. This can include
both secret and non-secret information.

4.
Internal State Transition Functions

The set of functions that cause a particular internal state in an instantiation to be updated so
that a new internal state is the result.

4.

Key

See Cryptographic Key.
4,

m-bit number

A positive integer consisting of m bits where the high order bit, by definition, is always a
“1, In the case of an m-bit prime number, the low order bit is also a “1” except for the 2-
bit prime number “2” which has the binary value b’10°.

For example, the two byte hexadecimal prime number x’01FD’ (decimal 509) is the 9-bit
prime number b’111111101°.

4.
Non-Deterministic Random Bit Generator (Non-deterministic RBG) (NRBG)

An RBG that produces output that is fully dependent on some unpredictable physical
source that produces entropy. Contrast with a DRBG. Other names for non-deterministic
RBGs are True Random Number (or Bit) Generators and, simply, Random Number (or
Bit) Generators.

15
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4.
Operational Testing

Testing within an implementation immediately prior to or during normal operation to
determine that the implementation continues to perform as implemented and optionally
validated.

4.
Output Generation Function

The function in an RBG that outputs bits that appear to be random, that is, conform with
the ideal random distribution.

4.

Personalization String

A string of bits that is combined with entropy bits to produce a seed.
4.

Prediction Resistance

The assurance that the output sequence of an RBG remains indistinguishable (up to the
claimed security level of the RBG) from an ideal random sequence to an adversary who
has compromised the RBG at some specific time in the past. For example, if an adversary
compromised an RBG an hour ago, revealing all information about the internal state, and
the adversary is still able to predict its output, then the RBG fails to provide prediction
resistance. The complementaty assurance is called Backtracking Resistance.

4.
Pseudorandom

A process or data produced by a process is said to be psecudorandom when the outcome is
deterministic, yet also effectively random as long as the internal action of the process is
hidden from observation. For cryptographic purposes, “effectively” means “within the
limits of the intended cryptographic strength.” Note: Non-cryptographic use of
“pseudorandom” has less stringent meanings for “effectively.”

4.
Pseudorandom Number Generator

See Deterministic Random Bit Generator.
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4,
Public Key

In an asymmetric (public) key cryptosystem, that key of an entity’s key pair that is publicly
known.

4.

Public Key Pair

In an asymmetric (public) key cryposystem, the public key and associated private key.
4.

Random Number

For the purposes of this standard, a value in a set that has an equal probability of being
selected from the total population of possibilities and hence is unpredictable. A random
number is an instance of an unbiased random variable, that is, the output produced by a
uniformly distributed random process.

4.
Random Bit Generator (RBG)

A device or algorithm that outputs a sequence of binary bits that appears to be statistically
independent and unbiased.

4,
Random Number Generator (RNG)

A device or algorithm that can produce a sequence of random numbers that appears to be
from an ideal random distribution.

4,
Reseed

To aquire additional bits with sufficient entropy for the desired security level.
4.

Security Level

A number associated with the amount of work (that is, the number of operations) that is
required to break a cryptographic algorithm or system; a security level is specified in bits
and is a specific value from the set (80, 112, 128, 192, 256). The amount of work needed is
2 raised to the security level.
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4,
Seed

Noun: A string of bits that is used as input to a Deterministic Random Bit Generator
(DRBG). The seed will determine a portion of the internal state of the DRBG, and its
entropy must be sufficient to support the security strength of the DRBG. [New]

Verb : To aquire bits with sufficient entropy for the desired security level. These bits will
be used as input to a DRBG to determine a portion of the initial internal state. Contrast
with reseed.

4.
Seed Period

The period of time between initializing a DRBG with one sced and reseeding that DRBG
with another seed.

4.

Sequence

An ordered set of quantities.
4.

Shall

Used to indicate a requirement of this Standard.

4,
Should

Used to indicate a highly desirable feature for a DRBG that is not necessarily required by
this Standard.

4.
Statistically Unique

A value is said to be statistically unique when it has a negligible probability to occur again
in a set of such values. When a random value is required to be statistically unique, it may
be selected either with or without replacement from the sample space of possibilities; this
is in contrast to when a value is required to be unique, as then it must be selected without
replacement.

4.
String

See Sequence.
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4.
Supporting Functions

The set of functions in an RBG that are needed for assurance of correct operation but that
do not change the internal state. An example of a Supporting Function is the known
answer tests that are run at startup on a DRBG.

4.

Unbiased

A bit string (or number) that is chosen from a sample space is said to be unbiased if all
potential bit strings (or numbers) have the same probability of being chosen. Contrast with
biased.

4.
Unpredictable

In the context of random bit generation, an output bit is unpredictable if an adversary has
only a negligible advantage (that is, essentially not much better than chance) in predicting
it correctly.

4.
Working State

A subset of the internal state that is used by a DRBG to produce pseudorandom bits at a
given point in time. The working state (and thus, the internal state) is updated to the next
state prior to producing another string of pseudorandom bits.
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5 Symbols and abbreviated terms

The following abbreviations are used in this document:

Abbreviation Meaning
AES Advanced Encryption Standard.

ANS American National Standard

ANSI American National Standards Institute.
ASC Accredited Standards Committee

DRBG Deterministic Random Bit Generator,
ECDLP Elliptic Curve Discrete Logarithm Problem.
FIPS Federal Information Processing Standard.
HMAC Keyed-Hash Message Authentication Code.
NRBG Non-deterministic Random Bit Generator.
RBG Random Bit Generator.

TDEA Triple Data Encryption Algorithm.

The following symbols are used in this document.

Symbol Meaning
+ Addition
X1 Ceiling: the smallest integer > X. For example, |5| = 5, and
[5.3] =6.
XeY Bitwise exclusive-or (also bitwise addition mod 2) of two bit

strings X and ¥ of the same length.

X||Y Concatenation of two strings X and Y. X and Y are either both
bit strings, or both octet strings.

ged (x,y) The greatest common divisor of the integers x and y.

len (a) The length in bits of string a.

X mod n The unique remainder r, when 0 < r < n-1, when integer x is

divided by n. For example, 23 mod 7 = 2.
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Used in a figure to illustrate a "switch" between sources of
input.

{ay, .2}

The internal state of the DRBG at a point in time. The types
and number of the a; depends on the specific DRBG.

A string of x zero bits.
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6 General Discussion and Organization

Part 1 of this Standard (Random Number Generation, Part 1: Overview and Basic
Principles) describes several cryptographic applications for random numbers, specifies the
characteristics for random numbers and random number generators, and provides
mathematical and cryptographic background information on the concept of randomness.
Random bit generators are used for the generation of random numbers. Part 1 specifies
requirements for random bit generators that are applicable to both non-deterministic
random bit generators (NRBGs) and deterministic random bit generators (DRBGs). In
addition, Part 1 also introduces a general functional model and a conceptual cryptographic
Applied Programming Interface (API) for random bit generators.

Part 2 of this Standard (Entropy Sources) discusses entropy sources used by random bit
generators. In the case of DRBGs, the entropy sources are required to seed and reseed the
DRBG..

Part 4 of this Standard (Random Bit Generator Constructions) provides guidance on
combining components to construct random bit generators.

This part of the Standard (Random Number Generation, Part 3: Deterministic Random Bit
Generator Mechanisms) specifies Approved DRBG mechanisms. A DRBG mechanism is
an RBG component that utilizes an algorithm to produce a sequence of bits from an initial
internal state that is determined by an input that is commonly known as a seed. Because of
the deterministic nature of the process, a DRBG mechanism is said to produce
“pseudorandom” rather than random bits, i.., the string of bits produced by a DRBG
mechanism is predictable and can be reconstructed, given knowledge of the algorithm, the
seed and any other input information. However, if the input is kept secret, and the
algorithm is well designed, the bit strings will appear to be random. A process or data
produced by a process is said to be pscudorandom when the outcome is deterministic.

The seed for a DRBG mechanism requires that sufficient entropy be provided by an
entropy input source (see Parts 2 and 4 of this Standard). While a DRBG mechanism may
conform to this part of the Standard (i.c., Part 3), an implementation cannot achieve the
goals specified in Part 1 unless the entropy input source is included as specified in Part 4.
That is, the security of an RBG that uses a DRBG mechanism is a system implementation
issue; both the DRBG mechanism and its entropy input source must be considered.

