ANS X9.82, Part 3 - DRAFT February 2005

DRAFT X9.82 (Random Number Generation)

Part 3, Deterministic Random Bit Generator
Mechanisms

February 2005

Contribution of the U.S. Federal Government and not subject to copyright

ANS X9.82, Part 3 - DRAFT February 2005

Contents
1 BT Y+ YO PPRP PPN .9
2 L0747 11 10T 41T 1 - O P PR PRRO 9
3 NOIMAIVE FEFEIENCES ..oeeeereiriciriciniites st s st s ae s e s e e s e e e e e e s e e e e s an e e e e e ndr R 10
4 Terms and definitioNs ..o it e e 10
6 General Discussion and Organizationc...ccccameiimimmmninesi e 21
7 DRBG FUNCtional Model......ccoccimiiemiimriniciesiesisiimseni i s esstsasssessasesssnnsevansssassassnnssasssassnssensan 23
7.1 Functional Model..........cccomiiinmmimiinmnsiiirisnnniisssesssisnssasss s s sassss s ssnssasss s e s e ssasnsssss s ssnsessssasenessnnsns 23
7.2 Functional Model COMPONENES.......cccociiemimiiniccsistsesinimti s as s s satsensess rasssnnees 23
7.2 INFOAUCHION...cieecs st tnecsn et st s e s sa e e s e e s can s s s a e e e n e e s n e e e s 23
7.2.2 EDtropy INPUL ...t itns s st sesass e trses e assntssas sanssmn s s e mn e s e smsesnnnas 24
7.2.3 Other INPULS ...cooueirriiirieiimmmisinnmmrsiasssesies s s ssmsss s ensasasssssnies 24
7.2.4 The Internal State.......cccccvmeermnsnnieerrmnsnereeeenneesr s e e e s 24
7.2.5 The Internal State Transition FUNctioncc.ccvcrvrrvmrenirccnnnnerecnnnenne 24
7.2.6 The Output Generation Function 25
7.2.7 SUpport FUNCLIONScemrrrirereiiririineemcsseensssmniss s nnsms e nssnsesserssnees 25
8. DRBG Concepts and General ReqUIrEmMENtS.........ccceccvvsisimmmnsmmmmmmmmmn s rsscsetinesssesanrsssseenssnanmasanes 26
8.1 INrOAUCLION 1ocvnvericirie s ni st e cos e s s r s s a e st e e e e e a e n e a e s e nn e e e e e e e st e 26
8.2 DRBG Functions and a DRBG Instantiation............cccermrrnvcicvinnnnncecensennemmmnn s ssnnsesssnsnessnnnes 26
8.2.1 FUuNCtioNSc.ccoiiiiirsceiinn e 26
8.2.2 DRBG Instantiationsccoiiiccrmmimmieeisee e s 26
8.2.3 Internal States....... 26
8.2.4 Security Strengths Supported by an Instantiationccccceenvnerinnncen. 27
8.3 DRBG BOUNAACIEScovereriieiissinsiasirsnmmminnimnnnissiissssissssosnsssasssasssnsns sansensnnnnas 28
8.4 SEEASciicrectitrint e s s st .30
8.4.1 General DISCUSSION ...t v s e e sn s s s ae s anasans 30
8.4.2 Generation and Handling of Seedsccccvrmmrnccmsinssinseonninnnen e 30
8.5 Other Inputs to the DRBGccccccivcmiiiiicninnnnnmnnis i s ssssssseesssesssnsssssssassansnas 33
8.5.1 DiSCUSSION ..cccevvenrirnmrisimiiiinie i s sannssnens 33
8.5.2 NONCE ...cccevvrmrimmmin i cennncvinseans 33
8.5.3 Personalization Stringcccciiiinvsnnnnmmn e 33
8.5.4 Additional INPULccconiiiemsnisinimmmsensmr s sssessesnsnssssssssanns 34

10

ANS X9.82, Part 3 - DRAFT February 2005

8.6 Prediction Resistance and Backtracking Resistance.......ccccvciirinicinennimeen e e

DRBG FUNCHIONS ...occeeieeiiniriiinisiinasinnionsessssnensnnsssmnnssnnsssns sennmasmnssssasssissanssssnsssnssans

9.1 General DiscuUSSiONcccvrernrevneccarsnnnns

9.2 Instantiating @ DRBG............cccuimiinmenninnisnneninnnnnnncnas

9.3 Reseeding a DRBG Instantiationcoconioninnciinnnne,

9.4 Generating Pseudorandom Bits Using a DRBG.....

9.5 Removing a DRBG Instantiationcccevvecveevemnammnmmisnn e,

9.6 AuXilliary FUNCHIONS ...ccciiiriiriiiicieestnsm s s ss s eemnss st ss s s s ra s s st s s en e e
9.6.1 INtroducCtion......ooceremrimrrnneeecsr s
9.6.2 Derivation Function Using a Hash Function (Hash_df).......cccccemmrminrmronicirvecicencncnnnnninn
9.6.3 Derivation Function Using a Block Cipher Algorithm.................
9.6.4 Block_Cipher_Hash Function..... . [

9.7 Self-Testing of the DRBG...........couvcmiriiimminniniieiinmn s s s s ssssssasessses
L 0 20 TN 01 o311 1] O PP PR
9.7.2 Instantiate, Generate, Uninstantiate and Test FUNCHIONS......cc.covvmi s sisccnnnncnsnnanns
9.7.3 Generate and Test within a Single DRBG Sub-boundary...........cccocuee.
9.7.4 Reseed, Generate and Test within a Single DRBG Sub-boundaryccovmnomnnnncnsiinens
9.7.5 Instantiate, Uninstantiate, Generate, Reseed and Test Functions

9.8 Error HaNAIiNgccvuremiimmnsianecisiosinnmmimminsissinessnsssemmmsnsnnsssssensssssasms s s assmssassesssansasss nnenins

DRBG Algorithm Specifications.

10.1 Deterministic RBGs Based on Hash FUNCLIONScccrvveiesisenmmmnsnmmmmnmsescsncesmmmmmmnnnnssmnnnssasnsasanens

10.1.1 Discussion

10.1.2 Hash_DRBG

10.1.2.1 Discussion

10.1.2.2 SPECHICAIIONS .o..cvverieieseree ettt sas bbb et

10.1.2.2.1
10.1.2.2.2
10.1.2.2.3
10.1.2.2.4

Hash DRBG Internal State...........ccccvcvmriiisinvriivenenseceeieseianennnes
Instantiation of Hash DRBG........cccoooiviviinininniniiininnns
Reseeding a Hash DRBG Instantiation............ccoeinnviienivnenennns
Generating Pseudorandom Bits Using Hash_DRBG

10.1.3 HMAC_DRBG (...} cesreeemerreenesisssssssssssssmssssssssssssssssssssssstsssessasssessssanss

10.1.3.1 Discussion

ANS X9.82, Part 3 - DRAFT February 2005

10.1.3.2 SPECIICALIONS ... uereereeeimieeerereesssemenssressstsiassasssessssssssanssssssasssmssss snsrsssssnrsessseass O 1
10.1.3.2.1 HMAC DRBG Internal State.........c.coercemimsecimssinrecsansssssaninanss 61
10.1.3.2.2 The Update Function (Update).......cvermimmimmmimsucismsmisesassarsesaeseans 62
10.1.3.2.3 Instantiation of HMAC_DRBG.......ccccccvvriinriinrmierisssmsssarisseaceess 63

10.1.3.2.4 Reseeding an HMAC DRBG Instantiation.........ccooevevvninvennns 64

10.1.3.2.5 Generating Pseudorandom Bits Using HMAC_DRBG............... 64
10.2 DRBGs Based on Block Ciphers rerseeeseisanennes 66

10.2.1 DiscusSioncccceveivecnnns 66
10.2.2 CTR_DRBG......ccieeirimrsrrmrcsessssnssssessnssmssss s esassasssassassasns .. 68

10.2.2.1 DiSCUSSION itttz hiniaii it siaviais Gl e s eSSt ss iisiavisavoneiniinnianis B8
10.2.2.2 SPECIfICAtiONSccoviiiiieeee i 68
10.2.2.2.1 CTR_DRBG Internal State.........ccovvvvcirnecniniiriniiiinnieniienrernennnns 68
10.2.2.2.2 The Update Function (Update)cocovimremisnmsircreasnanasresrsiesasses 69
10.2.2.2.3 Instantiation of CTR_DRBGccccourmmrerrenisramsrecsnanssssnssnsasanens 10
10.2.2.2.4 Reseeding a CTR_DRBG Instantiation.........coeeovmvierismsmiersierasnns 71

10.2.2.2.5 Generating Pseudorandom Bits Using CTR_DRBG................... 73
10.2.3 OFB_DRBG ..uuuiianienssnsssssasssnssasssrsssssssnsnsnsssantssntasssssistnssssnsssssesss 0nsessssnsssastossanssssissssssanssantsn 76

10.2.3.1 DiSCUSSION:mumammm i i fanl i s R T e R o R 1 O
10.2.3.2 SPECITICAONS 1v.vvovveeseererceeeseceeesieessissses s ssesmsesseesiesssenssssscasssssesssesssassensesesssssensess 70
10.2.3.2.1 OFB_DRBG Internal State.........cccciciiiiimiansiiiinesnsinsiinnns 10
10.2.3.2.2 The Update Function(Update)ccoccsiirmennsasinsmnisssssssssssasssnsess 17
10.2.3.2.3 Instantiation of OFB_DRBG (...) cereeerrrreninccmisensisisissssssscsases 18
10.2.3.2.4 Reseeding an OFB_DRBG Instantiationccciuveesierieesscaeienienss 78
10.2.3.2.5 Generating Pseudorandom Bits Using OFB_DRBG................... 78

10.3 Deterministic RBGs Based on Number Theoretic Problems...........ooevcriininnnnane 79

10.3.1 DiSCUSSION ceeiiiiiiiiirircnnnmenmrmnniinesssssssarsssnnsmmmansiissssssassssssssrmnssassssmnnnnesssesssssnaanasesssnaassne 79

10.3.2 Dual Elliptic Curve Deterministic RBG (Dual_EC_DRBG) .79

10.3.2.1 DISCUSSION i:uumimninesissismamsstisasssiinnsmsassessasstssiassamiimamsssrssassssesyssesassasasyosssneesanymssonsorss O
10.3.2.2 SPeCfiCatioNSccoviriiiiiiiecir i 82
10.3.2.2.1 Dual EC_DRBG Internal State and Other Specification Details 82

v

ANS X9.82, Part 3 - DRAFT February 2005

10.3.2.2.2 Instantiation of Dual EC DRBGcocoviiiiiiiiiiiniicnicnnie 82
10.3.2.2.3 Reseeding of a Dual EC_DRBG Instantiation.........ccococnveeecnnn. 84
10.3.2.2.4 Generating Pseudorandom Bits Using Dual_EC_DRBG............ 85
10.3.3 Micali-Schnorr Deterministic RBG (MS_DRBG).......occevmnrtisersanniann: 88

10.3.3.1 DISCUSSION .euvuviiiiiieecuiuctitsssssiesesisessses s s ia e cbebeb s sbssbsssbsasse s smsnns s m b ma s bbbt oo ee OO
10.3.3.2 MS_DRBG SPeCHiCatioNS.ccvvimivimremiiesisincsimsmsniommssmimsmmssomsemmmsancssnsansenensssenseess 90

10.3.3.2.1 Internal State for MS DRBGcccovviiniiiniiirinescnicnincns 90

10.3.3.2.2 Selection of the M-S parameters.........ccvveverivirmeienieninnsinains 90

10.3.3.2.3 Instantiation of MS_DRBGcccoveiiiiinirininnennceens 91

10.3.3.2.4 Reseeding of a MS_DRBG Instantiation.........ceveensrnncnnces 93

10.3.3.2.5 Generating Pseudorandom Bits Using MS_DRBG..........c.c........ 94

11 ASSUFANCE ccerciresimmisanrsssissanmnsmnnsssssssasssssnmasars sssenssesirsasssnsasssnns 97
11.1 OVervieW....ccciiierineensnnaesssanennens iraersseraseses s e ae s s an e 97

11.2 Minimal Documentation Requirementsccccccermecccrmnncnirissmmmmeeenesosnnnn 98

11.3 Implementation Validation TeSting......cccocermnrcisnsnmmmismm s s 98

11.4 Operational/Health Testing ... \eeemeeesssressansrrnesasaren T e rsane 98

11.4.1 Overview98

11.4.2 Known Answer Testing...... . 99
Annex A: (Normative) Application-Specific Constants ... 100
A.1 Constants for the Dual_EC_DRBGccccceiiiivmmmmmstecnsammnissmsmnsasss i 100
A.1.1 Curves over Prime Fields ..ot 100
ALT.1.1 CUIVE P-224 ...ttt e s e e s s e e 100

A 11,2 CUIVE P-256 ..o ceieie ettt 101

A1.1.3 CUIVE P-384 ...ttt e e e e e 101

A 114 CUNVE P-B2T oottt it ettt bbb bbb b 102

A.1.2 Curves over Binary Fields.... 102

A 121 CUNVE K233 .ot e 103

A 1. 2.3 CUNVE B-233 ...t 104

A1.2.2 CUIVE K-283 ..ot ieeer e et e s 105

A 124 CUINVE B-2B3 ..ottt b 105

A1.2.5 CUIVE K409 L.oooviiii e ettt as bbb s 106

ANS X9.82, Part 3 - DRAFT February 2005

AL1.2.8 CUIVE B-409..,..oumiisvsnivisisssssissnisssssmassscassiss sussasnssssan sssssssss rusyss sssasasasebourysnsaannmevenns 107

A1.2.7 CUIVE Ko7 ittt bbb e s s s e b e et s b as e sr s s smanaasanerans 108

AL1.2.8 CUNVE B-5T1 Lttt b e be s 109

A.2 Test Moduli for the MS_DRBG (-..).ccccrerrrivirrerrsssssnsssnssmmssssmmssssssassssmssssamsssnsssssssrsossesenssssssssasasansnnsaas 110
A.2.1 The Test Modulus n of Size 2048 Bitscccccervmei it e 111
A.2.2 The Test Modulus n of Size 3072 BitScccevvievrnniennnniirinnnnn s 111
ANNEX B : (Normative) Conversion and Auxilliary Routines ... 12
B.1 Bitstring to an Integercu..cu. . e 112
B.2 Integer to a Bitstring AR s ¥ 112
B.3 Integer to an Octet String.....c..covcveenvvuvecsinammnnniinnmnnnen, . . S 112
B.4 Octet String to an Integer.........cccceeviuennniminnnssisnnnniannn . T TRRNURETRRRRN N NUTERRNRRE 113

Annex C: (Informative) Security Considerations

C.1 The Security of Hash Functions . 114

C.2 Algorithm and Keysize Selection................ 114

C.3 Extracting Bits in the Dual_EC_DRBG (...) 116

C.3.1 Potential Bias Due to Modular Arithmetic for Curves Over Fp...cccocenrnncccnsne 116

C.3.2 Adjusting for the missing bit(s) of entropy in the x coordinates.........c.c.ccieneccncininnncns 116

ANNEX D: (Informative) Functional Requirements........ eeeer e s RR et e ees 120
D.1 General Functional ReqQUIrEMENTSc.cciicirrniiinrisisnnimsmermmmss s ssessssssnessssssssssssansenss 120

D.2 Functional Requirements for Entropy Input LTI R 120

D.3 Functional Requirements for Other Inputs . 120

D.4 Functional Requirements for the Internal State............... - CI R 121

D.5 Functional Requirements for the Internal State Transition Function...........ccccvvviivinninnnnnnncns 121

D.6 Functional Requirements for the Output Generation Function...........cccviiniivninnnnninccennannennn 122

D.7 Functional Requirements for Support FUNCLIONS ... s sneessnesannensaneas 123
ANNEX E: (Informative) DRBG Selection ..o 125
E.1 Choosing a DRBG AIGOrithm..........cccoiimiiinmmnimnineimiisesinsiinss s rasisssasesssnsssnns 125

E.2 DRBGs Based on Hash FURCHIONS..........c..ccccinmmiinmmmnnnirn s rnssessnsssssssssnssnnesssssssssssannsnes 125

E.21 Hash_DRBG . et s s 126

E.2.1.1 Implementation ISSUES..........c.utie e ieiieeieiee e 126

E.2.1.2 Performance Propertiesccooiveriiieiosiisiecicisis s sssssesasssiessssssnsssssessanesnsssins 120

vi

ANS X9.82, Part 3 - DRAFT February 2005

E.2.2 HMAC_DRBGc.ccummiriieereirssssnsiminsess s sassssamsmsnsssssssassssssessssnnmassssnnmasanssassen s snasssnnessssnaaanas 126
E.2.2.1 Implementation PrOPerties.ccuiwiimiiemiimiiimemsiommissmessinsiaseriesnnssasssssnnenes 127

E.2.2.2 Performance Properties........cccooiieeeoiiimiiiiiiiiiii i 127

E.2.3 Summary and Comparison of Hash-Based DRBGS......ccccecunninmmniinninscsnnmsnn. 128

E.2.3.1 Security 128

E.2.3.2 Performance / Implementation Tradeoffsc.ccoieeiicmnincnins [129
E.3 DRBGs Based on Block Cipherscooumvmaminncans
E.3.1 The Two Constructions: CTR and OFB........c.cccvereneni
E.3.2 Choosing a BIock Cipher.........ccccenummnmmrmmsmnsscasssesnsmmsrnsnnssnnssssesan
E.3.3 Conditioned Entropy Sources and the Derivation Function
E.4 DRBGs Based on Hard Problems..........cccconnicccnnnnene
E.4.1 Implementation Considerationscccocovrmrnrrrscne s s 133
E.4.1.1 DUBLEC_DRBG ...ocvvrvermnriocemessessmesiessaessessestsssstasss st sossassssess st essssssesasenaes 133
E4.1.2. MIiCali-SCRNOIT c..coeiiirrciiccnstii i nere st s s rnssne s s s en s s e s s g mm e n e mamn e 133
ANNEX F: (Informative) Example Pseudocode for Each DRBG...........ccvcinmmnnnsinsnsniiiisnins 135
F.1 Preliminaries......ccccoerrurnen. e
F.2 Hash_DRBG Example.........ccccoccmnimmmmnnninaneenscnmmnnmnnansosnnne
F.2.1 DiSCUSSION ..ccccresieetiiimiinisins e ennns
F.2.2 Instantiation of Hash_DRBGcccccemmnisirarennicnnnicnins
F.2.3 Reseeding a Hash_DRBG Instantiationc.ccesmmemmmmsmnsniisssssimisssssmmsssssnssmmnsins 137
Reseed_Hash_DRBG_Instantiation (...):.....cccmnmnninnsecnnmnn st 137
F.2.4 Generating Pseudorandom Bits Using Hash_DRBG....... O 138
F.3 HMAC_DRBG EXaMPIe.......ccirimmmimncrimiiniiissecsimmmannnss ntnessmsssas s ssssssssnsssnsmssnmssssssssan sssnenasnnns 141
F.3.1 DiSCUSSION trecrecrricsiitiinsinsr s smnisanesame s ssstes et i s assas s a e s smn s mn e aa b e s e e e e d s e b e E R R bR R sm s s me b s e R 141
F.3.2 Instantiation of HMAC_DRBGcc.cccocsiummmminisnessssmmnienimmmsenssenessesmmnssasssssnsnsnsnsasasassenss 141
F.3.3 Generating Pseudorandom Bits Using HMAC_DRBG T 143
F.4 CTR_DRBG EXample..........ccccrmssmmmmmmmrmnmsccsonnensacanees
F.4.1 DiSCUSSION ...ovciriiiniveecnsecncsmnesecnnennnanans
F.4.2 The Update FUNCLIONcccrimiiiiiiieisinntnnrm s ese s st ssas st s ssscesesss s msnannans 145
F.4.3 Instantiation of CTR_DRBG . [, .. 145
F.4.4 Reseeding a CTR_DRBG Instantiation.........cccvcommiictinntesssnnenn, 147
F.4.5 Generating Pseudorandom Bits Using CTR_DRBGccccviiiiininiciimniiniesnnnn 148

vii

ANS X9.82, Part 3 - DRAFT February 2005

F.5 OFB_DRBG Example T e e R e A e

F.5.1
F.5.2
F.5.3
F.5.4
F.5.56

F.6.1
F.6.2
F.6.3
F.6.4

F.7 MS_DRBG EXample.....cccccovrmmririecimnsnmsmnssssassnescessnsssaisnsissnns

F.71
F.7.2

Instantiate_algorithm (...):

F.7.3
F.7.4

Discussion PPNt PP .

