ANS X9.82, Part 3 - DRAFT December 2004

DRAFT X9.82 (Random Number Generation)

Part 3, Deterministic Random Bit Generator
Mechanisms

December 2004

Contribution of the U.S. Federal Government and not subject to copyright

ANS X9.82, Part 3 - DRAFT December 2004

Contents
1 Scope 9
2 Conformance 9
3 NOIMALIVE TEFEIENCES .oovureiiririrsisireeniinnt s et a e s e s e e s R e E R R R SRR R A SO e R R R R R b mn b b0 9
4 Terms and definitions 11
6 General Discussion and Organization..........ccccveevnnne 22
7 DRBG Functional Model 24
7.1 Functional Model... 24
7.2 Functional Model Components 24
7.21 Introduction 24
7.2.2 Entropy Input 25
7.2.3 Other Inputs 25
7.2.4 The Internal State..... 25
7.2.5 The Internal State Transition Functioncccvvnenrcnrininnn 26
7.2.6 The Output Generation FUNCtion ... s 26
7.2.7 Support Functions 26
8. DRBG Concepts and General Requirements 27
8.1 Introduction 27
8.2 DRBG Procedures and a DRBG Instantiation 27
8.2.1 Procedures......ccinrenicnnmncnnnninncninnen 27
8.2.2 DRBG Instantiations 27
8.2.3 Internal States 28
8.2.4 Security Levels Supported by an Instantiation 28
8.3 DRBG Boundaries 29
8.4 Seeds 31
8.4.1 General Discussion 31
8.4.2 Generation and Handling of Seedsc.ccceerecnninnniinisconsnnsnne. 32
8.5 Optional Inputs to the DRBG 34
8.5.1 Discussion 34
8.5.2 Personalization String ... s 34
8.5.3 Additional Input 35
8.6 Prediction Resistance and Backtracking Resistance 35

10

ANS X9.82, Part 3 - DRAFT December 2004

DRBG PrOCEAUIES 1vieiierriarrissersostissinmiisniisisensseessmnmmmsnnassssssssiasesssss sestesssntins samasastassssssatssssmasnanmasssssnnssassasseas
9.1 General Discussion..............
9.2 Instantiating a DRBG
9.3 Reseeding a DRBG Instantiation
9.4 Generating Pseudorandom Bits Using @ DRBG............cociinmnismncscseieniniinnne
9.5 Removing a DRBG Instantiation....
9.6 Auxilliary Functions
9.6.1 Introduction.......cccccmviininnneninnnnnissn e
9.6.2 Derivation Function Using a Hash Function (Hash_df)...............
9.6.3 Derivation Function Using a Block Cipher Algorithm
9.6.4 CBC-MAC FUNCHION....ocviciimiinssceemssen e smncan s nassnes
9.7 Self-Testing of the DRBG
9.7.1 DiSCUSSION .cccecneineinmietmetiniensisnecenncnnia
9.7.2 Instantiate, Generate, Uninstantiate and Test Procedures within a Single DRBG
Boundary......
9.7.3 Generate and Test
9.74 Reseed, Generate and Test
9.7.5 Instantiate, Uninstantiate, Generate, Reseed and Test
9.8 Error Handlingccccvieiimmieniviennmmmnmanicninsssasinesssanms s sissessnsnssmssns e ssnssass
DRBG Algorithm Specifications...
10.1 Deterministic RBGs Based on Hash Functions
10.1.1 Discussion
10.1.2 HaSh_DRBGccccmiiceniimiiieniiiiseses s s s naasas e sm s s s 008 s s nn s st e e n s s s s
10.1.2.1 DISCUSSION .oimiiiiiiiiiianiiasscasiennessiasassinsinsa s ebsssasssssncesasenses
10.1.2.2 SPeCifiCatiONSoociriiiiiiiii e
10.1.2.2.1 Hash DRBG Internal State.......cuurmrmmniimmmrisrssrmnmssisnmmmmminns
10.1.2.2.2 Instantiation of Hash DRBG......ccccciimimmmmimiiiomcninininirisnainnans
10.1.2.2.3 Reseeding a Hash_DRBG Instantiation........cccccoeeeerieenneennnenes
10.1.2.2.4 Generating Pscudorandom Bits Using Hash_DRBGcccocee.
10.1.3 HMAC_DRBG (...}.........
10.1.3.1 DISCUSSION ...vviiiiiieiicriiaieieareesee s ssin s ibi s srae e et eene e s s sa e bt asr et b e
10.1.3.2 SPECIHICAIONSccvreiiciiiireiiiiir st

38
38
40
42
44
45
45
45

.. 46

47
48
48

50
50
51
51
52
53
53
53
54

... 54

54
54
55
56
57
60

60
60

ANS X9.82, Part 3 - DRAFT December 2004

10.1.3.2.1 HMAC_DRBG Internal State...........ccervseresmreassrasinsisnressnernss 60
10.1.3.2.2 The Update Function (Update)..........ccvmierererimrnsnemierieresunrssarennnss 01
10.1.3.2.3 Instantiation of HMAC_DRBG....cc.cicveirmaiviieiiinncminaressnsniasann: 02

10.1.3.2.4 Reseeding an HMAC_DRBG Instantiation........c..c.cocevereccrencnns 63

10.1.3.2.5 Generating Pseudorandom Bits Using HMAC _DRBG............... 63

10.2 DRBGs Based on BIOCK CIPRerscccciirceniiniiirmnisssnrmmesasmmsssrs s s s snssssssnssssssssssesessasseisons 66
10.2.1 Discussion 66
10.2.2 CTR_DRBG 67

10.2.2.1 DIiSCUSSION wiiiiitiisissimasssiainsismersvsmeninm i amiimimvsersniseimisnmiviciormemssvirnsa 0 1
10.2.2.2 Specifications:mainimiamnrnnan S R TR AR AT G Re 08

10.2.2.2.1 CTR_DRBG Internal State........c.ccoovereerecreieroreccnnncensenniniiiens 68
10.2.2.2.2 The Update Function (Update)cccermiarnererarnanscassnssssesaaness 09
10.2.2.2.3 Instantiation of CTR_DRBGcccccureinmsimrarsserirscrsmsansssssmnsesensass 09

10.2.2.2.4 Reseeding a CTR_DRBG Instantiation..........c.ccenirunes
10.2.2.2.5 Generating Pseudorandom Bits Using CTR_DRBG
10.2.3 OFB_DRBG .. 75
10.2.3.1 DISCUSSION ...ooiiiiiiiiiiiiiii ittt e e 75
10.2.3.2 SPECIHICAtIONS ...vviieeeiiiic e e eiee e e 75
10.2.3.2.1 OFB_DRBG Internal State..........ccccceerreeeereereneereeenenecrereeens 75

10.2.3.2.2 The Update Function(Update)c..cesremenrsssemssessressnrssssessesssnnes 70
10.2.3.2.3 Instantiation of OFB_DRBG (...) ecivevicrcemrinnrssaereressesmsusessasenss 17

10.2.3.2.4 Reseeding an OFB_DRBG Instantiation...........cccecevecervcncenenan
10.2.3.2.5 Generating Pseudorandom Bits Using OFB_DRBG
10.3 Deterministic RBGs Based on Number Theoretic Problems 78
10.3.1 Discussion 78
10.3.2 Dual Elliptic Curve Deterministic RBG (Dual_EC_DRBG).. 78
10.3.2.1 DISCUSSIONoeiuiiiiiiii ittt ea e st b e 78
10.3.2.2 SPECIfICAtIONS ...eevvivriie e et e 81

10.3.2.2.1 Dual EC DRBG Internal State and Other Specification Details 81
10.3.2.2.2 Instantiation

ANS X9.82, Part 3 - DRAFT December 2004

of Dual EC DRBGcoiciiiiiiienecieniiinsine s
10.3.2.2.3 Resceding of a Dual EC_DRBG Instantiation..........c.cocvrveennins
10.3.2.2.4 Generating Pseudorandom Bits Using Dual EC_DRBG...........

10.3.3 Micali-Schnorr Deterministic RBG (MS_DRBG)......

10.3.3.1 DisCUSSION &t i s o o S B Pl o W e s i
10.3.3.2 MS_DRBG SpecCifiCations........ccciirmiiimiiiimmiciiiiiciie e csssse s sisas s snsan s
10.3.3.2.1 Internal State for MS DRBGcccciiiiiiniiimninniiiiinnnininininians
10.3.3.2.2 Selection of the M-S parameters...........cocevveeeicercrennninisnenianens
10.3.3.2.3 Instantiation of MS_DRBGc.cccccoiiniiiiiiiiniiiiiinnene
10.3.3.2.4 Reseeding of a MS_DRBG Instantiation........cccccceceovivinenninnns
10.3.3.2.5 Generating Pseudorandom Bits Using MS_DRBG..........ccccc.....

11 Assurance

11.1 Overview..

11.2 Minimal Documentation Requirementscccvnmrmeisarensonsnnnnciieeen

11.3 Implementation Validation Testing....

11.4 Operational/Health Testing..............

11.4.1 Overview

11.4.2 Known Answer Testing......

Annex A: (Normative) Application-Specific Constants.

99

A.1 Constants for the Dual_EC_DRBGccocvvmrimsnsncscsnisescasnnnins

99

A.1.1 Curves over Prime Fields

99

AT CUIVE P-224 ... s b a4 sha s da sttt

A 1.1.2 CUIVE P-256coeraurmmnmmarcoasnssmmsrasisassssssrmmssst sxitssioasssn ias s nas simmhadd bi o uraavonaiminns
A 13 CUIVE P-384 ...ttt et bbb
A.1.1.4 CuIve P-521 iianmimmsiisi i it iaa dasiateas st e ssintiedis vibesasansas svaasisavdiivine
A.1.2 Curves over Binary Fields.
AL1.2.1 CUI'VE K233 uiiiminsimmmmsiissasmunisasinsissiinssssussasysssasssanoassnisas sxmsanssiagsams ssniss svassgsasasssssn
A T.2.3CUNVE B-233 ..o e e e e st
A1.2.2 CUNVE K-283ocieeiiciirnesicssssescssseaenssmsmasnesm s sanesmnenene e
A 1.2.4 Curve B-283 iuiicaminasivsimiiimnanisnisise siaisiiasssiatonts isssaasiaiss sl iV ceviesrereit
A28 CUIVE K09 ...t e st et

99
100
100
101
101
102
103

... 104

104

ANS X9.82, Part 3 - DRAFT December 2004

A.1.2.6 Curve B-409 ..106

A.1.2.7 Curve K-571 107

A1.2.8 CUIVE B-571 .ociiiiiiiieiieeceiesesss e an st s sss s s sesbessssesisssiasss 108

A.2 Test Moduli for the MS_DRBGccceorivmmninsssniiiemnsssmmmmmnms s s s smsssecsvannns 109

A.2.1 The Test Modulus n of Size 2048 Bitsccccvrnveriiiinenvicniinin st e 110

A.2.2 The Test Modulus n of Size 3072 Bitscccvcuvveecvminenicnnnniiinnnnn. 110

ANNEX B : (Normative) Conversion and Auxilliary Routinescononnn M1
B.1 Bit String to an Integer...... emeresemErrasEEESSsAEEeESRREIIASEREESRARRREERRRRRRRECACIROEROANSsSRRORaREeRR AR 111

B.2 Integer to @ Bit String.......ccccccvnriiiimniiinnsn s e 111

B.3 Integer to an Octet String........cccciiieiiiiiinnmnc e 112

B.4 Octet String to an Integer....... PPN . 112
Annex C: (Informative) Security Considerations.......... . 113
C.1 The Security of Hash FUNCHIONSc.ccciumsimsinisimsimsinmissinssissmssissniisuessissassississsssssnssanssssasssases 113

C.2 Algorithm and Keysize Selection............cceeuenne S R S 113

C.3 Extracting Bits in the Dual_EC_DRBG (...) S TR e e e e 1156

C.3.1 Potential Bias Due to Modular Arithmetic for Curves Over F, 115

C.3.2 Adjusting for the missing bit(s) of entropy in the x coordinates. . 1156

ANNEX D: (Informative) Functional Requirements...........ccconuvennen. 19
D.1 General Functional Requirements....... e mnns s s ——— 119

D.2 Functional Requirements for Entropy INput..........cccoinmmmnmnin s nnessensssssessesssnsesssnnnsassens 119

D.3 Functional Requirements for Other Inputs e RStaRananasaannnass s Rna St annnt e e n Rt n e e en 119

D.4 Functional Requirements for the Internal State...........ccuiiiiinniinniiin e, 120

D.5 Functional Requirements for the Internal State Transition Function.........ccccccvemrmninnscrvcninanaes 120

D.6 Functional Requirements for the Output Generation Function..........cccccviiiiiiinncnnnnnen. 121

D.7 Functional Requirements for Support FUNCLIONS ... i i asssissans 122
ANNEX E: (Informative) DRBG Selection ... 124
E.1 Choosing @ DRBG AlGOrithM......cccc.eoiirviriinsinsinntresssnnn s ss s sentnsnensnsssasssnssnnsensasnassnsnsssnnanss 124

E.2 DRBGs Based on Hash Functions. O S 124

E.2.1 HaSh_DRBG ..o cniiicemnscerinntessismsnssmsssssens s snsansrsssessssesssnasasssseesssmnenssnsansnnsans nensnsn 125

E.2.1.1 Implementation ISSUES..........c.ccuiiiiiiereeirieseesiineasssesssesnesae s saensnessasnsesssssssnssnnss | 20
E.2.1.2 Performance Propertiescoocivoiiiiiiiiiiiasiiessinssessssissasssesssesssesssssisnssesssssasse 129

vi

E.3

E.4

E.3
E.4

F.1
F.2

F.3

F.4

F.5

ANS X9.82, Part 3 - DRAFT December 2004

E.2.2 HMAC_DRBG ...coocrrmnerecsstssssssssnsosratsisssasnstsmsssnsssssssonis s saeanssa s asaanssesstasassnssnsns sos sunasssns osstsne 125
E.2.2.1 Implementation Properties.cccceoieiimmiiimiiiiiiie i 126
E.2.2.2 Performance Properties.........cccoericriiiiriiiiniiiiiiee i et 126

DRBGs Based on Block Ciphers ...

E.3.1 The Two Constructions: CTR and OFB..........cccccececvumncnes 127
E.3.2 Choosing @ BIOCK Cipher.........ccomimimrimnrenteceecrnennmmnnnsr s s sssssssssansseans 127
E.3.3 Conditioned Entropy Sources and the Derivation FUNCLIONcceriiiiinisiniinnnnncninsnnne 129
Summary and Comparison....... 129
E.4.1 SECUMLY cocvvcnrisicenniismmiinnsianioes st st s sseas s san e smn e s stnasasssnnsassnns 129
E.4.2 Performance / implementation Tradeoffs .. 130
DRBGs Based on BIOCk CIPRErS ... s s ssssse 131
DRBGs Based on Hard Problems ... st s ssssssssssssssenasnninns 131
ANNEX F: (Informative) Example Pseudocode for Each DRBG...........cccccininimimnmnniie 133
Preliminaries........ccounimmnmnce st 133
Hash_DRBG Example.....c...ccconmnnmmininnnasoninneecnsmmninsenanisans 133
F.2.1 DiSCUSSION ...coreeriisririimrremnssseessssstastmmmmsmnsssssssssssnnsasmseassms s 0sssaasassamans nsman mnssasnsanasaassssnans 133
F.2.2 Instantiation of HASh_DRBGcccccirnccensisvimmmmmmnnnecsennismmmmmmssnm st rsssnnssssnsssssssnsssasass 134
F.2.3 Reseeding a Hash_DRBG Instantiationccccnininiiiinniciiccsinnns 135
F.2.4 Generating Pseudorandom Bits Using Hash_DRBG.........c..ccciiiiiniicnnninnnnnsiniees 136
HMAC_DRBG EXAMPI@....cocsriuriictestimsnasmsissnisiinssssssnssmmssnssentsassssesses sammmssssmas sns st sssesss sssmansasas ssssnn 139
F.3.1 DiscusSioncccciemnienimnnrcssmmnnnssansseninans 139
F.3.2 Instantiation of HMAC_DRBGccocevnvvvicricnnne 139
F.3.3 Generating Pseudorandom Bits Using HMAC_DRBG..........cecoiormnnnncsistsssssnsninsienae 141
CTR_DRBG EXaMPI.....oeiiiinmrrniimamiinrnimsinesssenneasmnnnmnssas s s e sessunssssansss sssansnsmsssn nnnsasssasssannnass 142
F.4.1 DiSCUSSIONcovvirverrrmnnnrsnrrsarnsesecsannnnns 142
F.4.2 The Update FUNCLIONcconiiiiicicmnninnnransnnssasssisisiansinias
F.4.3 Instantiation of CTR_DRBG.....c...cccssemrrirmtrsmscsssmmmmmmmnsssesscsasnsnsssnnms nsmsesssmsmsssnssassssssnnsane 143
F.4.4 Reseeding a CTR_DRBG Instantiation............ccccommmmmmminininiisnnnmmmnnissann 145
F.4.5 Generating Pseudorandom Bits Using CTR_DRBG 146
OFB_DRBG EXAMPIe......cccrriminiiirinasenincssmmnnsmrssnsesn s rsssss st ssssss s ssnssssass snssassass s smsasasssssnsanensns 148
F.5.1 DISCUSSION cvtisseensrrisssienistseacssniimmiinnisssessasarasnas s s st st s s s s e n e es s s bbe s eR e SRR s e R nbRn 000 148
F.5.2 The Update Functioncccocoeriiivininmnnieencscsinennans 149

vii

F.5.3
F.5.4
F.5.5

F.6 Dual_EC_DRBG Example

F.6.1
F.6.2
F.6.3
F.6.4

F.7 MS_DRBG Example

F.7.1
F.7.2
F.7.3
F.7.4

ANNEX G: (Informative) Bibliography..

ANS X9.82, Part 3 - DRAFT December 2004

Instantiation of OFB_DRBG
Reseeding the OFB_DRBG Instantiation

Generating Pseudorandom Bits using OFB_DRBG

Discussion

Instantiation of Dual_EC_DRBG

Reseeding a Dual_EC_DRBG Instantiation

Generating Pseudorandom Bits Using Dual_EC_DRBG

Discussion

Instantiation of MS_DRBG.

Reseeding an MSDRBG Instantiation

Generating Pseudorandom Bits Using MS_DRBG

viii

149
151
152
154
154
165
157
158
160
160
161
163
164

167

ANS X9.82, Part 3 - DRAFT - December 2004

Random Number Generation
Part 3: Deterministic Random Bit Generator Mechanisms

Contribution of the U.S. Federal Government and not subject to copyright

1 Scope
This part of ANSI X9.82 defines techniques for the generation of random bits using
deterministic methods. This part includes:

1. A model for a deterministic random bit generator,

2. Requirements for deterministic random bit generator mechanisms,

3. Specifications for deterministic random bit generator mechanisms that use hash
functions, block ciphers and number theoretic problems,

4. Implementation issues, and
5. Assurance considerations.

The precise structure, design and development of a random bit generator is outside the
scope of this standard.

2 Conformance

An implementation of a deterministic random bit generator (DRBG) may claim
conformance with ANSI X9.82 if it implements the mandatory provisions of Part 1, the
mandatory requirements of one or more of the DRBG mechanisms specified in this part of
the Standard, and the appropriate mandatory requirements of Part 4.

Conformance can be assured by a testing laboratory associated with the Cryptographic
Module Validation Program (CMVP) (see hitp://csre.nist.gov/cryptval). Although an
implementation may claim conformance with the Standard apart from such testing,
implementation testing through the CMVP is strongly recommended.

3 Normative references

The following referenced documents are indispensable for the application of this
document. For dated references, only the edition cited applies. Nevertheless, parties to
agreements based on this document are encouraged to consider applying the most recent
edition of the referenced documents indicated below. For undated references, the latest
edition of the referenced document (including any amendments) applies.

ANS X9.52-1998, Triple Data Encryption Algorithm Modes of Operation.
ANS X9.62-2000, Public Key Cryptography for the Financial Services Industry - The Elliptic

9

ANS X9.82, Part 3 - DRAFT - December 2004

Curve Digital Signature Algorithm (ECDSA).

ANS X9.63-2000, Public Key Cryptography for the Financial Services Industry - Key
Agreement and Key Transport Using Elliptic Key Cryptography.

ANS X9.82, Part 1-200x, Overview and Basic Principles, Draft.

ANS X9.82, Part 2-200x, Entropy Sources, Draft.

ANS X9.82, Part 4-200x, RBG Constructions, Draft.

FIPS 180-2, Secure Hash Standard (SHS), August 2002; ASC X9 Registry 00003.

FIPS 197, Advanced Encryption Standard (AES), November 2001; ASC X9 Registry 00002,

FIPS 198, Keyed-Hash Message Authentication Code (HMAC), March 6, 2002; ASC X9
Registry 00004,

10

ANS X9.82, Part 3 - DRAFT - December 2004

4 Terms and definitions

For the purposes of this part of the standardError! Reference source not found., the
following terms and definitions apply.

4.
Algorithm

A clearly specified mathematical process for computation; a set of rules that, if followed,
will give a prescribed result.

4,
Approved

Approved in an ANSI X9 standard or the ANSI X9 registry or by a process specified in an
ANSI X9 standard, technical guideline or the ANSI X9 registry.

4,
Backtracking Resistance

The assurance that the output sequence from an RBG remains indistinguishable from an
ideal random sequence even to an attacker who compromises the RBG in the future, up to
the claimed security level of the RBG. For example, an RBG that allowed an attacker to
"backtrack” from the current working state to generate prior outputs would not provide
backtracking resistance. The complementary assurance is called Prediction Resistance.

4.
Biased

A bit string (or number) that is chosen from a sample space is said to be biased if one bit
string (or number) is more likely to be chosen than another bit string (or number). Contrast
with unbiased.

4,
Bit String

A bit string is an ordered sequence of 0°s and 1’s. The leftmost bit is the most significant
bit of the string and is the newest bit generated. The rightmost bit is the least significant bit
of the string.

4.
Bitwise Exclusive-or

An operation on two bitstrings of equal length that combines corresponding bits of each

11

ANS X9.82, Part 3 - DRAFT - December 2004

bitstring using an exclusive-or operation.
4.
Block Cipher

A symmetric key cryptographic algorithm that transforms a block of information at a time
using a single cryptographic key. For a block cipher algorithm, the length of the input
block is the same as the length of the output block.

4,
Consuming Application

The application that uses random numbers or bits obtained from an Approved random bit
generator

4.

Cryptographic Key (Key)

A parameter that determines the operation of a cryptographic function such as:
1. The transformation from plain text to cipher text and vice versa,
2. The synchronized generation of keying material,
3. A digital signature computation or validation.

4,

Cryptographic Module

A set of hardware, software, firmware, or some combination thereof that implements
cryptographic logic, including cryptographic algorithms. A device wherein cryptographic
functions (e.g., encryption, authentication, and key generation) are performed.

4,
Cryptographically strong

A mechanism is said to be cryptographically strong when it has an assessed strength (in
accordance with an Approved security level) against an attack by an adversary.

4.
Deterministic Algorithm

An algorithm that, given the same inputs, always produces the same outputs.