Throughout the remainder of this document, the term “DRBG mechanism” has been
shortened to “DRBG™.

The remaining sections of this part of the Standard are organized as follows:

— Section 7 provides a functional model for a DRBG that particularizes the functional
model of Part 1.

— Section 8 provides DRBG concepts and general requirements.

— Section 9 specifies the DRBG functions that will be used to access the DRBG
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algorithms specified in Section 10.

— Section 10 specifies Approved DRBG algorithms.

— Section 11 addresses assurance issues for DRBGs.
This part of the standard also includes the following normative annexes:

— Annex A specifies additional DRBG-specific information.

— Annex B provides conversion routines.

— Annex C discusses security considerations for selecting and implementing DRBGs.
The following informative annexes are also included:

— Annex D discusses the functional requirements specified in Part 1 as they are
fulfilled by this part of the Standard.

— Annex E provides a discussion on DRBG selection.

— Annex F provides example pseudocode for each DRBG.

— Annex G provides a bibliography for related informational material..
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7 DRBG Functional Model
7.1 Functional Model

Part 1 of this Standard provides a general functional model for random bit generators
(RBGs). Figure 1 (below) particularizes the functional model of Part 1 for deterministic
random bit generators (DRBGs).

_|  Idemal Bdenal Siade |
Transillon Transilion Punotion: [
Indamal Stabe i Transiiion Funcion:
N Gaerabe
Emor
Oudput Genaradion Stale
Pundion
DRB G Boundary
v
Rehmn Pseudorandom Oudpant

Figure 1: DRBG Model

7.2 Functional Model Components
7.2.1 Introduction

Part | of this Standard provides general functional requirements for random bit generators.
These requirements are discussed briefly in this section. Annex D provides a discussion of
how each functional requirement in Part 1 is fulfilled by the requirements for DRBGs in
this part of the Standard.
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7.2.2 Entropy Input

The entropy input is the source of entropy for the DRBG. The secrecy of this information
provides the basis for the security of the DRBG. At a minimum, this input shall provide
the requested amount of entropy for a DRBG. Examples of appropriate sources of entropy
input are an Approved NRBG as specified in Part 4, a conditioned entropy source as
specified in Part 2,0r an Approved DRBG or chain of DRBGs in which the first DRBG in
the chain obtains entropy input from an Approved NRBG.

The DRBGs specified in this Standard allow for some bias in the entropy input. Whenever
a bitstring containing entropy is required by the DRBG, a request is made that indicates the
minimum amount of entropy to be returned. The request may be fulfilled by a bitsting that
is equal to or greater in length to the requested entropy. The DRBG expects that the
returned bitstring will contain at least the amount of entropy requested. Additional entropy
beyond the amount requested is not required, but is desirable.

An important use of the entropy input for DRBGs is the acquisition of entropy bits to
create seeds. Seeds are obtained prior to requesting pseudorandom bits. Additional entropy
may also be introduced during a request.

Part 1 of this Standard provides functional requirements for the entropy input for random
bit generators. The requirements are met, for example, when entropy input that conforms to
Part 2 of this Standard is used, and the interface between the entropy input and the DRBG
is protected against influence, manipulation and observation. DRBGs and other sources
that provide entropy input shall also meet these requirements.

7.2.3 Other Inputs

Other information may be obtained by a DRBG as input during the instantiation, reseeding
and generation processes. This information includes the input parameters when the DRBG
is called by the consuming application and any additional input that may be public (e.g.,
information provided by a user). This information may or may not be required to be kept
secret by a consuming application; however, the security of the DRBG itself does not rely
on the secrecy of this information. The information should be checked for validity when
possible.

The DRBGs in this Standard allow the insertion of a personalization string during DRBG
instantiation. When used, the personalization string is unique for all instantiations of the
same DRBG type (e.g., Hash DRBG). See Section 8.5.2 for additional discussion on
personalization strings.

Additional input may also be provided when pseudorandom bits are requested. See Section
8.5.3 for a discussion of this input.

7.2.4 The internal State

The internal state is the memory of the DRBG and consists of all of the parametets,
variables and other stored values that the DRBG uses or acts upon. The internal state

25



ANS X9.82, Part 3 - DRAFT - December 2004

contains both administrative data and data that is acted upon and/or modified during the
generation of pseudorandom bits (i.e., the working state). The contents of the internal state
is dependent on the specific DRBG and includes all information that is required to produce
the pseudorandom bits from one request to the next.

7.2.5 The Internal State Transition Function

The internal state transition function uses the internal state and one or more Approved
algorithms to produce pseudorandom bits. During this process, data in the internal state is
altered. The algorithms used and the method of altering the internal state depends on the
specific DRBG.

The DRBGs in this Standard have four separate state transition functions:

1. During the initial instantiation of the DRBG, entropy input and an optional
personalization string are obtained. This information is used to determine the initial
internal state.

2. Each request for pseudorandom bits produces the requested bits using the current
internal state and determines a new internal state that is used for the next request of
bits.

3. When an application determines that reseeding of the DRBG is required, a reseed
function obtains new entropy input, combines it with the current internal state
values, and determines a new internal state for the next request for pseudorandom
bits. By combining the new entropy input with the current internal state, the
entropy available for the instantiation is not lost, but is enhanced by the entropy of
the new entropy input.

4. When a consuming application or a testing process no longer requires an
instantiation, the internal state is released.

7.2.6 The Output Generation Function

The output generation function of a DRBG produces pseudorandom bits that are a function
of the internal state of the DRBG and any input that is introduced while the internal state
transition function is operating. These pseuodorandom output bits are deterministic with
respect to the input information. Any formatting of the output bits prior to output is
determined by a particular implementation.

7.2.7 Support Functions

The support functions for a DRBG are concerned with assessing and reacting to the health
of the DRBG. The health tests are discussed in Sections 9.7 and 11.4.
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8. DRBG Concepts and General Requirements
8.1 Introduction

This section provides concepts and general requirements for the implementation and use of
a DRBG. The DRBG functions are explained and requirements for the implementation are
provided, including requirements for DRBG boundaries in which the DRBG functions and
secret information will be confined, and requirements for the critical information that is
necessary for a DRBG to provide pseudorandom data.

8.2 DRBG Functions and a DRBG Instantiation
8.2.1 Functions

A DRBG requires instantiate, uninstantiate, generate, and testing tunctions. A DRBG may
also include a reseed function. A DRBG shall be instantiated prior to the generation of
output by the DRBG. The instantiate function initializes the internal state using a seed; the
uninstantiate function deletes the internal state. The generate function generates
pseudorandom bits upon request. The reseed function modifies the internal state using a
new seed. The testing function is intended to test the continued “health” of the DRBG.

8.2.2 DRBG Instantiations

A DRBG may be used to obtain pseudorandom bits for different purposes (e.g., DSA
private keys and AES keys) and may be separately instantiated for each purpose. For
example, an instantiation may be associated with the generation of only 1024-bit RSA
keys, and a separate instantiation may be associated with the generation of 128-bit AES
keys. This Standard recommends that different instantiations be used to generate bits for
different purposes.
However, if an
application needs to
generate bits for
different purposes, it v
may not always be [(Opt Reseed with eed,, |
practical to use multiple
instantiations. For Seed period 2
example, if an ¥
application cannot | (Opt) Reseed with seed , |
support multiple
instantiations (e.g.,
because of memory
restrictions), then the
same instantiation could
be associated with
generating both 1024-bit
RSA keys and 128-bit

Instantiate: Initialize with seed;

I Seed period 1

Seed periods 3 ton

Figure 2: DRBG Instantiation
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AES keys.

A DRBG is instantiated using a seed and may be reseeded; when reseeded, the seed shall
be different than the seed used for instantiation. Each seed defines a seed period for the
DRBG instantiation; an instantiation consists of one or more seed periods that begin when
a new seed is acquired (see Figure 2).