The Update FUNCHIONccevnveiriiimrniimnrnamssssseesscssssenesscssensenes

Instantiation of OFB_DRBG

Reseeding the OFB_DRBG Instantiation ...

Generating Pseudorandom Bits using OFB_DRBGcccuimiims
F.6 Dual_EC_DRBG Example.. .

DISCUSSION .ccciicicisinsiisisscasmenmmmmmmsssss s sssiiossee

Instantiation of Dual_EC_DRBG......

Reseeding a Dual_EC_DRBG Instantiation

Generating Pseudorandom Bits Using Dual_EC_DRBG....

DiSCUSSION wuvvvinrrmmmirmrrnmirsmrrsssmsmnseemsnesssssnserisssisseans

Instantiation of MS_DRBG

Reseeding an MSDRBG Instantiationcccccnmenniminmnessissssannin

Generating Pseudorandom Bits Using MS_DRBG.............

Generate_algorithm (...):. .

ANNEX G: (Informative) Bibliography.............ccc..

viii

ANS X9.82, Part 3 - DRAFT - February 2005

Random Number Generation
Part 3: Deterministic Random Bit Generator Mechanisms

Contribution of the U.S. Federal Government and not subject to copyright
1 Scope
This part of ANSI X9.82 defines techniques for the generation of random bits using
deterministic methods. This part includes:
1. A model for a deterministic random bit generator,
2. Requirements for deterministic random bit generator mechanisms,

3. Specifications for deterministic random bit generator mechanisms that use hash
functions, block ciphers and number theoretic problems,

4. Implementation issues, and
5. Assurance considerations.

The precise structure, design and development of a random bit generator is outside the
scope of this standard.

This part of ANS X9.82 specifies several diverse DRBG mechanisms. all ol which
provided aceeptable security when this Standard was approved. However. in the event that
new attacks are found on a particular class of mechanisms. a diversity of approved

mechanisms will allow a timely transition to a different class o DRBG mechanism.

Random number generation does not require interoperability between two enlities. e.g..
communicating entities may use different DRBG mechanisms without aftecting their
ibility 1o communicate. Therefore. an entily may choose a single appropriate DRBG
mechanism for their applications: see Annex E for a discussion of DRBG selection.

2 Conformance

An implementation of a deterministic random bit generator (DRBG) may claim
conformance with ANSI X9.82 if it implements the mandatory provisions of Part 1, the
mandatory requirements of one or more of the DRBG mechanisms specified in this part of
the Standard, an entropy source [rom Part 2 and the appropriate mandatory requirements of
Part 4.

Conformance can be assured by a testing laboratory associated with the Cryptographic
Module Validation Program (CMVP) (see http:/csre.nist.gov/cryptval). Although an
implementation may claim conformance with the Standard apart from such testing,
implementation testing through the CMVP is strongly recommended.

9

ANS X9.82, Part 3 - DRAFT — February 2005

3 Normative references

The following referenced documents are indispensable for the application of this
document. For dated references, only the edition cited applies. Nevertheless, parties to
agreements based on this document are encouraged to consider applying the most recent
edition of the referenced documents indicated below. For undated references, the latest
edition of the referenced document (including any amendments) applies.

ANS X9.52-1998, Triple Data Encryption Algorithm Modes of Operation.

ANS X9.62-2000, Public Key Cryptography for the Financial Services Industry - The Elliptic
Curve Digital Signature Algorithm (ECDSA).

ANS X9.63-2000, Public Key Cryptography for the Financial Services Industry - Key
Agreement and Key Transport Using Elliptic Key Cryptography.

ANS X9.82, Part 1-200x, Overview and Basic Principles, Draft.

ANS X9.82, Part 2-200x, Entropy Sources, Draft.

ANS X9.82, Part 4-200x, [} Constructions, Draft.

FIPS 180-2, Secure Hash Standard (SHS), August 2002; ASC X9 Registry 00003.

FIPS 197, Advanced Encryption Standard (AES), November 2001; ASC X9 Registry 00002.

FIPS 198, Keyed-Hash Message Authentication Code (HMAC), March 6, 2002; ASC X9
Registry 00004.

4 Terms and definitions

For the purposes of this part of the Standard, the following terms and definitions apply.
4,

Algorithm

A clearly specified mathematical process for computation; a set of rules that, if followed,
will give a prescribed result.

4.
Approved

An X9 approved resource is one that is either specified as (or within) a current X9
standard. or listed in the X9 Registry.

4.
Backtracking Resistance
The assurance that the output sequence from an RBG remains indistinguishable from an

10

ANS X9.82, Part 3 - DRAFT - February 2005

ideal random sequence even to an attacker who compromises the RBG in the future, up to
the claimed sceurity sirength of the RBG. For example, an RBG that allowed an attacker
to "backtrack" from the current working state to generate prior outputs would not provide
backtracking resistance. The complementary assurance is called Prediction Resistance.

4.
Biased

A bitstring (or number) that is chosen from a sample space is said to be biased if one
bitstring (or number) is mote likely to be chosen than another bitstring (or number).
Contrast with unbiased.

4.
Bitstring

A bitstring is an ordered sequence of 0°s and 1’s. The lefimost bit is the most significant
bit of the string and is the newest bit generated. The rightmost bit is the least significant bit
of the string.

4.
Bitwise Exclusive-or

An operation on two bitstrings of equal length that combines corresponding bits of each
bitstring using an exclusive-or operation.

4.
Block Cipher

A symmetric key cryptographic algorithm that transforms a block of information at a time
using a cryptographic key. For a block cipher algorithm, the length of the input block is the
same as the length of the output block.

4.
Consuming Application

The application that uses random numbers or bits obtained from an Approved random bit
generator

4,
Cryptographic Key (Key)

A parameter that determines the operation of a cryptographic function such as:

1. The transformation from plain text to cipher text and vice versa,

1"

ANS X9.82, Part 3 - DRAFT - February 2005

2. The synchronized generation of keying material,

3. A digital signature computation or validation.

4,
Deterministic Algorithm

An algorithm that, given the same inputs, always produces the same outputs.

4,
Deterministic Random Bit Generator (DRBG)

An RBG that uses a deterministic algorithm to produce a pseudorandom sequence of bits
from a secret initial value called a seed (which contains entropy and possibly a
personalization string) along with other possible inputs. Additional non-deterministic
inputs may allow periodic reseeding. The outputs do not always contain full entropy,
contrast this with an NRBG. A DRBG is often called a Pseudorandom Number (or Bit)
Generator. A DRBG has an assessed security strength and is designed with the goal of
requiring an adversary to do at least the amount of work associated with that security
strength in order to distinguish the output from an ideal random sequence.

4,
DRBG Boundary

A conceptual boundary that is used to explain the operations of'a DRBG and its inleraction
with and relation to other processes.

4.
Entropy

A measure of the disorder, randomness or variability in a closed system. The entropy of X
is a mathematical measure of the amount of information provided by an observation of X.

Also, see min-entropy. Comment [ebb1]: Page: 1
Mike to provide a definition to address Niels'
4 comment.

: = i“-'-\'u'..'; I]‘|]J_

12

ANS X9.82, Part 3 - DRAFT - February 2005

. bk
iption that

Equivalent Process

Two processes are equivalent if, when the same values are input to each process. the same
output is produced.

4,

Exclusive-or

A mathematical operation, symbol @, defined as:

00=0
0®1=1
1®©0=1and
1®1=0.

Equivalent to binary addition without carry.
4,

Full entropy
An m-bit string has full entropy it every m-bit value is equally likely to occur.
4.

Hash Function

A (mathematical) function that maps values from a large (possibly very large) domain into
a smaller range. The function satisfies the following properties:

1. (One-way) It is computationally infeasible to find any input that maps to any pre-
specified output;

2. (Collision free) It is computationally infeasible to find any two distinct inputs that
map to the same output.

4,
Implementation

An implementation of an RBG is a cryptographic device or portion of a cryptographic
device that is the physical embodiment of the RBG design, for example, some code
running on a computing platform. An implementation may be designed to handle more

13

ANS X9.82, Part 3 - DRAFT - February 2005

than one instatniation at a time.
4.
Implementation Testing for Validation

Testing by an independent and accredited party to ensure that an implemention ofa
standard conforms to the specifications of that standard.

4,
Instantiation of an RBG

An instantiation of an RBG is a specific, logically independent, initialized RBG. One
instantiation is distinguished from another by a handle (e.g., an identitying number).

4.
Internal State

The collection of stored information about an RBG instantiation. This can include both
secret and non-secret information.

4,
Internal State Transition Functions

The set of functions that cause a particular internal state in an instantiation to be updated so
that a new internal state is the result.

4,

Key

See Cryptographic Key.

4.

Non-Deterministic Random Bit Generator (Non-deterministic RBG) (NRBG)

An RBG that produces output that is fully dependent on some unpredictable physical
source that produces entropy. Contrast with a DRBG. Other names for non-deterministic
RBGs are True Random Number (or Bit) Generators and, simply, Random Number (or
Bit) Generators.

4.
Operational Testing

Testing within an implementation immediately prior to or during normal operation to
determine that the implementation continues to perform as implemented and optionally
validated.

14

ANS X9.82, Part 3 - DRAFT - February 2005

4.
Output Generation Function

The function in an RBG that outputs bits that appear to be random, that is, conform with
the ideal random distribution.

4.
Personalization String

An optional string of bits that is combined with a secret input and a nonce to produce a
seed.

4.

Prediction Resistance

A compromise of the DRBG internal state has no effect on the Tuture DRBG
auiputs Hea-compronnise V=it | HEe S '_.r'f'-—'f.". L erbbety teles assueanee -t
the-eutpulsequence resultine Bom-states-affer-the-compromise ramains-seeure= That is, an
adversary who is given aceess 10 all of am-subset-afthe output sequence after the

compromise cannot distinguish it from random; if the adversary knows only part of the
future output sequence. aradversarrhe cannot predict any bit of that future output
sequence that he has not already seen. The complementaty assurance is called
Backtracking Resistance.

4,
Pseudorandom

A process or data produced by a process is said to be pseudorandom when the outcome is
deterministic, yet also effectively random as long as the internal action of the process is
hidden from observation. For cryptographic purposes, “effectively” means “within the
limits of the intended cryptographic strength.” Note: Non-cryptographic use of
“pseudorandom™ has less stringent meanings for “effectively.”

4.

Pseudorandom Number Generator

See Deterministic Random Bit Generator.
4.

Public Key

In an asymmetric (public) key cryptosystem, that key of an entity’s key pair that is publicly
known.

16

ANS X9.82, Part 3 - DRAFT - February 2005

4,
Public Key Pair

In an asymmetric (public) key cryposystem, the public key and associated private key.

4,

Random Number

For the purposes of this standard, a value in a set that has an equal probability of being
selected from the total population of possibilities and hence is unpredictable. A random
number is an instance of an unbiased random variable, that is, the output produced by a
uniformly distributed random process.

4,
Random Bit Generator (RBG)

A device or algorithm that outputs a sequence of binary bits that appears to be statistically
independent and unbiased.

4.

Random Number Generator (RNG)

A device or algorithm that can produce a sequence of random numbers that appears to be
from an ideal random distribution.

4.

Reseed

To aquire additional bits with sufficient entropy for the desired security strength.
4.

Security Strength

A number associated with the amount of work (that is, the number of operations) that is
required to break a cryptographic algorithm or system; a security strength is specified in
bits and is a specific value from the set (112, 128, 192, 256). The amount of work needed
is 2 raised to the sccurity strength.

4,
Seed

Noun : A string of bits that is used as input to a Deterministic Random Bit Generator
(DRBG). The seed will determine a portion of the internal state of the DRBG, and its
entropy must be sufficient to support the security strength of the DRBG. [New]

Verb : To aquire bits with sufficient entropy for the desired security strength. These bits
16

ANS X9.82, Part 3 - DRAFT - February 2005

will be used as input to a DRBG to determine a portion of the initial internal state. Contrast
with reseed.

4,
Seed Period

The period of time between initializing a DRBG with one seed and reseeding that DRBG
with another seed.

4.

Sequence

An ordered set of quantities.
4,

Shall

Used to indicate a requirement of this Standard.

4,
Should

Used to indicate a highly desirable feature for a DRBG that is not necessarily required by
this Standard.

4.

Statistically Unique

A value is said to be statistically unique when it has a negligible probability to occur again
in a set of such values. When a random value is required to be statistically unique, it may
be selected either with or without replacement from the sample space of possibilities; this

is in contrast to when a value is required to be unique, as then it must be selected without
replacement.

4,

String

See Sequence.

4,

Supporting Functions

The set of functions in an RBG that are needed for assurance of correct operation but that
do not change the internal state. An example of a Supporting Function is the known

answer tests that are run at startup on a DRBG. Comment [ebb2]: Page: 1
Can this be removed ?

17

ANS X9.82, Part 3 - DRAFT - February 2005

4.
Unbiased

A bitstring (or number) that is chosen from a sample space is said to be unbiased if all
potential bitstrings (or numbers) have the same probability of being chosen. Contrast with
biased.

4,
Unpredictable

In the context of random bit generation, an output bit is unpredictable if an adversary has
only a negligible advantage (that is, essentially not much better than chance) in predicting
it correctly.

4.
Working State

A subset of the internal state that is used by a DRBG to produce pseudorandom bits at a
given point in time. The working state (and thus, the internal state) is updated to the next
state prior to producing another string of psecudorandom bits.

18

ANS X9.82, Part 3 - DRAFT - February 2005

5 Symbols and abbreviated terms

The following abbreviations are used in this document:

Abbreviation Meaning
AES Advanced Encryption Standard.

ANS American National Standard

ANSI American National Standards Institute.
ASC Accredited Standards Committee

DRBG Deterministic Random Bit Generator.
ECDLP Elliptic Curve Discrete Logarithm Problem.
FIPS Federal Information Processing Standard.
HMAC Keyed-Hash Message Authentication Code.
NRBG Non-deterministic Random Bit Generator.
RBG Random Bit Generator.

TDEA Triple Data Encryption Algorithm.

The following symbols are used in this document.

Symbol Meaning

+ Addition

X1 Ceiling: the smallest integer > X. For example, [5| =5, and
[5.3]=6.

XoY Bitwise exclusive-or (also bitwise addition mod 2) of two
bitstrings X and Y of the same length.

XY Concatenation of two strings X and Y. X and Y are either both
bitstrings, or both octet strings.

ged (x,y) The greatest common divisor of the integers x and y.

len (a) The length in bits of string a.

x mod n The unique remainder » (where 0 < r < n-1) when integer x is

divided by n. For example, 23 mod 7 = 2.

19

ANS X9.82, Part 3 - DRAFT — February 2006

Used in a figure to illustrate a "switch" between sources of
input.

{as, ..a} The internal state of the DRBG at a point in time. The types
and number of the a; depends on the specific DRBG.
0 A string of x zero bits.

20

ANS X9.82, Part 3 - DRAFT = February 2005

6 General Discussion and Organization

Part 1 of this Standard (Random Number Generation, Part 1: Overview and Basic
Principles) describes several cryptographic applications for random numbers, specifies the
characteristics for random numbers and random number generators, and provides
mathematical and cryptographic background information on the concept of randomness.
Random bit generators are used for the generation of random numbers. Part 1 specifies
requirements for random bit generators that are applicable to both non-deterministic
random bit generators (NRBGs) and deterministic random bit generators (DRBGs). In
addition, Part 1 also introduces a general functional model and a conceptual cryptographic
Application Programming Interface (API) for random bit generators.

Part 2 of this Standard (Entropy Sources) discusses entropy sources used by random bit
generators. In the case of DRBGs, the entropy sources are required to seed and resced the
DRBG.

Part 4 of this Standard (Random Bit Generator Constructions) provides guidance on
combining components to construct random bit generators.

This part of the Standard (Random Number Generation, Part 3: Deterministic Random Bit
Generator Mechanisms) specifies Approved DRBG mechanisms. A DRBG mechanism is
an RBG component that utilizes an algorithm to produce a sequence of bits from an initial
internal state that is determined by an input that is commonly known as a seed. Because of
the deterministic nature of the process, a DRBG mechanism is said to produce
“pseudorandom” rather than random bits, i.e., the string of bits produced by a DRBG
mechanism is predictable and can be reconstructed, given knowledge of the algorithm, the
seed and any other input information. However, if the input is kept secret, and the
algorithm is well designed, the bitstrings will appear to be random. A process or data

produced by a process is said to be pseudorandom when the outcome is deterministic. [comment [ebb3]: Page: 1
; Mike to provide alternate text ?