12

ANS X9.82, Part 3 - DRAFT - December 2004

4.
Deterministic Random Bit Generator (DRBG)

An RBG that uses a deterministic algorithm to produce a pseudorandom sequence of bits
from a secret initial value called a seed (which contains entropy and possibly a
personalization string) along with other possible inputs. Additional non-deterministic
inputs may allow periodic reseeding. The outputs do not always contain full entropy,
contrast this with an NRBG. A DRBG is oflen called a Pseudorandom Number (or Bit)
Generator. A DRBG has an assessed security level and is designed with the goal of
requiring an adversary to do at least the amount of work associated with that security level
in order to successfully predict even one bit of it’s output or distinguish the output from an
ideal random sequence.

4.

DRBG Boundary

A physical or virtual boundary in which all implemented DRBG processes are contained.

4.
Entropy

A measure of the disorder, randomness or variability in a closed system. The entropy of X
is a mathematical measure of the amount of information provided by an observation of X.
Also, see min-entropy.

4.
Entropy Input

The input to an RBG of a string of bits that contains entropy, that is, the entropy input is
digitized and is assessed. For an NRBG, this is obtained from an entropy source. Fora
DRBG, this is included in the seed material.

4,
Entropy Input Source

A source of unpredictable data, such as thermal noise or hard drive seek times. There is no
assumption that the unpredictable data has a uniform distribution.

4.
Equivalent Process

Two processes are equivalent if, when the same values are input to each process (either as
input parametets or as values made available during the process), the same output is
produced.

13

ANS X9.82, Part 3 - DRAFT - December 2004

4.

Exclusive-or

A mathematical operation, symbol @, defined as:

060=0
o0®1=1
1®0=1and
1d1=0.

Equivalent to binary addition without carry.
4.

Full entropy

Each bit of a bitsting is independent of every other bit of that bitstring.
4,

Hash Function

A (mathematical) function that maps values from a large (possibly very large) domain into
a smaller range. The function satisfies the following properties:

1. (One-way) It is computationally infeasible to find any input that maps to any pre-
specified output;

2. (Collision free) It is computationally infeasible to find any two distinct inputs that
map to the same output.

4,
Implementation

An implementation of an RBG s a cryptographic device or portion of a cryptographic
device that is the physical embodiment of the RBG design, for example, some code
running on a computing platform. An implementation may be designed to handle more
than one instatniation at a time.

4,
Implementation Testing for Validation

Testing by an independent party to ensure that an implemention of a standard conforms to
the specifications of that standard.

14

ANS X9.82, Part 3 - DRAFT - December 2004

4,
Instantiation of an RBG

An instantiation of an RBG is a specific, logically independent, initialized RBG. One
instantiation is distinguished from another by a handle (identifying number). An
implementation of an RBG may support multiple instantiations to allow for the separation
of differing uses of the outputs. An instantiation has one or more instances.

4,
Internal State

The collection of stored information inside an instantiation of an RBG. This can include
both secret and non-secret information.

4.
Internal State Transition Functions

The set of functions that cause a particular internal state in an instantiation to be updated so
that a new internal state is the result.

4.

Key

See Cryptographic Key.
4,

m-bit number

A positive integer consisting of m bits where the high order bit, by definition, is always a
“1, In the case of an m-bit prime number, the low order bit is also a “1” except for the 2-
bit prime number “2” which has the binary value b’10°.

For example, the two byte hexadecimal prime number x’01FD’ (decimal 509) is the 9-bit
prime number b’111111101°.

4.
Non-Deterministic Random Bit Generator (Non-deterministic RBG) (NRBG)

An RBG that produces output that is fully dependent on some unpredictable physical
source that produces entropy. Contrast with a DRBG. Other names for non-deterministic
RBGs are True Random Number (or Bit) Generators and, simply, Random Number (or
Bit) Generators.

15

ANS X9.82, Part 3 - DRAFT - December 2004

4.
Operational Testing

Testing within an implementation immediately prior to or during normal operation to
determine that the implementation continues to perform as implemented and optionally
validated.

4.
Output Generation Function

The function in an RBG that outputs bits that appear to be random, that is, conform with
the ideal random distribution.

4.

Personalization String

A string of bits that is combined with entropy bits to produce a seed.
4.

Prediction Resistance

The assurance that the output sequence of an RBG remains indistinguishable (up to the
claimed security level of the RBG) from an ideal random sequence to an adversary who
has compromised the RBG at some specific time in the past. For example, if an adversary
compromised an RBG an hour ago, revealing all information about the internal state, and
the adversary is still able to predict its output, then the RBG fails to provide prediction
resistance. The complementaty assurance is called Backtracking Resistance.

4.
Pseudorandom

A process or data produced by a process is said to be psecudorandom when the outcome is
deterministic, yet also effectively random as long as the internal action of the process is
hidden from observation. For cryptographic purposes, “effectively” means “within the
limits of the intended cryptographic strength.” Note: Non-cryptographic use of
“pseudorandom” has less stringent meanings for “effectively.”

4.
Pseudorandom Number Generator

See Deterministic Random Bit Generator.

16

ANS X9.82, Part 3 - DRAFT - December 2004

4,
Public Key

In an asymmetric (public) key cryptosystem, that key of an entity’s key pair that is publicly
known.

4.

Public Key Pair

In an asymmetric (public) key cryposystem, the public key and associated private key.
4.

Random Number

For the purposes of this standard, a value in a set that has an equal probability of being
selected from the total population of possibilities and hence is unpredictable. A random
number is an instance of an unbiased random variable, that is, the output produced by a
uniformly distributed random process.

4.
Random Bit Generator (RBG)

A device or algorithm that outputs a sequence of binary bits that appears to be statistically
independent and unbiased.

4,
Random Number Generator (RNG)

A device or algorithm that can produce a sequence of random numbers that appears to be
from an ideal random distribution.

4,
Reseed

To aquire additional bits with sufficient entropy for the desired security level.
4.

Security Level

A number associated with the amount of work (that is, the number of operations) that is
required to break a cryptographic algorithm or system; a security level is specified in bits
and is a specific value from the set (80, 112, 128, 192, 256). The amount of work needed is
2 raised to the security level.

17

ANS X9.82, Part 3 - DRAFT - December 2004

4,
Seed

Noun: A string of bits that is used as input to a Deterministic Random Bit Generator
(DRBG). The seed will determine a portion of the internal state of the DRBG, and its
entropy must be sufficient to support the security strength of the DRBG. [New]

Verb : To aquire bits with sufficient entropy for the desired security level. These bits will
be used as input to a DRBG to determine a portion of the initial internal state. Contrast
with reseed.

4.
Seed Period

The period of time between initializing a DRBG with one sced and reseeding that DRBG
with another seed.

4.

Sequence

An ordered set of quantities.
4.

Shall

Used to indicate a requirement of this Standard.

4,
Should

Used to indicate a highly desirable feature for a DRBG that is not necessarily required by
this Standard.

4.
Statistically Unique

A value is said to be statistically unique when it has a negligible probability to occur again
in a set of such values. When a random value is required to be statistically unique, it may
be selected either with or without replacement from the sample space of possibilities; this
is in contrast to when a value is required to be unique, as then it must be selected without
replacement.

4.
String

See Sequence.

18

ANS X9.82, Part 3 - DRAFT - December 2004

4.
Supporting Functions

The set of functions in an RBG that are needed for assurance of correct operation but that
do not change the internal state. An example of a Supporting Function is the known
answer tests that are run at startup on a DRBG.

4.

Unbiased

A bit string (or number) that is chosen from a sample space is said to be unbiased if all
potential bit strings (or numbers) have the same probability of being chosen. Contrast with
biased.

4.
Unpredictable

In the context of random bit generation, an output bit is unpredictable if an adversary has
only a negligible advantage (that is, essentially not much better than chance) in predicting
it correctly.

4.
Working State

A subset of the internal state that is used by a DRBG to produce pseudorandom bits at a
given point in time. The working state (and thus, the internal state) is updated to the next
state prior to producing another string of pseudorandom bits.

19

ANS X9.82, Part 3 - DRAFT - December 2004

5 Symbols and abbreviated terms

The following abbreviations are used in this document:

Abbreviation Meaning
AES Advanced Encryption Standard.

ANS American National Standard

ANSI American National Standards Institute.
ASC Accredited Standards Committee

DRBG Deterministic Random Bit Generator,
ECDLP Elliptic Curve Discrete Logarithm Problem.
FIPS Federal Information Processing Standard.
HMAC Keyed-Hash Message Authentication Code.
NRBG Non-deterministic Random Bit Generator.
RBG Random Bit Generator.

TDEA Triple Data Encryption Algorithm.

The following symbols are used in this document.

Symbol Meaning
+ Addition
X1 Ceiling: the smallest integer > X. For example, |5| = 5, and
[5.3] =6.
XeY Bitwise exclusive-or (also bitwise addition mod 2) of two bit

strings X and ¥ of the same length.

X||Y Concatenation of two strings X and Y. X and Y are either both
bit strings, or both octet strings.

ged (x,y) The greatest common divisor of the integers x and y.

len (a) The length in bits of string a.

X mod n The unique remainder r, when 0 < r < n-1, when integer x is

divided by n. For example, 23 mod 7 = 2.

20

ANS X9.82, Part 3 - DRAFT - December 2004

Used in a figure to illustrate a "switch" between sources of
input.

{ay, .2}

The internal state of the DRBG at a point in time. The types
and number of the a; depends on the specific DRBG.

A string of x zero bits.

21

ANS X9.82, Part 3 - DRAFT - December 2004

6 General Discussion and Organization

Part 1 of this Standard (Random Number Generation, Part 1: Overview and Basic
Principles) describes several cryptographic applications for random numbers, specifies the
characteristics for random numbers and random number generators, and provides
mathematical and cryptographic background information on the concept of randomness.
Random bit generators are used for the generation of random numbers. Part 1 specifies
requirements for random bit generators that are applicable to both non-deterministic
random bit generators (NRBGs) and deterministic random bit generators (DRBGs). In
addition, Part 1 also introduces a general functional model and a conceptual cryptographic
Applied Programming Interface (API) for random bit generators.

Part 2 of this Standard (Entropy Sources) discusses entropy sources used by random bit
generators. In the case of DRBGs, the entropy sources are required to seed and reseed the
DRBG..

Part 4 of this Standard (Random Bit Generator Constructions) provides guidance on
combining components to construct random bit generators.

This part of the Standard (Random Number Generation, Part 3: Deterministic Random Bit
Generator Mechanisms) specifies Approved DRBG mechanisms. A DRBG mechanism is
an RBG component that utilizes an algorithm to produce a sequence of bits from an initial
internal state that is determined by an input that is commonly known as a seed. Because of
the deterministic nature of the process, a DRBG mechanism is said to produce
“pseudorandom” rather than random bits, i.., the string of bits produced by a DRBG
mechanism is predictable and can be reconstructed, given knowledge of the algorithm, the
seed and any other input information. However, if the input is kept secret, and the
algorithm is well designed, the bit strings will appear to be random. A process or data
produced by a process is said to be pscudorandom when the outcome is deterministic.

The seed for a DRBG mechanism requires that sufficient entropy be provided by an
entropy input source (see Parts 2 and 4 of this Standard). While a DRBG mechanism may
conform to this part of the Standard (i.c., Part 3), an implementation cannot achieve the
goals specified in Part 1 unless the entropy input source is included as specified in Part 4.
That is, the security of an RBG that uses a DRBG mechanism is a system implementation
issue; both the DRBG mechanism and its entropy input source must be considered.

Throughout the remainder of this document, the term “DRBG mechanism” has been
shortened to “DRBG™.

The remaining sections of this part of the Standard are organized as follows:

— Section 7 provides a functional model for a DRBG that particularizes the functional
model of Part 1.

— Section 8 provides DRBG concepts and general requirements.

— Section 9 specifies the DRBG functions that will be used to access the DRBG
22

ANS X9.82, Part 3 - DRAFT - December 2004

algorithms specified in Section 10.

— Section 10 specifies Approved DRBG algorithms.

— Section 11 addresses assurance issues for DRBGs.
This part of the standard also includes the following normative annexes:

— Annex A specifies additional DRBG-specific information.

— Annex B provides conversion routines.

— Annex C discusses security considerations for selecting and implementing DRBGs.
The following informative annexes are also included:

— Annex D discusses the functional requirements specified in Part 1 as they are
fulfilled by this part of the Standard.

— Annex E provides a discussion on DRBG selection.

— Annex F provides example pseudocode for each DRBG.

— Annex G provides a bibliography for related informational material..

23

ANS X9.82, Part 3 - DRAFT - December 2004

7 DRBG Functional Model
7.1 Functional Model

Part 1 of this Standard provides a general functional model for random bit generators
(RBGs). Figure 1 (below) particularizes the functional model of Part 1 for deterministic
random bit generators (DRBGs).

_| Idemal Bdenal Siade |
Transillon Transilion Punotion: [
Indamal Stabe i Transiiion Funcion:
N Gaerabe
Emor
Oudput Genaradion Stale
Pundion
DRB G Boundary
v
Rehmn Pseudorandom Oudpant

Figure 1: DRBG Model

7.2 Functional Model Components
7.2.1 Introduction

Part | of this Standard provides general functional requirements for random bit generators.
These requirements are discussed briefly in this section. Annex D provides a discussion of
how each functional requirement in Part 1 is fulfilled by the requirements for DRBGs in
this part of the Standard.

24

ANS X9.82, Part 3 - DRAFT - December 2004

7.2.2 Entropy Input

The entropy input is the source of entropy for the DRBG. The secrecy of this information
provides the basis for the security of the DRBG. At a minimum, this input shall provide
the requested amount of entropy for a DRBG. Examples of appropriate sources of entropy
input are an Approved NRBG as specified in Part 4, a conditioned entropy source as
specified in Part 2,0r an Approved DRBG or chain of DRBGs in which the first DRBG in
the chain obtains entropy input from an Approved NRBG.

The DRBGs specified in this Standard allow for some bias in the entropy input. Whenever
a bitstring containing entropy is required by the DRBG, a request is made that indicates the
minimum amount of entropy to be returned. The request may be fulfilled by a bitsting that
is equal to or greater in length to the requested entropy. The DRBG expects that the
returned bitstring will contain at least the amount of entropy requested. Additional entropy
beyond the amount requested is not required, but is desirable.

An important use of the entropy input for DRBGs is the acquisition of entropy bits to
create seeds. Seeds are obtained prior to requesting pseudorandom bits. Additional entropy
may also be introduced during a request.

Part 1 of this Standard provides functional requirements for the entropy input for random
bit generators. The requirements are met, for example, when entropy input that conforms to
Part 2 of this Standard is used, and the interface between the entropy input and the DRBG
is protected against influence, manipulation and observation. DRBGs and other sources
that provide entropy input shall also meet these requirements.

7.2.3 Other Inputs

Other information may be obtained by a DRBG as input during the instantiation, reseeding
and generation processes. This information includes the input parameters when the DRBG
is called by the consuming application and any additional input that may be public (e.g.,
information provided by a user). This information may or may not be required to be kept
secret by a consuming application; however, the security of the DRBG itself does not rely
on the secrecy of this information. The information should be checked for validity when
possible.

The DRBGs in this Standard allow the insertion of a personalization string during DRBG
instantiation. When used, the personalization string is unique for all instantiations of the
same DRBG type (e.g., Hash DRBG). See Section 8.5.2 for additional discussion on
personalization strings.

Additional input may also be provided when pseudorandom bits are requested. See Section
8.5.3 for a discussion of this input.

7.2.4 The internal State

The internal state is the memory of the DRBG and consists of all of the parametets,
variables and other stored values that the DRBG uses or acts upon. The internal state

25

ANS X9.82, Part 3 - DRAFT - December 2004

contains both administrative data and data that is acted upon and/or modified during the
generation of pseudorandom bits (i.e., the working state). The contents of the internal state
is dependent on the specific DRBG and includes all information that is required to produce
the pseudorandom bits from one request to the next.

7.2.5 The Internal State Transition Function

The internal state transition function uses the internal state and one or more Approved
algorithms to produce pseudorandom bits. During this process, data in the internal state is
altered. The algorithms used and the method of altering the internal state depends on the
specific DRBG.

The DRBGs in this Standard have four separate state transition functions:

1. During the initial instantiation of the DRBG, entropy input and an optional
personalization string are obtained. This information is used to determine the initial
internal state.

2. Each request for pseudorandom bits produces the requested bits using the current
internal state and determines a new internal state that is used for the next request of
bits.

3. When an application determines that reseeding of the DRBG is required, a reseed
function obtains new entropy input, combines it with the current internal state
values, and determines a new internal state for the next request for pseudorandom
bits. By combining the new entropy input with the current internal state, the
entropy available for the instantiation is not lost, but is enhanced by the entropy of
the new entropy input.

4. When a consuming application or a testing process no longer requires an
instantiation, the internal state is released.

7.2.6 The Output Generation Function

The output generation function of a DRBG produces pseudorandom bits that are a function
of the internal state of the DRBG and any input that is introduced while the internal state
transition function is operating. These pseuodorandom output bits are deterministic with
respect to the input information. Any formatting of the output bits prior to output is
determined by a particular implementation.

7.2.7 Support Functions

The support functions for a DRBG are concerned with assessing and reacting to the health
of the DRBG. The health tests are discussed in Sections 9.7 and 11.4.

26

ANS X9.82, Part 3 - DRAFT - December 2004

8. DRBG Concepts and General Requirements
8.1 Introduction

This section provides concepts and general requirements for the implementation and use of
a DRBG. The DRBG functions are explained and requirements for the implementation are
provided, including requirements for DRBG boundaries in which the DRBG functions and
secret information will be confined, and requirements for the critical information that is
necessary for a DRBG to provide pseudorandom data.

8.2 DRBG Functions and a DRBG Instantiation
8.2.1 Functions

A DRBG requires instantiate, uninstantiate, generate, and testing tunctions. A DRBG may
also include a reseed function. A DRBG shall be instantiated prior to the generation of
output by the DRBG. The instantiate function initializes the internal state using a seed; the
uninstantiate function deletes the internal state. The generate function generates
pseudorandom bits upon request. The reseed function modifies the internal state using a
new seed. The testing function is intended to test the continued “health” of the DRBG.

8.2.2 DRBG Instantiations

A DRBG may be used to obtain pseudorandom bits for different purposes (e.g., DSA
private keys and AES keys) and may be separately instantiated for each purpose. For
example, an instantiation may be associated with the generation of only 1024-bit RSA
keys, and a separate instantiation may be associated with the generation of 128-bit AES
keys. This Standard recommends that different instantiations be used to generate bits for
different purposes.
However, if an
application needs to
generate bits for
different purposes, it v
may not always be [(Opt Reseed with eed,, |
practical to use multiple
instantiations. For Seed period 2
example, if an ¥
application cannot | (Opt) Reseed with seed , |
support multiple
instantiations (e.g.,
because of memory
restrictions), then the
same instantiation could
be associated with
generating both 1024-bit
RSA keys and 128-bit

Instantiate: Initialize with seed;

I Seed period 1

Seed periods 3 ton

Figure 2: DRBG Instantiation

27

ANS X9.82, Part 3 - DRAFT - December 2004

AES keys.

A DRBG is instantiated using a seed and may be reseeded; when reseeded, the seed shall
be different than the seed used for instantiation. Each seed defines a seed period for the
DRBG instantiation; an instantiation consists of one or more seed periods that begin when
a new seed is acquired (see Figure 2).

8.2.3 Internal States

During instantiation, an initial internal state is derived from the seed. The internal state for
an instantiation includes:

1. One or more values that are derived from the seed and become part of the internal
state (i.e., the working state),

2. Administrative information (e.g., security level provided by the DRBG, a count of
the number of requests since the last seed or reseed).

The internal state shall be protected at least as well as the intended use of the
pseudorandom output bits requested by the consuming application. Each DRBG
instantiation shall have its own internal state. The internal state for one DRBG
instantiation shall not be used as the internal state for a different instantiation.

A DRBG shall transition between internal states when the generator is requested to
provide new pseudorandom bits. A DRBG may also be implemented to transition in
response to internal or external events (e.g., system interrupts) or to transition continuously
(e.g., whenever time is available to run the generator). Additional unpredictability is
introduced when the generator transitions between internal states continuously or in
response to external events. However, when the DRBG transitions from one internal state
to another between requests, reseeding may need to be performed more frequently.

A DRBG implementation may be designed to handle multiple instantiations. Sufficient
space must be available for the expected number of instantiations, i.e., sufficient memory
must be available to store the internal state associated with each instantiation.

8.2.4 Security Levels Supported by an Instantiation

The DRBGs specified in this Standard support four security levels: 112, 128, 192 or 256
bits. The security levels that may be supported by a particular DRBG are specified for
each. However, the security level actually supported by a particular instantiation may be
less than the maximum security level possible for that DRBG, depending upon the amount
of entropy that is contained in the seed. For example, a DRBG that is designed to support a
maximum security level of 256 bits may be instantiated to support only a 128 bit security
level.

The maximum security level provided by an instantiation is determined when the DRBG is
instantiated. The instantiated security level is less than or equal to the maximum security
level that can be supported by the DRBG (see Table 1).

28

ANS X9.82, Part 3 - DRAFT - December 2004

Table 1: Possible Instantiated Security Levels

Maximum Designed 112 128 192 256
Security Level

Possible Instantiated 112 112,128 112,128,192 | 112,128, 192,
Security Levels 256

For each DRBG instantiation, a security level needs to be requested and obtained during
the instantiation process. The DRBGs allow security levels up to 256 bits, providing that
the appropriate cryptographic primitives and sufficient entropy are available. Accordingly,
any security level up to 256 may be requested. However, a DRBG will only be instantiated
for one of four security levels: 112, 128, 192 or 256. A requested security level that is
between two of the security levels will be instantiated to the next highest level (e.g., a
request for a 120-bit security level will actually be instantiated at the 128-bit security
level).

When a DRBG instantiation needs to provide pseudorandom bits for only one purpose,
then the security level needs to support that purpose. Examples:

1. 256-bit AES keys can provide a maximum of 256-bits of security. An instantiation
must support the 256-bit security level if the full 256 bits of security are to be
provided by the AES keys.

2. 2048-bit RSA can only provide 112 bits of security. In this case, an instantiation
used only for the generation of 2048-bit RSA keys must be instantiated at the 112-
bit security level or higher.

When an instantiation is used for multiple purposes, the minimum entropy requirement for
each purpose must be considered. The DRBG needs to be instantiated for the highest
security level required. For example, if one purpose requires a 112-bit security level, and
another purpose requires a security level of 256 bits, then the DRBG shall be instantiated
to support the 256-bit security level.

8.3 DRBG Boundaries
As a convenience. this Standard uses the notion of a “DRBG boundary™ Lo explain the
operations of a DRBG and its interaction with and relation to other processes. The DRBG

boundary is defined by the DRBGs public interfaces, which are made available to
consuming applications.

Within a DRBG boundary,

1. The DRBG internal state and the operation of the DRBG funclions shall only be
affected according to the DRBG specification.

2. The DRBG internal state shall exist solely within the DRBG boundary.

29

ANS X9.82, Part 3 - DRAFT - December 2004

3. Information about secret parts of the DRBG internal state and intermediate values
in computations involving these secret parts shall not affect any information that
leaves the DRBG boundary, except as specified for the DRBG pseudorandom bit
outputs. The internal state shall be contained within the DRBG boundary and shall
not be accessible from outside the boundary.

Each DRBG includes one or more cryptographic primitives (e.g., a hash function). Other
applications may use the same cryptographic primitive as long as the DRBG’s internal
state and the DRBG (unctions are not affected.