8.2.3 Internal States

During instantiation, an initial internal state is derived from the seed. The internal state for
an instantiation includes:

1. One or more values that are derived from the seed and become part of the internal
state (i.e., the working state),

2. Administrative information (e.g., security level provided by the DRBG, a count of
the number of requests since the last seed or reseed).

The internal state shall be protected at least as well as the intended use of the
pseudorandom output bits requested by the consuming application. Each DRBG
instantiation shall have its own internal state. The internal state for one DRBG
instantiation shall not be used as the internal state for a different instantiation.

A DRBG shall transition between internal states when the generator is requested to
provide new pseudorandom bits. A DRBG may also be implemented to transition in
response to internal or external events (e.g., system interrupts) or to transition continuously
(e.g., whenever time is available to run the generator). Additional unpredictability is
introduced when the generator transitions between internal states continuously or in
response to external events. However, when the DRBG transitions from one internal state
to another between requests, reseeding may need to be performed more frequently.

A DRBG implementation may be designed to handle multiple instantiations. Sufficient
space must be available for the expected number of instantiations, i.e., sufficient memory
must be available to store the internal state associated with each instantiation.

8.2.4 Security Levels Supported by an Instantiation

The DRBGs specified in this Standard support four security levels: 112, 128, 192 or 256
bits. The security levels that may be supported by a particular DRBG are specified for
each. However, the security level actually supported by a particular instantiation may be
less than the maximum security level possible for that DRBG, depending upon the amount
of entropy that is contained in the seed. For example, a DRBG that is designed to support a
maximum security level of 256 bits may be instantiated to support only a 128 bit security
level.

The maximum security level provided by an instantiation is determined when the DRBG is
instantiated. The instantiated security level is less than or equal to the maximum security
level that can be supported by the DRBG (see Table 1).
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Table 1: Possible Instantiated Security Levels

Maximum Designed 112 128 192 256
Security Level

Possible Instantiated 112 112,128 112,128,192 | 112,128, 192,
Security Levels 256

For each DRBG instantiation, a security level needs to be requested and obtained during
the instantiation process. The DRBGs allow security levels up to 256 bits, providing that
the appropriate cryptographic primitives and sufficient entropy are available. Accordingly,
any security level up to 256 may be requested. However, a DRBG will only be instantiated
for one of four security levels: 112, 128, 192 or 256. A requested security level that is
between two of the security levels will be instantiated to the next highest level (e.g., a
request for a 120-bit security level will actually be instantiated at the 128-bit security
level).

When a DRBG instantiation needs to provide pseudorandom bits for only one purpose,
then the security level needs to support that purpose. Examples:

1. 256-bit AES keys can provide a maximum of 256-bits of security. An instantiation
must support the 256-bit security level if the full 256 bits of security are to be
provided by the AES keys.

2. 2048-bit RSA can only provide 112 bits of security. In this case, an instantiation
used only for the generation of 2048-bit RSA keys must be instantiated at the 112-
bit security level or higher.

When an instantiation is used for multiple purposes, the minimum entropy requirement for
each purpose must be considered. The DRBG needs to be instantiated for the highest
security level required. For example, if one purpose requires a 112-bit security level, and
another purpose requires a security level of 256 bits, then the DRBG shall be instantiated
to support the 256-bit security level.

8.3 DRBG Boundaries
As a convenience. this Standard uses the notion of a “DRBG boundary™ Lo explain the
operations of a DRBG and its interaction with and relation to other processes. The DRBG

boundary is defined by the DRBGs public interfaces, which are made available to
consuming applications.

Within a DRBG boundary,

1. The DRBG internal state and the operation of the DRBG funclions shall only be
affected according to the DRBG specification.

2. The DRBG internal state shall exist solely within the DRBG boundary.
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3. Information about secret parts of the DRBG internal state and intermediate values
in computations involving these secret parts shall not affect any information that
leaves the DRBG boundary, except as specified for the DRBG pseudorandom bit
outputs. The internal state shall be contained within the DRBG boundary and shall
not be accessible from outside the boundary.

Each DRBG includes one or more cryptographic primitives (e.g., a hash function). Other
applications may use the same cryptographic primitive as long as the DRBG’s internal
state and the DRBG (unctions are not affected.

A DRBG’s functions may be

contained within a single device. or DREC Bouniany
may be distributed across multiple . Instantiate

. . . n nfiate -
devices (see Figures 3 and 4). Figure 3 e -
depicts a DRBG for which all =" Input
functions are contained within the Reseed | Reseed g

) j A Instantiation
same device. In this case. there is a Fifocedure
single DRBG boundary. r
- =i Generate

Figure 4 provides an example of Request Bits el oo provedors
DRBG [unctions that are distributed
across multiple devices. In this case. Test | Testing | States]
cach device has a DRBG boundary e —
that contains the DRBG functions — |
H H ninstantiate Uninstantiation
implemented on that device, and the DRBG o
~fogical DRBG boundary™ consists of :
the aggregation of boundaries
providing the DRBG functionality. Figure 3: DRBG Functions within a Single
I'he use of distibuted DRBG DREG Baiindaty

boundaries may be convenient for restricted environments (e.g.. smart card applications) in
which the primary use of the DRBG does not require repeated use of the instantiation or
reseeding functions.

Each DRBG boundary shall contain a testing function to test the “health” of other DRBG
functions within that boundary. Although the entropy input is shown in the figure as
originating outside the DRBG boundary, it may originate from within the boundary. Part 4
discusses the construction of a full random bit generator that contains both the DRBG and
its entropy input source.

Distributed DRBG boundaries shall be subject to the following:

1. Any DRBG boundary that includes an instantiate function shall include
uninstantiate, generate and testing (unctions to allow health testing, although the
generate (unction may not be the “primary” generate [unction for the DRBG. For
example, for a smart card application, it may be necessary to distribute the DRBG
finctions so that the smart card contains only the generate [unction, along with its
associated testing (unction. In this case, the instantiate (unction may reside on the
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system that initializes the smart card; the generate and uninstantiate functions are
used on this system during the testing of the instantiate function.

2. A DRBG boundary containing a generate function shall include a testing [unction.

3. A DRBG boundary that contains a reseed function shall include generate and test
functions to allow health testing, although the generate [unction may not be the
“primary” generate function for the DRBG.

|

| |
| |
| L E I
|

| Ressed Instentiaie Siaie |
| DRBG 19 |
| Generaie | | Testing |
} ' Sk Biie I
1 Uninstandlate | | - I
: DRBC Biw Sk I
| |
: DRBC Boundary (Generaie) I
| Testing |
I I
|  DRBGCB |
| CRemdany\vsiniat) LogicelDRBG Boundary |

Figure 4: Distributed DGBR Functions and Boundaries

When DRBG (unctions are distributed, the DRBG functions are distributed among
multiple DRBG boundaries, appropriate mechanisms shall be used to protect the
confidentiality and integrity of the internal state when transferred between the distributed
DRBG boundaries. The confidentiality and integrity mechanisms and security level shall
be consistent with the data to be protected by the DRBG’s consuming application (see SP
800-57).

8.4 Seeds
8.4.1 General Discussion

When a DRBG is used to generate pseudorandom bits, a seed shall be acquired prior to the
generation of output bits by the DRBG. The seed is used to instantiate the DRBG and
determine the initial internal state that is used when calling the DRBG to obtain the first
output bits.
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The seed, seed size and the entropy (i.e., randomness) of the seed shall be selected to
minimize the probability that the sequence of pseudorandom bits produced by one seed
significantly matches the sequence produced by another seed, and reduces the probability
that the seed can be guessed or exhaustively tested. Since this Standard does not require
full entropy for a seed but does require sufficient entropy, the length of the seed may be
greater than the entropy requirement (i.e., a seed with » bits of entropy may be longer than
n bits in length).

The entry of entropy into a DRBG using an insecure method could result in voiding the
intended security assurances. To ensure unpredictability, care must be exercised in
obtaining and handling the entropy input used to create seeds.