The seed for a DRBG mechanism requires that sufficient entropy be provided during
instantiation and reseeding (see Parts 2 and 4 of this Standard). While a DRBG mechanism
may conform to this part of the Standard (i.e., Part 3), an implementation cannot achieve
the goals specified in Part 1 unless the entropy input source is included as specified in Part
4, That is, the security of an RBG that uses a DRBG mechanism is a system
implementation issue; both the DRBG mechanism and its entropy input source must be
considered.

Throughout the remainder of this document, the term “DRBG mechanism” has been
shortened to “DRBG”.

The remaining sections of this part of the Standard are organized as follows:

— Section 7 provides a functional model for a DRBG that particularizes the functional
model of Part 1.

— Section 8 provides DRBG concepts and general requirements.

21

ANS X9.82, Part 3 - DRAFT - February 2005

— Section 9 specifies the DRBG functions that will be used to access the DRBG
algorithms specified in Section 10.

— Section 10 specifies Approved DRBG algorithms.

— Section 11 addresses assurance issues for DRBGs.
This part of the Standard also includes the following normative annexes:

— Annex A specifies additional DRBG-specific information.

— Annex B provides conversion routines.

— Annex C discusses security considerations for selecting and implementing DRBGs.
The following informative annexes are also included:

— Annex D discusses the functional requirements specified in Part 1 as they are
fulfilled by this part of the Standard.

— Annex E provides a discussion on DRBG selection.

— Annex F provides example pseudocode for each DRBG.

— Annex G provides a bibliography for related informational material.

22

ANS X9.82, Part 3 - DRAFT — February 2005

7 DRBG Functional Model
7.1 Functional Model

Part 1 of this Standard provides a general functional model for random bit generators
(RBGs). Figure 1 particularizes the functional model of Part 1 for DRBGs.

Parsomaliration
Siring Newe Enropy Bput Additicmal Fnguk
¥ E
Irdenal Siade Irdamal Siade
Tramsiiiom Fumnvclion: Transiiom Puyuntion
Instardiate Reseed
&
3 3 ¥
Indemnal Stabe
Endemnal Stae Transition Funcdion
Genarade
3 Eoner
Owlput Generafion - Tets | Stue
Funlion

Rehn Pseundorandom Cunipant

Figure 1: DRBG Model

7.2 Functional Model Components
7.2.1 Introduction

Part 1 of this Standard provides general functional requirements for random bit generators.
These requirements are discussed briefly in this section. Annex D provides a discussion of
how each functional requirement in Part 1 is fulfilled by the requirements for DRBGs in
this part of the Standard.

23

ANS X9.82, Part 3 - DRAFT - February 2005

7.2.2 Entropy Input

The entropy input, as discussed in Part 1. is provided to a DRBG for the seed (see Section
8.4.2). The entropy input and the seed shall be kept secret. The secrecy of this information
provides the basis for the security of the DRBG. At a minimum, the entropy input shall
provide the requested amount of entropy for a DRBG. Appropriate sources for the entropy
input are discussed in Parts 2 and 4 of this Standard.

The DRBGs, a5 specified in this part of the Standard and [urther discussed in Part 4. allow
for some bias in the entropy input. Whenever a bitstring containing entropy is required by
the DRBG, a request is made that indicates the minimum amount of entropy to be returned;
the request may obtain entopy input bits from a buffer containing readily available entopy
bits or may cause entropy input bits to be created. The request may be fulfilled by a
bitsting that is equal to or greater in length to the requested entropy. The DRBG expects
that the returned bitstring will contain at least the amount of entropy requested. Additional
entropy beyond the amount requested is not required, but is desirable.

7.2.3 Other Inputs

Other information may be obtained by a DRBG as input. This information may or may not
be required to be kept secret by a consuming application; however, the security of the
DRBG itself does not rely on the secrecy of this information. The information should be
checked for validity when possible.

During DRBG instantiation. a nonce is required and is combined with the entropy input Lo
create the initial DRBG seed. Criteria for the nonce are provided in Section 8.5.2.

‘Ihis Standard recommends the insertion of a personalization string during DRBG
instantiation; when used. the personalization string is combined with the entropy bits and a
nonce to create the initial DRBG seed. The personalization string shall be unique for all
instantiations of the same DRBG type (e.g., Hash DRBG). See Section 8.5.3 for additional
discussion on personalization strings.

Additional input may also be provided during reseeding and when pseudorandom bits are
requested. See Section 8.5.+4 for a discussion of this input.

7.2.4 The Internal State

The internal state is the memory of the DRBG and consists of all of the parameters,
variables and other stored values that the DRBG uses or acts upon. The internal state
contains both administrative data and data that is acted upon and/or modified during the
generation of pseudorandom bits (i.e., the working state). The contents of the internal state
is dependent on the specific DRBG and includes all information that is required to produce
the pseudorandom bits from one request to the next.

7.2.5 The Internal State Transition Function
An internal state transition function handles the DRBG s internal state, The DRBGs in this

24

ANS X9.82, Part 3 - DRAFT - February 2005

Standard have four separate state transition functions:

1. During the initial instantiation of the DRBG, a seed is created and is used to
determine the initial internal state.

2. Each request for pseudorandom bits produces the requested bits using the current
internal state and determines a new internal state that is used for the next request of
bits.

3. When an application determines that reseeding of the DRBG is required, a reseed
function creates a new seed and determines a new internal state [or the next request
for pseudorandom bits.

4. When a consuming application or a testing process no longer requires an
instantiation, the internal state is released.

7.2.6 The Output Generation Function

The output generation function of a DRBG produces pseudorandom bits that are a function
of the internal state of the DRBG and any input that is introduced while the internal state
transition function is operating. These pseuodorandom output bits are deterministic with
respect to the input information. Any formatting of the output bits prior to output is
determined by a particular implementation.

7.2.7 Support Functions

The support functions for a DRBG are concerned with assessing and reacting to the health
of the DRBG. The health tests are discussed in Sections 9.7 and 11.4.

25

ANS X9.82, Part 3 - DRAFT - February 2005

8. DRBG Concepts and General Requirements
8.1 Introduction

This section provides concepts and general requirements for the implementation and use of
a DRBG. The DRBG [unctions are explained and requirements for an implementation are
provided.

8.2 DRBG Functions and a DRBG Instantiation
8.2.1 Functions

A DRBG requires instantiate, uninstantiate, generate, and testing functions. A DRBG may
also include a reseed function. A DRBG shall be instantiated prior to the generation of
output by the DRBG. The instantiate function initializes the internal state using a seed; the
uninstantiate lunction zeroizes (i.e., erases) the internal state. The generate function
generates pseudorandom bits upon request. The reseed function modifies the internal state
using a new seed. The testing function is intended to test the continued “health” of the
DRBG.

8.2.2 DRBG Instantiations

A DRBG may be used to obtain pseudorandom bits for different purposes (e.g., DSA
private keys and AES keys) and should be separately instantiated for each purpose.
However, it may not always be practical for an application to use multiple instantiations.
For example, if an application cannot support multiple instantiations (e.g., because of
memory restrictions), then the same instantiation could be associated with generating both
RSA keys and AES keys.

A DRBG is instantiated

using a seed and may be
reseeded; when reseeded, Instantiate: Initialize with seed;
the seed shall be
different than the seed
used for instantiation.
Each seed defines a seed
period for the DRBG
instantiation; an X
instantiation consists of | (Opt) Reseed with seed ; |
one or more seed periods
that begin when a new ; Seed periods 3 ton
seed is acquired (see
Figure 2).

] Seed period 1

A 4
| (Opi.) Reseed with seed ; |

Seed period 2

8.2.3 Internal States

During instantiation, an Figure 2: DRBG Instantiation

26

ANS X9.82, Part 3 - DRAFT - February 2005

initial internal state is derived from the seed. The internal state for an instantiation
includes:

[. Working state:

a. One or more values that are derived from the seed and become part of the
internal state: these values must usually remain secret, and

b. A count of the number of requests since the last seed or reseed.
2. Administrative information (e.g.. sccurity strength provided by the DRBG).

The internal state shall be protected at least as well as the intended use of the
pseudorandom output bits requested by the consuming application. Each DRBG
instantiation shall have its own internal state. The internal state for one DRBG
instantiation shall not be used as the internal state for a different instantiation.

A DRBG transitions between internal states when the generator is requested to provide
new pseudorandom bits. A DRBG may also be implemented to transition in response to
internal or external events (e.g., system interrupts) or to transition continuously (e.g., -
whenever time is available to run the generator).

A DRBG implementation may be designed to handle multiple instantiations. Sufficient
space must be available for the expected number of instantiations, i.e., sufficient memory
must be available to store the internal state associated with each instantiation.

8.2.4 Security Strengths Supported by an Instantiation

The DRBGs specified in this Standard support four sccurity strengths: 112, 128, 192 or
256 bits. The aclual security strength supported by a given instantiation depends on the
DRBG implementation and on the amount of entropy provided to the instantiate function.
Note that the security strength actually supported by a particular instantiation may be less
than the maximum sccurity strength possible for that DRBG implementation (see Table [).
For example, a DRBG that is designed to support a maximum security strength of 256 bits
may be instantiated to support only a 128-bit sccurity sirength.

Table 1: Possible Instantiated Security Strengths

Maximum Designed 112 128 192 256
Security Strength

Possible Instantiated 112 112, 128 112,128,192 | 112, 128, 192,
Security Strengths 256

A security strength for the instantiation is requested by a consuming application during
instantiation. and the instantiale function obtains the appropriate amount of entropy for the
requested securily strength. Any security strength may be requested. but the DRBG will
only be instantiated to one of the four security strengths above. depending on the DRBG
implementation. A requested security strength that is below the 112-bit security strength or

27

ANS X9.82, Part 3 - DRAFT - February 2005

is between two of the four security strengths will be instantiated to the next highest level
(e.g.. a requested security strength of 96 bits will result in an instantiation at the 112-bit
security strength).

Following instantiation, requests can be made to the generate function for pseudorandom
bits. For each generate request, a security strength to be provided tor the bits is requested.
Any security strength can be requested up to the security strength of the instantiation. e.g..
an instantiation could be instantiated at the 128-bit security strength. but a request for
pseudorandom bits could indicate that a lesser security strength is actually required for the
bits to be generated. The generate function checks that the requested security strength does
not exceed the security strength for the instantiation. Assuming that the request is valid. the
requested number of bits is returned.

When an instantiation is used for multiple purposes, the minimum entropy requirement for
each purpose must be considered. The DRBG needs to be instantiated for the highest
security strength required. For example, if one purpose requires a security strength of 112
bits, and another purpose requires a sccurity strength of 256 bits, then the DRBG shall be
instantiated to support the 256-bit security strength,

8.3 DRBG Boundaries

As a convenience, this Standard uses the notion of'a “DRBG boundary™ to explain the
operations of a DRBG and its interaction with and relation to other processes: a DRBG
boundary contains all DRBG functions and internal states required for a DRBG. A DRBG
boundary is entered via the DRBG's public interfaces. which are made available to
consuming applications.

Within a DRBG boundary,

1. The DRBG internal state and the operation of the DRBG [unctions shall only be
affected according to the DRBG specification.

2. The DRBG internal state shall exist solely within the DRBG boundary. The
internal state shall be contained within the DRBG boundary and shall not be
accessed by non-DRBG functions.

3. Information about secret parts of the DRBG internal state and intermediate values
in computations involving these secret parts shall not affect any information that
leaves the DRBG boundary, except as specified for the DRBG pseudorandom bit
outputs.

Each DRBG includes one or more cryptographic primitives (e.g., a hash function). Other
applications may use the same cryptographic primitive as long as the DRBG’s internal
state and the DRBG (unctions are not affected.

A DRBG’s functions may be contained within a single device. or may be distributed across
multiple deyices (see Figures 3 and 4). Figure 3 depicts a DRBG for which all functions
are contained within the same deyice. [n this case. there is a single DRBG boundary.

28

ANS X9.82, Part 3 - DRAFT - February 2005

Figure 4 provides an example of

DRBG functions that are distributed DRAG Bevndary
across multiple devices. [n this case.
each device has a DRBG sub- Tnstantlots ——yf dnstansin
boundary that contains the DRBG - ! — Sed
functions implemented on that device. Resed _ || Fipsoed
and the boundary around the entire Em—— action
DRBG consists of the aggregation of =
sub-boundaries providing the DRBG RequestBis ||| oorerae
functionality. I'he use of distibuted
DRBG functions may be convenient tost i==hl' et i
for restricted environments (e.g.. DRBG ==+, Functian %
smart card applications) in which the)

. ~ Uninslantiate
primary use of the DRBG does not DREG || Unistantai
require repeated use of the instantiate

or reseed functions.

Each DRBG boundary orsub- Figure 3: DRBG Functions within a Single
boundary shall contain a test function Device

to test the “health” of other DRBG

functions within that boundary. Although the sced is shown in the figures as originating
outside the DRBG boundary, it may originate from within the boundary. Part 4 discusses
the construction of an RBG that includes both the DRBG and the cntropy input for the
seed,

Seed
e |
| |
| |
| A |
I) gy L I
: "F' i n:\ e Proiecied Sk |

5 : i

H une Funciion Ceneraie Test !
: Funciion | | Function |
|

| Test Cenerals |
: Function Function :
| |
: DRBG Sub-Boundary (Instantiaie) DRB G Sub-Boundary (Ceneraie) I
e e e e e e e e e e e i e i e s e S e e s e e e e e e e -

DRBG Boundary

Figure 4: Distributed DRBG Functions

29

ANS X9.82, Part 3 - DRAFT - February 2005

Distributed DRBG boundaries shall be subject to the following:

1. Any DRBG boundary or sub-boundary that includes an instantiate function shall
include uninstantiate, generate and test functions to facilitate health testing. Note
that in this case. the generate function may not be the “primary” generate function
for the DRBG. For example, for a smart card application, it may be necessary to
distribute the DRBG functions so that the smart card contains only the generate
function, along with its associated testing function. In this case, the instantiate
function may reside on the system that initializes the smart card; the generate and
uninstantiate functions are used on this system during the testing of the instantiate
function.

2. A DRBG boundary or sub-boundary containing a generate [unction shall include a
test function.

3. A DRBG boundary or sub-boundary that contains a reseed function shall include
generate and test functions to facilitate health testing. Note that as in case 1. the
generate function may not be the “primary” generate function for the DRBG.

When DRBG functions are distributed, appropriate mechanisms shall be used to protect
the confidentiality and integrity of the internal state or parts of the internal state that are
transferred between the distributed DRBG sub-boundaries. The confidentiality and
integrity mechanisms and sccurity strength shall be consistent with the data to be protected
by the DRBG’s consuming application (see SP 800-57).

8.4 Seeds

8.4.1 General Discussion

When a DRBG is used to generate pseudorandom bits, a seed shall be acquired prior to the
generation of output bits by the DRBG. The seed is used to instantiate the DRBG and
determine the initial internal state that is used when calling the DRBG to obtain the first
output bits.

Reseeding is a means of recovering the secrecy of the output of the DRBG if a seed or the
internal state becomes known. Periodic reseeding is a good countermeasure to the potential
threat that the seeds and DRBG output become compromised. [n some implementations
(e.g.. smartcards). an adequate reseeding process may not be possible. [n these cases, the
best policy might be to replace the DRBG. obtaining a new seed in the process (c.g., oblain
a new smart card).

8.4.2 Generation and Handling of Seeds

The seed and its use by a DRBG shall be generated and handled as follows:

1. Seed construction for instantiation: The seed material used to determine a seed for
instantiation consists of one Lo three components: entropy input. a nonce and a
personalization string. Entropy input shall always be used in the construction of a
seed: requirements for the entropy input are discussed in item 3. Except as noted

30

ANS X9.82, Part 3 - DRAFT - February 2005

below. a nonce shall also be used;

requirements for the nonce are

. ; ; S5 Thi Optional
discussed in Section 8.5.2. This EIntropy Nonce B -
Standard also recommends the nput String
inclusion of a personalization
string: requirements for the
personalization string are Opr.

discussed in Section 8.5.3. df,
Depending on the DRBG and the
source of the entropy input, a

5 0 . : . Seed
derivation function is required to

derive a seed from the seed
material. Figure 5 depicts the Figure 5: Seed Construction for Instantiation
general seed construction process

for instantiation.

When full entropy input is readily available, the DRBGs based on block cipher
algorithms (see Section 10.2) may be implemented without a derivation function.
When implemented in this manner. a nonce is not used as shown in Figure 5. Note.
however, that the personalization string could contain a nonce. if desired.

The goal of this seed construction is to ensure that the seed is statistically unique.

2. Seed construction for reseeding:
The seed material for reseeding -
consists of three components: one I"St:;‘ea' A?jﬁti't‘i’::;l
of the current values from the Value Input Tnput
internal state', new entropy input
and additional input. The internal
state value and the entropy input +
are required; requirements for the Odprt.
entropy input are discussed in
item 3. The additional input is
optional; requirements for the Seed
additional input are discussed in

Entropy

Section 8.5.4. As initem 1. a

derivation function may be Figure 6: Seed Construction for Reseeding
required for reseeding. See item |

for further guidance.

3. Entropy requirements for the entropy input: The entropy input for the seed shall
contain sufficient entropy for the desired level of security. Additional entropy may
be provided in the nonce or the optional personalization string during instantiation.
orin the additional input during reseeding, but this is not required. Entropy

i . . 1
I See each DRBG specifation for the value that is useg,

w

ANS X9.82, Part 3 - DRAFT - February 2005

contained in the seed components shall be distributed across the seed (e.g., by an
appropriate derivation function).

The entropy input shall have entropy that is equal to or greater than the security
strength of the instantiation. Note that the use of more entropy than the minimum
value will offer a security “cushion”. This may be useful if the assessment of the
entropy provided in the entropy input is incorrect. Having more entropy than the
assessed amount is acceptable; having less entropy than the assessed amount could be
fatal to security. The presence of more entropy than is required, especially during the
instantiatiation, will provide a higher level of assurance than the minimum required
entropy.

Seed length: The minimum length of the seed depends on the DRBG and the
security strength required by the consuming application. See Section 10.

Entropy input source: The source of the entropy input may be an Approved NRBG,
an Approved DRBG (or chain of Approved DRBGs) that is seeded by an Approved
NRBG, or another source whose entropy characteristics are known. Further
discussion about the entropy input is provided in Part 4 of this Standard.

Entropy input and seed privacy: The entropy input and the resulting seed shall be
handled in a manner that is consistent with the security required for the data
protected by the consuming application. For example, if the DRBG is used to
generate keys, then the entropy inputs and seeds used to generate the keys shall be
treated at least as well as the key.