A DRBG’s functions may be

contained within a single device. or DREC Bouniany
may be distributed across multiple . Instantiate

. . . n nfiate -
devices (see Figures 3 and 4). Figure 3 e -
depicts a DRBG for which all =" Input
functions are contained within the Reseed | Reseed g

) j A Instantiation
same device. In this case. there is a Fifocedure
single DRBG boundary. r
- =i Generate

Figure 4 provides an example of Request Bits el oo provedors
DRBG [unctions that are distributed
across multiple devices. In this case. Test | Testing | States]
cach device has a DRBG boundary e —
that contains the DRBG functions — |
H H ninstantiate Uninstantiation
implemented on that device, and the DRBG o
~fogical DRBG boundary™ consists of :
the aggregation of boundaries
providing the DRBG functionality. Figure 3: DRBG Functions within a Single
I'he use of distibuted DRBG DREG Baiindaty

boundaries may be convenient for restricted environments (e.g.. smart card applications) in
which the primary use of the DRBG does not require repeated use of the instantiation or
reseeding functions.

Each DRBG boundary shall contain a testing function to test the “health” of other DRBG
functions within that boundary. Although the entropy input is shown in the figure as
originating outside the DRBG boundary, it may originate from within the boundary. Part 4
discusses the construction of a full random bit generator that contains both the DRBG and
its entropy input source.

Distributed DRBG boundaries shall be subject to the following:

1. Any DRBG boundary that includes an instantiate function shall include
uninstantiate, generate and testing (unctions to allow health testing, although the
generate (unction may not be the “primary” generate [unction for the DRBG. For
example, for a smart card application, it may be necessary to distribute the DRBG
finctions so that the smart card contains only the generate [unction, along with its
associated testing (unction. In this case, the instantiate (unction may reside on the

30

ANS X9.82, Part 3 - DRAFT - December 2004

system that initializes the smart card; the generate and uninstantiate functions are
used on this system during the testing of the instantiate function.

2. A DRBG boundary containing a generate function shall include a testing [unction.

3. A DRBG boundary that contains a reseed function shall include generate and test
functions to allow health testing, although the generate [unction may not be the
“primary” generate function for the DRBG.

|

| |
| |
| L E I
|

| Ressed Instentiaie Siaie |
| DRBG 19 |
| Generaie | | Testing |
} ' Sk Biie I
1 Uninstandlate | | - I
: DRBC Biw Sk I
| |
: DRBC Boundary (Generaie) I
| Testing |
I I
| DRBGCB |
| CRemdany\vsiniat) LogicelDRBG Boundary |

Figure 4: Distributed DGBR Functions and Boundaries

When DRBG (unctions are distributed, the DRBG functions are distributed among
multiple DRBG boundaries, appropriate mechanisms shall be used to protect the
confidentiality and integrity of the internal state when transferred between the distributed
DRBG boundaries. The confidentiality and integrity mechanisms and security level shall
be consistent with the data to be protected by the DRBG’s consuming application (see SP
800-57).

8.4 Seeds
8.4.1 General Discussion

When a DRBG is used to generate pseudorandom bits, a seed shall be acquired prior to the
generation of output bits by the DRBG. The seed is used to instantiate the DRBG and
determine the initial internal state that is used when calling the DRBG to obtain the first
output bits.

31

ANS X9.82, Part 3 - DRAFT - December 2004

The seed, seed size and the entropy (i.e., randomness) of the seed shall be selected to
minimize the probability that the sequence of pseudorandom bits produced by one seed
significantly matches the sequence produced by another seed, and reduces the probability
that the seed can be guessed or exhaustively tested. Since this Standard does not require
full entropy for a seed but does require sufficient entropy, the length of the seed may be
greater than the entropy requirement (i.e., a seed with » bits of entropy may be longer than
n bits in length).

The entry of entropy into a DRBG using an insecure method could result in voiding the
intended security assurances. To ensure unpredictability, care must be exercised in
obtaining and handling the entropy input used to create seeds.

8.4.2 Generation and Handling of Seeds

The seed and its use by a DRBG shall be (Optional)
generated and handled as follows: Entropy Input | [Personalization

1. Seed construction: The seed material String

used to determine a seed shall include
entropy input and should include a
personalization string (see Figure 5 and K

Section 8.5.1). Whether or not the ".‘ Opt. /
personalization string is present, the vdf [/
resulting seed shall be statistically \
unique. That is, when a personalization ‘

string is used, the combination of the l

entropy input and the personalization Seed
string shall determine a unique seed;

when a personalization string is not
used, the entropy input shall be
statistically unique.

Figure 5: Seed Construction

Depending on the DRBG and the entropy input, a derivation function may be
required to derive a seed.

2. Entropy requirements: The entropy input for the seed shall contain sufficient
entropy for the desired level of security, and the entropy shall be distributed across
the seed (e.g., by an appropriate derivation function). The DRBGs shall have the
required entropy provided in the entropy input. Additional entropy may be
provided in a personalization string, but this is not required.

A consuming application may or may not be concerned about collision resistance
between seeds and internal states. In order to accommodate possible collision
concerns, the entropy input for a seed shall have entropy that is equal to or greater
than the security level + 64 bits for instantiation; for reseeding, the minumum
entropy requirement is equal to the security_level. Note that the use of more entropy
than the minimum value will offer a security “cushion”. This may be useful if the

32

ANS X9.82, Part 3 - DRAFT - December 2004

assessment of the entropy provided in the entropy input is incorrect; having more
entropy than the assessed amount is acceptable; having less entropy than the assessed
amount could be fatal to security. The presence of more entropy than is required,
especially during the instantiate function, will provide a higher level of assurance than
the minimum required entropy.

Table 1 identifies the security levels to be provided by Approved DRBGs, along
with the associated entropy requirements. If a selected DRBG and the entropy input
for the seed are not able to provide the security level required by the consuming
application, then a different DRBG and entropy input shall be used.

Table 1: Minimum Entropy Per Security Level

Security Level 112 128 192 256
Minimum entropy for instantiation 176 192 256 320
Minimum entropy for reseeding 112 128 192 256

Seed length: The minimum length of the seed depends on the DRBG and the
security level required by the consuming application. See Section 10.

. Entropy input source: The source of the entropy input may be an Approved NRBG,
an Approved DRBG (or chain of Approved DRBGs) that is seeded by an Approved
NRBG, or another source whose entropy characteristics are known. Further
discussion about the entropy input is provided in Part 4 of this Standard.

. Entropy input and seed privacy: The entropy input and the resulting seed shall be
handled in a manner that is consistent with the security required for the data
protected by the consuming application. For example, if the DRBG is used to
generate keys, then the entropy inputs and seeds used to generate the keys shall be
treated at least as well as the key.

. Reseeding: Reseeding is 2 means of recovering the secrecy of the output of the
DRBG if a seed or the internal state becomes known. Periodic reseeding is a good
countermeasure to the potential threat that the seeds and DRBG output become
compromised. In some implementations (e.g., smartcards), an adequate reseeding
process may not be possible. In these cases, the best policy might be to replace the
DRBG, obtaining a new seed in the process (e.g., obtain a new smart card).

Generating too many outputs from a seed (and other input information) may
provide sufficient information for successfully predicting future outputs unless
prediction resistance is provided (see Section 8.6). Periodic reseeding will reduce
security risks, reducing the likelihood of a compromise of the data that is protected
by cryptographic mechanisms that use the DRBG.

Seeds shall have a finite seedlife (i.., the length of the seed period); the maximum
seedlife is dependent on the DRBG used. Reseeding is accomplished by 1) an
explicit reseeding of the DRBG by the application, or 2) by the generate function

33

ANS X9.82, Part 3 - DRAFT - December 2004

when prediction resistance is requested (see Section 8.6) or the limit of the seedlife
is reached. An alternative to reseeding is to create an entirely new instantiation.
This may be appropriate, for example, in environments with restricted capabilities,
where the seed is obtained from a source that is not co-located with the DRBG
(e.g., in a smart card applicaton).

Reseeding of the DRBG shall be performed in accordance with the specification
for the given DRBG. The DRBG reseed specifications within this Standard are
designed to produce a new seed that is determined by both the old seed and newly-
obtained entropy input that will support the desired security level. The newly-
obtained entropy input shall be checked to assure that it is not the same as the
previous entropy input (see Part 4).

7. Seed use: DRBGs may be used to generate both secret and public information. In
either case, the seed and the entropy input from which the seed is derived shall be
kept secret. A single instantiation of a DRBG should not be used to generate both
secret and public values. However, cost and risk factors must be taken into account
when determining whether different instantiations for secret and public values can
be accommodated.

A seed that is used to initialize one instantiation of a DRBG shall not be intentially
used to reseed the same instantiation or used as a seed for another DRBG
instantiation.

A DRBG shall not provide output until a seed is available, and the internal state
has been initialized.

8. Seed separation: Seeds used by DRBGs shall not be used for other purposes (e.g.,
domain parameter or prime number generation).

8.5 Optional Inputs to the DRBG

8.5.1 Discussion

Other input may be provided during DRBG instantiation, pseudorandom bit generation and
reseeding. This input may contain entropy, but this is not required. During instantiation, a
personalization string may be provided and combined with entropy input to derive a seed
(see Section 8.4, item 1). When pseudorandom bits are requested and when reseeding is
performed, additional input may be provided.

Depending on the method for acquiring the input, the exact value of the input may or may
not be known to the user or application. For example, the input could be derived directly
from values entered by the user or application, or the input could be derived from
information introduced by the user or application (e.g., from timing statistics based on key
strokes), or the input could be the output of another DRBG or an NRBG.

8.5.2 Personalization String

During instantiation, a seed shall be derived from entropy input with sufficient entropy,
34

ANS X9.82, Part 3 - DRAFT - December 2004

and the seed should also include a personalization string (see Section 8.4). That is, the use
of a personalization string is good practice, but is not mandatory. The intent of a
personalization string is to differentiate this DRBG instantiation from all the others that
might ever appear. The personalization_string should be set to some bit string that is as
unique as possible to a specific implementation or instance of a DRBG mechanism, and
may include secret information. The value of any secret information contained in the
personalization string should be no greater than the claimed strength of the DRBG, as the
DRBG's cryptographic mechanisms (specifically, its backtracking resistance and the
entropy provided by the entropy source) will protect this information from disclosure.
Good choices for the personalization string contents include:

1. Device serial numbers,

Public keys,

User identification,

Private keys,

PINs and passwords,

Secret per-module or per-device values,

Timestamps,

® NS kW

Network addresses, and

9. Special secret key values for this specific DRBG instantiation
8.5.3 Additional Input

During each request for bits from a DRBG and during reseeding, the insertion of additional
input is allowed. This input is optional and may be either secret or publicly known; its
value is arbitrary, although its length may be restricted, depending on the implementation
and the DRBG. The use of additional input may be a means of providing more entropy for
the DRBG internal state that will increase assurance that the entropy requirements are met.
If the additional input is kept secret and has sufficient entropy, the input can provide more
assurance when recovering from the compromise of the seed or one or more DRBG
internal states.

8.6 Prediction Resistance and Backtracking Resistance

Figure 6 depicts the sequence of DRBG internal states that result from a given seed. Some
subset of bits from each internal state are used to generate pseudorandom bits upon request
by a user. The following discussions will use the figure to explain backtracking and
prediction resistance. Suppose that a compromise occurs at Statey, where Statex contains
both secret and public information.

35

ANS X9.82, Part 3 - DRAFT - December 2004

Seed ——»| State, || State, | * ° ¢ |State,,||State,, IStatex State,,||State o[* * °

Figure 6: Sequence of DRBG States

Backtracking Resistance: lhauki‘.‘:ic!ufu;;.'x'l-'.l.u.'g mieans that a compromise of the DRBG
internal state has no clfect on the security of prior outputs. That is, an adversary who is
given access to all ol i —w.u«mwz{-m that prior output sequence cannot distinguish it from
random; if the adversary knows only part of the prior output, he cannot determine any bit
of that prior output sequence that the-acsersaerhe has not already seen. kb srards o
CORHH G-I -RO-CH e - HRE e S U - B PrOr-Oup -

For example, suppose that an adversary knows Stafe.
Backtracking resistance means that;

4. The output bits from Srate; to State, ; cannot be distinguished from random, . [Formatted: Bullets and Numbering j

b. The prior internal state values themselves (State) to Siic, |) cunmot (Formatted)
glven knowledge of the secret information in Stafe, Stete, ' [F.°"‘?at.t.‘?d — j
output-bits-cannor-be-determrined-from knowledge-of-State, theSke.cannat-be
e F-rmh WWH&‘%1%‘W oS appeii-e b
Fandom-theaupur-bits e Shae, WWMWH—"M&‘H—M**’*
Stcate,1o-State, | . [Comment [ebb1]: Page: 35
""""""""""""""""""""""""""""" This makes the definition very convoluted.

Backtracking resistance can be provided by ensuring that the internal state transition
function of a DRBG is a one-way function, or by using the DRBG to generate an
additional new DRGB working state before responding to the next request for bits (c.g.,
when bits are generated, the working state is updated; backtracking resistance may be
provided by an additional update of the working state, i.e., the working state is updated
twice between requests). All DRBGs in this Standard have been designed to provide
backtracking resistance.

Prediction Resistance: I1c
intemal state has no etfe

iction resistance means that a compromise of the DRBG
on the security of future DRBG outputs. l—I——«t{%mmhL Sk

|,.,\.,>! + ..; 3 mbed

e T states afterthe-compromise-remutns-sesure-That is, an adversary who is g1ven access
to all of epy-subsee =—the output sequence aﬁer the compromise cannot distinguish it from
random; if the adversary knows only part of the future output sequence, a-ad-ersaivhe

cannot predict any bit of that future output sequence that he has not already seen. tr-other

WS e e M o e Al e e

36

ANS X9.82, Part 3 - DRAFT - December 2004

For example, suppose that an adversary knows Statey; -and-alse-leaows-the cutput-bits from
Sgote | esiase-Prediction resistance means that;

2. The output bils from Srate,., and forward capnol be distinguished [rom an ideal [E\rmatted: Bullets and Numbering
random bitstring by the adversary. [Formatted]

b—b. The future internal state values themselves (State,+) and forward) cannot be Formatted I

predlcted given knowledge of Stafe, State.-and-Hs-output-bits-eannot-be
lotormined-Fam-kaowledoe o f Sie Lo Sie cannot-bebucked-upi-ta
mmﬂﬂ__m»,-h%ﬂ-qaw—h%wm ta-Siee o appeas-to-berandemthe

! e aapot-be I“ .1:..- ‘J-'hb{i‘]h&mw% ‘.).I_\.;fqrn -.&-.—-‘N{fﬁv__

otk ledae ot Stere ~aeadditon:

sause-the euipur bits frem-State__o-Stale,_appearteo-berandem—the-sutpul-bits-dor
State. . -canpal-be-determined-from-the-output-bits oFSfate, o to-State, -

Prediction resistance can be provided only by ensuring that a DRBG is effectively reseeded
between DRBG requests. That is, an amount of entropy that is sufficient to support the
security level of the DRBG (i.e., an amount that is at least equal to the security level)) must
| be added to the DRBG in a way that ensures that knowledge of the cuticniprevious DRBG
internal state does not allow an adversary any useful knowledge about future DRBG
internal states or outputs.

37

ANS X9.82, Part 3 - DRAFT - December 2004

9 DRBG Functions
9.1 General Discussion

The DRBG functions in this Standard are specified by an algorithm and the envelope
around that algorithm. The envelopes shall be used to access the appropriate selected
DRBG algorithm.

9.2 Instantiating a DRBG
A DRBG shall be instantiated prior to the generation of pseudorandom bits. The instantiate
function shall:
1. Check the validity of the input parameters,
Determine the security level for the DRBG instantiation,
Determine DRBG specific parameters (e.g., elliptic curve domain parameters),

Obtain entropy input with entropy sufficient to support the security level,

S e K2 B

Determine the initial internal state using the instantiate algorithm, and
6. Return a state_handle for the internal state to the consuming application.

Let working_state be the working state for the particular DRBG, and let
min_entropy_input_length and highest_supported_security level be defined for each
DRBG (see Section 10).

The following or an equivalent process shall be used to instantiate a DRBG.
Input from a consuming application:

1. requested security_level: A requested security level for the instantiation. DRBG
implementations that support only one security level do not require this parameter;
however, any application using the DRBG must be aware of this limitation.

2. prediction_resistance_flag: Indicates whether or not prediction resistance may be
required by the consuming application during one or more requests for
pseudorandom bits. DRBGs that are implemented to always or never support
prediction resistance do not require this parameter. However, the user of a
consuming application must determine whether or not prediction resistance may be
required by the application before electing to use such a DRBG implementation. If
the prediction_resistance_flag is not needed (i.e., because prediction resistance is
always or never performed), then the input parameter and step 2 may be omitted,
and the prediction_resistance_flag may be omitted from the internal state in step
10.

3. personalization_string: An optional input that provides personalization information
(see Sections 8.4 and 8.5.2). The maximum length of the personalization string
(max_personalization_string_length) is implementation dependent, but shall be <

38

ANS X9.82, Part 3 - DRAFT - December 2004

2% bits. If a personalization string will never be used, then the input parameter and
step 3 may be omitted, and step 9 may be modified to remove the personalization
string.8

5. DRBG specific_input_parameters : Any additional parameters that are allowed for
a specific DRBG (see Section 10). The use of the DRBG-specific input parameters
is discussed for the DRBG instantiate algorithms. If a DRBG or a DRBG
implementation does not use these parameters, then step 5 may be omitted.

Other input: Comment: This input shall not be provided
by the consuming application.

1. entropy_input: Input bits containing entropy. The maximum length of the
entropy_input is implementation dependent, but shall be < 2% bits.

Output to a consuming application:

1. status: The status returned from the function. The status will indicate SUCCESS or
an ERROR. If an ERROR is indicated, either no state_handle or an invalid
state_handle shall be returned. A consuming application should check the status to
determine that the DRBG has been cotrectly instantiated.

2. state_handle: Used to identify the internal state for this instantiation in subsequent
calls to the generate, reseed, uninstantiate and test functions.

Other output/information retained within the DRBG boundary:
The internal state for the DRBG, including the working_state, security_level, and
prediction_resistance_flag (see Section 10).

Process:
Comment: Check the validity of the input
parameters.
1. If requested_security level > highest supported_security level, then return an
ERROR.
2. If prediction_resistance_flag is set, and prediction resistance is not supported, then
return an ERROR.

3. Ifthe length of the personalization_string > max_personalization_string_length,
return an ERROR.

4, Set security level to the nearest security level greater than or equal to
requested_security level.

Comment: The following step is required by
" the Dual EC_DRBG when multiple curves
are available (see Section 10.3.2.2.2), and by
the MS_DRBG (see Section 10.3.3.2.3).
Otherwise, the step should be omitted.

5. Using security_level and DRBG specific_input_parameters (if available), select
39

ANS X9.82, Part 3 - DRAFT - December 2004

appropriate DRBG parameters.

Comment: Determine the minimum entropy
requirement and obtain the entropy input.

6. min_entropy = security_level + 64.

7. Obtain at least min_entropy_input_length bits of entropy_input with at least
min_entropy bits of entropy. If there is a failure in the entropy_input source, return
an ERROR.

Comment: Get the initial working state from
the instantiate algorithm.

8. Obtain values for the working state by performing the instantiate algorithm for the
DRBG using the entropy_input, the personalization_string (if provided) and other
parameters (as required).

Comment: Set up the initial internal state.

9. Get a state_handle that will be used to locate the internal state for this instantiation.
If an unused internal state cannot be found, return an ERROR.

10. Set the internal state indicated by state_handle to the initial values: working_state,
security_level, and prediction_resistance_flag, as appropriate.

11. Return SUCCESS and state_handle.

9.3 Reseeding a DRBG Instantiation

The reseeding of an instantiation is not required, but is recommended whenever an
application and implementation are able to perform this process. Reseeding will insert
additional entropy into the generation process. Reseeding may be:

e explicitly requested by an application,

¢ performed when prediction resistance or full entropy is requested by an
application,

o triggered by the generation process when a predetermined number of
pseudorandom outputs have been produced (i.e., at the end of the seedlife), or

o triggered by external events (e.g., whenever sufficient entropy is available).

If a reseed capability is not available, a new DRBG instantiation may be created (sce
Section 9.2).

The reseed function shall:
1. Check the validity of the input parameters,

2. Obtain entropy input with entropy sufficient to support the security level, and

40

ANS X9.82, Part 3 - DRAFT - December 2004

3. Using the reseed algorithm, combine the current working state with the new
entropy input to determine the new working state.

Let working_state be the working state for the particular DRBG, and let
min_entropy_input_length be defined for each DRBG (see Section 10).

The following or an equivalent process shall be used to reseed the DRBG instantiation.

Input from a consuming application:

1) state_handle: A pointer or index that indicates the internal state to be reseeded.
This value was returned from the instantiate function specified in Section 9.2.

2) additional_input: An optional input. The maximum length of the additional _input
(max_additional_input_length) is implementation dependent, but shall be < 2%
bits. If additional_input will never be used, then the input parameter and step 2
may be omitted, and step 5 may be modified to remove the additional_input.

Other input: Comment: This input shall not be provided
by the consuming application.

1. entropy_input: Input bits containing entropy. The maximum length of the
entropy_input is implementation dependent, but shall be < 2% bits.

2. Internal state values required by the DRBG for reseeding, including the
working_state, security_level and prediction_resistance_flag, as appropriate.

Output to a consuming application:

1. status: The status returned from the function. The status will indicate SUCCESS or
an ERROR.

Other output/information retained within the DRBG boundary:
Replaced internal state values (i.e., the working_state).
Process:
Comment: Get the current internal state and
check the input parameters.
1. Using state_handle, obtain the current internal state. If state_handle indicates an
invalid or unused internal state, return an ERROR.
2. Ifthe length of the additional_input > max_additional_input_length, return an
ERROR.

3. min_entropy = security level.

4. Obtain at least min_entropy input_length bits of entropy_input with at least
min_entropy bits of entropy. If there is a failure in the entropy_input source, return
an ERROR.

Comment: Get the new working_state.

5. Obtain values for the new working_state by performing the reseed algorithm for the
DRBG using working_state values, entropy_input and the additional_input (it

41

ANS X9.82, Part 3 - DRAFT - December 2004

provided).

Comment: Save the new values of the internal
state.

\

6. Replace the working_state in the internal state indicated by state_handle with the
new values.

7. Return SUCCESS.
9.4 Generating Pseudorandom Bits Using a DRBG

This function is used to generate pseudorandom bits after instantiation or reseeding (see
Sections 9.2 and 9.3). The generate function shall:

1. Check the validity of the input parameters,

2. Ifthe instantiation needs additional entropy because the end of the seedlife has
been reached, or prediction resistance is required, call the reseed function to obtain
sufficient entropy.

3. Generate the requested pseudorandom bits using the generate algorithm.
4, Update the working state.
5. Return the requested pseudorandom bits to the consuming appication.

Let outlen be the length of the output block of the cryptographic primitive (see Section 10).
The following or an equivalent process shall be used to generate pseudorandom bits.

Input from a consuming application:
1. state_handle: A pointer or index that indicates the internal state to be used.

2. requested number_of bits: The number of pseudorandom bits to be returned from
the generate (unction, The max_number_of bits_per request is defined for each
DRBG in Section 10.

3. requested_security level: The security level to be associated with the requested
pseudorandom bits.