8.4.2 Generation and Handling of Seeds

The seed and its use by a DRBG shall be (Optional)
generated and handled as follows: Entropy Input | [Personalization

1. Seed construction: The seed material String

used to determine a seed shall include
entropy input and should include a
personalization string (see Figure 5 and K

Section 8.5.1). Whether or not the ".‘ Opt. /
personalization string is present, the vdf [/
resulting seed shall be statistically \
unique. That is, when a personalization ‘

string is used, the combination of the l

entropy input and the personalization Seed
string shall determine a unique seed;

when a personalization string is not
used, the entropy input shall be
statistically unique.

Figure 5: Seed Construction

Depending on the DRBG and the entropy input, a derivation function may be
required to derive a seed.

2. Entropy requirements: The entropy input for the seed shall contain sufficient
entropy for the desired level of security, and the entropy shall be distributed across
the seed (e.g., by an appropriate derivation function). The DRBGs shall have the
required entropy provided in the entropy input. Additional entropy may be
provided in a personalization string, but this is not required.

A consuming application may or may not be concerned about collision resistance
between seeds and internal states. In order to accommodate possible collision
concerns, the entropy input for a seed shall have entropy that is equal to or greater
than the security level + 64 bits for instantiation; for reseeding, the minumum
entropy requirement is equal to the security_level. Note that the use of more entropy
than the minimum value will offer a security “cushion”. This may be useful if the
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assessment of the entropy provided in the entropy input is incorrect; having more
entropy than the assessed amount is acceptable; having less entropy than the assessed
amount could be fatal to security. The presence of more entropy than is required,
especially during the instantiate function, will provide a higher level of assurance than
the minimum required entropy.

Table 1 identifies the security levels to be provided by Approved DRBGs, along
with the associated entropy requirements. If a selected DRBG and the entropy input
for the seed are not able to provide the security level required by the consuming
application, then a different DRBG and entropy input shall be used.

Table 1: Minimum Entropy Per Security Level

Security Level 112 128 192 256
Minimum entropy for instantiation 176 192 256 320
Minimum entropy for reseeding 112 128 192 256

Seed length: The minimum length of the seed depends on the DRBG and the
security level required by the consuming application. See Section 10.

. Entropy input source: The source of the entropy input may be an Approved NRBG,
an Approved DRBG (or chain of Approved DRBGs) that is seeded by an Approved
NRBG, or another source whose entropy characteristics are known. Further
discussion about the entropy input is provided in Part 4 of this Standard.

. Entropy input and seed privacy: The entropy input and the resulting seed shall be
handled in a manner that is consistent with the security required for the data
protected by the consuming application. For example, if the DRBG is used to
generate keys, then the entropy inputs and seeds used to generate the keys shall be
treated at least as well as the key.

. Reseeding: Reseeding is 2 means of recovering the secrecy of the output of the
DRBG if a seed or the internal state becomes known. Periodic reseeding is a good
countermeasure to the potential threat that the seeds and DRBG output become
compromised. In some implementations (e.g., smartcards), an adequate reseeding
process may not be possible. In these cases, the best policy might be to replace the
DRBG, obtaining a new seed in the process (e.g., obtain a new smart card).

Generating too many outputs from a seed (and other input information) may
provide sufficient information for successfully predicting future outputs unless
prediction resistance is provided (see Section 8.6). Periodic reseeding will reduce
security risks, reducing the likelihood of a compromise of the data that is protected
by cryptographic mechanisms that use the DRBG.

Seeds shall have a finite seedlife (i.., the length of the seed period); the maximum
seedlife is dependent on the DRBG used. Reseeding is accomplished by 1) an
explicit reseeding of the DRBG by the application, or 2) by the generate function
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when prediction resistance is requested (see Section 8.6) or the limit of the seedlife
is reached. An alternative to reseeding is to create an entirely new instantiation.
This may be appropriate, for example, in environments with restricted capabilities,
where the seed is obtained from a source that is not co-located with the DRBG
(e.g., in a smart card applicaton).

Reseeding of the DRBG shall be performed in accordance with the specification
for the given DRBG. The DRBG reseed specifications within this Standard are
designed to produce a new seed that is determined by both the old seed and newly-
obtained entropy input that will support the desired security level. The newly-
obtained entropy input shall be checked to assure that it is not the same as the
previous entropy input (see Part 4).

7. Seed use: DRBGs may be used to generate both secret and public information. In
either case, the seed and the entropy input from which the seed is derived shall be
kept secret. A single instantiation of a DRBG should not be used to generate both
secret and public values. However, cost and risk factors must be taken into account
when determining whether different instantiations for secret and public values can
be accommodated.

A seed that is used to initialize one instantiation of a DRBG shall not be intentially
used to reseed the same instantiation or used as a seed for another DRBG
instantiation.

A DRBG shall not provide output until a seed is available, and the internal state
has been initialized.

8. Seed separation: Seeds used by DRBGs shall not be used for other purposes (e.g.,
domain parameter or prime number generation).

8.5  Optional Inputs to the DRBG

8.5.1 Discussion

Other input may be provided during DRBG instantiation, pseudorandom bit generation and
reseeding. This input may contain entropy, but this is not required. During instantiation, a
personalization string may be provided and combined with entropy input to derive a seed
(see Section 8.4, item 1). When pseudorandom bits are requested and when reseeding is
performed, additional input may be provided.

Depending on the method for acquiring the input, the exact value of the input may or may
not be known to the user or application. For example, the input could be derived directly
from values entered by the user or application, or the input could be derived from
information introduced by the user or application (e.g., from timing statistics based on key
strokes), or the input could be the output of another DRBG or an NRBG.

8.5.2 Personalization String

During instantiation, a seed shall be derived from entropy input with sufficient entropy,
34



ANS X9.82, Part 3 - DRAFT - December 2004

and the seed should also include a personalization string (see Section 8.4). That is, the use
of a personalization string is good practice, but is not mandatory. The intent of a
personalization string is to differentiate this DRBG instantiation from all the others that
might ever appear. The personalization_string should be set to some bit string that is as
unique as possible to a specific implementation or instance of a DRBG mechanism, and
may include secret information. The value of any secret information contained in the
personalization string should be no greater than the claimed strength of the DRBG, as the
DRBG's cryptographic mechanisms (specifically, its backtracking resistance and the
entropy provided by the entropy source) will protect this information from disclosure.
Good choices for the personalization string contents include:

1. Device serial numbers,

Public keys,

User identification,

Private keys,

PINs and passwords,

Secret per-module or per-device values,

Timestamps,

® NS kW

Network addresses, and

9. Special secret key values for this specific DRBG instantiation
8.5.3 Additional Input

During each request for bits from a DRBG and during reseeding, the insertion of additional
input is allowed. This input is optional and may be either secret or publicly known; its
value is arbitrary, although its length may be restricted, depending on the implementation
and the DRBG. The use of additional input may be a means of providing more entropy for
the DRBG internal state that will increase assurance that the entropy requirements are met.
If the additional input is kept secret and has sufficient entropy, the input can provide more
assurance when recovering from the compromise of the seed or one or more DRBG
internal states.

8.6 Prediction Resistance and Backtracking Resistance

Figure 6 depicts the sequence of DRBG internal states that result from a given seed. Some
subset of bits from each internal state are used to generate pseudorandom bits upon request
by a user. The following discussions will use the figure to explain backtracking and
prediction resistance. Suppose that a compromise occurs at Statey, where Statex contains
both secret and public information.
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Figure 6: Sequence of DRBG States
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Backtracking resistance can be provided by ensuring that the internal state transition
function of a DRBG is a one-way function, or by using the DRBG to generate an
additional new DRGB working state before responding to the next request for bits (c.g.,
when bits are generated, the working state is updated; backtracking resistance may be
provided by an additional update of the working state, i.e., the working state is updated
twice between requests). All DRBGs in this Standard have been designed to provide
backtracking resistance.
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Prediction resistance can be provided only by ensuring that a DRBG is effectively reseeded
between DRBG requests. That is, an amount of entropy that is sufficient to support the
security level of the DRBG (i.e., an amount that is at least equal to the security level)) must
| be added to the DRBG in a way that ensures that knowledge of the cuticniprevious DRBG
internal state does not allow an adversary any useful knowledge about future DRBG
internal states or outputs.
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9 DRBG Functions
9.1 General Discussion

The DRBG functions in this Standard are specified by an algorithm and the envelope
around that algorithm. The envelopes shall be used to access the appropriate selected
DRBG algorithm.