Reseeding: Generating too many outputs from a seed (and other input information)
may provide sufficient information for successfully predicting future outputs unless
prediction resistance is provided (see Section 8.6). Periodic reseeding will reduce
security risks, reducing the likelihood of a compromise of the data that is protected
by cryptographic mechanisms that use the DRBG.

Seeds shall have a finite seedlife (i.e., the length of the seed period); the maximum
seedlife is dependent on the DRBG used. Reseeding is accomplished by 1) an
explicit reseeding of the DRBG by the application, or 2) by the generate function
when prediction resistance is requested (see Section 8.6) or the limit of the seedlife
is reached. An alternative to reseeding is to create an entirely new instantiation.

Reseeding of the DRBG shall be performed in accordance with the specification
for the given DRBG. The DRBG reseed specifications within this Standard are
designed to produce a new seed that is determined by both the old seed and newly-
obtained entropy input that will support the desired security strength.

Seed use: DRBGs may be used to generate both secret and public information. In
either case, the sced and the entropy input from which the seed is derived shall be
kept secret. A single instantiation of a DRBG should not be used to generate both
secret and public values. However, cost and risk factors must be taken into account
when determining whether different instantiations for secret and public values can

32

ANS X9.82, Part 3 - DRAFT - February 2005

be accommodated.

A seed that is used to initialize one instantiation of a DRBG shall not be intentially
used to reseed the same instantiation or used as a seed for another DRBG
instantiation.

A DRBG shall not provide output until a seed is available, and the internal state
has been initialized.

Seed separation: Seeds used by DRBGs shall not be used for other purposes (e.g.,
domain parameter or prime number generation).

8.5 Other Inputs to the DRBG

8.5.1 Discussion

Other input may be provided during DRBG instantiation, pseudorandom bit generation and
reseeding. This input may contain entropy, but this is not required. During instantiation, a
personalization string may be provided and combined with entropy input to
derive a seed (see Section 8.4, item 1). When pseudorandom bits are requested and when
reseeding is performed, additional input may be provided

Depending on the method for acquiring the input, the exact value of the input may or may
not be known to the user or application. For example, the input could be derived directly
from values entered by the user or application, or the input could be derived from
information introduced by the user or application (e.g., from timing statistics based on key
strokes), or the input could be the output of another DRBG or an NRBG.

8.5.3 Personalization String

During instantiation, a personalization string (see

Section 8.4). The intent of a personalization string is to differentiate this DRBG

instantiation from all the others that might ever appear. The personalization string should

be set to some that is as unique as may include secret information.

The value of any secret information contained in the personalization string be no
33

ANS X9.82, Part 3 - DRAFT - February 2005

greater than the claimed strength of the DRBG, as the DRBG's cryptographic mechanisms
(specifically, its backtracking resistance and the entropy provided in the entropy input) will
protect this information from disclosure. Good choices for the personalization string
contents include:

1. Device serial numbers,

Public keys,

User identification,

Private keys,

PINs and passwords,

Secret per-module or per-device values,
Timestamps,

Network addresses,

S L

Special secret key values for this specific DRBG instantiation,

)

. Application identifiers.

. Protocol version identitiers.
12. Random numbers, and
I3. Nonces.

8.5.4 Additional Input

During each request for bits from a DRBG and during reseeding, the insertion of additional
input is allowed. This input is optional and may be either secret or publicly known; its
value is arbitrary, although its length may be restricted, depending on the implementation
and the DRBG. The use of additional input may be a means of providing more entropy for
the DRBG internal state that will increase assurance that the entropy requirements are met.
If the additional input is kept secret and has sufficient entropy, the input can provide more
assurance when recovering from the compromise of the seed or one or more DRBG
internal states.

8.6 Prediction Resistance and Backtracking Resistance

Figure 7 depicts the sequence of DRBG internal states that result from a given seed. Some
subset of bits from each internal state are used to generate pseudorandom bits upon request
by a user. The following discussions will use the figure to explain backtracking and
prediction resistance. Suppose that a compromise occurs at Stafe,, where State, contains
both secret and public information.

34

ANS X9.82, Part 3 - DRAFT - February 2005

Seed —» State, | State,| * * ° State, | |State, ; || State, State,,||State,o| * * *

Figure 7: Sequence of DRBG States

Backtracking Resistance: Backiracking resistance means that a compromise of the DRBG
internal state has no elfect on the security of prior ¢ outuutx That is, an adversary who is
given access to all ol anr—sithset-ai-that prior output sequence cannot distinguish it from
random; if the adversary knows only part of the prior output, he cannot determine any bit
of that prior output sequence that theadwersas-he has not already seen. la-otherwordse

IR PR R T e JH!.\'—HH—':“HC‘TJW TR (PERPPUPTTYITI L PMPCY AFTTLHETRY FETEYFF S
¥ i ;

For example, suppose that an adversary knows State., - anculso k
from-Stete to-State . Backtracking resistance means that:

a. ‘The output bits from State) to State,.; cannot be distingui _ :\ ormatted Bullets and Numberma_]
+—b. The pr:or internal state values themselves (Stafe; to Sicie,) cannot be L_F°rma“ed . == __J
recovered, given knowledge of the secret information in State,,-Sterte,-aneits | Formatted =

sutpt-bits-ennfotbe-determined-Hom-knowdedue-oirafe e Shaie eannet-be
'-'lmt;iree-t—r_-ﬁﬂ—"—}—.%i adeition—sineethe-autput-bitsfrom-Steie - to-Shife . appedr-to-he
randem-the-output-bis-toe-Sfaie,_-eannot-be-predivtedom-the cutput-bitsel

Sedded larSieife o | .| Comment [ebb4]: Page: 35
' ’ This makes the definition very convoluted.

Backtracking resistance can be provided by :

1. Ensuring that the internal state transition function of a DRBG is a one-way
function, or

2. Using the DRBG to generate an additional new DRGB working state before
responding to the next request for bits. F'or examplc. when bits are generated, the
working state is updated; unless the update process uses a one-way function.
backiracking resistance is not yet provided. By performing an additional update of
the internal state belore another request for bits is serviced. backtracking resistance
is provided (i.c.. the working state is updated twice between requests).

All DRBGs in this Standard have been designed to provide backtracking resistance.

Prediction Resistance: Prediction resistance means thal 4 compromise 0[the DRB(J
internal stute has no elfect on l].L secutity of future DRB(tpul

S -4 uuf-,- S it pe '-f*ﬁ”r—-‘ {-I----—»hk‘-' gsstipeethat 1+«\Hal+u+l SeeRee-Festitin

] okes : - That is, an adversary who is given access

35

ANS X9.82, Part 3 - DRAFT - February 2005

to aill o arysubsetofthe output sequence after the compromise cannot distinguish it from
random; if the adversary knows only part of the future output sequence, wt-udseisarzhe
cannot predict any bit of that future output sequence that he has not already seen. tn-other

WS o C PN E-freis-spe S R iON-FAC - NECHPIR - G-t ire- ot i

For example, suppose that an adversary knows State: and-alse-knows the outputbitstrom
State .oto-Stete.,~Prediction resistance means that:

I'he output bits from Stare,. | and forward cannot be distinguished from an ideal SE- ;_-F_;matted: Bullets and Numbering]
random bitstring by the adversary. [Formatted |

[

b—b. The future internal state values themselves (Stare, . and forward) canmot he (Formatted
predicted, given knowledge of State.

determined-fron-fmovwledge-ai-Stare Ae—Shte, cannot-be—hacked-up=i-ia

canno-be-predicted-ran-the-autpob-bilsol S ene

ard-Hes-output-BHs-cannetbe-predicted-Hram-knosndedoeobS i

eannot-be datermined fom-the-outputbits- oSt

Prediction resistance can be provided only by ensuring that a DRBG is effectively reseeded
between DRBG requests. That is, an amount of entropy that is sufficient to support the
security strength of the DRBG (i.e., an amount that is at least equal to the sccurity strength)
must be added to the DRBG in a way that ensures that knowledge of the currentprevious
DRBG internal state does not allow an adversary any useful knowledge about future
DRBG internal states or outputs.

36

9
9.1

ANS X9.82, Part 3 - DRAFT - February 2005

DRBG Functions

General Discussion

The DRBG functions in this Standard are specified as an algorithm and an “envelope™ of
pseudocode around that algorithm. The pscudocode in the envelopes check the input
parameters. obtain input not provided by the input parameters. access the appropriate
DRBG algorithm and handle the internal state. A function need not be implemented using
such envelopes. but the function shall have equivalent functionality.

[n the specifications of this Standard, the following pseudo-functions are used. These
functions are not specifically defined in this Standard. but have the following meaning:

9.2

Get_entropy: A function that is used to obtain entropy input. The function call is
(status. entropy _input) = Get_entropy (security strength. min_entropy input length.
max entropy input_length), which requests a string ot bits (entropy_inpur) with at
least security strength bits of entropy. The length for the string shall be equal to or
greater than min entfropy input length bits, less than or equal to

max_entropy _input length bils. A status code is also returned from the function,

Block Encrypt: A basic encryption operation that uses the selected block cipher
algorithm. The function call is output_block = Block_Encrypt (Key. input block). For
TDEA. the basic encryption operation is called the forward cipher operation; for AES.
the basic encryption operation is called the cipher operation. The basic encryption
operation is equivalent to an encryption operation on a single block of data using the
ECB mode.

Instantiating a DRBG

A DRBG shall be instantiated prior to the generation of pseudorandom bits. The instantiate
function shall:

1. Check the validity of the input parameters,

2. Determine the security strength for the DRBG instantiation,

3. Determine any DRBG specific parameters (e.g., elliptic curve domain parameters),
4. Obtain entropy input with entropy sufficient to support the security strength,

5. Obtain the nonce.

6. Determine the initial internal state using the instantiate algorithm, and

7. Return a state_handle for the internal state to the consuming application.

Let working_state be the working state for the particular DRBG, and let
min_entropy_input length. max entropy_input length. and
highest supported security sirength be defined for each DRBG (see Section 10).

37

ANS X9.82, Part 3 - DRAFT - February 2005

The following or an equivalent process shall be used to instantiate a DRBG.
Input from a consuming application:

1. requested instantiation security strength: A requested sccurity strength for the
instantiation. DRBG implementations that support only one securily strength do not
require this parameter; however, any application using the DRBG must be aware of
this limitation.

2. prediction resistance flag: Indicates whether or not prediction resistance may be
required by the consuming application during one or more requests for
pseudorandom bits. DRBGs that are implemented to always or never support
prediction resistance do not require this parameter. However, the user of a
consuming application must determine whether or not prediction resistance may be
required by the application before electing to use such a DRBG implementation. If
the prediction_resistance flag is not needed (i.e., because prediction resistance is
always or never performed), then the input parameter and step 2 may be omitted,
and the prediction resistance flag may be omitted from the internal state in step
Ll

3. personalization_string: An optional input that provides personalization information
(see Sections 8.4 and 8.5.3). The maximum length of the personalization string
(max_personalization_string length) is implementation dependent, but shall be <
2% bits. If a personalization string will never be used, then the input parameter and
step 3 may be omitted, and step 9 may be modified to remove the personalization
string.

5. DRBG specific_input_parameters : Any additional parameters that are allowed for
a specific DRBG (see Section 10). The use of the DRBG-specific input parameters
is discussed for the DRBG instantiate algorithms. If a DRBG or a DRBG
implementation does not use these parameters, then step 5 may be omitted.

Required information not provided by the consuming application:

Comment: This input shall not be provided
by the consuming application as an input
parameter during the instantiate request.

1. entropy input: Input bits containing entropy. The maximum length of the
entropy _input is implementation dependent, but shall be < 2 bits.

2. nonce: A nonce as specified in Section 8.3.2. Note that in certain circumstances. the
nonce will not be used. In this case. step 8 shall be omitted. and the nonce
parameter shall be remoyved from step 9.

Output to a consuming application:

1. status: The status returned from the instantiate function. The status will indicate
SUCCESS or an ERROR. If an ERROR is indicated, either no state_handle or an

38

ANS X9.82, Part 3 - DRAFT - February 2005

invalid state_handle shall be returned. A consuming application should check the
status to determine that the DRBG has been correctly instantiated.

2. state_handle: Used to identify the internal state for this instantiation in subsequent
calls to the generate, reseed, uninstantiate and test functions.

Information retained within the DRBG boundary:

The internal state for the DRBG, including the working_state, sccurity strength, and
prediction_resistance_flag (see Section 10).

Process:
Comment: Check the validity of the input
parameters.

1. If requested insiantiation security strength> highest_supported_secuity
strength, then return an ERROR.

2. If prediction resistance_flag is set, and prediction resistance is not supported, then
return an ERROR.

3. Ifthe length of the personalization_string > max_personalization_string length,
return an ERROR.

4. Set securitny sirength to the nearest sccurity strength greater than or equal to
requested_instantiation_securify_strength.

Comment: The following step is required by
the Dual EC_DRBG when multiple curves
are available (see Section 10.3.2.2.2), and by
the MS_DRBG (see Section 10.3.3.2.3).
Otherwise, the step should be omitted.

5. Using security strength and DRBG _specific_input_parameters (if available), select
appropriate DRBG parameters.

Comment: Determine the minimum entropy
requirement and obtain the entropy input.

6. (status. entropy_inpur) = Get_entropy (security_strength.
min_entropy input_length. maximum_entropy input_length).

7. [fan ERROR is returned in step 6. return an ERROR.

8. Obtain a nonce. Comment: This step shall include any
appropriate checks on the acceptability of the
nonce. See Section 8.5.2.

Comment: Call the appropriate instantiate
algorithm in Section 10 to obtain values for
the initial working state using the
entropy_input. the nonce. the

39

ANS X9.82, Part 3 - DRAFT - February 2005

personalization string (if provided) and other
parameters (as required).

9. working state ~ Instantiate_algorithm (entropy input. nonce.
personalization string, other DRBG parameters).

Comment: Set up the initial internal state.
10.

jo

Get a state_handle that will be used to locate the internal state for this instantiation.
If an unused internal state cannot be found, return an ERROR.

11. Set the internal state indicated by state handle to the initial values: working_state,
security strength, and prediction resistance flag, as appropriate.

12. Return SUCCESS and state handle.
9.3 Reseeding a DRBG Instantiation
The reseeding of an instantiation is not required, but is recommended whenever an

application and implementation are able to perform this process. Reseeding will insert
additional entropy into the generation of psecudorandom bits. Reseeding may be:

e explicitly requested by an application,
e performed when prediction resistance is requested by an application,

o triggered by the generate tfunction when a predetermined number of pseudorandom
outputs have been produced (i.e., at the end of the seedlife), or

e {riggered by external events (e.g., whenever sufficient entropy is available).

If a reseed capability is not available, a new DRBG instantiation may be created (see
Section 9.2).

The reseed (unction shall:
1. Check the validity of the input parameters,
2. Obtain entropy input with entropy sufficient to support the security strength, and

Using the reseed algorithm, combine the current working state with the new
entropy input and any additional input to determine the new working state.

Let working_state be the working state for the particular DRBG, and let
min_entropy input_length and max entropy input lengrh be defined for each DRBG (see
Section 10).

The following or an equivalent process shall be used to reseed the DRBG instantiation.
Input from a consuming application:

1) state_handle: A pointer or index that indicates the internal state to be reseeded.
This value was returned from the instantiate function specified in Section 9.2.

40

ANS X9.82, Part 3 - DRAFT - February 2006

2) additional input: An optional input. The maximum length of the additional input
(max_additional input length) is implementation dependent, but shall be < 2%
bits. If additional _input will never be used, then the input parameter and step 2
may be omitted, and step 5 may be modified to remove the additional _input.

Required information not provided by the consuming application:
Comment: This input shall not be provided

by the consuming application in the input
parameters.
1. entropy_input: Input bits containing entropy. The maximum length of the
entropy input is implementation dependent, but shall be < 2% bits.

2. Internal state values required by the DRBG for reseeding, including the
working state, security sirength and prediction resistance_flag, as appropriate.
Output to a consuming application:

1. status: The status returned from the [unction. The stafus will indicate SUCCESS or
an ERROR.

Information retained within the DRBG boundary:
Replaced internal state values (i.e., the working state).
Process:

Comment: Get the current internal state and
check the input parameters.

1. Using state_handle, obtain the current internal state. If state_handle indicates an
invalid or unused internal state, return an ERROR.

2. Ifthe length of the additional input > max additional _input_length, return an
ERROR.

Comment: Determine the minimum entropy
requirement and obtain the entropy input.

3. (status. entropy input) = Get_entropy (security_strength,
min entropy input length. mux entropy input length).

4. 1fan ERROR is returned in step 4. return an ERROR.

Comment: Get the new working state using
the appropriate reseed algorithm in Section
(0.

w

(status. working stare) — Reseed_algorithm (working state. entropy input.
additional _input).

Comment: Save the new values of the internal

41

ANS X9.82, Part 3 - DRAFT - February 2005

state.

6. Replace the working state in the internal state indicated by state_handle with the
new values.

7. Return SUCCESS.
9.4 Generating Pseudorandom Bits Using a DRBG

This function is used to generate pseudorandom bits after instantiation or reseeding (see
Sections 9.2 and 9.3). The generate function shall:

1. Check the validity of the input parameters,

2. If the instantiation needs additional entropy because the end of the seedlife has
been reached or prediction resistance is required, call the reseed function to obtain
sufficient entropy.

3. Generate the requested pseudorandom bits using the generate algorithm.

4, Update the working state.

5. Return the requested pseudorandom bits to the consuming appication.
Let outlen be the length of the output block of the cryptographic primitive (see Section 10).
The following or an equivalent process shall be used to generate pseudorandom bits.

Input from a consuming application:
1. state_handle: A pointer or index that indicates the internal state to be used.

2. requested number of bits: The number of pseudorandom bits to be returned from
the generate function. The max_number of bits_per_request is defined for each
DRBG in Section 10.

3. requested security strength: The security strength to be associated with the
requested pseudorandom bits. DRBG implementations that support only one
security strength do not require this parameter; however. any application using the
DRBG must be aware of this limitation.

4, prediction_resistance request: Indicates whether or not prediction resistance is to
be provided prior to the generation of the requested pseudorandom bits to be
generated. DRBGs that are implemented to always or never support prediction
resistance do not require this parameter. However, the user of a consuming
application must determine whether or not prediction resistance may be required by
the application before electing to use such a DRBG implementation. If the
prediction resistance_request parameter is not needed, then the input parameter
and step 5 may be omitted ; in addition. step 7 may be moditied to remove the
check for the prediction resistance request

5. additional_input: An optional input. The maximum length of the additional input
(max_additional input length) is implementation dependent, but shall be < 2%
42

ANS X9.82, Part 3 - DRAFT - February 2005

bits. If additional _input will never be used, then the input parameter, step 4, st
and the additional _input input parameter in step 8 may be omitted.