4. prediction_resistance_request: Indicates whether or not predicition resistance is to
be provided prior to the generation of the requested pseudorandom bits to be
generated. DRBGs that are implemented to always or never support prediction
resistance do not require this parameter. However, the user of a consuming
application must determine whether or not prediction resistance may be required by
the application before electing to use such a DRBG implementation. If the
prediction_resistance_request parameter is not needed, then the input parameter
and step 5 may be omitted.

5. additional_input. An optional input. The maximum length of the additional _input
(max_additional_input_length) is implementation dependent, but shall be < 2*°
bits. If additional input will never be used, then the input parameter, step 4, and

42

ANS X9.82, Part 3 - DRAFT - December 2004

the additional input input parameter in step 8 may be omitted; in addition, step 7
may be modified to remove the check for the prediction_resistance_flag.

Other input:

1. Internal state values required for generation, including the working_state,
security_level and prediction_resistance_flag, as appropriate.

Output to a consuming application:

1. status: The status returned from the function. The status will indicate SUCCESS or
an ERROR.
2. pseudorandom_bits: The pseudorandom bits that were requested.

Other output information retained within the DRBG boundary:
Replaced internal state values (i.e., the working_state).
Process:

Comment Get the internal state and check the
input parameters.

1. Using state_handle, obtain the current internal state for the instantiation. If
state_handle indicates an invalid or unused internal state, then return an ERROR.

2. If requested number of bits > max_number_of bits_per_request, then return an
ERROR.

3. If requested security level > the security_level indicated in the internal state, then
return an ERROR.

4. Ifthe length of the additional_input > max_additional_inpyt_length, then return an
ERROR.

5. If prediction_resistance_request is set, and prediction_resistance_flag is not set,
then return an ERROR.

6. Reset the reseed required_flag.

Comment: Get the requested pseudorandom
bits.

7. If reseed required flag is set, or if prediction_resistance_request is set, then

7.1 Using state_handle and additional_input, reseed the instantiation (see Section
9.3). If an ERROR is returned, then return ERROR.

7.2 Using state_handle, obtain the new internal state.
7.3 additional input = the Null string.
7.4 Reset the reseed request_flag.

8 Using the working state, any additional _input and the value of
requested_number of bits, obtain pseudorandom_bits and new values for the

43

ANS X9.82, Part 3 - DRAFT - December 2004

working_state from the DRBG generate algorithm. If a reseed is required before the
requested bits can be generated, then

8.1 Set the reseed required flag.
82 Gotostep7.

9. Replace the old working_state in the internal state indicated by state _handle with
the new working_state.

10. Return SUCCESS and pseudorandom_bits.

Implementation notes:
If a reseed capability is not available, then steps 6 and 7 may be omitted; replace step 8 by:

Using the working_state in the internal state, any additional_input and the
value of requested_number of bits, obtain pseudorandom_bits and the new
working_state from the DRBG generate algorithm. If a reseed is required
before the requested bits can be generated, then return an indication that the
DRBG instantiation can no longer be used.

9.5 Removing a DRBG Instantiation

A process may need to “release” the internal state for an instantiation. This may be
required, for example, following health testing of the instantiation process. The
uninstantiate function shall:

1. Check the input parameter for validity.
2. Empty the internal state.

The following or an equivalent process shall be used to remove (i.e., uninstantiate) a
DRBG instantiation:

Input from a consuming application:

1. state_handle: A pointer or index that indicates the internal state to be used.
Output to a consuming application:

1. status: The status returned from the function. The status will indicate SUCCESS or
FAILURE.

Other output/information retained within the DRBG boundary:
An empty internal state.
Process:
1. If state_handle indicates an invalid state, then return FAILURE.

2. Empty the internal state indicated by state_handle (e.g., set to zero or Null, as

44

ANS X9.82, Part 3 - DRAFT - December 2004

appropriate).
3. Return SUCCESS.

9.6 Auxilliary Functions

9.6.1 Introduction

Derivation functions are used during DRBG instantiation and reseeding to either derive
internal state values or to distribute entropy throughout a bit string. Two methods are
provided. One method is based on hash functions (see Section 9.6.2), and the other method
is based on block cipher algorithms (see 9.6.3). The block cipher derivation function uses a
a CBC_MAC that is specified in Section 9.6.4.

9.6.2 Derivation Function Using a Hash Function (Hash_df)
The hash-based derivation function hashes an input string and returns the requested

number of bits. Let Hash (...) be the hash function used by the DRBG, and let outlen be its
output length.

The following or an equivalent process shall be used to derive the requested number of
bits.

Input:
1. input_string: The string to be hashed.

2. no_of bits_to_return: The number of bits to be returned by Hash_df. The
maximum length (max_number_of bits) is implementation dependent, but shall be
< (255 x outlen). no_of bits_to_return is represented as a 32-bit integer.

Output:
1. status: The status returned from Hash_df. The status will indicate SUCCESS or
ERROR.

2. requested bits : The result of performing the Hash_df.

Process:
1. Ifno_of bits_to_return> max_number_of bits, then return an ERROR.
2. temp = the Null string.

no of bits to return
3. len= = = - .
outlen

4. counter=an 8 bit binary value representing the integer "1".
5. Fori=1tolendo

5.1 temp = temp || Hash (counter || no_of bits_to_return || input_string).

45

ANS X9.82, Part 3 - DRAFT - December 2004

5.2 counter = counter + 1.
6. requested bits = Leftmost (no_of bits to_return) of temp.

7. Return SUCCESS and requested_bits.
9.6.3 Derivation Function Using a Block Cipher Algorithm

Let CBC_MAC be the function specified in Section 9.6.4. Let ECB_Encrypt be an
encryption operation in the ECB mode using the selected block cipher algorithm. Let
outlen be its output block length, and let keylen be the key length.

The following or an equivalent process shall be used to derive the requested number of
bits.

Input:

1. input_string: The string to be operated on.

2. no_of bits_to_return: The number of bits to be returned by Block_Cipher_df.
Output:

1. status: The status returned from Block Cipher_df. The status will indicate
SUCCESS or ERROR.

2. requested_bits : The result of performing the Block_Cipher_df.

Process:

1. If (number_of bits_to_return> max_number of bits), then return an ERROR.

2. L=len (input_string)/8. Comment: L is the bit string represention of
the integer resulting from len (input_string)/8.

3. N=number of bits to return/8. ~ Comment : is the bitsting represention of
the integer resulting from
number_of bits_to_return/$.

Comment: Prepend the string length and the
requested length of the output to the
input_string.

3. S=L||N| input_string || 0x80.
Comment : Pad S with zeros, if necessary.
4. While (len (S) mod outlen) # 0, S=S || 0x00.
Comment : Compute the starting value.
5. temp = the Null string.
6. i=0.
46

ANS X9.82, Part 3 - DRAFT - December 2004

7. K =Lefimost keylen bits of 0x010203...1F.
8. While len (temp) < keylen + outlen, do

8.1 [y=ij| ooen-ten® Comment: The integer represenation of i is
padded with zeros to outlen bits.

8.2 temp=temp || CBC-MAC (X, (IV || 5)).
83 i=i+1l.

Comment: Compute the requested number of
bits.

9. K=Leftmost keylen bits of temp.
10. X = Next outlen bits of femp.
11. femp = the Null string.
12. While len (femp) < number _of bits_to_return, do
12.1 X=ECB_Encrypt (X, X).
12.2 temp =temp || X.
13. requested_bits = Leltmost number_of bits_to_return of temp.

14. Return SUCCESS and requested_bits.

9.6.4 CBC-MAC Function

The CBC-MAC function was an Approved method for computing a message
authentication code. Let ECB_Enerypt be an encryption operation in the ECB mode using

the selected block cipher algorithm, Let outlen be the length of the output block of the
block cipher algorithm to be used.

The following or an equivalent process shall be used to derive the requested number of
bits.

Input:
1. Key: The key to be used for the block cipher opeation.
2. data_to MAC: The data to be operated upon.
Output:
1. output_block: The result to be returned from the CBC-MAC operation.
Process:

Omlllen

1. chaining value = Comment: Set the first chaining value to

outlen zeros.
2. n=len (data_to MAC)/outlen.

47

ANS X9.82, Part 3 - DRAFT - December 2004

Split the data_to. MAC into n blocks of outlen bits each forming block, to blocks.
4, Fori=1tondo
4.1 input_block= chaining value ® block; .
4.2 chaining value = ECB_Encrypt (Key, input_block).
output_block = chaining_value.
6. Return output_block.
9.7 Self-Testing of the DRBG

9.7.1 Discussion

A DRBG shall perform self testing to obtain assurance that the implementation continues
to operate as designed and implemented (health testing). The testing function within a
DRBG boundary shall test all DRBG functions within that boundary. Four function
configurations are possible within a single DRBG boundary:

1. Instantiate, generate, uninstantiate and test functions,

2. Generate and test functions,

3. Reseed, generate and test functions,

4, Instantiate, generate, reseed, uninstantiate and test functions.

Health testing shall be performed prior to the first instantiation of the DRBG, at periodic
intervals and on-demand. Bits generated during health testing shall not be output as
pseudorandom bits.

Implementations may differ on the meaning of periodic testing. For implementations that
have continuous power. periodic testing is performed, for example, every hour or every
day or every time the DRBG is accessed. For implementations that do not have coatinuous
power (e.g.. power is available for only short petriods of time). periodic testing is
performed at power-up.

Two levels of testing are allowed: 1) extensive tests' that are conducted when sufficient
time is available, and 2) minimal tests that are conducted when little time is available for
testing. When testing is performed on-demand, extensive testing shall always be
conducled. For testing performed prior to the first instantialion or periodically. extensive
testing shall be conducted either 1) prior to the first instantiation or 2) shall be conducted
periodically, or 3) shall be conducted in both cases. Table 2 summarizes when extensive
versus minimal testing are performed. All implementations shall conform to one of the
three cases listed in the table.

Table 2 : Health Testing Intervals and Levels of Testing

l Prior to first Periodic On-Demand

o 48 .
I This is not intended to be as extensive as validation tests; see Section 11.

ANS X9.82, Part 3 - DRAFT - December 2004

instantiation
Case 1 Extensive Extensive Extensive
Case 2 Minimal Extensive Extensive
Case 3 Extensive Minimal Extensive

In general, each of the DRBG functions shall be tested as follows:

1.

Instantiate function: Fixed values for the entropy input shall be used during testing;
the fixed values shall not be used during normal operations.

Extensive testing: Each combination of security_level, prediction_resistance_flag
and DRBG _specific_input_parameters shall be tested (depending on which input
parameters are implemented). Representative values and lengths of the
personalization_string shall be used. In addition, the error handling for each input
parameter and for an error in obtaining the entropy_input shall be tested (c.g., the
entropy_input source is broken).

Minimal testing: A minimal test shall include a single security_level; a single set of
DRBG specific_input_parameters; a single representative value for the
personalization_string (depending on which parameters are implemented); if
prediction resistance is possible, this capability shall also be tested.

Generate function: Known values for the internal state shall be used.

Extensive testing: Each possible combination of requested_security_level and
prediction_resistance_request shall be tested (depending on the input parameters
that are implemented); representative values and lengths for
requested_number_of bits and additional_input (if allowed) shall be used. Testing
shall include setting the reseed _counter to meet or exceed the reseed_interval in
order to check that the implementation is reseeded or that the DRBG is “shut
down”. In addition, the error handling for each input parameter shall be tested.

Minimal testing: A minimal test shall include a single value for the
requested_security level and single representative values for the
requested_number _of bits and additional_input (depending on which parameters
are implemented); if prediction resistance is possible, a request for prediction
resistance shall be tested. In addition, if the requested_security level input
parameter is used, a test of the error handling for an invalid
requested_security_level shall be conducted.

Reseed lunction: Fixed values for the entropy input shall be used during testing;
the fixed values shall not be used during normal operations.

Extensive testing: Internal states with all combinations of security_level and
prediction_resistance_flag shall be tested (depending on the input parameters that
are implemented); representative values of additional_input shall be used if
additional input can be provided. In addition, the error handling for each input

49

ANS X9.82, Part 3 - DRAFT - December 2004

parameter and for an error in the entropy_input shall be tested (e.g., the
entropy_input source is broken).

Minimal testing: A minimal test shall include the test of a single representative
internal state and a representative additional input (if allowed).

Uninstantiate function: Check the error handling for an invalid state_handle, as a
minimum. If possible, check that the internal state has been "emptied".

Errors occurring during testing shall be perceived as complete DRBG failures. The
condition causing the failure shall be corrected and the DRBG re-instantiated before
requesting pseudorandom bits (also see Section 9.8).

9.7.2

Instantiate, Generate, Uninstantiate and Test Functions within a Single DRBG
Boundary

As specified in Section 8.3, any DRBG boundary that includes an instantiate (unction shall
include uninstantiate, generate and testing functions. The testing function shall:

1.

iz

9.7.3

Select a combination of valid instantitate and generate input parameters and an
appropriate fixed value for the entropy_input. Note that for minimal testing, only
one combination of instantiate and generate parameters would be used.

Request an instantiation using a valid set of instantiate input parameters, obtaining
the (fixed) entropy_input, setting the internal state and returning a state_handle for
the internal state.

Using the state_handle, request the generation of pseudorandom bits using a valid
set of generate input parameters.

Check that the generated pseudorandom bits match expected values.
Repeat from step 1 until all valid combinations have been tested.

Test the error handling for the instantiate, generate and uninstantiate [unctions (as
appropriate, see Section 9.7.1).

Uninstantiate the internal state used for testing.

Generate and Test

As specified in Section 8.3, any DRBG boundary that includes a generate function shall
also include a testing (unction. The testing function shall:

1.

Select a combination of valid generate input parameters to be used and an
appropriate fixed value for the internal state. Note that for minimal testing, only
one combination generate parameters would be used

Using a state_handle for the selected internal state, request the generation of
pseudorandom bits.

Check that the generated pseudorandom bits match expected values.

50

4.
3.

9.7.4

ANS X9.82, Part 3 - DRAFT - December 2004

Repeat from step 1 until all valid combinations have been tested.

Test the error handling for the generate function (as appropriate, see Section 9.7.1).

Reseed, Generate and Test

As specified in Section 8.3, any DRBG boundary that includes a reseed function shall
include generate and testing functions. The testing function shall:

1.

Select a combination of valid reseed and generate input parameters, an appropriate
fixed value for the internal state, and an appropriate fixed value for the
entropy_input. Note that for minimal testing, only one combination of reseede and
generate parameters would be used

Using a state_handle for the selected internal state, request a reseed of the
instantiation using a valid set of reseed input parameters, obtaining the
entropy_input, and setting the new value of the internal state.

Using the state_handle, request the generation of pseudorandom bits using a valid
set of generate input parameters.

Check that the generated pseudorandom bits match expected values.

5. Repeat from step 1 until all valid combinations have been tested.

9.7.5

Test the error handling for the reseed and generate [unctions (as appropriate, see
Section 9.7.1).

Instantiate, Uninstantiate, Generate, Reseed and Test

The testing function for a DRBG boundary that includes all DRBG functions shall:

1.

Select a combination of valid instantitate, generate and reseed input parameters,
and appropriate fixed values for the entropy_input for both the instantiate and
reseed functions. Note that for minimal testing, only one combination of instantiate,
generate and reseed parameters would be used

Request an instantiation using a valid set of instantiate input parameters, obtaining
the (fixed) entropy_input, setting the internal state and returning a state_handle for
the internal state.

Using the state_handle, request the generation of pseudorandom bits using a valid
set of generate input parameters. If prediction resistance is requested, a fixed value
for teh entropy input shall be used.

Using a state_handle, request a reseed of the instantiation using a valid set of
reseed input parameters, obtaining the (fixed) entropy_input, and setting the new
value of the internal state.

Using the state_handle, request the generation of pseudorandom bits using a valid
set of generate input parametets. If prediction resistance is requested, a fixed value

51

ANS X9.82, Part 3 - DRAFT - December 2004

for teh entropy input shall be used.
6. Check that the generated pseudorandom bits match expected values.
7. Repeat from step 1 until all valid combinations have been tested.

8. Test the error handling for the instantiate, generate, reseed and uninstantiate
functions (as appropriate, see Section 9.7.1).

9. Uninstantiate the internal state used for testing.

9.8 Error Handling

The expected errors are indicated for each DRBG tunction (see Sections 9.2 - 9.5). The
error handling routine should indicate the type of error. For catastrophic errors (e.g.,
entropy input source failure), the DRBG shall not produce further output until the source
of the error is corrected.

Many errors during normal operation may be caused by an application’s improper DRBG
request. In these cases, the application user is responsible for correcting the request within
the limits of the user’s organizational secutity policy. For example, if a failure indicating
an invalid requested security level is returned, a security level higher than the DRBG or the
DRBG instantiation can support has been requested. The user may reduce the requested
security level if the organization’s security policy allows the information to be protected
using a lower security level, or the user shall use an appropriately instantiated DRBG.

Failures that indicate that the entropy source has failed or that the DRBG failed health
testing (see Sections 9.7 and 11.4) shall be perceived as complete DRBG failures. The
indicated DRBG problem shall be corrected, and the DRBG shall be re-instantiated before
the DRBG can be used to produce pseudorandom bits.

52

Hash_DRBG ANS X9.82, Part 3 - DRAFT - December 2004

10 DRBG Algorithm Specifications

Several DRBGs are specified in this Standard. The selection of a DRBG depends on
several factors, including the security level to be supported and what cryptographic
primitives are available. An analysis of the consuming application’s requirements for
random numbers shall be conducted in order to select an appropriate DRBG. A detailed
discussion on DRBG selection is provided in Annex E. Pseudocode examples for each
DRBG are provided in Annex F. Conversion specifications required for the DRBG
implementations (e.g., between integers and bitstrings) are provided in Annex B.

10.1 Deterministic RBGs Based on Hash Functions

10.1.1 Discussion

A hash DRBG is based on a hash function that is non-invertible or one-way. The hash
DRBGs specified in this Standard have been designed to use any Approved hash function
and may be used by applications requiring various security levels, providing that the
appropriate hash function is used and sufficient entropy is obtained for the seed. The
following are provided as DRBGs based on hash functions:

1. The Hash_DRBG specified in Section 10.1.2.
2. The HMAC_DRBG specified in Section 10.1.3.

The maximum security level that could be supported by each hash function when used in a
DRBG is equal to the number of bits in the hash function output block. However, this
Standard supports only four security levels: 112, 128, 192, and 256. Table 3 specifies the
values that shall be used for the function envelopes and DRBG algorithm for each
Approved hash function. Note that since SHA-224 is based on SHA-256, there is no
efficiency benefit for using the smaller hash function; this is also the case for SHA-384 and
SHA-512. The value for seedlen is determined by subtracting the count field and one byte
of padding from the hash function input block length; In the case of SHA-1, SHA-224 and
SHA 256, seedlen =512 - 64 - § = 440; for SHA-384 and SHA-512, seedlen = 1024 - 128 -
8 = 888.

Table 3: Definitions for Hash-Based DRBGs

SHA-1 | SHA-224 | SHA-256 | SHA-384 | SHA-512
Supported security levels 112,128 | 112,128, | 112,128, | 112,128, | 112, 128,
192 192,256 | 192,256 | 192,256
highest_supported_security_level 128 192 256 256 256
Output Block Length (outlen) 160 224 256 384 512
Required minimum entropy for security_level + 64
instantiate

53

Hash_DRBG

ANS X9.82, Part 3 - DRAFT - December 2004

SHA-1 LSHA-224 | SHA-256 | SHA-384 l SHA-512

Required minimum entropy for
reseed

security_level

Minimum entropy input length
(min_entropy_input_length)

min_entropy

Maximum entropy input length < 2% bits
(max_entropy_input length)

Seed length (seedlen) for 440 440 440 888 888
Hash_DRBG

Maximum personalization string < 2% bits
length

(max_personalization_string_length)

Maximum additional_input length < 2% bits
(max_additional_input_length)

max_number_of bits per_request < 2" bits
Number of requests between < 2%

reseeds (reseed_interval)

10.1.2 Hash_DRBG

10.1.2.1 Discussion

Figure 7 presents the normal operation of the Hash_DRBG. The Hash_DRBG requires
the use of a hash function during the instantiate, reseed and generate functions; the same
hash function shall be used in all functions. The hash function to be used shall meet or
exceed the desired security level of the consuming application.

Implementation validation testing and health testing are discussed in Sections 9.7 and 11.

10.1.2.2 Specifications

10.1.2.2.1 Hash_DRBG Internal State

The internal_state for Hash_DRBG consists of:

1. The working_state:

a. A value (V) that is updated during each call to the DRBG.
b. A constant C that depends on the seed.

c. A counter (reseed_counter) that indicates the number of requests for
pseudorandom bits since new entropy_input was obtained during instantiation

or reseeding.

54

Hash_DRBG ANS X9.82, Part 3 - DRAFT - December 2004

2. Administrative information:

a. The security level of the (Opt.)
q e additional resead
DRBG instantiation. V imput C counter

b. A prediction_resistance_flag _l

that indicates whether or not a
prediction resistance
capability is required for the
DRBG.

additional
input

T
The values of ¥ and C are the critical
values of the internal state upon which v t d
the security of this DRBG depends (i.e., el S
V and C are the “secret values” of the
internal state).
10.1.2.2.2 Instantiation of Hash_DRBG v g
1 —r:—
Notes for the instantiate function: E
The instantiation of Hash_ DRBG
requires a call to the instantiate
function specified in Section 9.2; step
8 of that function calls the instantiate
algorithm in this section. For this Homwimtin
DRBG, no i enoughbits 1, Counter: YV reseed (
i (From 0) ; t
DRBG specific_input_parameters | o { i
are required for the instantiate it i—» Pseudorandom Bits
function specified in Section 9.2 (i.e., T

step 5 should be omitted). [

The values of
highest_supported security_level and Figure 7: Hash_DRBG
min_entropy input_length are
provided in Table 3 of Section
10.1.1. The contents of the internal state are provided in Section 10.1.2.2.1.

The instantiate algorithm:

Let Hash_df be the hash derivation function specified in Section 9.6.2 using the
selected hash function. The output block length (outlen), seed length (seedlen) and
appropriate security_levels for the implemented hash function are provided in Table 3
of Section 10.1.1.

The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG (see step 8 in Section 9.2).

Input:

55

Hash_DRBG ANS X9.82, Part 3 - DRAFT - December 2004

1. entropy_input: The string of bits obtained from the entropy input source.

2. personalization_string: The personalization string received from the consuming
application. If a personalization_string will never be used, then steps 1 and 2
may be combined as follows:

seed = Hash_df (entropy_input, seedlen).
Output:

1. working_state: The inital values for ¥, C and reseed_counter (see Section
10.1.2.2.1).

Process:
1. seed_material = entropy_input || personalization_string.

2. seed = Hash_df (seed_material, seedlen).

3. V=seed.

4. C=Hash_df ((0x00 || V), seedlen). Comment: Preceed V with a byte of
Zeroes.

5. reseed_counter =1.

6. Return V, C and reseed_counter as the working_state.
10.1.2.2.3 Reseeding a Hash_DRBG Instantiation

Notes for the reseed tunction:

The reseeding of a Hash_DRBG instantiation requires a call to the reseed precedure
specified in Section 9.3; step 5 of that function calls the reseed algorithm specified in
this section. The values for min_entropy_input_length are provided in Table 3 of
Section 10.1.1.

The reseed algorithm:

Let Hash_df be the hash derivation function specified in Section 9.6.2 using the
selected hash function. The value for seedlen is provided in Table 3 of Section 10.1.1.