9.2 Instantiating a DRBG
A DRBG shall be instantiated prior to the generation of pseudorandom bits. The instantiate
function shall:
1. Check the validity of the input parameters,
Determine the security level for the DRBG instantiation,
Determine DRBG specific parameters (e.g., elliptic curve domain parameters),

Obtain entropy input with entropy sufficient to support the security level,

S e K2 B

Determine the initial internal state using the instantiate algorithm, and
6. Return a state_handle for the internal state to the consuming application.

Let working_state be the working state for the particular DRBG, and let
min_entropy_input_length and highest_supported_security level be defined for each
DRBG (see Section 10).

The following or an equivalent process shall be used to instantiate a DRBG.
Input from a consuming application:

1. requested security_level: A requested security level for the instantiation. DRBG
implementations that support only one security level do not require this parameter;
however, any application using the DRBG must be aware of this limitation.

2. prediction_resistance_flag: Indicates whether or not prediction resistance may be
required by the consuming application during one or more requests for
pseudorandom bits. DRBGs that are implemented to always or never support
prediction resistance do not require this parameter. However, the user of a
consuming application must determine whether or not prediction resistance may be
required by the application before electing to use such a DRBG implementation. If
the prediction_resistance_flag is not needed (i.e., because prediction resistance is
always or never performed), then the input parameter and step 2 may be omitted,
and the prediction_resistance_flag may be omitted from the internal state in step
10.

3. personalization_string: An optional input that provides personalization information
(see Sections 8.4 and 8.5.2). The maximum length of the personalization string
(max_personalization_string_length) is implementation dependent, but shall be <
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2% bits. If a personalization string will never be used, then the input parameter and
step 3 may be omitted, and step 9 may be modified to remove the personalization
string.8

5. DRBG specific_input_parameters : Any additional parameters that are allowed for
a specific DRBG (see Section 10). The use of the DRBG-specific input parameters
is discussed for the DRBG instantiate algorithms. If a DRBG or a DRBG
implementation does not use these parameters, then step 5 may be omitted.

Other input: Comment: This input shall not be provided
by the consuming application.

1. entropy_input: Input bits containing entropy. The maximum length of the
entropy_input is implementation dependent, but shall be < 2% bits.

Output to a consuming application:

1. status: The status returned from the function. The status will indicate SUCCESS or
an ERROR. If an ERROR is indicated, either no state_handle or an invalid
state_handle shall be returned. A consuming application should check the status to
determine that the DRBG has been cotrectly instantiated.

2. state_handle: Used to identify the internal state for this instantiation in subsequent
calls to the generate, reseed, uninstantiate and test functions.

Other output/information retained within the DRBG boundary:
The internal state for the DRBG, including the working_state, security_level, and
prediction_resistance_flag (see Section 10).

Process:
Comment: Check the validity of the input
parameters.
1. If requested_security level > highest supported_security level, then return an
ERROR.
2. If prediction_resistance_flag is set, and prediction resistance is not supported, then
return an ERROR.

3. Ifthe length of the personalization_string > max_personalization_string_length,
return an ERROR.

4, Set security level to the nearest security level greater than or equal to
requested_security level.

Comment: The following step is required by
" the Dual EC_DRBG when multiple curves
are available (see Section 10.3.2.2.2), and by
the MS_DRBG (see Section 10.3.3.2.3).
Otherwise, the step should be omitted.

5. Using security_level and DRBG specific_input_parameters (if available), select
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appropriate DRBG parameters.

Comment: Determine the minimum entropy
requirement and obtain the entropy input.

6. min_entropy = security_level + 64.

7. Obtain at least min_entropy_input_length bits of entropy_input with at least
min_entropy bits of entropy. If there is a failure in the entropy_input source, return
an ERROR.

Comment: Get the initial working state from
the instantiate algorithm.

8. Obtain values for the working state by performing the instantiate algorithm for the
DRBG using the entropy_input, the personalization_string (if provided) and other
parameters (as required).

Comment: Set up the initial internal state.

9. Get a state_handle that will be used to locate the internal state for this instantiation.
If an unused internal state cannot be found, return an ERROR.

10. Set the internal state indicated by state_handle to the initial values: working_state,
security_level, and prediction_resistance_flag, as appropriate.

11. Return SUCCESS and state_handle.

9.3 Reseeding a DRBG Instantiation

The reseeding of an instantiation is not required, but is recommended whenever an
application and implementation are able to perform this process. Reseeding will insert
additional entropy into the generation process. Reseeding may be:

e explicitly requested by an application,

¢ performed when prediction resistance or full entropy is requested by an
application,

o triggered by the generation process when a predetermined number of
pseudorandom outputs have been produced (i.e., at the end of the seedlife), or

o triggered by external events (e.g., whenever sufficient entropy is available).

If a reseed capability is not available, a new DRBG instantiation may be created (sce
Section 9.2).

The reseed function shall:
1. Check the validity of the input parameters,

2. Obtain entropy input with entropy sufficient to support the security level, and
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3. Using the reseed algorithm, combine the current working state with the new
entropy input to determine the new working state.

Let working_state be the working state for the particular DRBG, and let
min_entropy_input_length be defined for each DRBG (see Section 10).

The following or an equivalent process shall be used to reseed the DRBG instantiation.

Input from a consuming application:

1) state_handle: A pointer or index that indicates the internal state to be reseeded.
This value was returned from the instantiate function specified in Section 9.2.

2) additional_input: An optional input. The maximum length of the additional _input
(max_additional_input_length) is implementation dependent, but shall be < 2%
bits. If additional_input will never be used, then the input parameter and step 2
may be omitted, and step 5 may be modified to remove the additional_input.

Other input: Comment: This input shall not be provided
by the consuming application.

1. entropy_input: Input bits containing entropy. The maximum length of the
entropy_input is implementation dependent, but shall be < 2% bits.

2. Internal state values required by the DRBG for reseeding, including the
working_state, security_level and prediction_resistance_flag, as appropriate.

Output to a consuming application:

1. status: The status returned from the function. The status will indicate SUCCESS or
an ERROR.

Other output/information retained within the DRBG boundary:
Replaced internal state values (i.e., the working_state).
Process:
Comment: Get the current internal state and
check the input parameters.
1. Using state_handle, obtain the current internal state. If state_handle indicates an
invalid or unused internal state, return an ERROR.
2. Ifthe length of the additional_input > max_additional_input_length, return an
ERROR.

3. min_entropy = security level.

4. Obtain at least min_entropy input_length bits of entropy_input with at least
min_entropy bits of entropy. If there is a failure in the entropy_input source, return
an ERROR.

Comment: Get the new working_state.

5. Obtain values for the new working_state by performing the reseed algorithm for the
DRBG using working_state values, entropy_input and the additional_input (it
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provided).

Comment: Save the new values of the internal
state.

\

6. Replace the working_state in the internal state indicated by state_handle with the
new values.

7. Return SUCCESS.
9.4 Generating Pseudorandom Bits Using a DRBG

This function is used to generate pseudorandom bits after instantiation or reseeding (see
Sections 9.2 and 9.3). The generate function shall:

1. Check the validity of the input parameters,

2. Ifthe instantiation needs additional entropy because the end of the seedlife has
been reached, or prediction resistance is required, call the reseed function to obtain
sufficient entropy.

3. Generate the requested pseudorandom bits using the generate algorithm.
4, Update the working state.
5. Return the requested pseudorandom bits to the consuming appication.

Let outlen be the length of the output block of the cryptographic primitive (see Section 10).
The following or an equivalent process shall be used to generate pseudorandom bits.

Input from a consuming application:
1. state_handle: A pointer or index that indicates the internal state to be used.

2. requested number_of bits: The number of pseudorandom bits to be returned from
the generate (unction, The max_number_of bits_per request is defined for each
DRBG in Section 10.

3. requested_security level: The security level to be associated with the requested
pseudorandom bits.