Required information not provided by the consuming application:

1. Internal state values required for generation, including the working state,
‘ 1 and prediction resistance flag, as appropriate.

Output to a consuming application:

1. status: The status returned from the [un . The status will indicate SUCCESS
or an ERROR.

2. pseudorandom_bits: The pseudorandom bits that were requested.
Information retained within the DRBG boundary:

Replaced internal state values (i.e., the working_state).
Process:

Comment Get the internal state and check the
input parameters.

1. Using state_handle, obtain the current internal state for the instantiation. If
state_handle indicates an invalid or unused internal state, then return an ERROR.

2. If requested number of bits > max number_of bits_per_request, then return an
ERROR.

3. If requested secu ’ > the i rength indicated in the internal
state, then return an ERROR.

4. Ifthe length of the additional input > max_additional_input_length, then return an
ERROR.

5. If prediction_resistance_request is set, and prediction_resistance_flag is not set,
then return an ERROR.

6. Reset the reseed required flag.

Comment: Get the requested pseudorandom
bits.

7. If reseed required flag is set, or if prediction_resistance_request is set, then

7.1 . Reseed
RROR. etum ERROR.
Using state_handle, obtain the new internal state.
7.4 additional input = the Null string.
43

ANS X9.82, Part 3 - DRAFT - February 2005

7.5 Reset the reseed required flag.

.1 Set the reseed required flag.
.2 Gotostep 7.

. Replace the old working state in the internal state indicated by state_handle with
the new working state.

11. Return SUCCESS and pseudorandom_bits.

Implementation notes:

If a reseed capability is not available, then steps 6 and 7 may be omitted; replace step 8 by:

Using the working_state in the internal state, any additional input and the value of
requested_number_of bits, obtain pseudorandom_bits and the new working state from
the DRBG generate algorithm. If a reseed is required before the requested bits can be
generated, then return an indication that the DRBG instantiation can no longer be used.

9.5 Removing a DRBG Instantiation

This may be required, for
example, following health testing of the instantiation . The uninstantiate
shall:

1. Check the input parameter for validity.
2. Empty the internal state.

The following or an equivalent process shall be used to remove (i.e., uninstantiate) a
DRBG instantiation:

Input from a consuming application:
1. state handle: A pointer or index that indicates the internal state to be -
Output to a consuming application:

1. status: The status returned from the . The status will indicate SUCCESS or
FAILURE.

retained within the DRBG boundary:

44

ANS X9.82, Part 3 - DRAFT - February 2005

An empty internal state.

Process:
1. If state handle indicates an invalid state, then return FAILURE.
2. Erase the contents of the internal state indicated by state_handle.
3. Return SUCCESS.

9.6 Auxilliary Functions

9.6.1 Introduction

Derivation functions are internal functions that are used during DRBG instantiation and
reseeding to either derive internal state values or to distribute entropy throughout a
bitstring. Two methods are provided. One method is based on hash functions (see Section
9.6.2), and the other method is based on block cipher algorithms (see 9.6.3). The block
cipher derivation function uses a a CBC_MAC that is specified in Section 9.6.4.

9.6.2 Derivation Function Using a Hash Function (Hash_df)
The hash-based derivation function hashes an input string and returns the requested

number of bits. Let Hash (...) be the hash function used by the DRBG, and let outlen be its
output length.

The following or an equivalent process shall be used to derive the requested number of
bits.

Input:
1. input string: The string to be hashed.

2. no_of bits_to return: The number of bits to be returned by Hash_df. The
maximum length (max_number of bits) is implementation dependent, but shall be
< (255 x outlen). no_of bits_to return is represented as a 32-bit integer.

Output:
1. status: The status returned from Hash_df. The status will indicate SUCCESS or
ERROR.

2. requested_bits : The result of performing the Hash_df.

Process:
1. Ifno_of bits to return> max_number _of bits, then return an ERROR.
2. temp = the Null string.

no of bits to return
3. len= 2 0F e]
outlen

45

ANS X9.82, Part 3 - DRAFT - February 2005

4. counter = a 32-bit binary value representing the integer "1".
5. Fori=1tolendo
5.1 temp = temp || Hash (counter || no_of bits_to_return || input_string).
5.2 counter = counter + 1.
6. requested bits = Leftmost (no_of bits to return) of temp.
7. Return SUCCESS and requested _bits.
9.6.3 Derivation Function Using a Block Cipher Algorithm
Let Block_Cipher_Hash be the function specified in Section 9.6.4. Let Let outlen be its
output block length, and let keylen be the key length.

The following or an equivalent process shall be used to derive the requested number of
bits.

Input:
1. input_string: The string to be operated on. This string shall be a multiple of § bits.

2. no_of bits_to_return: The number of bits to be returned by Block_Cipher_df. The
maximum length (max _number_of bits) is 512 bits for the currently approved block cipher
algorithms.

Output:
1. status: The status returned from Block_Cipher_df. The status will indicate
SUCCESS or ERROR.

2. requested bits : The result of performing the Block_Cipher_df.

Process:

1. If (number of bits_to return> max number of bits), then return an ERROR.

N

L = len (input_string)/8. Comment: L is the bitstring represention of
the integer resulting from len (input_string)/8.
L shall be represented as a 32-bit integer.

3. N=number of bits to return/8. ~ Comment : N is the bitsting represention of
the integer resulting from
number_of bits_to_return/8. N shall be
represented as a 32-bit integer.

Comment: Prepend the string length and the
requested length of the output to the
input_string.

3. S=L||N| input_string || 0x80.
46

ANS X9.82, Part 3 - DRAFT - February 2005

Comment : Pad S with zeros, if necessary.
4. While (len (S) mod outlen) = 0, S= S || 0x00.

Comment : Compute the starting value.
5. temp = the Null string.

6. i=0. Comment : / shall be represented as a 32-bit
integer.

7. K= Leftmost keylen bits of 0x010203...1F.
8. While len (temp) < keylen + outlen, do

8.1 [v=i| Q" hen-len® Comment: The integer represenation of / is
padded with zeros to outlen bits.

8.2 temp = temp || Block_Cipher_Hash (K, (IV || S)).
83 i=i+1.

Comment: Compute the requested number of
bits.

9. K= Lefimost keylen bits of temp.
10. X = Next outlen bits of temp.
11. femp = the Null string.
12. While len (femp) < number of bits to_return, do
12.1 X = Block_Encrypt (X, X).
12.2 temp = temp || X.
13. requested bits = Leftmost number_of bits_to_return of temp.

14. Return SUCCESS and requested _bits.
9.6.4 Block_Cipher_Hash Function

Let outlen be the length of the output block of the block cipher algorithm to be used.

The following or an equivalent process shall be used to derive the requested number of
bits.

Input:
1. Key: The key to be used for the block cipher opeation.

2. data to_hash: The data to be operated upon. Note that the length of data_to_hash
must be a multiple of outlen. This is guanteed by steps 4 and 8.1 in Section 9.6.3.

Output:

47

ANS X9.82, Part 3 - DRAFT - February 2005

1. output block: The result to be returned from the Block_Cipher_Hash operation.
Process:

Qotten Comment: Set the first chaining value to outlen zeros.

1. chaining value =
2. n=len (data to_hash)loutlen.
3. Split the data_to_/iash into n blocks of outlen bits each forming block, to block,.
4. Fori=1tondo
4.1 input_block = chaining value ® block; .
4.2 chaining value = Block_Encrypt (Key, input_block).
5. output block = chaining_value.
6. Return output_block.
9.7 Self-Testing of the DRBG

9.7.1 Discussion

A DRBG shall perform self testing to obtain assurance that the implementation continues
to operate as designed and implemented (health testing). The testing function within a
DRBG boundary (or sub-boundary) shall test all DRBG functions within that boundary.
Four function configurations are possible within a single DRBG boundary or sub-
boundary:

1. Instantiate, generate, uninstantiate and test functions,

2. Generate and test functions,

3. Reseed, generate and test functions,

4. Instantiate, generate, reseed, uninstantiate and test functions.

DRBG health testing shall be performed prior to the first instantiation of the DRBG, at
periodic intervals and on-demand. Bits generated during health testing shall not be output
as pseudorandom bits.

Implementations may ditfer on the meaning of periodic testing. For implementations that
have continuous power. periodic testing is performed. for example. every hour or every
day or every time the DRBG is accessed. For implementations that do not have continuous
power (e.g.. power is available for only short periods of time). periodic testing is
pertormed at power-up.

Two levels of DRBG health testing are allowed: 1) extensive tests? that are conducted
when sufficient time is available, and 2) minimal tests that are conducted when little time
is available for testing. F'able 2 summarizes when extensive versus minimal DRBG health
testing is performed. All DRBG implementations shall conform to one of the three cases
listed in the table. When testing is performed on-demand. extensive lesting shall always be

.. . . 48 o .
2 This is not intended to be as extensive as implementaion validation tests; see Section 11

ANS X9.82, Part 3 - DRAFT - February 2005

conducted. I'or testing performed prior to the first instantiation or periodically. extensive

testing

shall be conducted either 1) prior to the first instantiation (case 1), or 2) shall be

conducted periodically (case 2), or 3) shall be conducted both prior to the first instantiation
and periodically (case 3). In all cases. a contiguration for a function shall not be used
operationally until it has been tested.

Table 1 : Health Testing Intervals and Levels of Testing

Prior to first Periodic On-Demand
instantiation
Case 1 Extensive Minimal Extensive
Case 2 Minimal Extensive [Extensive
Case 3 Extensive Extensive Lxtensive

In general, each of the DRBG [unctions shall be tested as follows:

1.

Instantiate [unction: Fixed values for the entropy input shall be used during testing;
the fixed values shall not be used during normal operations.

Extensive testing: Each possible contiguration of security strength,
prediction_resistance flag and DRBG specific_input_parameters shall be tested
(depending on which input parameters are implemented). Representative values and
lengths of the personalization string shall be used. In addition, the error handling
for each input parameter and for an error in obtaining the entropy_input shall be
tested (e.g., the entropy input source is broken).

Minimal testing: A minimal test shall include a single securify strength; a single
set of DRBG _specific input parameters; a single representative value for the
personalization_string (depending on which parameters are implemented); if
prediction resistance is possible, this capability shall also be tested. If the
combination of security stength and DRBG specific input parameters passes the
health (est. then this combination of parameters may be used operationally by the
instantiate function. [f minimal testing is performed prior to the first instantiation.
the error handling for cach input parameter and for an error in obtaining the
entropy input shall be tested (e.g.. the entropy input soucce is broken).

Generate [unction: Known values for the internal state shall be used.

Extensive testing: Each possible configuration of requested security strength and
prediction_resistance request shall be tested (depending on the input parameters
that are implemented); representative values and lengths for

requested number of bits and additional _input (if allowed) shall be used. Testing
shall include setting the reseed _counter to meet or exceed the reseed interval in
order to check that the implementation is reseeded or that the DRBG is “shut
down”. In addition, the error handling for each input parameter shall be tested.

Minimal testing: A minimal test shall include a single value for the

49

ANS X9.82, Part 3 - DRAFT - February 2005

requested security sirength and single representative values for the

requested number of bits and additional_input (depending on which parameters
are implemented); if the prediction resistance request input parameter is available,
a request for prediction resistance shall be tested. [the combination of

requested security stength and prediction resistance request (if appropriale)
passes the health test. then this combination of parameters may be used
operationally by the generate function. If minimal testing is performed prior to the
first instantiation. and it the requested security strength input parameter is used. a
test of the error handling for an invalid requested security strength shall be
conducted.

Reseed [unction: Fixed values for the entropy input shall be used during testing;
the fixed values shall not be used during normal operations.

Extensive testing: Internal states with all possible configurations of

security strength and prediction resistance_flag shall be tested (depending on the
input parameters that are implemented); representative values of additional _input
shall be used if additional input can be provided. In addition, the error handling for
each input parameter and for an error in the entropy_input shall be tested (e.g., the
entropy_input source is broken).

Minimal testing: A minimal test shall include the test of a single security strength
and prediction resistance flag (il appropriate). and a representative
additional_input (if allowed). 11 the combination of security _stength and
prediction resistance flag (it appropriate) passes the health test. then this
combination of parameters may be used operationally by the reseed function. If
minimal testing is performed prior to the first instantiation. the error handiing for
each input parameter and for an ervor in the entropy input shall be tested (e.g.. the
entropy input source is broken).

Uninstantiate function: Check the error handling for an invalid state_handle, as a
minimum. If possible, check that the internal state has been "emptied".

Errors occurring during testing shall be perceived as complete DRBG failures. The
condition causing the failure shall be corrected and the DRBG re-instantiated before
requesting pseudorandom bits (also see Section 9.8).

Instantiate, Generate, Uninstantiate and Test Functions

As specified in Section 8.3, any DRBG boundary (or sub-boundary) that includes an
instantiate tunction shall also include uninstantiate, generate and testing functions within
that boundary. Note that this configuration does not include a reseed function. The testing
function shall:

Select a combination of valid instantitate and generate input parameters and an
appropriate fixed value for the entropy_input. Note that for minimal testing, only
one combination of instantiate and generate parameters would be used.

50

ANS X9.82, Part 3 - DRAFT - February 2005

2. Request an instantiation using a valid set of instantiate input parameters, obtaining
the (fixed) entropy_input, setting the internal state and returning a state_handle for
the internal state.

3. Using the state_handle, request the generation of pseudorandom bits using a valid
set of generate input parameters.

4. Check that the generated pseudorandom bits match expected values. |1 the
generated and expected values do not match. the test fails: abort the test.

Repeat from step 1 until all valid combinations have been tested.

6. Test the error handling for the instantiate, generate and uninstantiate functions (as
appropriate, see Section 9.7.1). If any of the [unctions do not handle error handling
correctly, abort the test.

7. Uninstantiate the internal state used for testing.

[f the test was not aborted, each combination of input parameters that was selected in step
I may be used operationally.
9.7.3 Generate and Test within a Single DRBG Sub-boundary

As specified in Section 8.3, any DRBG boundary ol sub-boundary that includes a generate
[unction shall also include a testing function. Note that this configuration does not
comprise a complete DRBG. since the instantiate and uninstantiate functions are not
present. The testing tunction shall:

1. Select a combination of valid generate input parameters to be used and an
appropriate fixed value for the internal state. Note that for minimal testing, only
one combination generate parameters would be used

2. Using a state handle for the selected internal state, request the generation of
pseudorandom bits.

3. Check that the generated pseudorandom bits match expected values. I the
generated and expected values do not match. the test fails: abort the test.

4. Repeat from step 1 until all valid combinations have been tested.

Test the error handling for the generate [unction (as appropriate, see Section 9.7.1).
1fany ol the functions do not handle error handling correctly. abort the (est.

If the test was not aborted. each combination of input parameters that was selected in step
I may be used operationally.

9.7.4 Reseed, Generate and Test within a Single DREG Sub-boundary

As specified in Section 8.3, any DRBG boundary or sub-boundary that includes a reseed
[unction shall include generate and testing functions. Note that this conliguration does not
comprise a complete DRBG. since the instantiate and uninstantiate functions are not

51

ANS X9.82, Part 3 - DRAFT - February 2005

present. The testing function shall:

1.

Select a combination of valid reseed and generate input parameters, an appropriate
fixed value for the internal state, and an appropriate fixed value for the
entropy_input. Note that for minimal testing, only one combination of reseede and
generate parameters would be used

Using a state_handle for the selected internal state, request a reseed of the
instantiation using a valid set of reseed input parameters, obtaining the
entropy_input, and setting the new value of the internal state.

Using the state_handle, request the generation of pseudorandom bits using a valid
set of generate input parameters.

Check that the generated pseudorandom bits match expected values. [the
generated and expected values do not match, the test fails; abort the test.

Repeat from step 1 until all valid combinations have been tested.

Test the error handling for the reseed and generate tunctions (as appropriate, see
Section 9.7.1). Il any of the functions do not handle ervor handling correctly. abort
the test.

If the test was not aborted. each combination of input parameters that was selected in step
1 may be used operationally.

9.7.5

Instantiate, Uninstantiate, Generate, Reseed and Test Functions

This configuration contains all DRBG functions within the same device. The testing
function for a DRBG boundary that includes all DRBG functions shall:

1.

Select a combination of valid instantitate, generate and reseed input parameters,
and appropriate fixed values for the entropy_input for both the instantiate and
reseed furnctions. Note that for minimal testing, only one combination of instantiate,
generate and reseed parameters would be used

Request an instantiation using a valid set of instantiate input parameters, obtaining
the (fixed) entropy_input, setting the internal state and returning a state_handle for
the internal state.

Using the state_handle, request the generation of pseudorandom bits using a valid
set of generate input parameters. If prediction resistance is requested, a fixed value
for the entropy input shall be used.

Using a state_handle, request a reseed of the instantiation using a valid set of
reseed input parameters, obtaining the (fixed) entropy input, and setting the new
value of the internal state.

Using the state_handle, request the generation of pseudorandom bits using a valid
set of generate input parameters. If prediction resistance is requested, a fixed value
for the entropy input shall be used.

52

ANS X9.82, Part 3 - DRAFT - February 2005

6. Check that the generated pseudorandom bits match expected values. [the
generated and expected values do not match. the test lails; abort the test.

7. Repeat from step 1 until all valid combinations have been tested.

8. Test the error handling for the instantiate, generate, reseed and uninstantiate
functions (as appropriate, see Section 9.7.1). [[any of the functions do not handle
error handling correctly. abort the test.

9. Uninstantiate the internal state used for testing.

[[the test was not aborted. each combination of input parameters that was selected in step
I may be used operationally.

9.8 Error Handling

The expected errors are indicated for each DRBG function (see Sections 9.2 - 9.5) and for
the derivation functions in Section 9.6. The error handling routines should indicate the
type of error. For catastrophic errors (e.g., entropy input source failure), the DRBG shall
not produce further output until the source of the etror is corrected.

Many errors during normal operation may be caused by an application’s improper DRBG
request. In these cases, the application user is responsible for correcting the request within
the limits of the user’s organizational security policy. For example, if a failure indicating
an invalid requested sccurity strength is returned, a security strength higher than the DRBG
or the DRBG instantiation can support has been requested. The user may reduce the
requested sccurity strength if the organization’s security policy allows the information to
be protected using a lower sccurity strength, or the user shall use an appropriately
instantiated DRBG.