The following process or its equivalent shall be used as the reseed algorithm for this
DRBG (see step 5 in Section 9.3):

Input:

1. working_state: The current values for ¥, C and reseed_counter (see Section
10.1.2.2.1).

2. entropy_input: The string of bits obtained from the entropy input source.

3. additional_input: The additional input string received from the consuming
application. If additional_input will never be provided, then step 1 may be

56

Hash_DRBG ANS X9.82, Part 3 - DRAFT - December 2004

modified to remove the additional_input.
Output:
1. working state: The new values for ¥V, C and reseed counter.
Process:

1. seed material = 0x01 || V| entropy_input || additional_input.

2. seed = Hash_df (seed_material, seedlen).

3. V=seed.

4. C=Hash_df (0x00 || V), seedlen). Comment: Preceed with a byte of all
Zeros.

5. reseed counter=1.

6. Return ¥, C and reseed_counter as the new working_state.
10.1.2.2.4 Generating Pseudorandom Bits Using Hash_DRBG

Notes for the generate function:

The generation of pseudorandom bits using a Hash_DRBG instantiation requires a call
to the generate function specified in Section 9.4; step 8 of that function calls the
generate algorithm specified in this section. The values for

max_number_of bits_per request and outlen are provided in Table 3 of Section 10.1.1.

The generate algorithm:

Let Hash be the selected hash function. The seed length (seedlen) and the maximum
interval between reseeding (reseed_interval) are provided inTable 3 of Section 10.1.1.
Note that for this DRBG, the reseed counter is used to update the value of V" as well as
to count the number of generation requests.

The following process or its equivalent shall be used as the generate algorithm for this
DRBG (see step 8 of Section 9.4):

Input:

1. working_state: The current values for ¥, C and reseed_counter (see Section
10.1.2.2.1).

2. requested_number_of bits: The number of pseudorandom bits to be returned to
the generate function.

3. additional_input: The additional input string recejved from the consuming
application. If additional _input will never be provided, then step 2 may be
omitted.

Output:
1. status: The status returned from the function. The starus will indicate
57

Hash_DRBG ANS X9.82, Part 3 - DRAFT - December 2004

2.
3.

SUCCESS or indicate that a reseed is required before the requested
pseudorandom bits can be generated. In the latter case, either nothing but the
reseed indication shall be returned as output, or a Null string shall be returned
as the returned_bits (see below).

returned_bits: The pseudorandom bits to be returned to the generate function.

working_state: The new values for V, C and reseed_counter.

Process:

1.

NS A

If reseed_counter > reseed_interval, then return an indication that a reseed is
required.

If (additional _input # Null), then do

2.1 w= Hash (0x02 || V|| additional_input).

2.2 V= (V +w) mod 2°%%",

returned_bits = Hashgen (requested_number_of bits, V).
H = Hash (0x03 || V).

V'=(V+ H+ C+ reseed_counter) mod 27"".
reseed_counter = reseed_counter + 1.

Return SUCCESS, returned_bits, and the new values of 7, C and
reseed_counter for the new working_state.

Hashgen (...):

Input:

1. requested no_of bits: The number of bits to be returned.

2. V: The current value of V.
Output:

1. returned_bits: The generated bits to be returned to the generate function.
Process:

L m= [requested_no_ of_bits_l‘

outlen
2. data=V.
W = the Null string.
4, Fori=1tom

4.1 w; = Hash (data).
42 W=W| w.
58

Hash_DRBG ANS X9.82, Part 3 - DRAFT - December 2004

4.3 data = (data +1) mod 2seedlen‘
5. returned bits = Lefimost (requested no_of bits) bits of W.

6. Return returned_bits.

59

HMAC_DRBG

10.1.3 HMAC_DRBG (...)

10.1.3.1 Discussion

HMAC_DRBG uses multiple
occurrences of both an Approved keyed
hash function and an Approved hash
function. The same hash function shall
be used throughout, both directly and as
part of the keyed hash function. The
hash function used shall meet or exceed
the security requirements of the
consuming application.

Figure 8 depicts the HMAC_DRBG in
stages. HMAC_DRBG is specified
using an internal function (Update).
This function is called during the
HMAC _DRBG instantiate, generate and
reseed algorithms to adjust the internal
state when new entropy or additional
input is provided. The operations in the
top portion of the figure are only
performed if non-null additional input is
provided. Figure 9 depicts the Update
function.

10.1.3.2 Specifications
10.1.3.21 HMAC_DRBG Internal State

. The internal state for HMAC_DRBG
consists of:

1. The working_state:

a. The value V, which is
updated each time another
outlen bits of output are
produced (where outlen is
specified in Table 3 of
Section 10.1.1).

ANS X9.82, Part 3 - DRAFT - December 2004

(Opt) aditttional inpwt

lll‘anll

UPDATE

Stain
reseed
(=] o=t |

Tterate

! !

State 1 l H
|

i

/

1

reseed E
l Keyl Y |munm¥ 1. J H L

i
i v
T

ETAL N

Preudorandom bits
additional input
- {4
|Key v [reseed | .. \ UPDATE
counter

i — 5
Fu—1

Figure 8: HMAC_DRBG

b. The Key, which is updated at least once each time that the DRBG generates

pseudorandom bits.

c. A counter (reseed_counter) that indicates the number of requests for

60

HMAC_DRBG ANS X9.82, Part 3 - DRAFT - December 2004

pseudorandom bits since .
o Ny . provided
instantiation or reseeding. data

2. Administrative information:

V|| 030 {| provided dats|

a. The security_level of the
DRBG instantiation.

b. A
prediction_resistance_flag
that indicates whether or
not a prediction resistance
capability is required for
the DRBG.

The values of ¥ and Key are the
critical values of the internal state
upon which the security of this DRBG

depends (i.e., ¥ and Key are the : o :
“secret values” of the internal state). H Fs| HMAC i
10.1.3.2.2 The Update Function : A

(Update) t Key v

The Update function updates the

internal state of HMAC_DRBG using

the provided _data. Let HMAC be the Figure 9: HMAC_DRBG Update Function
keyed hash function specified in FIPS

198 using the hash function selected for the DRBG from Table 3 in Section 10.1.1.

The following or an equivalent process shall be used as the Update function.
Input:
1. provided_data: The data to be used.
2. K: The current value of Key.
3. V: The current value of V.
Output:
1. K: The new value for Key.
2. V:The new value for V.
Process:
1. K=HMAC (X, V| 0x00 || provided_data).
2. V=HMAC (K, 7).
3. If (provided data= Null), then return K and V.

61

HMAC_DRBG ANS X9.82, Part 3 - DRAFT - December 2004

4, K=HMAC (X, V| 0x01 || provided_data).
5. V=HMAC (K, V).
6. Return K and V.

10.1.3.2.3 Instantiation of HMAC_DRBG

Notes for the instantiate function:

The instantiation of HMAC_DRBG requires a call to the instantiate function specified
in Section 9.2; step 8 of that function calls the instantiate algorithm specified in this
section. For this DRBG, no DRBG _specific_input_parameters are required for the
instantiate function specified in Section 9.2 (i.e., step 5 should be omitted). The values
of highest_supported_security level and min_entropy_input_length are provided in
Table 3 of Section 10.1.1. The contents of the internal state are provided in Section
10.1.2.2.1.

The instantiate algorithm:

Let Update be the function specified in Section 10.1.3.2.2. The ouput block length
(outlen) is provided in Table 3 of Section 10.1.1.

The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG (see step 8 of Section 9.2):

Input:
1. entropy_input: The string of bits obtained from the entropy input source.

2. personalization_string: The personalization string received from the consuming
application. If a personalization_string will never be used, then step 1 may be
omitted, and step 4 may be modified as follows:

Using entropy_input, Key and V, obtain new values for Key and ¥ from the
Update function specified in Section 10.1.3.2.2.

Output:

1. working_state: The inital values for V, Key and reseed_counter (see Section
10.1.3.2.1).

Process:

1. seed _material = entropy_input || personalization_string.

2. Key=0x00 00...00. Comment: outlen bits.

3. V=0x0101...01. Comment: outlen bits.
Comment: Update Key and V.

4. (Key, V)= Update (seed_material, Key, V).

S. reseed counter=1.
62

HMAC_DRBG ANS X9.82, Part 3 - DRAFT - December 2004

6. Return V, Key and reseed_counter as the initial working_state.
10.1.3.2.4 Reseeding an HMAC_DRBG Instantiation

Notes for the reseed function:

The reseeding of an HMAC_DRBG instantiation requires a call to the reseed [unction
specified in Section 9.3; step 5 of that function calls the reseed algorithm specified in
this section. The values for min_entropy_input_length are provided in Table 3 of
Section 10.1.1.

The reseed algorithm:

Let Update be the function specified in Section 10.1.3.2.2. The following process or its
equivalent shall be used as the reseed algorithmn for this DRBG (see step 5 of Section
9.3):

Input:

1. working_state: The current values for ¥, Key and reseed_counter (see Section
10.1.3.2.1).

2. entropy_input: The string of bits obtained from the entropy input source.

3. additional_input: The additional input string received from the consuming
application. If additional_input will never be used, then step 1 may be omitted,
and step 2 may be modified as follows:

Using entropy_input, Key and V, obtain new values for Key and V' from the
Update function specified in Section 10.1.3.2.2.

Output:

1. working_state: The new values for V, Key and reseed_counter.
Process:

1. seed material = entropy_input || additional_input.

2. (Key, V)= Update (seed_material, Key, V).
3. reseed counter=1.
4

. Return V, Key and reseed counter as the new working_state.
10.1.3.2.5 Generating Pseudorandom Bits Using HMAC_DREG

Notes for the generate function:

The generation of pseudorandom bits using an HMAC_DRBG instantiation requires a
call to the generate function specified in Section 9.4; step 8 of that function calls the
generate algorithm specified in this section. The values for

max_number_of bits_per_request and outlen are provided in Table 3 of Section 10.1.1.

63

HMAC_DRBG ANS X9.82, Part 3 - DRAFT - December 2004

The generate algorithm :

Let HMAC be the keyed hash function specified in FIPS 198 using the hash function
selected for the DRBG. The value for reseed_interval is defined in Table 3 of Section
10.1.1.

The following process or its equivalent shall be used as the generate algorithm for this
DRBG (see step 8 of Section 9.4):

Input:

1. working_state: The current values for V, Key and reseed_counter (see Section
10.1.3.2.1).

2. requested number of bits: The number of pseudorandom bits to be returned to
the generate function.

3. additional_input: The additional input string received from the consuming
application. If an implementation will never use additional_input, then step 2
may be omitted. If additional input is not provided (regardless of whether or
not it will ever be provided), then a Null string shall be used as the
additional _input in step 6.

Output:

1. status: The status returned from the function. The status will indicate
SUCCESS or indicate that a reseed is required before the requested
pseudorandom bits can be generated. In the latter case, either nothing but the
reseed indication shall be returned as output, or a Null string shall be returned
as the returned_bits (see below).

2. returned_bits: The pseudorandom bits to be returned to the generate function.
3. working_state: The new values for V, Key and reseed_counter.
Process:

1. Ifreseed counter > reseed_interval, then return an indication that a reseed is
required.

2. If additional _input # Null, then use additional _input and the current values of
Key and V to obtain new values for Key and ¥V from the Update function
specified in Section 10.1.3.2.2.

3. temp = Null.

4. While (len (femp) < requested_number_of bits) do:
4.1 V=HMAC (Key V).
42 temp=temp | V.

5. returned bits = Leftmost requested_number_of bits of temp.

64

HMAC_DRBG ANS X9.82, Part 3 - DRAFT - December 2004

6. (Key, V)= Update (additional_input, Key, V).
7. reseed_counter = reseed _counter + 1.

8. Return SUCCESS, returned_bits, and the new values of Key, V and
reseed_counter as the working_state).

65

CTR_DRBG ANSI X9.82, Part 3 — Draft — December 2004

10.2 DRBGs Based on Block Ciphers

10.2.1 Discussion

A block cipher DRBG is based on a block cipher algorithm. The block cipher DRBGs
specified in this Standard have been designed to use any Approved block cipher
algorithm and may be used by applications requiring various levels of security, providing
that the appropriate block cipher algorithm and key length are used and sufficient entropy
is obtained for the seed. The following are provided as DRBGs based on block cipher
algorithms:

1. The CTR_DRBG specified in Section 10.2.2.
2. The OFB_DRBG specified in Section 10.2.3.

Table 4 specifies the values that shall be used for the function envelopes and DRBG
algorithm for each Approved block cipher algorithm.

The block cipher DRBGs may be implemented to use the block cipher derivation
function specified in Section 9.6.3. However, these DRBGs are specified to allow an
implementation tradeoff with respect to the use of this derivation function. If a source for
full entropy input is always available to provide entropy input when requested, the use of
the derivation function is optional; otherwise, the derivation functon shall be used. Table
4 provides the values for the minimum entropy 1) when a derivation function is used and
2) when full entropy is available and a derivation function is not used. In the latter case,
the maximum length of the personalization string and additional input shall be seedlen
bits. Otherwise, the maximum length may be any convenient length that is < 2* bits.

Table 4: Definitions for Block Cipher- Based DRBGs

3Key | AES-128 | AES-192 | AES-256
TDEA
Supported security levels 112 112,128 | 112, 128, | 112, 128,
192 192, 256

highest_supported_security_level 112 128 192 256
Output block length (outlen) 64 128 128 128
Key length (keylen) 168 128 192 256
Required minimum entropy for security level + 64
instantiate when a derivation function
is provided
Required minimum entropy for reseed security level
when a derivation function is provided

66

CTR_DRBG ANSI X9.82, Part 3 — Draft — December 2004

3Key | AES-128 | AES-192 | AES-256
TDEA

Required minimum entropy for 232 256 320 384
instantiate and reseed when full
entropy is available and a derivation
function is not used (outlen + keylen)
Minimum entropy input length min_entropy
(min_entropy_input length)
Maximum entropy input length < 2% bits
(max_entropy_input_length)
Maximum personalization string length < 2% bits or seedlen
(max_personalization_string_length)
Maximum additional_input length < 2 bits or seedlen
(max_additional_input length)
Seed length (seedlen = outlen + keylen) 232 256 \ 320 | 384
max_number_of bits_per_request <2b <2b
Number of requests between reseeds < 2% <2
(reseed_interval)
When using TDEA as the selected block cipher
algorithm, the keys shall be handled as 64 bit blocks
containing 56 bits of key and 8 bits of parity as specified -d
for teh TDEA engine. frresme ey

]
10.2.2 CTR_DRBG —:**I !I

|

1

10.2.2.1 Discussion v 11 P

: ECB Mode :

1

CTR_DRBG uses an Approved block cipher algorithm
in the counter mode as specified in [SP 800-38A]. The
same block cipher algorithm and key length shall be
used for all block cipher operations. The block cipher
algorithm and key length shall meet or exceed the
security requirements of the consuming application. The
values to be used for the implementation of this DRBG
are specified in Table 4 of Section 10.2.1.

67

Figure 10: CTR_DRBG

Up

date

CTR_DRBG ANSI X9.82, Part 3 — Draft — December 2004

CTR_DRBG is specified using an
internal function (Update). Figure 10

depicts the Update function. This Al T
function is called by the instantiate, llf L
generate and reseed algorithms to adjust

the internal state when new entropy or BLOCK CIPFHER
additional input is provided. Figure 11 o
depicts the CTR_DRBG in three l
stages. The operations in the top portion

of the figure are only performed if non- " UPDATE
null additional input is provided. l St x|

10.2.2.2 Specifications Key| v|moeed | _

10.2.2.21 CTR_DRBG Internal State

The internal state for CTR_DRBG
consists of: Tterate

1. The working state:

a. The value V, which is

updated each time another . oy o Encrypt in

outlen bits of output are counter| ™ ECB Mode

produced (see Table 4 in v

Section 10.2.1). | ——
b. The Key, which is updated B[. |

whenever a predetermined *—'I—‘

number of output blocks are

generated. Pseudorandom hits

¢. A counter (reseed counter)
that indicates the number of v

requests for pseudorandom
bits since instantiation or
reseeding. Stk Yy ¥
2. Administrative information: Eoy| v |mosed | UPDATE
a. The security level of the i | ; S
DRBG instantiation.

b. A prediction_resistance_flag
that indicates whether or not
a prediction resistance
capability is required for the
DRBG.

Figure 11: CTR_DRBG

68

CTR_DRBG ANSI X9.82, Part 3 — Draft ~ December 2004

The values of ¥ and Key are the critical values of the internal state upon which the
security of this DRBG depends (i.e., ¥ and Key are the “secret values” of the internal
state).

10.2.2.2.2 The Update Function (Update)

The Update function updates the internal state of the CTR_DRBG using the

provided data. Let ECB_ENCRYPT be an encryption using the selected block cipher
algorithm in the ECB mode. The values for outlen, keylen and seedlen are provided in
Table 4 of Section 10.2.1. The block cipher operation in step 3.2 uses the selected block
cipher algorithm.

The following or an equivalent process shall be used as the Update function.
Input:
1. provided data: The data to be used.
2. Key: The current value of Key.
3. V:The current value of V.
OQutput:
1. K: The new value for Key.
2. V: The new value for V.
Process:
1. temp = Null
3. While (Ien (temp) < seedlen) do
3.1 V=(V+1)mod 27"
3.2 output_block = ECB_Encrypt (Key, V).
3.3 temp=temp || ouput_block.
temp = Leftimost seedlen bits of temp.
temp = femp @ provided_data.
Key = Leftmost keylen bits of temp.
V = Rightmost outlen bits of temp.

o N e

Return the new values of Key and V.
10.2.2.2.3 Instantiation of CTR_DRBG

Notes for the instantiate function:

The instantiation of CTR_DRBG requires a call to the instantiate function specified
in Section 9.2; step 8 of that function calls the instantiate algorithm specified in this

69

CTR_DRBG ANSI X9.82, Part 3 — Draft — December 2004

section. For this DRBG, no DRBG specific_input_parameters are required for the
instantiate function specified in Section 9.2 (i.e., step 5 should be omitted). The
values of highest_supported_security_level and min_entropy_input_length are
provided in Table 4 of Section 10.2.1. The contents of the internal state are provided
in Section 10.2.2.2.1. ‘

The instantiate algorithm:

Let Update be the function specified in Section 10.2.2.2.2, and let Block_Cipher_df
be the derivation function specified in Section 9.6.3 using the chosen block cipher
algorithm and key size. The output block length (outlen), key length (keylen), seed
length (seedlen) and security_levels for the block cipher algorithms are provided in
Table 4 of Section 10.2.1.

The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG:

Input:
1. entropy_input: The string of bits obtained from the entropy input source.

2. personalization_string: The personalization string received from the
consuming application.

Output:
1. working state: The inital values for V, Key and reseed_counter (see Section
10.2.2.2.1).
Process:
1. Comment: If a block cipher derivation

function is available (a source of full
entropy may or may not be available).

1.1 seed material = entropy_input || personalization_string.
1.2 seed _material = Block_Cipher_df (seed_material, seedlen).

Comment: If a full entropy source is
known to be available and a
derivation function is not used.

1.1 temp = len (personalization_string).

1.2 If temp > seedlen, then return an ERROR.

1.3 If (femp < seedlen), then personalization_string =
personalization_string || 0¥ - femp.

1.4 seed material = entropy_input @ personalization_string.
2. Key=(t"n, Comment: keylen bits of zeros.
70

CTR_DRBG ANSI X9.82, Part 3 — Draft — December 2004

y = goulen Comment: outlen bits of zeros.
(Key, V) = Update (seed_material, Key, V).

reseed_counter = 1.

SAN Sl

6. Return V, Key and reseed_counter as the working_state.

Implementation notes:

1. The decision for the substeps to be used at step depends on whether the
implementation has full entropy and is using the derivation function (see the
comments).

2. If a personalization_string will never be provided from the instantiate function
and a derivation function will be used, then step 1 becomes:

seed_material = Block_Cipher_df (entropy_input, seedlen).

3. Ifa personalization_string will never be provided from the instantiate function, a
full entropy source will be available and a derivation function will not be used,
then step 1 may be omitted, and step 4 may be modified to:

Obtain new values of Key and V by calling the Update function using
entropy_input, Key, and V.

10.2.2.2.4 Reseeding a CTR_DRBG Instantiation

Notes for the reseed function:

The reseeding of a CTR_DRBG instantiation requires a call to the reseed function
specified in Section 9.3; step 5 of that function calls the reseed algorithm specified in
this section. The values for min_entropy input_length are provided in Table 4 of
Section 10.2.1.

The reseed algorithm:

Let Update be the function specified in Section 10.2.2.2.2, and let Block_Cipher_df
be the derivation function specified in Section 9.6.3 using the chosen block cipher
algorithm and key size. The seed length (seedlen) is provided in Table 4 of Section
10.2.1.

The following process or its equivalent shall be used as the reseed algorithm for this
DRBG (see step 5 of Section 9.3):

Input:

1. working state: The current values for ¥, Key and reseed_counter (see Section
10.2.2.2.1).

2. entropy_input: The string of bits obtained from the entropy input source.

3. additional _input: The additional input string received from the consuming

71

CTR_DRBG ANSI X9.82, Part 3 — Draft — December 2004

application.
Output:
1. working state: The new values for ¥, Key and reseed_counter.
Process:
1. Comment: If a block cipher derivation

function is available (a source of full
entropy may or may not be available).

1.1 seed material = entropy_input || additional_input.
1.2 seed material = Block_Cipher_df (seed_material, seedlen).

Comment: If a full entropy source is
known to be available and a
derivation function is not to be used.

1.1 temp = len (additional_input).

1.2 If (Ze,mp < seedlen), then additional input = additional_input ||
(seedlen- temp.

1.3 seed material = entropy_input ® additional_input.
2. (Key, V)= Update (seed_material, Key, V).
3. reseed counter=1.
4. Return V, Key and reseed counter as the working_state.

Implementation notes:

1. The decision for the substeps to be used at step 1 depends on whether the
implementation has full entropy and is using the derivation function (see the
comments).

2. If additional_input will never be provided from the reseed function and a
derivation function will be used, then step 1 becomes:

seed_material = Block_Cipher_df (entropy_input, seedlen).

3. If additional_input will never be provided from the reseed function, a full entropy
source will be available and a derivation function will not be used, then step 1
may be omitted, and step 2 may be modified to:

Obtain new values of Key and V' by calling the Update function using
entropy_input, Key, and V.

10.2.2.2.5 Generating Pseudorandom Bits Using CTR_DRBG

Notes for the generate function:

72

CTR_DRBG ANSI X9.82, Part 3 — Draft — December ?004

The generation of pseudorandom bits using a CTR_DRBG instantiation requires a
call to the generate function specified in Section 9.4 step 8 of that function calls the
generate algorithm specified in this section. The values for

max._number_of bits_per request and outlen are provided in Table 4 of Section
10.2.1. If the derivation function is not used, then the maximum allowed length of
additional_input = seedlen.

The following process or its equivalent shall be used as the generate algorithm for this
DRBG (see step 8 of Section 9.4):

Let Block_Cipher_df be the derivation function specified in Section 9.6.3, let
ECB_Encrypt be an ECB encryption using the selected block cipher algorithm in the
ECB mode, and let Update be the function specified in Section 10.2.2.2.2 using the
chosen block cipher algorithm and key size. The seed length (seedlen) and the value
of reseed _interval are provided in Table 4 of Section 10.2.1. Step 4.2 below uses the
selected block cipher algorithm.