4. prediction_resistance_request: Indicates whether or not predicition resistance is to
be provided prior to the generation of the requested pseudorandom bits to be
generated. DRBGs that are implemented to always or never support prediction
resistance do not require this parameter. However, the user of a consuming
application must determine whether or not prediction resistance may be required by
the application before electing to use such a DRBG implementation. If the
prediction_resistance_request parameter is not needed, then the input parameter
and step 5 may be omitted.

5. additional_input. An optional input. The maximum length of the additional _input
(max_additional_input_length) is implementation dependent, but shall be < 2*°
bits. If additional input will never be used, then the input parameter, step 4, and
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the additional input input parameter in step 8 may be omitted; in addition, step 7
may be modified to remove the check for the prediction_resistance_flag.

Other input:

1. Internal state values required for generation, including the working_state,
security_level and prediction_resistance_flag, as appropriate.

Output to a consuming application:

1. status: The status returned from the function. The status will indicate SUCCESS or
an ERROR.
2. pseudorandom_bits: The pseudorandom bits that were requested.

Other output information retained within the DRBG boundary:
Replaced internal state values (i.e., the working_state).
Process:

Comment Get the internal state and check the
input parameters.

1. Using state_handle, obtain the current internal state for the instantiation. If
state_handle indicates an invalid or unused internal state, then return an ERROR.

2. If requested number of bits > max_number_of bits_per_request, then return an
ERROR.

3. If requested security level > the security_level indicated in the internal state, then
return an ERROR.

4. Ifthe length of the additional_input > max_additional_inpyt_length, then return an
ERROR.

5. If prediction_resistance_request is set, and prediction_resistance_flag is not set,
then return an ERROR.

6. Reset the reseed required_flag.

Comment: Get the requested pseudorandom
bits.

7. If reseed required flag is set, or if prediction_resistance_request is set, then

7.1 Using state_handle and additional_input, reseed the instantiation (see Section
9.3). If an ERROR is returned, then return ERROR.

7.2 Using state_handle, obtain the new internal state.
7.3 additional input = the Null string.
7.4 Reset the reseed request_flag.

8 Using the working state, any additional _input and the value of
requested_number of bits, obtain pseudorandom_bits and new values for the
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working_state from the DRBG generate algorithm. If a reseed is required before the
requested bits can be generated, then

8.1 Set the reseed required flag.
82 Gotostep7.

9. Replace the old working_state in the internal state indicated by state _handle with
the new working_state.

10. Return SUCCESS and pseudorandom_bits.

Implementation notes:
If a reseed capability is not available, then steps 6 and 7 may be omitted; replace step 8 by:

Using the working_state in the internal state, any additional_input and the
value of requested_number of bits, obtain pseudorandom_bits and the new
working_state from the DRBG generate algorithm. If a reseed is required
before the requested bits can be generated, then return an indication that the
DRBG instantiation can no longer be used.

9.5 Removing a DRBG Instantiation

A process may need to “release” the internal state for an instantiation. This may be
required, for example, following health testing of the instantiation process. The
uninstantiate function shall:

1. Check the input parameter for validity.
2. Empty the internal state.

The following or an equivalent process shall be used to remove (i.e., uninstantiate) a
DRBG instantiation:

Input from a consuming application:

1. state_handle: A pointer or index that indicates the internal state to be used.
Output to a consuming application:

1. status: The status returned from the function. The status will indicate SUCCESS or
FAILURE.

Other output/information retained within the DRBG boundary:
An empty internal state.
Process:
1. If state_handle indicates an invalid state, then return FAILURE.

2. Empty the internal state indicated by state_handle (e.g., set to zero or Null, as

44



ANS X9.82, Part 3 - DRAFT - December 2004

appropriate).
3. Return SUCCESS.

9.6 Auxilliary Functions

9.6.1 Introduction

Derivation functions are used during DRBG instantiation and reseeding to either derive
internal state values or to distribute entropy throughout a bit string. Two methods are
provided. One method is based on hash functions (see Section 9.6.2), and the other method
is based on block cipher algorithms (see 9.6.3). The block cipher derivation function uses a
a CBC_MAC that is specified in Section 9.6.4.

9.6.2 Derivation Function Using a Hash Function (Hash_df)
The hash-based derivation function hashes an input string and returns the requested

number of bits. Let Hash (...) be the hash function used by the DRBG, and let outlen be its
output length.

The following or an equivalent process shall be used to derive the requested number of
bits.

Input:
1. input_string: The string to be hashed.

2. no_of bits_to_return: The number of bits to be returned by Hash_df. The
maximum length (max_number_of bits) is implementation dependent, but shall be
< (255 x outlen). no_of bits_to_return is represented as a 32-bit integer.

Output:
1. status: The status returned from Hash_df. The status will indicate SUCCESS or
ERROR.

2. requested bits : The result of performing the Hash_df.

Process:
1. Ifno_of bits_to_return> max_number_of bits, then return an ERROR.
2. temp = the Null string.

no of bits to return
3. len= = = - .
outlen

4. counter=an 8 bit binary value representing the integer "1".
5. Fori=1tolendo

5.1 temp = temp || Hash (counter || no_of bits_to_return || input_string).
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5.2 counter = counter + 1.
6. requested bits = Leftmost (no_of bits to_return) of temp.

7. Return SUCCESS and requested_bits.
9.6.3 Derivation Function Using a Block Cipher Algorithm

Let CBC_MAC be the function specified in Section 9.6.4. Let ECB_Encrypt be an
encryption operation in the ECB mode using the selected block cipher algorithm. Let
outlen be its output block length, and let keylen be the key length.

The following or an equivalent process shall be used to derive the requested number of
bits.

Input:

1. input_string: The string to be operated on.

2. no_of bits_to_return: The number of bits to be returned by Block_Cipher_df.
Output:

1. status: The status returned from Block Cipher_df. The status will indicate
SUCCESS or ERROR.

2. requested_bits : The result of performing the Block_Cipher_df.

Process:

1. If (number_of bits_to_return> max_number of bits), then return an ERROR.

2. L=len (input_string)/8. Comment: L is the bit string represention of
the integer resulting from len (input_string)/8.

3. N=number of bits to return/8. ~ Comment :  is the bitsting represention of
the integer resulting from
number_of bits_to_return/$.

Comment: Prepend the string length and the
requested length of the output to the
input_string.

3. S=L||N| input_string || 0x80.
Comment : Pad S with zeros, if necessary.
4. While (len (S) mod outlen) # 0, S=S || 0x00.
Comment : Compute the starting value.
5. temp = the Null string.
6. i=0.
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7. K =Lefimost keylen bits of 0x010203...1F.
8. While len (temp) < keylen + outlen, do

8.1 [y=ij| ooen-ten® Comment: The integer represenation of i is
padded with zeros to outlen bits.

8.2 temp=temp || CBC-MAC (X, (IV || 5)).
83 i=i+1l.

Comment: Compute the requested number of
bits.

9. K=Leftmost keylen bits of temp.
10. X = Next outlen bits of femp.
11. femp = the Null string.
12. While len (femp) < number _of bits_to_return, do
12.1 X=ECB_Encrypt (X, X).
12.2 temp =temp || X.
13. requested_bits = Leltmost number_of bits_to_return of temp.

14.  Return SUCCESS and requested_bits.

9.6.4 CBC-MAC Function

The CBC-MAC function was an Approved method for computing a message
authentication code. Let ECB_Enerypt be an encryption operation in the ECB mode using

the selected block cipher algorithm, Let outlen be the length of the output block of the
block cipher algorithm to be used.

The following or an equivalent process shall be used to derive the requested number of
bits.