Failures that indicate that the entropy source has failed or that the DRBG failed health
testing (see Sections 9.7 and 11.4) shall be handled as complete DRBG failures. The
indicated DRBG problem shall be corrected, and the DRBG shall be re-instantiated before
the DRBG can be used to produce pseudorandom bits.

53

Hash_DRBG ANS X9.82, Part 3 - DRAFT - January 2005

10 DRBG Algorithm Specifications

Several DRBGs are specified in this Standard. The selection of a DRBG depends on
several factors, including the security strength to be supported and what cryptographic
primitives are available. An analysis of the consuming application’s requirements for
random numbers shall be conducted in order to select an appropriate DRBG. A detailed
discussion on DRBG selection is provided in Annex E. Pseudocode examples for each
DRBG are provided in Annex F. Conversion specifications required for the DRBG
implementations (e.g., between integers and bitstrings) are provided in Annex B.

10.1 Deterministic RBGs Based on Hash Functions
10.1.1 Discussion

A hash DRBG is based on a hash function that is non-invertible or one-way. The hash
DRBG:s specified in this Standard have been designed to use any Approved hash function
and may be used by applications requiring various sccurity strengths, providing that the
appropriate hash function is used and sufficient entropy is obtained for the seed. The
following are provided as DRBGs based on hash functions:

1. The Hash_DRBG specified in Section 10.1.2.
2. The HMAC_DRBG specified in Section 10.1.3.

The maximum sccurity strength that could be supported by each hash function when used
in a DRBG is equal to the number of bits in the hash function output block. However, this
Standard supports only four sccurity strengths: 112, 128, 192, and 256. Table 3 specifies
the values that shall be used for the (unction envelopes and DRBG algorithm for each
Approved hash function. The specifications in this Standard assume that a single
appropriate hash [unction will be selected forn DRBG implementation: Le., a DRBG
implementation will not contain multiple hash functions from which to choosc during
instantiation.

Table 3: Definitions for Hash-Based DRBGs

SHA-1 | SHA-224 | SHA-256 | SHA-384 | SHA-512
Supported security strengths 112,128 | 112,128, | 112,128, | 112, 128, | 112,128,
192 192,256 | 192,256 | 192,256
highest_supported_sccurity strength 128 192 256 256 256
Output Block Length (outlen) 160 224 256 384 512

Required minimum entropy for
instantiate and resecd

Minimum entropy input length
(min_entropy_input_length)

54

Hash_DRBG ANS X9.82, Part 3 - DRAFT - January 2005

SHA-1] SHA-224 I SHA-256 ‘ SHA-384 | SHA-512

Maximum entropy input length < 2% bits

(max_entropy_input_length)

Seed length (seedlen) for 440 440 440 888 888
Hash_DRBG

Maximum personalization string < 2% bits

length

(max_personalization_string_length)

Maximum additional_input length < 2% bits
(max_additional_input_length)

max_number_of bits_per_request < 2" bits

Number of requests between <2®

reseeds (reseed_interval)

Note that since SHA-224 is based on SHA-256, there is no efficiency benefit for using the
smaller hash function; this is also the case for SHA-384 and SHA-512. i.c., the use of
SHA-256 or SHA-512 instead of SIIA-224 or SHA-384. respectively. is preferred. The
value for seedlen is determined by subtracting the count field and one byte of padding from
the hash function input block length; In the case of SHA-1, SHA-224 and SHA 256,
seedlen =512 - 64 - 8 = 440; for SHA-384 and SHA-512, seedlen= 1024 - 128 - 8 = 888.

10.1.2 Hash_DRBG

10.1.21 Discussion

Figure 8 presents the normal operation of the Hash_DRBG. The Hash_DRBG requires
the use of a hash function during the instantiate, reseed and generate functions; the same
hash function shall be used in all functions. The hash function to be used shall meet or
exceed the desired security strength of the consuming application.

Implementation validation testing and health testing are discussed in Sections 9.7 and 11.
10.1.2.2 Specifications
10.1.2.2.1 Hash_DRBG Internal State

The internal_state for Hash_DRBG consists of:
1. The working state:
a. A value (V) that is updated during each call to the DRBG.
b. A constant C that depends on the seed.
c. A counter (reseed_counter) that indicates the number of requests for

55

Hash_DRBG ANS X9.82, Part 3 - DRAFT - January 2005

pseudorandom bits since new entropy_input was obtained during instantiation
or reseeding.

2. Administrative information:

a. The. of the (Opt) 4
. . . jii resee
DRBG instantiation. v ‘*";1;“,‘;““1 C counter

b. A prediction_resistance_flag 41
that indicates whether or not a i

prediction resistance
capability is required for the
DRBG.

The values of V and C are the critical
values of the internal state upon which
the security of this DRBG depends (i.e., N

V and C are the “secret values” of the o
internal state).

10.1.2.2.2 Instantiation of Hash_DRBG

input

i

Notes for the instantiate function:

The instantiation of Hash_DRBG
requires a call to the instantiate
function specified in Section 9.2; step
9 of that function calls the instantiate

algorithm in this section. For this et 1o abeain | : Y o+
DRBG. no i enoughbi 4, Counter| V reseed

4 . R i (From0): counter
DRBG specific_input_parameters i !
are required for the instantiate ; Hash i+ Pseudorandom Bits
. . . . o . } Function !
function specified in Section 9.2 (i.e., S e L

step 5 should be omitted). i

The values of
highest supported . Figure 8: Hash_DRBG
and min_entropy_input length are

provided in Table 3 of Section

10.1.1. The contents of the internal state are provided in Section 10.1.2.2.1.

The instantiate algorithm:

Let Hash_df be the hash derivation function specified in Section 9.6.2 using the
selected hash function. The output block length (outlen), seed length (seedlen) and
appropriate . for the implemented hash function are provided in Table
3 of Section 10.1.1.

The following process or its equivalent shall be used as the instantiate algorithm for

56

Hash_DRBG ANS X9.82, Part 3 - DRAFT - January 2005

this DRBG (see step 9 in Section 9.2).

Input:
1. entropy input: The string of bits obtained from the entropy input source.
2. nonce: A string of bits as specitied in Section 8.5.2.

3. personalization_string: The personalization string received from the consuming
application. If a personalization_string will never be used, then steps 1 and 2
may be combined as follows:

seed = Hash_df (entropy_input, seedlen).
Output:

1. working state: The inital values for ¥, C and reseed_counter (see Section
10.1.2.2.1).

Process:
1. seed material = entropy_input || nonce || personalization_string.

2. seed = Hash_df (seed material, seedlen).

V= seed.

4. C=Hash_df (0x00 || V), seedlen). Comment: Preceed ¥ with a byte of
Zeroes.

5. reseed counter=1.

6. Return V, C and reseed_counter as the working state.
10.1.2.2.3 Reseeding a Hash_DRBG Instantiation

Notes for the reseed function:

The reseeding of a Hash_DRBG instantiation requires a call to the reseed function
specified in Section 9.3; step 5 of that function calls the reseed algorithm specified in
this section. The values for min_entropy input_length are provided in Table 3 of
Section 10.1.1.

The reseed algorithm:

Let Hash_df be the hash derivation function specified in Section 9.6.2 using the
selected hash function. The value for seedlen is provided in Table 3 of Section 10.1.1.

The following process or its equivalent shall be used as the reseed algorithm for this
DRBG (see step 5 in Section 9.3):

Input:

1. working state: The current values for ¥, C and reseed counter (see Section
10.1.2.2.1).

57

Hash_DRBG ANS X9.82, Part 3 - DRAFT - January 2005

2. entropy_input: The string of bits obtained from the entropy input source.

3. additional inpur: The additional input string received from the consuming
application. If additional_input will never be provided, then step 1 may be
modified to remove the additional inpuf.

Output:
L. working state: The new values for V, C and reseed counter.
Process:

1. seed _material = 0x01 || V|| entropy_input || additional _input.

2. seed = Hash_df (seed material, seedlen).
3. V=seed.
4. C = Hash_df ((0x00 || V), seedlen). Comment: Preceed with a byte of all

Z€ros.
5. reseed counter=1.
6. Return V, C and reseed_counter as the new working_state.
10.1.2.2.4 Generating Pseudorandom Bits Using Hash_DRBG

Notes for the generate tunction:

The generation of pseudorandom bits using a Hash_DRBG instantiation requires a call
to the generate function specified in Section 9.4; step 8 of that function calls the
generate algorithm specified in this section. The values for

max_number of bits per request and outlen are provided in Table 3 of Section 10.1.1.

The generate algorithm:

Let Hash be the selected hash function. The seed length (seedlen) and the maximum
interval between reseeding (reseed_interval) are provided inTable 3 of Section 10.1.1.
Note that for this DRBG, the reseed counter is used to update the value of ¥ as well as
to count the number of generation requests.

The following process or its equivalent shall be used as the generate algorithm for this
DRBG (see step 8 of Section 9.4):

Input:

1. working state: The current values for V, C and reseed_counter (see Section
10.1.2.2.1).

2. requested number of bits: The number of pseudorandom bits to be returned to
the generate function.

3. additional input: The additional input string received from the consuming
application. If additional _input will never be provided, then step 2 may be

58

Hash_DRBG ANS X9.82, Part 3 - DRAFT - January 2005

omitted.
Output:

1. status: The status returned from the function. The status will indicate
SUCCESS or indicate that a reseed is required before the requested
pseudorandom bits can be generated. In the latter case, either nothing but the
reseed indication shall be returned as output, or a Null string shall be returned
as the returned bits (see below).

2. returned_bits: The pseudorandom bits to be returned to the generate function.

3. working state: The new values for ¥V, C and reseed_counter.

Process:

1. Ifreseed counter > reseed interval, then return an indication that a reseed is
required.

2. If (additional _input # Null), then do
2.1 w = Hash (0x02 || V|| additional_input).

2.2 V=(V+w) mod 2°%",

3. returned_bits = Hashgen (requested number of bits, V).

4. H=Hash (0x03 || V).

5. V=(V+H+ C+ reseed_counter) mod 2°“"",

6. reseed counter =reseed counter +1.

7. Return SUCCESS, returned_bits, and the new values of ¥, C and
reseed_counter for the new working_state.

Hashgen (...):
Input:
1. requested no_of bits: The number of bits to be returned.
2. V: The current value of V.
Output:
1. returned_bits: The generated bits to be returned to the generate function.
Process:
L s [reqrtes.’ed no_of _ z‘:i!.s‘_-‘ .
outlen
2. data=V.
3. W=the Null string.

59

Hash_DRBG ANS X9.82, Part 3 - DRAFT - January 2005

4. Fori=1tom
4.1 w, = Hash (data).
A42W=W| w.
4.3 data = (data + 1) mod oseedlen

5. returned_bits = Leftmost (requested _no of bits) bits of W.

6. Return returned_bits.

60

HMAC_DRBG ANS X9.82, Part 3 - DRAFT - February 2005

10.1.3 HMAC_DRBG {(...) (Op) additional fmpui
10.1.3.1 Discussion lu;m
HMAC_DRBG uses multiple — 'l UPDATE
occurrences of an Approved keyed hash

function, which is based on an Approved
hash function. [he same hash function
shall be used throughout. The hash
function used shall meet or exceed the
security requirements of the consuming

application.

Figure 9 depicts the HMAC_DRBGin | . lemie s
stages. HMAC DRBG is specified i
using an internal function (Update).

This function is called during the Sub i
HMAC_DRBG instantiate, generate and i M e [¢ | HMAC |
reseed algorithms to adjust the internal : =
state when new entropy or additional sorevrns AN :
input is provided. The operations in the v =
top portion of the figure are only =

performed if the additional input is not

null. Figure 10 depicts the Update L
function.
10.1.3.2 Specifications additional iput

10.1.3.21 HMAC_DRBG Internal State

. The internal state for HMAC_DRBG
consists of:

1. The working_state:

a. The value V, which is
updated each time another
outlen bits of output are
produced (where outlen is

specified in Table 3 of Figure 9: HMAC_DRBG
Section 10.1.1).

b. The Key, which is updated at least once each time that the DRBG generates
pseudorandom bits.

c. A counter (reseed counfer) that indicates the number of requests for
pseudorandom bits since instantiation or reseeding.

61

HMAC_DRBG ANS X9.82, Part 3 - DRAFT - February 2005

2. Administrative information:

provided
a. The security strength of d"; T
the DRBG instantiation.
b A |V 0500 || provided data
prediction_resistance_flag
that indicates whether or Key v
not a prediction resistance s
capability is required for HMQ
the DRBG.
The values of ¥ and Key are the Rer i e
critical values of the internal state T
upon which the security of this DRBG i !
depends (i.e., ¥ and Key are the
“secret values” of the internal state).

10.1.3.2.2 The Update Function
(Update)

The Update function updates the
internal state of HMAC_DRBG using
the provided data. Let HMAC be the

keyed hash function specified in FIPS
198 using the hash function selected
for the DRBG from Table 3 in Section
10.1.1.

The following or an equivalent process shall be used as the Update function.
Input:
1. provided data: The data to be used.
2. K: The current value of Key.
3. V: The current value of V.
Output:
1. K: The new value for Key.
2. V: The new value for V.
Process:
1. K=HMAC (X, V|| 0x00 || provided data).
2. V=HMAC(, V).
3. If (provided data = Null), then retum K and V.

62

Figure 10: HMAC_DRBG Update Function

HMAC_DRBG ANS X9.82, Part 3 - DRAFT - February 2005

4. K=HMAC (K, V| 0x01 || provided data).
5. V=HMAC (K, V).
6. Return K and V.

10.1.3.2.3 Instantiation of HMAC_DRBG

Notes for the instantiate function:

The instantiation of HMAC_DRBG requires a call to the instantiate function specified
in Section 9.2; step 9 of that function calls the instantiate algorithm specified in this
section. For this DRBG, no DRBG specific input parameters are required for the
instantiate function specified in Section 9.2 (i.e., step 5 should be omitted). The values
of highest supported security strength and min_entropy input length are provided in
Table 3 of Section 10.1.1. The contents of the internal state are provided in Section
10.1.2.2.1.

The instantiate algorithm:

Let Update be the function specified in Section 10.1.3.2.2. The ouput block length
(outlen) is provided in Table 3 of Section 10.1.1.

The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG (see step 8 of Section 9.2):

Input:
1. entropy_input:. The string of bits obtained from the entropy input source.
2. nonce: A string of bits as specified in Section 8.5.2.

3. personalization_string: The personalization string received from the consuming
application. If a personalization_string will never be used, then step 1 may be
modified to remo e the personalization_string.

Output:

1. working state: The inital values for V, Key and reseed counter (see Section
10.1.3.2.1).

Process:
1. seed material = entropy input || nonce || personalization_string.
2. Key = 0x00 00...00. Comment: outlen bits.
3. V=0x0101...01. Comment: outlen bits.
Comment: Update Key and V.
4. (Key, V)= Update (seed material, Key, V).

5. reseed counter=1.

63

HMAC_DRBG ANS X9.82, Part 3 - DRAFT - February 2005

6. Return ¥V, Key and reseed_counter as the initial working state.
10.1.3.2.4 Reseeding an HMAC_DRBG Instantiation

Notes for the reseed tfunction:

The reseeding of an HMAC_DRBG instantiation requires a call to the reseed function
specified in Section 9.3; step 5 of that function calls the reseed algorithm specified in
this section. The values for min_entropy input length are provided in Table 3 of
Section 10.1.1.

The reseed algorithm:

Let Update be the function specified in Section 10.1.3.2.2. The following process or its
equivalent shall be used as the reseed algorithmn for this DRBG (see step 5 of Section
9.3):

Input:

1. working_state: The current values for V, Key and reseed_counter (see Section
10.1.3.2.1).

2. entropy input: The string of bits obtained from the entropy input source.

3. additional_input: The additional input
string received from the consuming application. If additional input will
never be used, then step 1 may bemodified to remove the additional input.

Output:

1. working state: The new values for V, Key and reseed counter.
Process:

1. seed material = entropy_input || additional input.

2. (Key, V)= Update (seed material, Key, V).

3. reseed counter=1.

4. Return V, Key and reseed_counter as the new working state.
10.1.3.2.5 Generating Pseudorandom Bits Using HMAC_DRBG

Notes for the generate function:

The generation of pseudorandom bits using an HMAC_DRBG instantiation requires a
call to the generate function specified in Section 9.4; step 8 of that function calls the
generate algorithm specified in this section. The values for

max_number of bits per request and outlen are provided in Table 3 of Section 10.1.1.

The generate algorithm :

Let HMAC be the keyed hash function specified in FIPS 198 using the hash function
selected for the DRBG. The value for reseed _interval is defined in Table 3 of Section
64

HMAC_DRBG ANS X9.82, Part 3 - DRAFT - February 2005

10.1.1.

The following process or its equivalent shall be used as the generate algorithm for this
DRBG (see step 8 of Section 9.4):

Input:

1. working state: The current values for V, Key and reseed counter (see Section
10.1.3.2.1).

2. requested number of bits: The number of pseudorandom bits to be returned to
the generate [unction.

3. additional_input: The additional input string received from the consuming
application. If an implementation will never use additional_input, then step 2
may be omitted. If additional input is not provided (regardless of whether or
not it will ever be provided), then a Null string shall be used as the
additional input in step 5.

Output:

1. status: The status returned from the function. The status will indicate
SUCCESS or indicate that a reseed is required before the requested
pseudorandom bits can be generated. In the latter case, either nothing but the
reseed indication shall be returned as output, or a Null string shall be returned
as the returned_bits (see below).

2. returned_bits: The pseudorandom bits to be returned to the generate tunction.

3. working state: The new values for V, Key and reseed counter.

Process:

1. If reseed counter > reseed_interval, then return an indication that a reseed is
required.

2. If additional_input # Null, then (Key, Iy = Update (additional _inpui. Key, V).

3. temp = Null.

4, While (len (temp) < requested number of bits) do:

4.1 V=HMAC (Key V).
42 temp=temp| V.

5. returned_bits = Leftmost requested_number of bits of temp.

6. (Key, V)= Update (additional input, Key, V).

7. reseed counter =reseed counter + 1.

8. Return SUCCESS, returned_bits, and the new values of Key, V and

reseed_counter as the working_state).