The following process or its equivalent shall be used as generate algorithm for this
DRBG (see step 8 of Section 9.4):

Input:

1. working state: The current values for ¥, Key and reseed counter (see Section
10.2.2.2.1).

2. requested number of bits: The number of pseudorandom bits to be returned
to the generate function.

3. additional_input: The additional input string received from the consuming
application. If additional _input will never be provided, then step 2 may be
omitted.

Output:

1. status: The status returned from the function. The status will indicate
SUCCESS, indicate that a reseed is required before the requested
pseudorandom bits can be generated, or indicate that the additional_input is
too long. If SUCCESS is not returned, either nothing but the reseed indication
shall be returned as output, or a Null string shall be returned as the
returned_bits (see below).

2. returned bits: The pseudorandom bits returned to the generate function.
3. working state: The new values for V, Key and reseed_counter.
Process:

1. If reseed counter > reseed_interval, then return an indication that a reseed is
required.

2. If (additional input # Null), then
73

CTR_DRBG ANSI X9.82, Part 3 - Draft - December 2004

Comment: If the length of the additional
input is > seedlen, derive seedlen bits.

2.1 temp = len (additional_input).

Comment: If a block cipher derivation
function is used:

2.2 If (temp > seedlen), then additional_input = Block_Cipher_df
(additional_input, seedlen).

Comment: If the length of the
additional_input is < seedlen, pad with
zeros to seedlen bits.

2.3 If (temp < seedlen), then additional_input = additional_input || gsecdlen-

temp

2.4 (Key, V)= Update (additional_input, Key, V).
3. temp = Null.
4. While (len (temp) < requested_number_of bits) do:
4.1 V=(V+1)mod2°"",
4.2 output_block=ECB_Encrypt (Key, V).
43 temp = temp || ouput_block.
5. returned_bits = Leftmost requested_number_of bits of temp.

Comment: Update for backtracking
resistance.

Oseedlen

6. zeros= Comment: Produce a string of

seedlen zeros.
7. (Key, V) = Update (zeros, Key, V).
8. reseed counter = reseed counter + 1.

9. Return SUCCESS and returned_bits; also return Key, V and reseed counter
as the new working_state.

74

OFB_DRBG ANS X9.82, Part 3 - DRAFT - December 2004

10.2.3 OFB_DRBG

10.2.3.1 Discussion

OFB_DRBG uses an Approved block cipher
algorithm in the output feedback mode as (Op0 additional impl

specified in [SP 800-38A]. The same block l,f_ -
cipher algorithm and key length shall be used

for all block cipher operations. The block cipher P ORTATION
algorithm and key length shall meet or exceed et
the security requirements of the consuming l
application. The values to be used for the UPDATE
implementation of this DRBG are specified in Sk

Table 4 in Section 10.2.1. Key n-

OFB_DRBG is specified using an internal
function (Update). Figure 12 depicts the
OFB_DRBG in three stages. The operations in

the top portion of the figure are only performed
if non-null additional input is provided. Figure Torats

13 depicts the Update function. This function is
called by the instantiate, generate and reseed

algorithms to adjust the internal state when new

entropy or additional input is provided.Note that {[Bnemmein
OFB_DRBG is basically the same as D=
CTR_DRBG, except that the block cipher ro— Lo
mode is OFB rather than CTR. Biia]®] - |
10.2.3.2 Specifications l
10.2.3.2.1 OFB_DRBG Internal State =
The internal state for OFB_DRBG consists of: o
1. The working_state:

a. The value ¥, which is updated each Btat l 3
time another outlen bits of output are \x., | v lmau & UPDATE
produced.

b. The Key, which is updated whenever — J

a predetermined number of output
blocks are generated.

c. A counter (reseed_counter) that
indicates the number of requests for
pseudorandom bits since
instantiation or reseeding.

Figure 12: OFB_DRBG

75

OFB_DRBG ANS X9.82, Part 3 - DRAFT - December 2004

2. Administrative information:

a. The security strength of the DRBG
instantiation.

b. A prediction_resistance_flag that indicates
whether or not a prediction resistance
capability is required for the DRBG.

The values of ¥ and Key are the critical values of the
internal state upon which the security of this DRBG
depends (i.e., ¥ and Key are the “secret values” of the
internal state).

10.2.3.2.2 The Update Function(Update)

The Update function updates the internal state of the
OFB_DRBG using the provided data. The values for
outlen, keylen and seedlen are provided in Table 4 of

Section 10.2.1. The block cipher operation in step 2.1
uses the selected block cipher algorithm and key size.

The following or an equivalent process shall be used as
the Update function.

Input:
1. provided_data: The data to be used.
2. Key: The current value of Key.
3. V: The current value of V.
Output:
1. K:The new value for Key.
2. V:The new value for V.
Process:
1. temp = Null.
2. While (len (femp) < seedlen) do
2.1 V=ECB_Encrypt (Key, V).
2.2 temp=temp| V.
3. temp = Leftmost seedlen bits of temp.
4 temp = temp ® provided_data.
5. Key = Leftmost keylen bits of remp.

76

Figure 13: OFB_DRBG
Update

OFB_DRBG ANS X9.82, Part 3 - DRAFT - December 2004

6. V=Rightmost outlen bits of temp.

7. Return the new values of Key and V.
10.2.3.2.3 Instantiation of OFB_DRBG (...)
This process is the same as the instantiation process for CTR_DRBG in Section
10.2.2.2.3, except that the Update function to be used is specified in Section 10.2.3.2.2.
10.2.3.2.4 Reseeding an OFB_DRBG Instantiation
This process is the same as the reseeding process for CTR_DRBG in Section 10.2.2.2.4,
except that the Update function to be used is specified in Section 1023.2.2
10.2.3.2.5 Generating Pseudorandom Bits Using OFB_DRBG
This process is the same as the generation process for CTR_DRBG in Section 10.2.2.2.5,

except that the Update function to be used is specified in Section 10.2.3.2.2 and step 4
shall be as follows :

4. While (len (temp) < requested_number_of bit) do:
4,1 V=ECB_Encrypt (Key, V).
42 temp=temp | V.

77

Dual_EC_DRBG ANS X9.82, Part 3 - DRAFT - December 2004

10.3 Deterministic RBGs Based on Number Theoretic Problems

10.3.1 Discussion

A DRBG can be designed to take advantage of number theoretic problems (e.g., the
discrete logarithm problem). If done correctly, such a generator’s properties of randomness
and/or unpredictability will be assured by the difficulty of finding a solution to that
problem. Section 10.3.2 specifies a DRBG based on the elliptic curve discrete logarithm
problem; Section 10.3.3 specifies a DRBG based on a problem related to the RSA problem
of finding roots modulo a composite integer.

10.3.2 Dual Elliptic Curve Deterministic RBG (Dual_EC_DRBG)

10.3.2.1 Discussion

Dual EC_DRBG is based on the following hard problem, sometimes known as the
“elliptic curve discrete logarithm problem” (ECDLP): given points P and Q on an elliptic
curve of order », find a such that O = aP.

Dual EC_DRBG uses a seed that is m bits in length (i.e., seedlern = m) to initiate the
generation of outlen-bit pseudorandom strings by performing scalar multiplications on two
points in an elliptic curve group, where the curve is defined over a field approximately 2"
in size. For all the NIST curves given in this Standard, m > 163. Figure 14 depicts the
Dual_ EC_DRBG.

seed >

S
Init or Reseed only l
5]

Lo o(x(t*P)) |8 o(x(s*Q)) I Extract

[Optional] Bits
addntianal_inpul@_T T T
0
T P Q
If additional_input = Null
Pseudorandom

Figure 14: Dual_EC_DRBG (...) bits

The instantiation of this DRBG requires the selection of an appropriate elliptic curve and
curve points specified in Annex A.1 for the desired security level. The seed used to
determine the initial value (s) of the DRBG shall have entropy that is at least security level
+ 64 bits. Further requirements for the seed are provided in Section 8.4.

Backtracking resistance is inherent in the algorithm, even if the internal state is
compromised. As shown in Figure 15, Dual_EC_DRBG generates a seedlen-bit number
for each step i = 1,2,3,..., as follows:

Si = @(X(Si-s *P))

78

Dual_EC_DRBG

Ri=p(x(S; *Q)).
Each arrow in the figure represents an Elliptic
Curve scalar multiplication operation, followed
by the extraction of the x coordinate for the
resulting point and for the random output R; and
by truncation to produce the output. Following a
line in the direction of the arrow is the normal
operation; inverting the direction implies the
ability to solve the ECDLP for that specific curve.
An adversary’s ability to invert an arrow in the
figure implies that the adversary has solved the
ECDLP for that specific elliptic curve.
Backtracking resistence is built into the design, as
knowledge of S\ does not allow an adversary to

determine S (and so forth) unless the adversary is able to solve the ECDLP for that

ANS X9.82, Part 3 - DRAFT - December 2004

3,

R

Figure 15: Dual_EC_DRBG (...)
Backtracking Resistance

specific curve. In addition, knowledge of R, does not allow an adversary to determine S}
(and so forth) unless the adversary is able to solve the ECDLP for that specific curve.

Table 5 specifies the values that shall be used for the envelope and algorithm for each

curve. Complete specifications for each curve are provided in Annex A.1.

Table 5: Definitions for the Dual_EC_DRBG

P-224 | B-233 | K-233 | P-256 | B-283 | K-283

Supported security levels 112 112 112 112, 112, 112,

128 128 128
highest_supported_ security_level 112 112 112 128 128 128
Output block length (outlen = 208 216 216 240 264 264
smallest multiple of 8 larger than
seedlen - (13 + log, (the cofactor))
Required minimum entropy for 176 176 176 192 192 192
instantiate
Required minimum entropy for 112 112 112 128 128 128
reseed
Minimum entropy input length 224 240 240 256 288 288
kmin_*emrapy_Enpm_!engfh =8 x
seedten81Y_ ... | .| S0 I -
Maximum entropy input length < 2" bits
(max_entropy input length)
Maximum personalization string < 2" bits
length
(max_personalization_string_length)

79

[

Comment [ebb2]: Page: 78
Why can’t this be min_entropy ?

]

Dual_EC_DRBG

ANS X9.82, Part 3 - DRAFT - December 2004

P-224 l B-233] K-233

P-256 \ B-283 | K-283

Maximum additional_input length
(max_additional_input_length)

< 2" bits

Seed length (seedlen = m)

224

| 233 ‘ 233] 256

283 \ 283

Appropriate hash functions

SHA-1, SHA-224, SHA-256, SHA-384, SHA-512

max_number_of bits per_request

outlen x reseed_interval

Number of blocks between
reseeding (reseed_interval)

< 10,000

P-384 ‘ B-409 | K-409 | P-521 ‘ B-571 | K-571

Supported security levels 112, 128, 192 112, 128, 192, 256
highest_supported_ security level 192 256
Output block length (outlen = 368 392 392 504 552 552
smallest multiple of 8 larger than
seedlen - (13 + log; (the cofactor))
Required minimum entropy for 256 320
instantiate
Required minimum entropy for 192 256
reseed
Minimum entropy input length 384 416 416 528 576 576
(min_entropy_input_length = 8§ x
[seedlenis |)
Maximum entropy input length <2 bits
(max_entropy_input_length)
Maximum personalization string < 2" bits
length
(max_personalization_string length)
Maximum additional_input length < 2P bits
(max_additional_input length)
Seed length (seedlen = m) 384 409 409 521 571 571
Appropriate hash functions SHA-224, SHA-256, SHA- | SHA-256, SHA-384, SHA-

384, SHA-512 512

max_number_of bits_per_request

outlen x reseed _interval

Number of blocks between
reseeding (reseed_interval)

<10,000

80

Dual_EC_DRBG ANS X9.82, Part 3 - DRAFT - December 2004

Validation and Operational testing are discussed in Section 11. Detected errors shall result
in a transition to the error state.

10.3.2.2 Specifications
10.3.2.2.1 Dual_EC_DRBG Internal State and Other Specification Details

The internal state for Dual_ EC_DRBG consists of:
1. The working_state:
a. A value (s) that determines the current position on the curve.

b. The elliptic curve domain parameters (curve_type, seedlen, p, a, b, n), where
curve_type indicates a prime field F, or a pseudorandom or Koblitz curve over
the binary field F,”; seedlen is the length of the seed ; @ and b are two field
elements that define the equation of the curve, and » is the order of the point G.
If only one curve will be used by an implementation, these parameters need not
be present in the working_state. If only one type of curve is implemented, the
curve_type parameter may be omitted.

¢. Two points P and Q on the curve; the generating point G specified in FIPS 186-
3 for the chosen curve will be used as P. If only one curve will be used by an
implementation, these points need not be present in the working_state.

d. A counter (reseed _counter) that indicates the number of blocks of random
produced by the Dual_EC_DRBG since the initial seeding or the previous
reseeding.

2. Administrative information:
a. The security _level provided by the instance of the DRBG,

b. A prediction_resistance_flag that indicates whether prediction resistance is
required by the DRBG, and

The value of s is the critical value of the internal state upon which the security of this
DRBG depends (i.e., s is the “secret value” of the internal state).

10.3.2.2.2 Instantiation of Dual_EC_DRBG

Notes for the instantiate function:

The instantiation of Dual_EC_DRBG requires a call to the instantiate function
specified in Section 9.2; step 8 of that tunction calls the instantiate algorithm in this
section. For this DRBG, a DRBG-specific input parameter of requested_curve_type is
optional (see the definition for curve_type in Section 10.3.2.2.1). If only one type of
curve is available, then this parameter may be omitted. If multiple types are available,
then a Prime_field curve will be selected if the parameter is omitted; if a

81

Dual_EC_DRBG ANS X9.82, Part 3 - DRAFT - December 2004

Prime_field_curve is not available, then a Random_binary curve will be selected.

In step 5 of the instantiate function, the following step shall be performed to select an
appropriate curve if multiple curves are available.

5. Using requested_curve_type (if provided), the security level and Table 5 in
Section 10.3.2.1, select the smallest available curve that has a security level =
security_level.

5.1 If requested curve_type is indicated, then select a curve of that type. If no
suitable curve of that type is available for the requested_security_level,
then return an ERROR.

5.2 Ifacurve type is not requested, then select an appropriate
Prime_field curve if a suitable curve is available. If no suitable
Prime_field curve is available, then select a Random_binary_curve ifa
suitable curve is available. If no suitable Random_binary_curve is
available, then select a Koblitz_curve. If no suitable Koblitz_curve is
available, then return an ERROR.

The values for curve_type, seedlen, p, a, b, n, P, Q are determined by that curve.

The values for highest_supported_security_level and min_entropy_input_length are
determined by the selected curve (see Table 5 in Section 10.3.2.1).

The instantiate algorithm :

Let Hash_df be the hash derivation function specified in Section 9.6.2 using an
appropriate hash function from Table 5 in Section 10.3.2.1. Let seedlen be the
appropriate value from Table 5.

The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG (see step 8 of Section 9.2):

Input:
1. entropy_input: The string of bits obtained from the entropy input source.

2. personalization_string: The personalization string received from the consuming
application.

Output:
1. s: The 9initial secret value for the working_state.
2. reseed counter: The initialized reseed counter.
Process:
1. seed material = entropy_input || personalization_string.

Comment: Use a hash function to ensure that
the entropy is distributed throughout the bits,

82

Dual_EC_DRBG ANS X9.82, Part 3 - DRAFT - December 2004

and s is m (i.e., seedlen) bits in length.
2. s= Hash_df (seed material, seedlen).

Comment: Save all state information.
3. reseed counter=0.
4. Return s and reseed_counter for the working_state.

Implementation notes:

If an implementation never uses a personalization_string, then steps 1 and 2 may be
combined as follows :

s = Hash_df (entropy input, seedlen).
10.3.2.2.3 Reseeding of a Dual_EC_DRBG Instantiation

Notes for the reseed function:

The reseed of Dual EC_DRBG requires a call to the reseed function specified in
Section 9.3; step 5 of that [unction calls the reseed algorithm in this section. The values
for min_entropy_input_length are provided in Table 5 of Section 10.3.2.1.

The reseed algorithm :

Let Hash_df be the hash derivation function specified in Section 9.6.2 using an
appropriate hash function from Table 5 in Section 10.3.2.1.

The following process or its equivalent shall be used to reseed the Dual EC_DRBG
process afier it has been instantiated (see step 5 in Section 9.3):

Input:
1. s: The current value of the secret parameter in the working_state.
2. entropy_input: The string of bits obtained from the entropy input source.

3. additional_input: The additional input string received from the consuming
application.

Output:
1. s: The new value of the secret parameter in the working_state.
2. reseed_counter: The re-initialized reseed counter.

Process:

Comment: pad8 returns a copy of s padded
on the right with binary 0’s, if necessary, to a
multiple of 8.

1. seed material = pad8 (s) || entropy_input || additional_input_string.

83

Dual_EC_DRBG ANS X9.82, Part 3 - DRAFT - December 2004

2. s=Hash_df (seed material, seedlen).
3. reseed counter=0.
4. Return s and reseed_counter for the new working_state.

Implementation notes:

If an implementation never allows additional_input, then step 1 may be modified as
follows :

seed_material = pad8 (s) || entropy_input.
10.3.2.2.4 Generating Pseudorandom Bits Using Dual_EC_DRBG

Notes for the generate function:

The generation of pseudorandom bits using a Dual_EC_DRBG instantiation requires a
call to the generate function specified in Section 9.4; step 8 of that function calls the
generate algorithm specified in this section. The values for

max_number_of bits_per_request and outlen are provided in Table 4 of Section 10.2.1.

The generate algorithm :

Let Hash_df be the hash derivation function specified in Section 9.6.2 using an
appropriate hash function from Table 5 in Section 10.3.2.1. The value of
reseed_interval is also provided in Table 5.

The following are used by the generate algorithm:

a. pad$ (bitstring) returns a copy of the bitstring padded on the right with binary
0’s, if necessary, to a multiple of 8.

b. Truncate (bitstring, in_len, out_len) inputs a bitstring of in_len bits, returning
a string consisting of the lefimost out_len bits of bitstring. 1f in_len < out_len,
the bistring is padded on the right with (out_len - in_len) zeroes, and the result
is returned.

c. x(A) is the x-coordinate of the point 4 on the curve.

d. @ (x) maps field elements to non-negative integers, taking the bit vector
representation of a field element and interpreting it as the binary expansion of
an integer. Section 10.3.2.2.4 has the details of this mapping.

The precise definition of @(x) used in steps 6 and 7 below depends on the field
representation of the curve points. In keeping with the convention of FIPS 186-
2, the following elements will be associated with each other (note that m =
seedlen).

B: |CmilCmal| ... |C1]cCo]| , abitstring, with ¢, being leftmost

Z oo™ 4 2 o2t e € Z;

84

Dual_EC_DRBG ANS X9.82, Part 3 - DRAFT - December 2004

Facm2™ + .. +c2% + ¢2'+ ¢o modp € GF(p) ;

Fb: cpit ml® L @’ ® et @ ¢y e GF(2™), when a polynomial basis
is used;

2 m-1
Fec: cpaB @ c,,,_sz @ c,,,.3[32 ®..& C()Bz e GF(2™), when a normal
basis is used.

Thus, any field element x of the form Fa, Fb or Fc will be converted to the
integer Z or bitstring B, and vice versa, as appropriate.

e. *isthe symbol representing scalar multiplication of a point on the curve.

The following process or its equivalent shall be used to generate pseudorandom bits
(see step 8 in Section 9.4):

Input:

1. working_state: The current values for s, curve_type, seedlen, p, a, b, n, P, Q
and reseed_counter (see Section 10.1.3.2.1).

2. requested number _of bits: The number of pseudorandom bits to be returned to
the generate functione.

3. additional_input: The additional input string received from the consuming
application.

Output:

1. status: The status returned from thefunction. The status will indicate
SUCCESS or indicate that a reseed is required before the requested
pseudorandom bits can be generated. In the latter case, either nothing but the
reseed indication shall be returned as output, or a Null string shall be returned
as the returned_bits (see below).

2. returned_bits: The pseudorandom bits to be returned to the generate function.
3. s: The new value for the secret parameter in the working_state.
4. reseed counter: The updated reseed counter.

Process:

Comment: Check whether a reseed is
required.

requested number _of _ bits
outlen
then return an indication that a reseed is required.

1. If (reseed __counter +[.n > reseed _interval

Comment: If additional_input is Null, set to
seedlen zeroes; otherwise, Hash_df to

85

Dual_EC_DRBG ANS X9.82, Part 3 - DRAFT - December 2004

seedlen bits.
2. If(additional_input_string = Null), then additional_input =0
Else additional_input = Hash_df (pad8 (additional_input_string), seedlen).

Comment: Produce requested no_of bits,
outlen Dbits at a time:

3. temp = the Null string.

4 i=0.

5. t=s @ additional_input.

6. s=0(x(*P)). Comment: # is to be interpreted as a seedlen-
bit unsigned integer. To be precise, when
curve_type = Prime_field_curve, t should be
reduced mod »; the operation * will effect
this. s is a seedlen-bit number.

7. r =o(x(s *Q)). Comment: r is a seed/en-bit number.

8. temp = temp || (rightmost outlen bits of r).

\O

. additional_input=0 Comment: seedlen zeroes;
additional_input_string is added only on the
first iteration.

10. reseed_counter = reseed_counter + 1.

11.i=i+1.

12. If (len (temp) < requested_number_of bits), then go to step 5.

13 returned_bits = Truncate (temp, i x outlen, requested_number_of bits).

14. Return SUCCESS, returned_bits, and s and reseed_counter for the
working_state.

86

MS_DRBG ANS X9.82, Part 3 - DRAFT - Decemberr 2004

10.3.3 Micali-Schnorr Deterministic RBG (MS_DRBG)

10.3.3.1 Discussion

The MS_DRBG generalizes the RSA generator, which is defined as follows: Let ged(x, y)
denote the greatest common divisor of the integers x and y, and ¢(n) represent the Euler phi
function2. Select n, the product of two distinct large primes, and e, a positive integer such
that ged(e, ¢(r)) = 1. Define f(y) = y* mod n . Starting with a seed y,, form the sequence
yi+1 = f(), and output the string consisting of the Ig lg (») least significant bits of each y,.
These bits are known to be as secure as the RSA function f; and are commonly referred to
as the hard bits.

The Micali-Schnorr generator MS_DRBG uses the same e and » as the RSA generator, but
produces many more random bits per iteration and eliminates the overlap between the state
sequence and the output bits. Each y; € [0, n) is viewed as the concatenation s; || z; of an r-
bit number s; and a k = lg(r)-r bit number z;. The s; are used to propagate the integer
sequence yi+; = si° mod m; the z; are output as random bits. » must be at least
2*min{security level, 1g(n)e}, where security_level is the desired security level of the

| Comment [ebb3]: Page: 86

Do we want this ro be a larger number. For
DSS, 16,537 < e < (2"*2.1), where nlen is the
length of n, and s is the security level.

generator, and e > 3, (See Section 10.3.3.2.2). A random r-bit seed s is used to initialize
the process.

Figure 16 depicts the MS_DRBG. Under the proper assumption, the MS_DRBG is an
example of a cryptographically secure generator, i.e., one that passes all polynomial-time
statistical tests. The assumption is that sequences of the form s° mod n are statistically the
same as sequences of integers in Z,. This assumption is stronger than requiring the
intractability of the RSA problem. See [1] for a discussion of these concepts and references

1

seed ————= §

=gt = :
1ettime and stmiad @ x‘ik o Vi SI mﬁ&i #,=hftmostx tdk R
1 1 g .
%_m@_‘ n PET T P g S udorandom bits
=3

s

Figure 16: MS_DRBG

to further details.