Input:
1. Key: The key to be used for the block cipher opeation.
2. data_to MAC: The data to be operated upon.
Output:
1. output_block: The result to be returned from the CBC-MAC operation.
Process:

Omlllen

1. chaining value = Comment: Set the first chaining value to

outlen zeros.
2. n=len (data_to MAC)/outlen.
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Split the data_to. MAC into n blocks of outlen bits each forming block, to blocks.
4, Fori=1tondo
4.1 input_block= chaining value ® block; .
4.2 chaining value = ECB_Encrypt (Key, input_block).
output_block = chaining_value.
6. Return output_block.
9.7 Self-Testing of the DRBG

9.7.1 Discussion

A DRBG shall perform self testing to obtain assurance that the implementation continues
to operate as designed and implemented (health testing). The testing function within a
DRBG boundary shall test all DRBG functions within that boundary. Four function
configurations are possible within a single DRBG boundary:

1. Instantiate, generate, uninstantiate and test functions,

2. Generate and test functions,

3. Reseed, generate and test functions,

4, Instantiate, generate, reseed, uninstantiate and test functions.

Health testing shall be performed prior to the first instantiation of the DRBG, at periodic
intervals and on-demand. Bits generated during health testing shall not be output as
pseudorandom bits.

Implementations may differ on the meaning of periodic testing. For implementations that
have continuous power. periodic testing is performed, for example, every hour or every
day or every time the DRBG is accessed. For implementations that do not have coatinuous
power (e.g.. power is available for only short petriods of time). periodic testing is
performed at power-up.

Two levels of testing are allowed: 1) extensive tests' that are conducted when sufficient
time is available, and 2) minimal tests that are conducted when little time is available for
testing. When testing is performed on-demand, extensive testing shall always be
conducled. For testing performed prior to the first instantialion or periodically. extensive
testing shall be conducted either 1) prior to the first instantiation or 2) shall be conducted
periodically, or 3) shall be conducted in both cases. Table 2 summarizes when extensive
versus minimal testing are performed. All implementations shall conform to one of the
three cases listed in the table.

Table 2 : Health Testing Intervals and Levels of Testing

l Prior to first Periodic On-Demand

o . . ... 48 .
I This is not intended to be as extensive as validation tests; see Section 11.
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instantiation
Case 1 Extensive Extensive Extensive
Case 2 Minimal Extensive Extensive
Case 3 Extensive Minimal Extensive

In general, each of the DRBG functions shall be tested as follows:

1.

Instantiate function: Fixed values for the entropy input shall be used during testing;
the fixed values shall not be used during normal operations.

Extensive testing: Each combination of security_level, prediction_resistance_flag
and DRBG _specific_input_parameters shall be tested (depending on which input
parameters are implemented). Representative values and lengths of the
personalization_string shall be used. In addition, the error handling for each input
parameter and for an error in obtaining the entropy_input shall be tested (c.g., the
entropy_input source is broken).

Minimal testing: A minimal test shall include a single security_level; a single set of
DRBG specific_input_parameters; a single representative value for the
personalization_string (depending on which parameters are implemented); if
prediction resistance is possible, this capability shall also be tested.

Generate function: Known values for the internal state shall be used.

Extensive testing: Each possible combination of requested_security_level and
prediction_resistance_request shall be tested (depending on the input parameters
that are implemented); representative values and lengths for
requested_number_of bits and additional_input (if allowed) shall be used. Testing
shall include setting the reseed _counter to meet or exceed the reseed_interval in
order to check that the implementation is reseeded or that the DRBG is “shut
down”. In addition, the error handling for each input parameter shall be tested.

Minimal testing: A minimal test shall include a single value for the
requested_security level and single representative values for the
requested_number _of bits and additional_input (depending on which parameters
are implemented); if prediction resistance is possible, a request for prediction
resistance shall be tested. In addition, if the requested_security level input
parameter is used, a test of the error handling for an invalid
requested_security_level shall be conducted.

Reseed lunction: Fixed values for the entropy input shall be used during testing;
the fixed values shall not be used during normal operations.

Extensive testing: Internal states with all combinations of security_level and
prediction_resistance_flag shall be tested (depending on the input parameters that
are implemented); representative values of additional_input shall be used if
additional input can be provided. In addition, the error handling for each input
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parameter and for an error in the entropy_input shall be tested (e.g., the
entropy_input source is broken).

Minimal testing: A minimal test shall include the test of a single representative
internal state and a representative additional input (if allowed).

Uninstantiate function: Check the error handling for an invalid state_handle, as a
minimum. If possible, check that the internal state has been "emptied".

Errors occurring during testing shall be perceived as complete DRBG failures. The
condition causing the failure shall be corrected and the DRBG re-instantiated before
requesting pseudorandom bits (also see Section 9.8).

9.7.2

Instantiate, Generate, Uninstantiate and Test Functions within a Single DRBG
Boundary

As specified in Section 8.3, any DRBG boundary that includes an instantiate (unction shall
include uninstantiate, generate and testing functions. The testing function shall:

1.

iz

9.7.3

Select a combination of valid instantitate and generate input parameters and an
appropriate fixed value for the entropy_input. Note that for minimal testing, only
one combination of instantiate and generate parameters would be used.

Request an instantiation using a valid set of instantiate input parameters, obtaining
the (fixed) entropy_input, setting the internal state and returning a state_handle for
the internal state.

Using the state_handle, request the generation of pseudorandom bits using a valid
set of generate input parameters.

Check that the generated pseudorandom bits match expected values.
Repeat from step 1 until all valid combinations have been tested.

Test the error handling for the instantiate, generate and uninstantiate [unctions (as
appropriate, see Section 9.7.1).

Uninstantiate the internal state used for testing.

Generate and Test

As specified in Section 8.3, any DRBG boundary that includes a generate function shall
also include a testing (unction. The testing function shall:

1.

Select a combination of valid generate input parameters to be used and an
appropriate fixed value for the internal state. Note that for minimal testing, only
one combination generate parameters would be used

Using a state_handle for the selected internal state, request the generation of
pseudorandom bits.

Check that the generated pseudorandom bits match expected values.
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Repeat from step 1 until all valid combinations have been tested.

Test the error handling for the generate function (as appropriate, see Section 9.7.1).

Reseed, Generate and Test

As specified in Section 8.3, any DRBG boundary that includes a reseed function shall
include generate and testing functions. The testing function shall:

1.

Select a combination of valid reseed and generate input parameters, an appropriate
fixed value for the internal state, and an appropriate fixed value for the
entropy_input. Note that for minimal testing, only one combination of reseede and
generate parameters would be used

Using a state_handle for the selected internal state, request a reseed of the
instantiation using a valid set of reseed input parameters, obtaining the
entropy_input, and setting the new value of the internal state.

Using the state_handle, request the generation of pseudorandom bits using a valid
set of generate input parameters.

Check that the generated pseudorandom bits match expected values.

5. Repeat from step 1 until all valid combinations have been tested.

9.7.5

Test the error handling for the reseed and generate [unctions (as appropriate, see
Section 9.7.1).

Instantiate, Uninstantiate, Generate, Reseed and Test

The testing function for a DRBG boundary that includes all DRBG functions shall:

1.

Select a combination of valid instantitate, generate and reseed input parameters,
and appropriate fixed values for the entropy_input for both the instantiate and
reseed functions. Note that for minimal testing, only one combination of instantiate,
generate and reseed parameters would be used

Request an instantiation using a valid set of instantiate input parameters, obtaining
the (fixed) entropy_input, setting the internal state and returning a state_handle for
the internal state.

Using the state_handle, request the generation of pseudorandom bits using a valid
set of generate input parameters. If prediction resistance is requested, a fixed value
for teh entropy input shall be used.

Using a state_handle, request a reseed of the instantiation using a valid set of
reseed input parameters, obtaining the (fixed) entropy_input, and setting the new
value of the internal state.

Using the state_handle, request the generation of pseudorandom bits using a valid
set of generate input parametets. If prediction resistance is requested, a fixed value
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for teh entropy input shall be used.
6. Check that the generated pseudorandom bits match expected values.
7. Repeat from step 1 until all valid combinations have been tested.

8. Test the error handling for the instantiate, generate, reseed and uninstantiate
functions (as appropriate, see Section 9.7.1).

9. Uninstantiate the internal state used for testing.

9.8 Error Handling

The expected errors are indicated for each DRBG tunction (see Sections 9.2 - 9.5). The
error handling routine should indicate the type of error. For catastrophic errors (e.g.,
entropy input source failure), the DRBG shall not produce further output until the source
of the error is corrected.