65

CTR_DRBG ANSI X9.82, Part 3 - Draft — February 2005

10.2 DRBGs Based on Block Ciphers
10.2.1 Discussion

A block cipher DRBG is based on a block cipher algorithm. The block cipher DRBGs
specified in this Standard have been designed to use any Approved block cipher
algorithm and may be used by applications requiring various levels of security, providing
that the appropriate block cipher algorithm and key length are used and sufficient entropy
is obtained for the seed. The following are provided as DRBGs based on block cipher
algorithms:

1. The CTR_DRBG specified in Section 10.2.2.
2. The OFB_DRBG specified in Section 10.2.3.

Table 4 specifies the values that shall be used for the function envelopes and DRBG
algorithm for each Approved block cipher algorithm. The specifications in this Standard
assume that a single appropriate block cipher algorithm and key size will be selected for a
DRBG implementation; i.¢., a DRBG implementation will not contain multiple block
cipher algorithms or key sizes from which to choose during instantiation.

Table 4: Definitions for Block Cipher- Based DRBGs

3Key | AES-128 | AES-192 | AES-256
TDEA
Supported security strengths 112 112,128 | 112,128, | 112, 128,
192 192, 256
highest_supported_sccurity strength 112 128 192 256
Output block length (outlen) 64 128 128 128
Key length (keylen) 168 128 192 256
Required minimum entropy for security strength
instantiate and reseed
Seed length (seedlen = outlen + keylen) 232 ‘ 256 ‘ 320 | 384
A derivation function is used:
Minimum entropy input length
(min_entropy_input length)
Maximum entropy input length < 2% bits
(max_entropy_input length)
Maximum personalization string < 2% bits
length
(max_personalization_string_length)

66

CTR_DRBG ANSI X9.82, Part 3 — Draft — February 2005

3 Key | AES-128 | AES-192 | AES-256
TDEA

Maximum additional_input length < 2% bits
(max_additional_input_length)

A derivation function is not used (full
entropy is available):

Minimum entropy input length seedlen
(min_entropy_input_length) (outlen
+ keylen)

Maximum entropy input length seedlen
(max_entropy_input length) (outlen
+ keylen)

Maximum personalization string seedlen
length
(max_personalization_string_length)

Maximum additional_input length seedlen
(max_additional_input _length)

max_number_of bits_per request <2B <2"

Number of requests between reseeds <2* <2%
(reseed_interval)

The block cipher DRBGs may be implemented to use the block cipher derivation
function specified in Section 9.6.3. However, these DRBGs are specified to allow an
implementation tradeoff with respect to the use of this derivation function. If a source for
full entropy input is always available to provide entropy input when requested, the use of
the derivation function is optional; otherwise, the derivation functon shall be used. 'able
4 provides lengths required for the entropy input, personalization string and

additional input for each case,

When full entropy is available. and a derivation function is not used by an
implementation, the seed construction (seeSection 8.4.2) shall not use a nonce”.

When using TDEA as the selected block cipher algorithm, the keys shall be handled as
64-bit blocks containing 56 bits of key and 8 bits of parity as specified for the TDEA
engine.

¥ The specifications in this Standard do not accommodate the special treatment required for a nonce in this
]

67

CTR_DRBG ANSI X9.82, Part 3 — Draft — February 2005

10.2.2 CTR_DRBG

10.2.2.1 Discussion

CTR_DRBG uses an Approved block cipher{ __~___ 1L_ S
in [SP 800-38A]. The same block cipher algor I 1 I
block cipher operations. The block cipher =
algorithm and key length shall meet or (Ot sdditionalirgut
exceed the security requirements of the
consuming application. The values to be
used for the implementation of this DRBG O o
are specified in Table 4 of Section 10.2.1. FUNCTION
CTR_DRBG is specified using an internal l
function (Update). Figure 11 depicts the UPDATE
Update function. This function is called by
the instantiate, generate and reseed
algorithms to adjust the internal state when
new entropy or additional input is provided.
Figure 12 depicts the CTR_DRBG in three
stages. The operations in the top portion of
the figure are only performed if the
additional input is not null. .
10.2.2.2 Specifications) T l
Stak 1

10.2.2.24 CTR_DRBG Internal State Key| v |moed [{] Bl

counter Encrypt

llf# Null

Tterate

The internal state for CTR_DRBG consists v i
of s

1. The working _state: e

a. The value ¥, which is updated
each time another outlen bits of
output are produced (see Table 4 0
in Section 10.2.1).

b. The Key, which is updated
whenever a predetermined
number of output blocks are [K"
generated.

Preudorandom hits

c. A counter (reseed counter) that
indicates the number of requests
for pseudorandom bits since
instantiation or reseeding.

Figure 12: CTR_DRBG

68

CTR_DRBG ANSI X9.82, Part 3 — Draft — February 2005

2. Administrative information:
a. The security sirength of the DRBG instantiation.

b. A prediction resistance_flag that indicates whether or not a prediction
resistance capability is required for the DRBG.

The values of ¥ and Key are the critical values of the internal state upon which the
security of this DRBG depends (i.c., ¥ and Key are the “secret values” of the internal
state).

10.2.2.2.2 The Update Function (Update)

The Update function updates the internal state of the CTR_DRBG using the
provided data. The values for outlen, keylen and seedlen are provided in Table 4 of
Section 10.2.1. The block cipher operation in step 2.2 uses the selected block cipher
algorithm.

The following or an equivalent process shall be used as the Update function.
Input:

1. provided data: The data to be used. This must be exactly seed/en bits in
length; this length is guaranteed by the construction of the provided daic in
the instantiate, reseed and generate functions.

2. Key: The current value of Key.
3. V: The current value of V.
Output:
1. K: The new value for Key.
2. V: The new value for V.
Process:
1. temp = Null.
2. While (len (temp) < seedlen) do
2.1 V=(V+1)mod2°"",
2.2 output block = Block_Encrypt (Key, V).
2.3 temp = temp || ouput_block.

3. temp = Leftmost seedlen bits of temp.
4 temp = temp @® provided data.
5. Key = Leftmost keylen bits of temp.

6. ¥V =Rightmost outlen bits of temp.

69

CTR_DRBG ANSI X9.82, Part 3 - Draft — February 2005

7. Return the new values of Key and V.
10.2.2.2.3 Instantiation of CTR_DRBG

Notes for the instantiate

The instantiation of CTR_DRBG requires a call to the instantiate specified
in Section 9.2; step 9 of that calls the instantiate algorithm specified in this
section. For this DRBG, no DRBG _specific_input parameters are required for the
instantiate specified in Section 9.2 (i.e., step 5 should be omitted). The
values of highest supported and min_entropy input length are
provided in Table 4 of Section 10.2.1. The contents of the internal state are provided
in Section 10.2.2.2.1.

The instantiate algorithm:

Let Update be the function specified in Section 10.2.2.2.2, and let Block_Cipher_df
be the derivation function specified in Section 9.6.3 using the chosen block cipher
algorithm and key size. The output block length (outlen), key length (keylen), seed
length (seedlen) and for the block cipher algorithms are provided
in Table 4 of Section 10.2.1.

The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG:

Input:
1. entropy input: The string of bits obtained from the entropy input source.
2.
. personalization_string: The personalization string received from the
consuming application.
Output:
1. working state: The inital values for ¥, Key and reseed_counter (see Section
10.2.2.2.1).
Process:
1.
1.1 seed material = entropy _input || personalization_string.

1.2 seed material = Block_Cipher_df (seed_material, seedlen).

temp = len (personalization_string).

70

CTR_DRBG ANSI X9.82, Part 3 — Draft —~ February 2005

1.4 If temp > seedlen, then return an ERROR.

1.5 If (temp < seedlen), then personalization_string =
personalization_string || 0 - femp,

1.6 seed material = entropy input @ personalization_string.

Key — Okeylen

Comment: keylen bits of zeros.
y = goulen, Comment: outlen bits of zeros.
(Key, V)= Update (seed material, Key, V).

reseed counter = 1.

AL B e S

6. Return V, Key and reseed counter as the working_state.

Implementation notes:

1. Step | should consist of either steps 1.1 and 1.2, or steps 1.3 — 1.6. The decision for
the substeps to be used depends on whether the implementation has full entropy
and is using the derivation function.

2. Ifa personalization_string will never be provided from the instantiate function
and a derivation function will be used, then step 1.1 becomes:

seed_material = Block_Cipher_df (entropy_input, seedlen).

3. Ifapersonalization string will never be provided from the instantiate function, a
full entropy source will be available and a derivation function will not be used,
then step 1 becomes

seed material = entropy input.
That is, steps 1.3 — 1.6 collapse into the above step.
10.2.2.2.4 Reseeding a CTR_DRBG Instantiation

Notes for the reseed function:

The reseeding of a CTR_DRBG instantiation requires a call to the reseed tunction
specified in Section 9.3; step 5 of that function calls the reseed algorithm specified in
this section. The values for min_entropy_input_length are provided in Table 4 of
Section 10.2.1.

The reseed algorithm:

Let Update be the function specified in Section 10.2.2.2.2, and let Block_Cipher_df
be the derivation function specified in Section 9.6.3 using the chosen block cipher
algorithm and key size. The seed length (seedlen) is provided in Table 4 of Section
10.2.1.

The following process or its equivalent shall be used as the reseed algorithm for this
DRBG (see step 5 of Section 9.3):

71

CTR_DRBG ANSI X9.82, Part 3 — Draft — February 2005

Input:

1. working state: The current values for ¥, Key and reseed counter (see Section
10.2.2.2.1).

2. entropy_input: The string of bits obtained from the entropy input source.

3. additional input: The additional input string received from the consuming
application.

Output:
1. working staie: The new values for V, Key and reseed_counter.
Process:
1. Ifthe block cipher derivation function is available, then
1.1 seed_material = entropy input || additional_input.
1.2 seed material = Block_Cipher_df (seed_material, seedlen).

Else Comment: The block cipher
derivation function is not used
because full entropy is known to be
available.

1.3 temp =len (additional_input).
1.4 [f temp > seedlen, then return an ERROR.
|.5 If (temp < seedlen), then additional _input = additional input ||

Oseea'len - temp

1.6 seed_material = entropy input ® additional input.
2. (Key, V)= Update (seed material, Key, V).
3. reseed counter = 1.
4. Return V, Key and reseed _counter as the working_state.

Implementation notes:

1. Step 1 should consist of either steps 1.} and 1.2, orsteps 1.3~ 1.6. The decision
for the substeps to be used depends on whether the implementation has full
entropy and is using the derivation function.

2. If additional input will never be provided from the reseed function and a
derivation function will be used, then step 1.1 becomes:

seed_material = Block_Cipher_df (entropy_input, seedlen).

3. If additional input will never be provided from the reseed function, a full entropy
source will be available and a derivation function will not be used, then step 1

72

CTR_DRBG ANSI X9.82, Part 3 - Draft — February 2005

becomes
seed _material = entropy_input.
That is, steps 1.3 — 1.6 collapse into the above step.
10.2.2.2.5 Generating Pseudorandom Bits Using CTR_DRBG

Notes for the generate function:

The generation of pseudorandom bits using a CTR_DRBG instantiation requires a
call to the generate function specified in Section 9.4, step 8 of that function calls the
generate algorithm specified in this section. The values for

max_number_of bits_per_request and outlen are provided in Table 4 of Section
10.2.1. If the derivation function is not used, then the maximum allowed length of
additional _input = seedlen.

The following process or its equivalent shall be used as the generate algorithm for this
DRBG (see step 8 of Section 9.4):

Let Block_Cipher_df be the derivation function specified in Section 9.6.3, and let
Update be the function specified in Section 10.2.2.2.2 using the chosen block cipher
algorithm and key size. The seed length (seedlen) and the value of reseed interval are
provided in Table 4 of Section 10.2.1. Step 4.2 below uses the selected block cipher
algorithm. If a derivation function is not used for a DRBG implementation, then step
2.2 shall be omitted.

The following process or its equivalent shall be used as generate algorithm for this
DRBG (see step 8 of Section 9.4):

Input:

1. working state: The current values for ¥, Key and reseed_counter (see Section
10.2.2.2.1).

2. requested number of bits: The number of pseudorandom bits to be returned
to the generate function.

3. additional_input: The additional input string received from the consuming
application. If additional_input will never be provided, then step 2 may be
omitted.

Output:

1. status: The status returned from the function. The status will indicate
SUCCESS, indicate that a reseed is required before the requested
pseudorandom bits can be generated, or indicate that the additional_input is
too long. If SUCCESS is not returned, either nothing but the reseed indication
shall be returned as output, or a Null string shall be returned as the
returned_bils (see below).

73

CTR_DRBG ANSI X9.82, Part 3 — Draft — February 2005

2. returned_bits: The pseudorandom bits returned to the generate function.
3. working_state: The new values for V, Key and reseed_counter.
Process:

1. Ifreseed counter > reseed interval, then return an indication that a reseed is
required.

2. If (additional _input # Null), then

Comment: If the length of the additional
input is > seedlen, derive seedlen bits.

2.1 temp = len (additional_input).

Comment: If a block cipher derivation
function is used:

2.2 If (temp > seedlen), then additional input = Block_Cipher_df
(additional_input, seedlen).

Comment: If the length of the
additional_input is < seedlen, pad with
zeros to seedlen bits.

2.3 If (temp < seedlen), then additional input = additional_input || Qseedien-

femp

2.4 (Key, V)= Update (additional_input, Key, V).
3. temp = Null.
4. While (len (temp) < requested number_of bits) do:
4.1 V=(V+1)mod 27",
4.2 output block = Block_Encrypt (Key, V).
4.3 temp = temp || ouput block.
5. returned bits = Leftmost requested_number_of bits of temp.

Comment: Update for backtracking
resistance.

greedlen, Comment: Produce a string of

seedlen zeros.

6. zeros=

7. (Key, V)= Update (zeros, Key, V).
8. reseed counter =reseed counter + 1.

9. Return SUCCESS and returned_bits; also return Key, V and reseed_counter
as the new working_state.

74

CTR_DRBG ANSI X9.82, Part 3 — Draft — February 2005

75

OFB_DRBG ANS X9.82, Part 3 - DRAFT - February 2005

10.2.3 OFB_DRBG

10.2.3.1 Discussion

(Opt) additional input
OFB_DRBG uses an Approved block cipher llf%m
algorithm in the output feedback mode as
specified in [SP 800-38A]. The same block BLOCK CIPHER
cipher algorithm and key length shall be ”ﬁ?ﬁi‘é‘ﬂéﬁ,“‘
used for all block cipher operations. The l
block cipher algorithm and key length shall
meet or exceed the security requirements of | UFDATE

the consuming application. The values to be
used for the implementation of this DRBG
are specified in Table 4 in Section 10.2.1.

OFB_DRBG is specified using an internal
function (Update). Figure 13 depicts the
OFB_DRBG in three stages. The operations

in the top portion of the figure are only

performed if non-null additional input is
provided. Figure 14 depicts the Update

function. This function is called by the { l
instantiate, generate and reseed algorithms to
adjust the internal state when new entropy or
additional input is provided.Note that !
OFB_DRBG is basically the same as

7
e
-
EH
i
g
=
<|gg
33
-E‘F'

CTR_DRBG, except that the block cipher AL
mode is OFB rather than CTR. ——1——
10.2.3.2 Specifications R
10.2.3.21 OFB_DRBG Internal State

The internal state for OFB_DRBG consists g

of: ‘_

1. The working_state:

a. The value ¥, which is updated
each time another outlen bits of
output are produced. +a—1 \

b. The Key, which is updated
whenever a predetermined

number of output blocks are
generated. Figure 13: OFB_DRBG

c. A counter (reseed counter) that
76

OFB_DRBG ANS X9.82, Part 3 - DRAFT - February 2005

indicates the number of requests
for pseudorandom bits since ¥ Key
instantiation or reseeding. Lot ime

Trerare

2. Administrative information:

a. The security strength of the DRBG
instantiation.

b. A prediction resistance_flag that
indicates whether or not a
prediction resistance capability is

required for the DRBG. :]
The values of ¥ and Key are the critical values l! !

of the internal state upon which the security of i
this DRBG depends (i.e., ¥ and Key are the provided data——» @
“secret values” of the internal state).

10.2.3.2.2 The Update Function{Update)

[k v |

The Update function updates the internal state

of the OFB_DRBG using the provided data.
The values for outlen, keylen and seedlen are Figure 14: OFB_DRBG Update
provided in Table 4 of Section 10.2.1. The

block cipher operation in step 2.1 uses the

selected block cipher algorithm and key size.

The following or an equivalent process shall be used as the Update function.
Input:
1. provided data: The data to be used.
2. Key: The current value of Key.
3. V: The current value of V.
Output:
1. K: The new value for Key.
2. V:The new value for V.
Process:
1. temp = Null.
2. While (len (temp) < seedlen) do
2.1 V= Block_Encrypt (Key, V).
2.2 temp=temp || V.

77

OFB_DRBG ANS X9.82, Part 3 - DRAFT - February 20056

3. temp = Lefimost seedlen bits of temp.
4 temp = temp @ provided data.

5. Key = Lefimost keylen bits of temp.
6. ¥V =Rightmost outlen bits of femp.
7

. Return the new values of Key and V.
10.2.3.2.3 Instantiation of OFB_DRBG {...)
This process is the same as the instantiation process for CTR_DRBG in Section
10.2.2.2,3, except that the Update function to be used is specified in Section 10.2.3.2.2.
10.2.3.2.4 Reseeding an OFB_DRBG Instantiation
This process is the same as the reseeding process for CTR_DRBG in Section 10.2.2.2.4,
except that the Update function to be used is specified in Section 10.2.3.2.2
10.2.3.2.5 Generating Pseudorandom Bits Using OFB_DRBG
This process is the same as the generation process for CTR_DRBG in Section 10.2.2.2.5,

except that the Update function to be used is specified in Section 10.2.3.2.2 and step 4
shall be as follows:

4, While (len (femp) < requested number_of bit) do:
4.1 V= Block _Encrypt (Key, V).
42 temp=temp| V.

78

Dual_EC_DRBG ANS X9.82, Part 3 - DRAFT - February 2005

10.3 Deterministic RBGs Based on Number Theoretic Problems
10.3.1 Discussion

A DRBG can be designed to take advantage of number theoretic problems (e.g., the
discrete logarithm problem). If done correctly, such a generator’s properties of randomness
and/or unpredictability will be assured by the difficulty of finding a solution to that
problem. Section 10.3.2 specifies a DRBG based on the elliptic curve discrete logarithm
problem; Section 10.3.3 specifies a DRBG based on a problem related to the RSA problem
of finding roots modulo a composite integer.

10.3.2 Dual Elliptic Curve Deterministic RBG (Dual_EC_DRBG)
10.3.2.1 Discussion

Dual_ EC_DRBG is based on the following hard problem, sometimes known as the
“elliptic curve discrete logarithm problem” (ECDLP): given points P and Q on an elliptic
curve of order , find a such that Q0 = aP.