2 The Euler phi function : ¢(x) = the number of posiéiye integers < n that are relatively prime to n. For an
RSA modulus n = pgq, ¢(n) = (p-1)(g-1).

MS_DRBG ANS X9.82, Part 3 - DRAFT - Decemberr 2004

For MS_DRBG, the s values are assumed to be r-bit integers, and “statistically the same”
means indistinguishable by any polynomial-time algorithm. Accepting the stronger
assumption allows & to be a significant percentage of 1g(n). Note that in the specifications,
r has been redefined as seedlen, and & has been redefined to be outlen in order to be
consistent with the other DRBGs.

The specifications for the MS_DRBG (see Section 10.3.3.2) allow e and k (i.e., outlen) to
be specified. The lengths seedlen and outlen, the RSA modulus #, and the value of the
exponent e are variable within the bounds described below. The bounds are based on the
desired security level for the bits produced. For maximum efficiency, e should be kept
small and outlen should be large. The outlen bits generated at each step are concatenated
to form pseudorandom bit strings of any desired length. Table 6 provides definitions for
using with the MS_DRBG functions and algorithms.

Table 6: Definitions for MS_DRBG

Ig (n) = 2048 Ig (n) = 3072

Supported security levels 112 112, 128
highest_supported_security_level 112 128
Output Block Length (outlen = k) 8 < outlen < min{ lg(n) — 2*security level, 1g(n) —

2*lg(n)e
Required minimum entropy for Security level + 64
instantiate
Required minimum entropy for Security level
reseed
Minimum entropy input length min_entropy
(min_entropy_input_length)
Maximum entropy input length <25 bits
(max_entropy input_length)
Maximum personalization string <21 pits
length
(max_personalization_string_length)
Maximum additional_input length <213 pits
(max_additional_input_length)
Number of hard bits (Ig (g (n)) 11 11
Seed length (seedlen = r) lg(n) — outlen
Appropriate hash functions SHA-1, SHA-224, SHA-256, SHA-384, SHA-512
max_number_of bits_per_request outlen x reseed_interval

88

MS_DRBG ANS X9.82, Part 3 - DRAFT - Decemberr 2004

Number of blocks of outlen < 50,000
between reseeds (reseed_interval)

10.3.3.2 MS_DRBG Specifications
10.3.3.2.1 Internal State for MS_DRBG

The internal state for MS_DRBG consists of:
1. The working_state:
The M-S parameters 7, e, seedlen and outlen, and

b. Aninteger S in [0,2°*"*") that propagates the internal state sequence from
which pseudorandom bits are derived.

c. A counter (reseed_counter) that indicates the number of blocks of random
produced by MS_DRBG during the current instance since the previous
reseeding.

2. Administrative information:
a. The security_level provided by the instance of the DRBG, and

b. A prediction_resistance_flag that indicates whether prediction resistance is
required by the DRBG.

The value of § is the critical value of the internal state upon which the security of this
DRBG depends (i.e., s is the “secret value” of the internal state).

10.3.3.2.2 Selection of the M-S parameters

The instantiation of MS_DRBG consists of selecting an appropriate RSA modulus » and

exponent e; sizes seedlen and outlen for the seeds and output strings, respectively; and a
starting seed.

The M-S parameters n, seedlen, e and outlen are selected to satisfy the following six
conditions, based on strength:

1. 1< e < &(n); ged(e, p(n)) = 1. Comment: ensures that the mapping s — s°
mod #n is 1-1.

2. (e x seedlen) > 2*1g(n). Comment: ensures that the exponentiation
requires a full modular reduction.

3. seedlen>2*security level. Comment: protects against a tableization
attack.

4. outlen and seedlen are multiples of 8.Comment: This is an implementation
convenience.

89

MS_DRBG ANS X9.82, Part 3 - DRAFT - Decemberr 2004

5. outlen>8; seedlen + outlen=1g(n). Comment: all bits are used.

6. n=p*q. Comment: p and g are strong [as in X9.31],

secret primes .

The M-S parameters are determined in this order:

1.

The size of the modulus Ig(r) is set first. It shall conform to the values given in
Table 6 for the requested security level.

The RSA exponent e. The implementation should allow the application to request
any odd integer e in the range[l <e < 2'#" "1 _2%2 %16 | [Comment: The
inequality ensures that e < ¢(n) when an Approved algorithm is used to generate the
primes p and ¢.] If e is not provided during an instantiate request, or requested_e =

0 is supplied, the default value e=3 should be used.

The number outlern of output bits used for each iteration. The implementation
should allow any multiple of 8 in the range 8 < outlen < min{ lg(n) —
2*security_level, lg(n) — 2*lg(n)/e } to be requested. However, if a value for
outlen is not provided or requested_outlen = 0 is specified, outlen should be
selected as the /largest multiple of 8 integer in the allowable range and within the
range of bits currently known to be hard bits for the RSA problem. That value is
lg(lg(n)), as shown in Table 6. Thus, in all cases, the default value 8 will be used if
requested_outlen =0,

Any values for requested_e and requested_outlen outside these ranges shall be
flagged as errors.

Set the size of the seeds: seedlen = 1g(n) — outlen.

5. Selection of the modulus ». Two primes p and g of size %lg(n) bits, having entropy

at least min_entropy, and satisfying ged (e, (p-1)(g-1)) = 1 shall be generated as
specified in FIPS 186-3. An implementation shall use strong primes as defined in
that document: each of p-1, p+1, g-1, g+1 shall have a large prime factor of at least
security_level bits. [Comment: Any Approved algorithm will generate a modulus
of size 1g(n) bits using strong primes of size ' lg(») bits, and will allow the
exponent e to be specified beforehand.]

The difficulty of the RSA problem relies on the secrecy of the primes p and g comprising
the modulus. Whenever private primes are generated, the implementation shall clear
memory of those values immediately after » has been computed. Only the modulus » shall
be kept in the internal state.

10.3.3.2.3 Instantiation of MS_DRBG

Notes for the instantiate function:

The instantiation of MS_DRBG requires a call to the instantiate function specified in
Section 9.2; step 8 of that function calls the instantiate algorithm in this section. For
this DRBG, two DRBG-specific input parameters may be provided: requested e and

90

_...~| Comment [ebb4]: Page: 89
For DSS, 16,537 < e < (2"**%-1), where nlen is
the length of n, and s is the security level.

MS_DRBG

ANS X9.82, Part 3 - DRAFT - Decemberr 2004

requested_outlen.

The values for highest_supported_security level and min_entropy_input_length are
provided in Table 6 in Section 10.3.3.1.

In step 5 of the instantiate function, the following steps shall be used to select values
for n, e, seedlen and outlen:

5.

Using security_level, requested_e (if provided) and requested_outlen (it
provided), select values for n, e, seedlen and outlen.

5.1

52

5.3

54

5.5

Comment: Determine the modulus size.
If security_strength= 112, then Ig (n) = 2048
Else lg (n) =3072.

Comment: Select the exponent e.
If requested_e = 0 or is not provided, then e =]3{ .
Else
5.2.1 e=requested_ e.

522 If (requested e < 3) or(requested_e > 2L _ (2 x 21218M) o
(requested_e is even), then return an ERROR.

Comment : Select the output length outlen.
If requested outlen =0 or is not provided, then outlen =8
Else
5.3.1 outlen = requested_outlen.

5.3.2 If (outlen <1) or (outlen > min (Lig () -2 x secur’ity_leveIJ ,Lig
mx@- 2/e)J) or (outlen is not a multiple of 8), then return an
ERROR.

Comment : Determine the seed length
(seedlen).

seedlen = 1g (n) - outlen.
Comment: Get the modulus ».

Using lg (1) and e, get a random modulus #. 7 shall be the product of
two primes p and g such that :

1) Each has a length of lg (n)/2 bits,
2) Each has at least security level + 64 bits of entropy,
3) ged (e, (p-1), (g-1))= 1.

4) (p-1), (p+1), (g-1) and (g+1) shall each have a large prime factor of
91

Comment [ebb5]: Page: 90
Is lhis the lower value that we want ?

MS_DRBG ANS X9.82, Part 3 - DRAFT - Decemberr 2004

at least security level bits.
56 n=pxgq.
57 p=q=0.

Since the values for working state values n, e, and outlen have been determined by
step 5 (above), they need not be provided to nor returned from the instantiate al gorithm
in step 8; however, the value of seedlen is required by the instantite algorithm and must
be provided to it.

The instantiate algorithm:
Let Hash (...) be an Approved hash function for the security levels to be supported.

The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG (see step 8 in Section 9.2):

Input:
1. entropy_input: The string of bits obtained from the entropy input source.

2. personalization_string: The personalization string received from the consuming
application.

3. seedlen: The length of the seed.
Output:

1. working state: The inital values for S and reseed_counter (see Section
10.3.3.2.1).

Process:
1. seed material = entropy_input || personalization_string.
2. S =Hash_df (seed_material, seedlen).
3. reseed _counter=0.
4. Return SUCCESS, S and reseed_counter for the working_state.
Implementation notes:

If a personalization_string will never be provided, then steps 1 and 2 may be combined as
follows:

S = Hash_df (entropy_input, seedlen).
10.3.3.2.4 Reseeding of a MS_DRBG Instantiation

Notes for the reseed tunction:

The reseed of MS_DRBG requires a call to the reseed function specified in Section
9.3; step 5 of that function calls the reseed algorithm in this section. The values for
min_entropy_input_length are provided in Table 6 of Section 10.3.3.1.

92

MS_DRBG ANS X9.82, Part 3 - DRAFT - Decemberr 2004

The reseed algorithm:

Let Hash_df be the hash derivation function specified in Section 9.6.2 using an
appropriate hash function from Table 6 in Section 10.3.3.1.

The following process or its equivalent shall be used as the reseed algorithm for this
DRBG (see step 5 of Section 9.3):

Input:
1. working_ state: The current values for seedlen and S.
2. entropy_input: The string of bits obtained from the entropy input source.

3. additional_input: The additional input string received from the consuming
application.

Output:

1. status: The status of performing this algorihm. For this DRBG, the only status
is SUCCESS.

2. working state: The new values for S and reseed_counter.
Process:

1. seed material =S || entropy_input || additional_input.

2. S=Hash_df (seed material, seedlen).

3. reseed counter=0.

4. Return SUCCESS, and the new values of S and reseed_counter.

Implementation notes:

If additional_input will never be provided, then steps 1 may be modified as follows:

seed_material = S || entropy_input.
10.3.3.2.5 Generating Pseudorandom Bits Using MS_DRBG

Notes for the generate function:

The generation of pseudorandom bits using an MS_DRBG instantiation requires a call
to the generate function specified in Section 9.4; step 8 of that function calls the
generate algorithm specified in this section. The values for

max_number_of bits_per_request and outlen arc provided in Table 6 of Section
10.3.3.1.

The generate algorithm:

Let Hash_df be the hash derivation function specified in Section 9.6.2 using an
appropriate hash function from Table 6 in Section 10.3.3.1. The value of
reseed_interval is also specified in Table 6.

93

MS_DRBG ANS X9.82, Part 3 - DRAFT - Decemberr 2004

Let pad8 (bitstring) be a function that inputs an arbitrary length bitstring and returns a
copy of that bitstring padded on the right with binary 0s, if necessary, to a multiple of
8. Note: This is an implementation convenience for byte-oriented functions.

Let Truncate (bifs, in_len, out_len) be a function that inputs a bit string of in_len bits,
returning a string consisting of the leftmost ouz_len bits of input. If in_len < out_len,
the input string is returned padded on the right with out_len — in_len zeroes.

The following process or its equivalent shall be used to generate pseudorandom bits
(see step 8 in Section 9.4):

Input:

1. working state: The current values for n, e, seedlen, outlen, S, and
reseed_counter (see Section 10.3.3.2.1).

2. requested_number_of bits: The number of pseudorandom bits to be returned to
the generate tunctione.

3. additional_input: The additional input string received from the consuming
application.

Output:

1. status: The status returned from thefunction. The starus will indicate
SUCCESS or indicate that a reseed is required before the requested
pseudorandom bits can be generated. In the latter case, either nothing but the
reseed indication shall be returned as output, or a Null string shall be returned
as the returned_bits (see below).

2. returned_bits: The pseudorandom bits to be returned to the generate function.
3. S: The updated secret value in the working_state.
4. reseed counter: The updated reseed counter.

Process:

Comment: Check whether a reseed is
required.

requested _number _of _bits

1. If (reseed _counter +[.|] > reseed _interval,

outlen
then return an indication that a reseed is required.

2. If (additional input = Null) then additional _input =0

Comment: additional_input set to seedlen
ZEroes.

Else additional_input = Hash_df (pad8 (additional_input_string), seedlen).

94

MS_DRBG ANS X9.82, Part 3 - DRAFT - Decemberr 2004

Comment: Hash to seedlen bits.

Comment: Produce
requested_number of bits, outlen at a time.

3. femp =the Null string.

4. i=0.

5. s=8® additional_input. Comment: s is to be interpreted as a seedlen-
bit unsigned integer.

6. S= L (s* mod n)/ 2% | Comment: S is a seedlen-bit number.

7. R = (s° mod n) mod 27", Comment: R is an outlen-bit number.

8. temp=temp| R

9. additional_input=0""", Comment: seedlen zeroes.

10.i=i+1.

11. reseed _counter = reseed_counter+1.

12. If (lem (temp) < requested_number_of bits), then go to step 6.

13. returned_biis = Truncate (temp, i x k, requested_number_of bits).

14. Return SUCCESS, returned_bits and the values of S and reseed_counter for
the working_state.

95

ANS X9.82, Part 3 - DRAFT - December 2004

11 Assurance

11.1 Overview

A user of a DRBG for cryptographic
purposes requires assurance that the

generator actually produces random and Design < Evaluation
unpredictable bits. The user needs l l
assurance that the design of the generator,

its implementation and its use to support Standards
cryptographic services are adequate to l

protect the user's information. In addition,
the user requires assurance that the
generator continues to operate correctly.
The assurance strategy for the DRBGs in
this standard is depicted in Figure 17.

The design of each DRBG in this standard
has received an evaluation of its security

properties prior to its selection for Figure 17: DRBG Assurance Strategy
inclusion in this standard.

Implementation < Validation

Operational Tests

The accuracy of an implementation of a DRBG process may be asserted by an
implementer, but this Standard requires the development of basic documentation to
provide minimal assurance that the DRBG process has been implemented properly (see
Section 11.2). An implementation should be validated for conformance to this Standard by
an accredited laboratory (see Section 11.3). Such validations provide a higher level of
assurance that the DRBG is correctly implemented. Validation testing for DRBG processes
consists of testing whether or not the DRBG process produces the expected result, given a
specific set of input parameters (e.g., seed). Implementations used directly by consuming
applications should also be validated against conformance to FIPS 140-2.

Operational (i.e., health) tests shall be implemented within a DRBG boundary in order to
determine that the process continues to operate as designed and implemented. See Section
11.4 for further information.

A cryptographic module containing a DRBG should be validated (see FIPS 140-2 {8]).
The consuming application or cryptographic service that uses a DRBG should also be
validated and periodically tested for continued correct operation. However, this level of
testing is outside the scope of this Standard.

Note that any entropy input used for testing (either for validation testing or
operational/health testing) may be publicly known. Therefore, entropy input used for
testing shall not knowingly be used for normal operational use.

96

ANS X9.82, Part 3 - DRAFT - December 2004

11.2 Minimal Documentation Requirements

This Standard requires the development of a set of documentation that will provide
assurance to users and (optionally) validators that the DRBGs in this Standard have been
implemented properly. Much of this documentation may be placed in a user’s manual. |This

documentation shall consist of the following :I _..—| comment [ebb6]: Page: 96
e e e S Probably need to add additional documentation
e Document how the implementation has been designed to permit implementation requirements to address other requirements.

validation and operational testing.

o Document the type of DRBG (e.g., Hash_DRBG, Dual_EC_DRBG), and the
cryptographic primitives used (e.g., SHA-256, AES-128).

¢ Document the security levels supported by the implementation.

o Document features supported by the implemention (e.g., prediction resistance, the
available elliptic curves, etc.).

e In the case of the CTR. DRBG and OFB_DRBG, indicate whether a detivation
function is provided. If a derivation function is not used, documentation clearly
indicate that the implementation can only be used when full entropy input is
available.

e Document any support functions other than operational testing.

11.3 Implementation Validation Testing

A DRBG process may be tested for conformance to this Standard. Regardless of whether
or not validation testing is obtained by an implementer, a DRBG shall be designed to be
tested to ensure that the product is correctly implemented; this will allow validation testing
to be obtained by a consumer, if desired. A testing interface shall be available for this
purpose in order to allow the insertion of input and the extraction of output for testing.

Implementations to be validated shall include the following:

e Documentation specified in Section 11.2.

e Any documentation or results required in derived test requirements.
11.4 Operational/Health Testing

11.4.1 Overview

A DRBG implementation shall perform self-tests to ensure that the DRBG continues to
function properly. Self-tests of the DRBG processes shall be performed prior to the first
instantiation and periodically, and a capability to perform self-tests on demand should be
included (see Section 9.7). A DRBG implementation may optionally perform other self-
tests for DRBG functionality in addition to the tests specified in this Standard.

All data output from the DRBG boundary shall be inhibited while these tests are
performed. The results from known-answer-tests (see Section 11.4.2) shall not be output
97

ANS X9.82, Part 3 - DRAFT - December 2004

as random bits during normal operation.

When a DRBG fails a self-test, the DRBG shall enter an error state and output an error
indicator. The DRBG shall not perform any DRBG operations while in the error state, and
no pseudorandom bits shall be output when an error state exists. When in an error state,
user intervention (e.g., power cycling, restart of the DRBG) shall be required to exit the
error state (see Sections 7.2.7 and 9.8).

11.4.2 Known Answer Testing

Known answer testing shall be conducted prior to the first instantiation and periodically,
and may be conducted on demand. A known-answer test involves operating the DRBG
with data for which the correct output is already known and determining if the calculated
output equals the expected output (the known answer). The test fails if the calculated
output does not equal the known answer. In this case, the DRBG shall enter an error state
and output an error indicator (see Sections 7.2.7 and 9.8).

The generalized known answer testing is specified in Section 9.7. Testing shall be
petformed on all DRBG functions implemented.

98

ANS X9.82, Part 3 - DRAFT - December 2004

Annex A: (Normative) Application-Specific Constants
A.1 Constants for the Dual EC_DRBG

The Dual_EC_DRBG requires the specifications of an elliptic curve and two points on the
elliptic curve. One of the following NIST approved curves and points shall be used in
applications requiring certification under FIPS 140-2. More details about these curves may
be found in FIPS PUB 186-3, the Digital Signature Standard.

A.1.1 Curves over Prime Fields

Each of following mod p curves is given by the equation:
y* =x-3x + b (mod p)
Notation:
p - Order of the field F}, , given in decimal

r - order of the Elliptic Curve Group, in decimal . Note that » is used here for
consistency with FIPS 186-3 but is referred to as n in the description of the
Dual_EC_DRBG (...)

b - coefficient above
The x and y coordinates of the base point, ie generator G, are

the same as for the point P.
A.1.1.1 Curve P-224

p = 26959946667150639794667015087019630673557916\
260026308143510066298881

r = 26959946667150639794667015087019625940457807\
714424391721682722368061

b = b4050a85 0c04b3ab £5413256 5044b0b7 d7bfd8ba 270b3943
2355ffb4

Px = b70e0cbd 6bb4bf7f 321390b9 4a03cld3 56c¢21122 343280d6

115c1d21
Py = bd376388 b5£723fb 4c22dfe6 cd4375a0 5a074764 44d58199

85007e34

99

ANS X9.82, Part 3 - DRAFT - December 2004

Ox = 68623591 6elladfa £080a451 477fa27a £21248be 916d3458
a583a3c9
Qy = 6060018a 24b35be6 caecf3f0 7f2c6b43 4e47479%e 55362c8f

5707adca
A.1.1.2 Curve P-256

p = 11579208921035624876269744694940757353008614\
3415290314195533631308867097853951

¥ = 11579208921035624876269744694940757352999695\
5224135760342422259061068512044369

b= 5ac635d8 aa3a93e7 b3ebbd55 769886bc 651d06b0 cc53b0f6 3bce3c3e
27d2604b

Px = 6bl7d1f2 el2c4247 f8bcebeb5 63a440f2 77037d81 2deb33al
£4a13945 d898c296

Py = 4fe342e2 fela7f9b B8eeTebda 7c0f9el6 2bce3357 6b3lbece
cbb64068 37bf51£5

I

Ox c97445f4 5cdef9f0 d3el05ele 585fc297 235b82b5S beB8ff3ef

ca67c598 52018192

b28ef557 ba3ldfcb dd2lacd6 e2a9le3c 304f44chb 87058ada
2cb81515 1e610046

A.1.1.3 Curve P-384

p = 39402006196394479212279040100143613805079739\
27046544666794829340424572177149687032904726\
6088258938001861606973112319

r = 39402006196394479212279040100143613805079739\
27046544666794690527962765939911326356939895\
6308152294913554433653942643

b=Db3312fa7 e23ee7e4 988e056b e3f82d19 181d9cbe feB814112 0314088f
5013875a ¢c656398d 8a2edl9d 2aB5cB8ed d3eclaef

Px = aa87ca22 be8b0537 8eblc7le £320ad74 6eld3b62 8ba79b98
59f741e0 82542a38 5502£25d bf55296c 3a545e38 72760ab7

Py = 3617deda 96262c6f 5d9e98bf 9292dc29 £8f4ldbd 28%aldic
100

ANS X9.82, Part 3 - DRAFT - December 2004

e9da3113 b5£0b8c0 0a60blce 1d7e¢819d 7a431d7c 90ealeb5f

Ox = 8e722de3 125bddb0 5580164b fe20b8b4 32216a62 926c5750
2ceede3l c47816ed d1e89769 124179d0 16951064 28815065

Qy = 023b1660 dd701d08 39fdd5ee c36f9%ee7 b32el3b3 15dc0261
0aalb636 e346df67 1f790f84 c5e09p05 674dbb7e 45c803dd
A.1.1.4 Curve P-521

p = 68647976601306097149819007990813932172694353\
00143305409394463459185543183397656052122559\
64066145455497729631139148085803712198799971\
6643812574028291115057151

r = 68647976601306097149819007990813932172694353\
00143305409394463459185543183397655394245057\
74633321719753296399637136332111386476861244\
0380340372808892707005449

b=051953eb 9618elc9 alf929%a2 1alb6854 Oeea2da7 25b99b31
5f3b8b48 9918efl0 9e156193 95lec7e9 37bl652c Obd3bblb
£073573d £883d2c3 4flefd51 £d46b503 £00

Px = c6858e06 b70404e9 cd9e3ech 662395b4 429c6481 39053fb5
21f828af 606bdd3d baaldbbe 77efe759 28feldcl 27a2ffa8
de3348b3 cl856a42 9pbf97e7e 31lc2e5bd 66

Py = 11839296 a789%a3bc 0045c8a5 fbd2c7dl bd998£54 449579b4
46817afb d17273e6 62c97ee’7 2995ef42 640c¢550b 9013fado
761353¢c7 086a272c 24088be9 4769fdl6 650

QOx = 1b9fa3e5 18d683c6 b6576369 4ac8efba ecébfabdd 2276171
a4272650 7dd08add 4c3b3fic lebc5bl2 22ddbal7 7£722943
b24c3edf a0f85fe2 4d0c8c0l 591f0be6 £63

Qy = 1f3bdba5 85295d9a 1110d1df 19430ef 8442¢501 8976134 37ef91b8 1dc0b813
2¢8d5¢39 ¢32d0e00 4a3092b7 d327c0e7 add26d2c 7Tb69b58f 90666529 11e45777 9de

A.1.2 Curves over Binary Fields

For each field degree m, a pseudo-random curve (B) and a Koblitz curve (K) are given.