Many errors during normal operation may be caused by an application’s improper DRBG
request. In these cases, the application user is responsible for correcting the request within
the limits of the user’s organizational secutity policy. For example, if a failure indicating
an invalid requested security level is returned, a security level higher than the DRBG or the
DRBG instantiation can support has been requested. The user may reduce the requested
security level if the organization’s security policy allows the information to be protected
using a lower security level, or the user shall use an appropriately instantiated DRBG.

Failures that indicate that the entropy source has failed or that the DRBG failed health
testing (see Sections 9.7 and 11.4) shall be perceived as complete DRBG failures. The
indicated DRBG problem shall be corrected, and the DRBG shall be re-instantiated before
the DRBG can be used to produce pseudorandom bits.
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10 DRBG Algorithm Specifications

Several DRBGs are specified in this Standard. The selection of a DRBG depends on
several factors, including the security level to be supported and what cryptographic
primitives are available. An analysis of the consuming application’s requirements for
random numbers shall be conducted in order to select an appropriate DRBG. A detailed
discussion on DRBG selection is provided in Annex E. Pseudocode examples for each
DRBG are provided in Annex F. Conversion specifications required for the DRBG
implementations (e.g., between integers and bitstrings) are provided in Annex B.

10.1 Deterministic RBGs Based on Hash Functions

10.1.1 Discussion

A hash DRBG is based on a hash function that is non-invertible or one-way. The hash
DRBGs specified in this Standard have been designed to use any Approved hash function
and may be used by applications requiring various security levels, providing that the
appropriate hash function is used and sufficient entropy is obtained for the seed. The
following are provided as DRBGs based on hash functions:

1. The Hash_DRBG specified in Section 10.1.2.
2. The HMAC_DRBG specified in Section 10.1.3.

The maximum security level that could be supported by each hash function when used in a
DRBG is equal to the number of bits in the hash function output block. However, this
Standard supports only four security levels: 112, 128, 192, and 256. Table 3 specifies the
values that shall be used for the function envelopes and DRBG algorithm for each
Approved hash function. Note that since SHA-224 is based on SHA-256, there is no
efficiency benefit for using the smaller hash function; this is also the case for SHA-384 and
SHA-512. The value for seedlen is determined by subtracting the count field and one byte
of padding from the hash function input block length; In the case of SHA-1, SHA-224 and
SHA 256, seedlen =512 - 64 - § = 440; for SHA-384 and SHA-512, seedlen = 1024 - 128 -
8 = 888.

Table 3: Definitions for Hash-Based DRBGs

SHA-1 | SHA-224 | SHA-256 | SHA-384 | SHA-512
Supported security levels 112,128 | 112,128, | 112,128, | 112,128, | 112, 128,
192 192,256 | 192,256 | 192,256
highest_supported_security_level 128 192 256 256 256
Output Block Length (outlen) 160 224 256 384 512
Required minimum entropy for security_level + 64
instantiate
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SHA-1 LSHA-224 | SHA-256 | SHA-384 l SHA-512

Required minimum entropy for
reseed

security_level

Minimum entropy input length
(min_entropy_input_length)

min_entropy

Maximum entropy input length < 2% bits
(max_entropy_input length)

Seed length (seedlen) for 440 440 440 888 888
Hash_DRBG

Maximum personalization string < 2% bits
length

(max_personalization_string_length)

Maximum additional_input length < 2% bits
(max_additional_input_length)

max_number_of bits per_request < 2" bits
Number of requests between < 2%

reseeds (reseed_interval)

10.1.2 Hash_DRBG

10.1.2.1 Discussion

Figure 7 presents the normal operation of the Hash_DRBG. The Hash_DRBG requires
the use of a hash function during the instantiate, reseed and generate functions; the same
hash function shall be used in all functions. The hash function to be used shall meet or
exceed the desired security level of the consuming application.

Implementation validation testing and health testing are discussed in Sections 9.7 and 11.

10.1.2.2 Specifications

10.1.2.2.1 Hash_DRBG Internal State

The internal_state for Hash_DRBG consists of:

1. The working_state:

a. A value (V) that is updated during each call to the DRBG.
b. A constant C that depends on the seed.

c. A counter (reseed_counter) that indicates the number of requests for
pseudorandom bits since new entropy_input was obtained during instantiation

or reseeding.
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2. Administrative information:

a. The security level of the (Opt.)
q e additional resead
DRBG instantiation. V  imput C counter

b. A prediction_resistance_flag _l

that indicates whether or not a
prediction resistance
capability is required for the
DRBG.

additional
input

T
The values of ¥ and C are the critical
values of the internal state upon which v t d
the security of this DRBG depends (i.e., el S
V and C are the “secret values” of the
internal state).
10.1.2.2.2 Instantiation of Hash_DRBG v g
1 —r:—
Notes for the instantiate function: E
The instantiation of Hash_ DRBG
requires a call to the instantiate
function specified in Section 9.2; step
8 of that function calls the instantiate
algorithm in this section. For this Homwimtin
DRBG, no i enoughbits 1, Counter: YV reseed (
i (From 0) ; t
DRBG specific_input_parameters | o { i
are required for the instantiate it i—» Pseudorandom Bits
function specified in Section 9.2 (i.e., T

step 5 should be omitted). [

The values of
highest_supported security_level and Figure 7: Hash_DRBG
min_entropy input_length are
provided in Table 3 of Section
10.1.1. The contents of the internal state are provided in Section 10.1.2.2.1.

The instantiate algorithm:

Let Hash_df be the hash derivation function specified in Section 9.6.2 using the
selected hash function. The output block length (outlen), seed length (seedlen) and
appropriate security_levels for the implemented hash function are provided in Table 3
of Section 10.1.1.

The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG (see step 8 in Section 9.2).

Input:
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1. entropy_input: The string of bits obtained from the entropy input source.

2. personalization_string: The personalization string received from the consuming
application. If a personalization_string will never be used, then steps 1 and 2
may be combined as follows:

seed = Hash_df (entropy_input, seedlen).
Output:

1. working_state: The inital values for ¥, C and reseed_counter (see Section
10.1.2.2.1).

Process:
1. seed_material = entropy_input || personalization_string.

2. seed = Hash_df (seed_material, seedlen).

3. V=seed.

4. C=Hash_df ((0x00 || V), seedlen). Comment: Preceed V with a byte of
Zeroes.

5. reseed_counter =1.

6. Return V, C and reseed_counter as the working_state.
10.1.2.2.3 Reseeding a Hash_DRBG Instantiation

Notes for the reseed tunction:

The reseeding of a Hash_DRBG instantiation requires a call to the reseed precedure
specified in Section 9.3; step 5 of that function calls the reseed algorithm specified in
this section. The values for min_entropy_input_length are provided in Table 3 of
Section 10.1.1.

The reseed algorithm:

Let Hash_df be the hash derivation function specified in Section 9.6.2 using the
selected hash function. The value for seedlen is provided in Table 3 of Section 10.1.1.

The following process or its equivalent shall be used as the reseed algorithm for this
DRBG (see step 5 in Section 9.3):

Input:

1. working_state: The current values for ¥, C and reseed_counter (see Section
10.1.2.2.1).

2. entropy_input: The string of bits obtained from the entropy input source.

3. additional_input: The additional input string received from the consuming
application. If additional_input will never be provided, then step 1 may be
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modified to remove the additional_input.
Output:
1. working state: The new values for ¥V, C and reseed counter.
Process:

1. seed material = 0x01 || V| entropy_input || additional_input.

2. seed = Hash_df (seed_material, seedlen).

3. V=seed.

4. C=Hash_df (0x00 || V), seedlen). Comment: Preceed with a byte of all
Zeros.

5. reseed counter=1.

6. Return ¥, C and reseed_counter as the new working_state.
10.1.2.2.4 Generating Pseudorandom Bits Using Hash_DRBG

Notes for the generate function:

The generation of pseudorandom bits using a Hash_DRBG instantiation requires a call
to the generate function specified in Section 9.4; step 8 of that function calls the
generate algorithm specified in this section. The values for

max_number_of bits_per request and outlen are provided in Table 3 of Section 10.1.1.

The generate