Dual EC_DRBG uses a seed that is m bits in length (i.e., seedlen = m) to initiate the
generation of outlen-bit pseudorandom strings by performing scalar multiplications on two
points in an elliptic curve group, where the curve is defined over a field approximately 2”
in size. For all the NIST curves given in this Standard, m > 163. Figure 15 depicts the
Dual_EC_DRBG.

seed 3

Instand. or
Teseed anly

[Optionall O-w e emf*foe o} T
1 1

additional input @J '
0 P Q Pseudorandom

Bits

I additional inpaut = Null

Figure 15: Dual_EC_DRBG

The instantiation of this DRBG requires the selection of an appropriate elliptic curve and
curve points specified in Annex A.1 for the desired security strength. The seed used to
determine the initial value (s) of the DRBG shall have entropy that is at least

security strength + 64 bits. Further requirements for the seed are provided in Section 8.4.

Backtracking resistance is inherent in the algorithm, even if the internal state is
compromised. As shown in Figure 16, Dual_EC_DRBG generates a seedlen-bit number

79

Dual_EC_DRBG ANS X9.82, Part 3 - DRAFT - February 2005

for each step i = 1,2,3,..., as follows:

Si = @(x(Si-; *P))

Ri=o(x(S *Q)).

Each arrow in the figure represents an Elliptic
Curve scalar multiplication operation, followed
by the extraction of the x coordinate for the l 1
resulting point and for the random output R; and |
by truncation to produce the output. Following a R, R,
line in the direction of the arrow is the normal
operation; inverting the direction implies the

18, S,

ability to solve the ECDLP for that specific curve.

An adversary’s ability to invert an arrow in the Figure 16: Dual_EC_DRBG {...)
figure implies that the adversary has solved the Backtracking Resistance
ECDLP for that specific elliptic curve. Backtracking resistence is built into the design, as
knowledge of S; does not allow an adversary to determine S (and so forth) unless the
adversary is able to solve the ECDLP for that specific curve. In addition, knowledge of R,
does not allow an adversary to determine S; (and so forth) unless the adversary is able to
solve the ECDLP for that specific curve.

Table 5 specifies the values that shall be used for the envelope and algorithm for each
curve. Complete specifications for each curve are provided in Annex A.1. Note that all
curves except the first three can be instantiated at a security strength lower than its highest
possible security strength. For example, the highest security strength that can be supported
by curve P-384 is 192 bits; however, this curve can alternatively be instantiated to support
only the 112 or 128-bit security strenéths).

Table &: Definitions for the Dual_EC_DRBG

P-224 | B-233 | K-233 | P-256 | B-283 | K-283

Supported security strengths 112 112 112 112, 112, 112,
128 128 128

highest_supported_ 112 112 112 128 128 128

security strength

Output block length (outlen = 208 216 216 240 264 264

smallest multiple of 8 larger than
seedlen - (13 + log; (the cofactor))

Required minimum entropy for
instantiate and reseed

Minimum entropy input length 224 240 240 256 288 288
kmin_entropy_input_length =8x
[seedlen/8 |)[___

80

.| Comment [ebb5]: Page: 78
Why can't this be min_entropy ?

Dual_EC_DRBG

ANS X9.82, Part 3 - DRAFT - February 2005

P-224 | B-233 l K-233

P-256 | B-283 | K-283

Maximum entropy input length <28 bits
(max_entropy_input_length)

Maximum personalization string < 2P bits
length)

(max_personalization_string_length)

Maximum additional_input length <2 bits
(max_additional_input_length)

Seed length (seedlen = m)

224 ‘ 233

233 | 256

283 ‘ 283

Appropriate hash functions

SHA-1, SHA-224, SHA-256, SHA-384, SHA-512

max_number_of bits_per_request

outlen x reseed_interval

Number of blocks between
reseeding (reseed_interval)

< 10,000 blocks

P-384 | B-409 ‘ K-409 | P-521 | B-571 ‘ K-571
Supported security strengths 112,128,192 112, 128, 192,256
highest_supported 192 256
security_strength
Output block length (outlen = 368 392 392 504 552 552
smallest multiple of 8 larger than
seedlen - (13 + log; (the cofactor))
Required minimum entropy for security stength
instantiate and reseed
Minimum entropy input length 384 416 416 528 576 576
(min_entropy input_length = 8 x
[seedlen/8])
Maximum entropy input length <2 bits
(max_entropy_input_length)
Maximum personalization string < 2" bits
length
(max_personalization_string_length)
Maximum additional_input length < 2P bits
(max_additional_input_length)
Seed length (seedlen = m) 384 409 409 521 ‘ 571 571
Appropriate hash functions SHA-224, SHA-256, SHA- | SHA-256, SHA-384, SHA-

384, SHA-512 512

81

Dual_EC_DRBG ANS X9.82, Part 3 - DRAFT - February 2005

P-384 ‘ B-409 ‘ K-409 ‘ P-521 | B-571 | K-571

max_number_of _bits_per_request outlen x reseed_interval

Number of blocks between < 10,000 blocks
reseeding (reseed_interval)

Validation and Operational testing are discussed in Section 11. Detected errors shall result
in a transition to the error state.

10.3.2.2 Specifications

10.3.2.2.1 Dual_EC_DRBG Internal State and Other Specification Details

The internal state for Dual_EC_DRBG consists of:
1. The working state:
a. A value (s5) that determines the current position on the curve.

b. The elliptic curve domain parameters (curve type, seedlen, p, a, b, n), where
curve_type indicates a prime field F,, or a pseudorandom or Koblitz curve over
the binary field F,"; seedlen is the length of the seed ; a and b are two field
elements that define the equation of the curve, and # is the order of the point G.
If only one curve will be used by an implementation, these parameters need not
be present in the working state. If only one type of curve is implemented, the
curve_type parameter may be omitted.

¢. Two points P and Q on the curve; the generating point G specified in FIPS 186-
3 for the chosen curve will be used as P. If only one curve will be used by an
implementation, these points need not be present in the working_state.

d. A counter (block_counter) that indicates the number of blocks of random
produced by the Dual_EC_DRBG since the initial seeding or the previous
reseeding.

2. Administrative information:
a. The security strength provided by the instance of the DRBG,

b. A prediction resistance flag that indicates whether prediction resistance is
required by the DRBG, and

The value of s is the critical value of the internal state upon which the security of this
DRBG depends (i.e., s is the “secret value” of the internal state).

10.3.2.2.2 Instantiation of Dual_EC_DRBG

Notes for the instantiate function:

The instantiation of Dual_EC_DRBG requires a call to the instantiate function

82

Dual_EC_DRBG ANS X9.82, Part 3 - DRAFT - February 2005

specified in Section 9.2; step 9 of that function calls the instantiate algorithm in this
section. For this DRBG, a DRBG-specific input parameter of requested_curve_type is
optional (see the definition for curve_type in Section 10.3.2.2.1). If only one type of
curve is available, then this parameter may be omitted. If multiple types are available,
then a Prime_field curve will be selected if the parameter is omitted; if a

Prime_field curve is not available, then a Random_binary curve will be selected.

In step 5 of the instantiate function, the following step shall be performed to select an
appropriate curve if multiple curves are available.

5. Using requested _curve type (if provided), the security_strength and Table 5 in
Section 10.3.2.1, select the smallest available curve that has a security strength
> security strength.

5.1 [Ifrequested curve type is indicated, then select a curve of that type. If no
suitable curve of that type is available for the
requested_security sirength, then return an ERROR.

5.2 Ifacurve type is not requested, then select an appropriate
Prime_field curve if a suitable curve is available. If no suitable
Prime_field curve is available, then select a Random_binary curve if a
suitable curve is available. If no suitable Random_binary _curve is
available, then select a Koblitz_curve. If no suitable Koblitz_curve is
available, then return an ERROR.

The values for curve type, seedlen, p, a, b, n, P, Q are determined by that curve.

The values for highest supported security strength and min_entropy_input_length are
determined by the selected curve (see Table 5 in Section 10.3.2.1).

The instantiate algorithm :

Let Hash_df be the hash derivation function specified in Section 9.6.2 using an
appropriate hash function from Table 5 in Section 10.3.2.1. Let seedlen be the
appropriate value from Table 5.

The following process ot its equivalent shall be used as the instantiate algorithm for
this DRBG (see step 9 of Section 9.2):

Input:
1. entropy_input: The string of bits obtained from the entropy input source.
2. nonce: A string of bits as specitied in Section 8.5.2.

3. personalization_string: The personalization string received from the consuming
application.

QOutput:

1. s: The initial secret value for the working_state.

83

Dual_EC_DRBG ANS X9.82, Part 3 - DRAFT - February 2005

2. block_counter: The initialized block counter for reseeding.
Process:
1. seed material = entropy input || nonce || personalization_string.

Comment: Use a hash function to ensure that
the entropy is distributed throughout the bits,
and s is m (i.¢., seedlen) bits in length.

2. s= Hash_df (seed material, seedlen).

Comment: Save all state information.
3. block counter= 0.
4. Return s and block_counter for the working_state.

Implementation notes:

If an implementation never uses a personalization_string, then steps 1 and 2 may be
combined as follows :

s = Hash_df (entropy _input, seedlen).
10.3.2.2.3 Reseeding of a Dual_EC_DRBG Instantiation

Notes for the reseed function:

The resced of Dual_EC_DRBG requires a call to the reseed [unction specified in
Section 9.3; step 5 of that function calls the reseed algorithm in this section. The values
for min_entropy input length are provided in Table 5 of Section 10.3.2.1.

The reseed algorithm :

Let Hash_df be the hash derivation function specified in Section 9.6.2 using an
appropriate hash function from Table 5 in Section 10.3.2.1.

The following process ot its equivalent shall be used to reseed the Dual EC_DRBG
process after it has been instantiated (see step 5 in Section 9.3):

Input:
1. s: The current value of the secret parameter in the working_state.
2. entropy_input: The string of bits obtained from the entropy input source.

3. additional_input: The additional input string received from the consuming
application.

Output:
1. s: The new value of the secret parameter in the working_state.

2. block _counter: The re-initialized block counter (or reseeding.

84

Dual_EC_DRBG ANS X9.82, Part 3 - DRAFT - February 2005

Process:

Comment: pad8 returns a copy of s padded
on the right with binary 0’s, if necessary, to a
multiple of 8.

1. seed material = pad8 (s) || entropy input || additional _input_string.
2. s=Hash_df (seed material, seedlen).

3. block _counter=0.

4. Return s and block_counter for the new working_state.

Implementation notes:

If an implementation never allows additional_input, then step 1 may be modified as
follows :

seed_material = pad8 (s) || entropy_input.
10.3.2.2.4 Generating Pseudorandom Bits Using Dual_EC_DRBG

Notes for the generate function:

The generation of pseudorandom bits using a Dual_EC_DRBG instantiation requires a
call to the generate function specified in Section 9.4; step 8 of that function calls the
generate algorithm specified in this section. The values for

max_number of bits_per request and outlen are provided in Table 4 of Section 10.2.1.

The generate algorithm:

Let Hash_df be the hash derivation function specified in Section 9.6.2 using an
appropriate hash function from Table 5 in Section 10.3.2.1. The value of
reseed_interval is also provided in Table 5.

The following are used by the generate algorithm:

a. pad8 (bitstring) returns a copy of the bitstring padded on the right with binary
0’s, if necessary, to a multiple of 8.

b. Truncate (bitstring, in_len, out len) inputs a bitstring of in_len bits, returning
a string consisting of the leftmost out_len bits of bitstring. 1f in_len < out_len,
the bitstring is padded on the right with (out len - in_len) zeroes, and the result
is returned.

c. x(A) is the x-coordinate of the point 4 on the curve.

d. ¢ (x) maps field elements to non-negative integers, taking the bit vector
representation of a field element and interpreting it as the binary expansion of
an integer. Section 10.3.2.2.4 has the details of this mapping.

The precise definition of @(x) used in steps 6 and 7 below depends on the field
representation of the curve points. In keeping with the convention of FIPS 186-

Dual_EC_DRBG ANS X9.82, Part 3 - DRAFT - February 2005

2, the following clements will be associated with each other (note that m =
seedlen):

B |cm1lCmz]| - |Ci]col| , abitstring, with ¢, being lefimost

Z0 2™ 422 2 e € Z;

Fa: cma2™ + .. +62° + ¢2'+ ¢o modp e GF(p) ;

Fb:emit™ @ ...@cf> ® cit ® ¢g € GF(2™), when a polynomial basis
is used;

2 22 2m-1 m

Fe: CnaP @ cpuaP @ cpaB” ©... @D cof € GF(2"), when a normal

basis is used.

Thus, any field element x of the form Fa, Fb or Fc will be converted to the
integer Z or bitstring B, and vice versa, as appropriate.

e. *is the symbol representing scalar multiplication of a point on the curve.

The following process or its equivalent shall be used to generate pseudorandom bits
(see step 8 in Section 9.4):

Input:

1. working state: The current values for s, curve type, seedlen, p, a, b, n, P, O
and reseed_counter (see Section 10.1.3.2.1).

2. requested number of bits: The number of pseudorandom bits to be returned to
the generate functione.

3. additional_input: The additional input string received from the consuming
application.

Output:

1. status: The status returned from the function. The status will indicate
SUCCESS or indicate that a reseed is required before the requested
pseudorandom bits can be generated. In the latter case, either nothing but the
reseed indication shall be returned as output, or a Null string shall be returned
as the returned_bits (see below).

2. returned_bits: The pseudorandom bits to be returned to the generate function.
3. s: The new value for the secret parameter in the working state.
4. block _counter: The updated block counter [or reseeding.

Process:

Comment: Check whether a reseed is
required.

86

Dual_EC_DRBG ANS X9.82, Part 3 - DRAFT - February 2005

10.
11.
12.

13

14.

L If (block _counter +[

requested _number _of _bits

> reseed interval, then
outlen -

return an indication that a reseed is required.

Comment: If additional _input is Null, set to
seedlen zeroes; otherwise, Hash_df to
seedlen bits.

If (additional _input_string = Null), then additional_input =0
Else additional input = Hash_df (pad8 (additional_input_string), seedlen).

Comment: Produce requested no_of bits,
outlen bits at a time:

temp = the Null string.

i=0.

t = s ® additional input.

s = o(x(t * P)). Comment: ? is to be interpreted as a seedlen-
bit unsigned integer. To be precise, when
curve_type = Prime_field curve, t should be
reduced mod n; the operation * will effect
this. s is a seedlen-bit number.

r =¢(x(s * Q). Comment: 7 is a seedlen-bit number.

. temp = temp || (rightmost outlen bits of 7).

. additional_input=0 Comment: seedlen zeroes;

additional_input_string is added only on the
first iteration.

block_counter = block_counter + 1.

i=i+1.

If (len (temp) < requested_number_of bits), then go to step 5.

returned bits = Truncate (femp, i x outlen, requested_number_of _ bits).

Return SUCCESS, returned_bits, and s and block_counter for the
working_state.

87

MS_DRBG ANS X9.82, Part 3 - DRAFT - February 2005

10.3.3 Micali-Schnorr Deterministic RBG (MS_DRBG)
10.3.3.1 Discussion

The MS_DRBG generalizes the RSA generator, which is defined as follows: Let ged(x, y)
denote the greatest common divisor of the integers x and y, and ¢(n) represent the Euler phi
function4. Select #, the product of two distinct large primes, and e, a positive integer such
that ged(e, () = 1. Define f(y) = y° mod n . Starting with a seed y,, form the sequence
yi~1 = f(y;), and output the string consisting of the Ig lg () least significant bits of each y;.
These bits are known to be as secure as the RSA function £, and are commonly referred to
as the hard bits.

The Micali-Schnorr generator MS_DRBG uses the same e and # as the RSA generator, but
produces many more random bits per iteration and eliminates the overlap between the state
sequence and the output bits. Each y; € [0,) is viewed as the concatenation s; || z; of an 7~
bit number s; and a k = 1g(n)-r bit number z;. The s; are used to propagate the integer
sequence yi+; = si° mod n; the z; are output as random bits. » must be at least
2*min{security_strength, lg(n)/e}, where security strength is the desired security strength
of the generator, and e > 65.537. (See Section 10.3.3.2.2). A random r-bit seed s, is used to
initialize the process.

Figure 17 depicts the MS_DRBG. Under the proper assumption, the MS_DRBG is an
example of a cryptographically secure generator, i.e., one that passes all polynomial-time
statistical tests. The assumption is that sequences of the form s° mod n are statistically the
same as sequences of integers in Z,. This assumption is stronger than requiring the
intractability of the RSA problem. See [1] for a discussion of these concepts and references
to further details.

sead

Tretazt, nd:duIn}‘

y‘=5"ml:ldn .S;:lhﬂmonxbdt
e Totr ;T;Wpseudomwdnmbhs

(Opt)
eddtional ige e

0—

T

1w eoned_bnpus=Hull

Figure 17: MS_DRBG

4 The Euler phi function : ¢(n) = the number of posiéige integers < n that are relatively prime to n. For an
RSA modulus n = pg, §(n) = (p-1)(g-1).

MS_DRBG

ANS X9.82, Part 3 - DRAFT - February 2005

For MS_DRBG, the s values are assumed to be r-bit integers, and “statistically the same”
means indistinguishable by any polynomial-time algorithm. Accepting the stronger
assumption allows k to be a significant percentage of 1g(#). Note that in the specifications,
has been redefined as seedlen, and k has been redefined to be outlen in order to be

consistent with the other DRBGs.

The specifications for the MS_DRBG (see Section 10.3.3.2) allow e and k (i.e., outlen) to
be specified. The lengths seedlen and outlen, the RSA modulus #, and the value of the
exponent e are variable within the bounds described below. The bounds are based on the
desired security strength for the bits produced. For maximum efficiency, e should be kept
small and outlen should be large. The outlen bits generated at each step are concatenated
to form pseudorandom bitstrings of any desired length. Table 6 provides definitions for
using with the MS_DRBG functions and algorithms.

Table 6: Definitions for MS_DRBG

Ig (n) = 2048 Ig (n) = 3072
Supported security strengths 112 112, 128
highest_supported_security strength 112 128

Output Block Length (outlen = k)

8 < outlen < min{ lg(n) — 2*securiny strength,
lg(n) — 2*1g(n)/e

Required minimum entropy for
instantiate and reseed

Security strength

Minimum entropy input length
(min_entropy_input_length)

security strength

Maximum entropy input length
(max_entropy_input_length)

< 2" bits

Maximum personalization string
length
(max_personalization_string_length)

< 2" bits

Maximum additional_input length
(max_additional_input_length)

< 2" bits

Number of hard bits (Ig (Ig (n))

11 11

Seed length (seedlen =r)

lg(n) — outlen

Appropriate h<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>