The pseudo-random curve has the form

101

ANS X9.82, Part 3 - DRAFT - December 2004

E: y*+xp =x+ 3"+ b,
and the Koblitz curve has the form
E: Y +xy=x+ ax®+ 1,where a=0or 1.

For each pseudorandom curve, the cofactor is /= 2. The cofactor of each Koblitz curve is f
=2ifa=1,andf=4ifa=0.

The coefficients of the pseudo-random curves, and the coordinates of the points P and Q
for both kinds of curves, are given in terms of both the polynomial and normal basis
representations, in hex.

NOTE: An implementation may choose to represent coordinates in either basis. However,
in order to gain certification it must demonstrate agreement with the test output vectors,
which have been generated using the normal basis representation for each of the binary
curves.

The order r of the base point P is given in decimal.

Note that r is used here for consistency with FIPS 186-3 but is referred to as # in the
description of the Dual_EC_DRBGY(). r is given in decimal

A.1.2.1 Curve K-233

a=2a0

¥ = 34508731733952818937173779311385127605709409888622521\
26328087024741343

Polynomial Basis:

Px = 00000172 32baB853a 7e73lafl 29f22ff4 149563a4 19c26bf5
0adc9dée efad6l26

Py = 000001db 537dece8 19b7f70f 555a67c4d 27a8cd9b fl8aebSb
56e0cll10 56fae6a3

Normal Basis:

Px = 000000fd e76d9dcd 26e643ac 26flaa90 1laal2978 4b71£fc07
22b2d056 14d650b3

Py = 00000064 3e317633 155c9e04 47ba8020 a3c43177 450ee036
d6335014 34cac97s

Polynomial Basis:

Ox = 000000aa 7178e973 8a6f797a 1c265465 06106896 0a58b3fe
a3afc77f 18404eee

Qy = 0000002a 12a8f3e9 884bf31ld 052a8eaf 414b89la 0ad049le
1£9d2576 79248ee2

102

ANS X9.82, Part 3 - DRAFT - December 2004

Normal Basis:

Ox

0000015a 96493d91 eb56b5£10 579a7d58 eb895e06 8d%4elaf
86d34143 4377548c¢

0000006b 13a689bb 3730dfd7 a46486ea ffB8eb6cb 9d815981
a927d2eb 8cfa%p00

A.1.2.3 Curve B-233

7 = 69017463467905637874347558622770255558398127373450135\
55379383634485463

Polynomial Basis:

b= 066 647edebc 332c7f8c
0923bb58 213b333b 20e9ced2 81fellbf 7d8f90ad

Px = 000000fa c9dfcbac 8313bb21 39flbb75 5fef65bc 391£8b36
£8£8eb73 71£d558b
Py = 00000100 6a08a419 03350678 e58528be bfB8albef f867a7ca

36716f7e 01£81052
Norimal Basis:

b = 1a0 03e0962d 4f9aB8ed40
7c904a95 38163adb 82521260 0c7752ad 52233279

Px = 0000018b 863524b3 cdfefb94 f2784e0b 1ll6faac5 4404bc9l
62a363ba b84aldch
Py = 00000049 25df77bd 8b8fflab ff519417 822bfedf 2bbd7526

44292c98 c7af6e02

Polynomial Basis:

Ox = 000000cb 50ce04af f4ea61lll aaccfel04 ae5f0dfe 95a59db4
cd4abalc 1126615a

Qy = 0000005b ab8a93a0 5cd42caae 1b322bl4 876ec2el 5c994a25
8e67295e 5808eafd

Normal Basis:

Ox = 00000055 eal7clca 4a4312f3 4562737c 257f4fa8 3b9d3d48
8al23cab 238f69a2
Oy = 00000055 d60eai7a 1cb969a8 3786a82f 8172e889 026195f9

103

ANS X9.82, Part 3 - DRAFT - December 2004

923badbl beeb5702
A.1.2.2 Curve K-283

a=20

r = 38853377844514581418389238136470378132848117337930613\
24295874997529815829704422603873

Polynomial Basis:

Px = 0503213f 78ca4488 3f1a3b81 62£188e5 53cd265f 23clb567a
16876913 b0c2ac24 58492836

Py = 0lccda38 0flc9e3l 8d90£95d 07e5426f e87e45c0O 8184698
€4596236 4e341161 77dd2259

Normal Basis:
Px

03ab9593 £8db09fc 188fld7c 4ac9fcc3 e57fcd3b dbl5024b
212c7022 9de5fcd9 2ebleabl

Py 02118c47 55e7345c d8f603ef 93b98bl0 6£e8854f feb9a3b3

04634cc8 3a0e759f 0c2686bl
Polynomial Basis:

Ox = 0388eeed 1cc5808d 140d5179 76fbalfa 9c14b886 914387a6
890a9497 £d3370b6 9cdd3779

Qy = 04d86b99 fed2ecad 1dc9fd77 ed5928ac ef9081£97 leb22cf6
8ed436df4 dbebelbe b2c2dff4

Normal Basis:

Ox = 004abl7d 72374eb7 dac733d8 83d7b650 eb03ccbd d6c60197
74f41lef2 1b8elell 0feBaab8

Qy = 07243a25 e2e7e633 7897e8bl 9791c¢c813 0317aect 8clacZa4
2ac03dac 4afdabe8 ffc9888c

A.1.2.4 Curve B-283

F = 77706755689029162836778476272940756265696259243769048\
89109196526770044277787378692871

Polynomial Basis:

b = 27b680a c8b8596d aS5ad4afB8a 1%9a0303f
ca97fd76 45309fa2 a581485a £6263e31 3b79%9a2f5

Px = 05£93925 8db7dd90 e1934f8c 70bOdfec 2eed25b8 557eacdc

104

ANS X9.82, Part 3 - DRAFT - December 2004

80e2el98 f8cdbecd 86012053

Py = 03676854 fe2414lc b98fe6d4d b20d02b4 516££702 350eddb0
826779c8 13f0df45 be8112f4

Normal Basis:
b = -157261b 894739fb 5al3503f 55f0b3fl
0c560116 66331022 01138ccl 80c0206b dafbc951

Px = 0749468e 464eed68 634b21f7 £61cb700 701817e6 bc36a236
4cbhb8906e 940948ea a463c35d

Py = 062968bd 3b489ac5 c9b859da 68475c31 Sbafcdcd ccd0dcd0
5070624 46£49c05 2£49c08c

Polynomial Basis:

Ox = 06530328 33283d9%e b6ebc03c 2d735ed9 12b46bcl 2e364643
£8e309d9 d55e9440 28190bab

Oy = 03693cd3 8b4e022d ef8lbb7f 949ca7fd 287cbc3d 3aae8632
a6fea7l9 e0da9998 48211443

Normal Basis:

Ox = 06c2366¢c 8acc000a 5b516dfc 4cf8a204 b255dd0d e53f18el
99718e05 47b3845f 000626c9

Qy = 03667£53 ele528e9 99bfb2cb 9609116 969d78fb 94a264a9
a2045878 132ca8f5 85b874ef

A.1.2.5 Curve K-409
a=20
7 = 33052798439512429947595765401638551991420234148214060\

96423243950228807112892491910506732584577774580140963\
66590617731358671

Polynomial Basis:

Px = 0060f05f 658f49cl ad3abl89 0£718421 0efd0987 e307c84c
27accfb8 £9f67cc2 c460189%e bS5aaaab2 ee222ebl b35540ct
€9023746

Py = 01e36905 O0b7cd4ed2 acbaldac bf04299c 3460782fF 918ead27
€6325165 e9%ecallel3 da5f6cd2 e9c55215 aa9ca27a 5863ec48
d8e0286b

106

ANS X9.82, Part 3 - DRAFT - December 2004

Normal Basis:

Px = 01b559c7 cba2422e 3affel33 43e808b5 5e012d72 -6calb7eb

a63aeafb cle3a%98e 10calOfcf 98350c3b 7£89a975 4a8eldcO
713cecda

Py = 016d8c42 052£07e7 713e7490 eff318ba labd6fef 8a5433c8
94b24£f5¢c 817aeb79 852496fb ee803a4d7 bcB8a2038 78ebflcd
99afd7d6

Polynomial Basis:

QOx = 0lba9a6c 2d3ledf6 671ce7dl flé6fdab2 7c72ca88 cc3b33e9
b2ef536e 92bc06ad OcacOdéa 821898c2 847b5d7e 8506fd26
9eSldfcc

Oy = 019d9567 d1931672 ab748567 c4fb75a4 e0658b%b bfl790le
b7d41148 489%ab481 354977ac 390bbb05 a6e782b5 13caalb%
02a846ef

Normal Basis:

Ox = 00e8b595 6a3f2ec5 eBe3e3cf e4c2003a 687feecc ade30leb
c34d47ef a723dac6é 36flefba cdbScedd2 309fc937 fa5460d5
223c3743

Qy = 001£61f2 2a66d942 delll925 dd94da7d 5c02edc2 23328bed
9019%al57 d7b700f6 d8b42316 efe8193d 68c90cel feb7ad2b
4£690281

A.1.2.6 Curve B-409

r = 66105596879024859895191530803277103982840468296428121\
92846487983041577748273748052081437237621791109659798\
67288366567526771

Polynomial Basis:

b = 02la5c2 c8ee9feb 5c¢c4b9%a7b
3b7b476b 7fd6422e £1£3dd67 4761fa%9 déac27c8
a%al97b2 72822f6c d57a55aa 4f50ae3l 7bl3545f

Px = 015d4860 d088ddb3 496b0c60 64756260 44lcdeda £1771d4d
b01ffe5b 34e59703 dc255a86 8allB8051 5603aeab 60794e54
bb7996a7

Py = 0061lblcf ab6bebf3 2bbfa783 24edlO6a 7636b9c5 a7bdl98d

0158aadf 5488d08f 38514f1f df4b4f40 d2181b36 8lc364ba
0273c706

106

ANS X9.82, Part 3 - DRAFT - December 2004

Normal Basis:

b = 1244065 1c3d3772 f7fbalfe
6e715559 e2129%df a04d52f7 beac7c53 2cf0ed06
£610072d 88ad2fdc c50c6fde 72843670 £8b3742a

Px = 00ceacbc 9f475767 d8e69f3b 5dfab398 13685262 bcacf22b
84c7b6dd 981899%e7 318c96f0 761f77c6 02cOléce d7c548de
830d708f

Py = 0199d64b a8£089c6 db0elb6l e80bb959 34afdlOca f2e8be76
dlcSe%af fc7476df 49142691 ad303902 88aal9%c c59cl573
aa3c009%a

Polynomial Basis:

Ox = 01920ed2 5ec895fc 704acOda 05a93ace 25fc9646 ab4533c0
4f759cel ac0e53d8 09602318 d6fdd0d7 l1ld2affdé 915e8d7a
e2977127

Qy = 011d1d15 0cl27a29 77b48al7 facBaal3 96985213 3179fcl7
74£9d3db lfébeed3 d8cO4cce 35f2abf8 022230f6 457£260a
72444bfd

Normal Basis:

Ox = 01b248le 3265c48d 28db6172 95efafd5 77f£7d0ed 175cc49b
0fcbl1982 639bc380 eeeB0285 e6ef8a7b la3l566d 602c07dc
dc85a5ab

Qy = 0040712d 082d31lba 22497958 b1178993 a2f5dc4l £14207ed
0f8ccda8 06b637cc £1380320 b6£f9dfd 8e811f14 49c4dc23e
2£4823fe

A.1.2.7 Curve K-571

a=20

r = 19322687615086291723476759454659936721494636648532174\
99328617625725759571144780212268133978522706711834706\
71280082535146127367497406661731192968242161709250355\
5733685276673

Polynomial Basis:

Px = 026eb7a8 59923fbc 82189631 £8103fe4 ac%ca297 0012d5d4
60248048 01841ca4 43709584 93b205e6 47da304d bdcebO8c
bbdlba39 494776fb 988b4717 4dcaB88c7 e2945283 al0lc8972

107

ANS X9.82, Part 3 - DRAFT - December 2004

Py = 0349dc80 7f4fbf37 4fdaeade 3bcad531 4dd58cec 9£307a54
ffcolefc 006d8a2c 9d4979c0 acddaea7 4fbebbbd f772aedc
b620b0la 7ba7aflb 320430c8 591984f6 0lcd4cld 3eflc7a3

Normal Basis:

Px = 004bb2db a418d0db 107adae0 03427e5d 7ccl3%ac b465e593
4f0beal2a b2f3622b c29b3d5b 9aa7alfd £d5d8be6 6057cl00
8e71e484 bcd98f22 bf847642 37673674 29ef2ech bc3ebcf?

Py = 044cbb57 de20788d 2¢952d7b 56¢cf£39bd 3e890189 84bdl24e
751ceffd 369dd8da céa5%e6e 745df44d 8220ce22 aa2c852c
fcbhbbef49 ebaa98bd 2483e331 80e04286 feaa2530 50caff60

Polynomial Basis:

Ox = 06c62ea8 63120582 6aB8e4d328 412a3400 Obe7c23f 19982e7f
35164b12 cl8df503 2997173d 9776babl 2dafeb58e 97elaadd
4726eaae 6473c2bc 7e0c2752 fed22ac2 e86fbcfc 00468dc4d

Oy = 070blc34 39bb9845 42£21349 21f£78d0 cebefb9b £27£02b5
0£83c658 £29b2076 ac77c8ac 01bbeb9c 02d090fb 20aada3b
£4745614 78445404 fd2ee388 3cbd5508 f7edcfe7 a803dd47

Normal Basis:

QOx = 0le8ceeb 3c73b384 adB828269 7566e3ad b1l1573fd 7aff7abd
1af60123 062e560c 1bb66d35 d00cd77e 101e7606 6afcdOcH
8c8826eb 79b91e33 1328701lc 9fbb5c3ab 01d798af cdfbeat?

Qy = 079d03£ff 6£51d98d 467%aa59 97b5leca e2ecf2fe ba4dledf
d5df7df7 277bb265 b58bllad 5b916e99 fea7ef78 49314dfl
0af703bd 1b202c8c £a97760b 27044cl9 ac5d9fb5 65381df3

A.1.2.8 Curve B-571

¥ = 38645375230172583446953518909319873442989273297064349\
98657235251451519142289560424536143999389415773083133\
88112192694448624687246281681307023452828830333241139\
3191105285703

Polynomial Basis:

b = 2f40e7e 2221£295 de297117
b7£3d62f 5¢c6a97ff cbB8ceffl cdébaBce 4al%alBad
84ffabbd 8efa5933 2be7adé67 56a66e29 4afdl85a
78ffl2aa 520edde7 39%bacalc Tffeff7f 2955727a

108

ANS X9.82, Part 3 - DRAFT - December 2004

Px = 0303001d 34b85629 6c16c0d4 0d3cd775 0a93dld2 955fa80a
a5f40fc8 db7b2abd bde53950 £4c0d293 cdd711a3 5b67fbl4
99ae6003 8614f139 4abfa3b4 ¢850d927 ele7769c 8eec2dl?

Py = 037b£f273 423a639% 6dccfffe b73d69d7 8c6c27a6 009cbbeca 1980£853
3921e8a6 84423e43 bab08ab7 6291af8f 461bb2a8 b3531d2f
0485¢c19b 16e2f151 6e23dd3c la4827af 1b8aclbb

Normal Basis:

b = 3762d0d 47116006 179da356
88eeaccf 59labcde a7500011 8d9%608c5 9132d434
26101ald fb377411 5£586623 £75£0000 1lce61198
3cl275fa 31f5bc9f 4belalOf4 67f01lca8 85c74777

Px = 00735e03 5def5925 cc33173e b2aB8ce77 67522b46 64278065
0a291612 7dfea9d2 d361089f 0a7a0247 al84elc7 0d417866
e0feOfeb Off8f2f3 £9176418 £97dl17e 6242015 dfl662a8

Py = 004a3642 0572616c df7e606f ccadaecf c3b76dab 0ebl248d
d03fbdfc 9cd3242c 4726be57 9855e812 de7ec5c5 00b4576a
24628048 b6a72d88 0062eed0 dd34b1l09 6d3acbbé b0ladad7

Polynomial Basis:

Ox = 0le263e6 afad323f 934e50e4 dalb015b 3f6727f4 2770lcc3
0dcdl145 cl2e3c66 50ccd260 Sccd5a6a 609c5acd 3aed9eZd
32deB8e64 80303414 dc0907£0 21f8cefd cfb45700 56£8d686

Qy = 06c99cbb 0c686abe d6b7015d e2cbel8a 3f623ae2 c87ab4a3
d6cd7b78 b37£49cc 5e88del4 b5668dad 24f3f34c 50b8cbba
3140d87f 8labbd2e 919b3f8d 61743ba9 14bcbllb defdabct

Normal Basis:

Ox

Oleced446 40b698fe eb575fc0 65156c5f £94c277a 5335ela2
28b65c22 aff27777 dl59cfee c¢7£1270c c84bca33 8f34abdd
6748f592 bf322442 e2ffeffe 9e5a321d cdbbde75 a269e745

Olcadda7 5647bba5 8c08b5e2 2b633e3a 5dd3b2c9 5db81f2d
220cba3d 7a38e692 072b3db2 6465b27a 2abd56b4 2291982
3a902eb5 038dl62a 7a578d37 8dd0c620 4£722521 b8084dAc

A.2 Test Moduli for the MS_DRBG (...)

Each modulus is of the form n = pg with p=2p; + 1, ¢ = 2¢, + 1, where p; and g, are
(lg(n)/2 — 1)-bit primes.

109

ANS X9.82, Part 3 - DRAFT - December 2004

A.2.1 The Test Modulus n of Size 2048 Bits

The hexadecimal value of the modulus # is:
cl1la0lf2 5daf396a a927157b af6£504f 78cba324 57b58c6b
£7d851laf 42385cc7 905b06£f4 1£6d47ab 1b3a2cl2 17d14d1l5
070c9da5 24734ada 2fel7a95 e600ae9%a 4f8blab66 96661e40
7d3043ec d1023126 5d8ealddl 81lcf23c6 dd3dec9e b3fce204
5b9299bb cca63dee 435a2251 ad0765d4 9d29db2e f5abal6l
279aeb5f 6899fe48 7973e36c 1fb13086 d9231b6b 925a8495
4baOfbca feaBddea 77a9£852 £86915a4 e7lbdOba b9b269c3
9a7a827a 41311ffa 4470140c 8b6509fe 5dbd39e3 ec816066
2d036el13 0e07e233 06a39%018 dble8efe 64418880 81lac3673
2b4091£6 63690403 3b486d74 371a20fc 3e2ldbce 7ed0e797
5ead4453 cdl161d32 8185204 59896571

A.2.2 The Test Modulus n of Size 3072 Bits

The hexadecimal value of the modulus # is:
c6046bab B8beaal6l c468a9a7 4da34d64 21398c73 020837c7
d2a4042b dd%a7628 cab8022e 5bc4246f 75da8d26 03da802l
41c5d112 835e6bdb 57ed799e 28d6fadd c3d0£5b5 £9776cl4
02901bf7 73ae3113 35d0470e da9lb442 dbacé2la cdd324e2
a70244d7 cbl55adc 4b77dd94 fafe069d 5b5cc494 86e9febl
c5081190 abb24f54 2d7d21e9 c90453c6 9ac63143 401d6b35
e456ea2f 64ae76f9 2df80328 b4BE7962 d5c9b779 b2078496
7d374£02 06b8afbf 678A7E£5f 36c3d8d4e c9e55c28 Tce5c668
17ee05b4 1059168F b5c5e2a3 6bc2féce 3b43bdld 56eebdd5
70ffe6le 5a7023a9 04d98f8a 96bfaf55 55al2f81 5561b401
63f3a50e alel6a36 3f5cdddd aldb275c 4£c2d650 d51f£1e93
£5fd7631 cad5914f f6fe62a0 be55b997 5£6566bb 47e76276
f4e3b2eb 837bf0da 9d824687 042479a3 04147399 2d8l4a3a
Tbe7bc3d 06992df6 6c1d7d06 £8clélle 2bbb573a 0e278e7a
daa600£3 2577030e 95b73dd9 96b65£98 4740a485 e27138bd

d5102522 09bcf005 6640alb3 bldd97ad 7¢187e04 01ba817d

110

ANS X9.82, Part 3 - DRAFT - December 2004

ANNEX B : (Normative) Conversion and Auxilliary Routines

B.1 Bit String to an Integer

Input:

1. by, by, ..., by The bit string to be converted.
Output:

1. x The requested integer representation of the bit string.
Process:

1. Let (b, by ..., b,) be the bits of b from leftmost to rightmost.
2. Fori=1ltondo

x =320,
3. Return x.

In this Standard, the binary length of an integer x is defined as the smallest integer »
satisfying x < 2",

B.2 Integer to a Bit String
Input:
1. x The non-negative to be converted.
Output:
1. by, by, ..., b, The bit string representation of the integer x.
Process:

1. Let (by, b, ..., b,) represent the bit string, where by =0 or 1, and b, is the most
significant bit, while b, is the least significant bit.

2. For any integer n that satisfies x < 2", the bits b; shall satisfy:
X = 2 2("'i)bi
fori=1ton
3. Return by, by, ..., bn.

In this Standard, the binary length of the integer x is defined as the smallest integer » that
satisfies x <2".

111

ANS X9.82, Part 3 - DRAFT - December 2004

B.3 Integer to an Octet String

Input:
1. A non-negative integer x, and the intended length » of the octet string satisfying
257> .
Output:

1. An octet string O of length » octets.

Process:
1. Let Oy, O, ..., Oy be the octets of O from lefimost to rightmost.

2. The octets of O shall satisfy:

x =320,
fori=1ton
3. Return O.

B.4 Octet String to an Integer

Input:
1. An octet string O of length » octets.
Output:
1. A non-negative integer x.
Process: .
1. Let Oy, Oy ..., O be the octets of O from leftmost to rightmost.
2. xis defined as follows: '
x =320,
fori=1ton

3. Return x.

112

ANS X9.82, Part 3 - DRAFT - December 2004

Annex C: (Informative) Security Considerations
C.1 The Security of Hash Functions

[Add a discussion as to why it is OK to use SHA-1 to generate pseudorandom curves of
greater than 80 bits of security. The security strength of a hash function for these
generators is = the output block size. If there is no vulnerability to collision (e.g., when a
hash function is used as an element in a well-designed RNG) and the function is not
invertible, than the strength is = the ouput block size. However, when a hash function is
used as an element in an application/cryptographic service where vulnerability to collisions
is a consideration, then the strength = half the size of the output block.]]

C.2 Algorithm and Keysize Selection

This section provides guidance for the selection of appropriate algorithms and key sizes. It
emphasizes the importance of acquiring cryptographic systems with appropriate algorithms
and key sizes to provide adequate protection for 1) the expected lifetime of the system and
2) any data protected by that system during the expected lifetime of the data. Also included
is the necessity for selecting appropriate random bit generators to support the
cryptographic algorithms.

Cryptographic algorithms provide different levels (i.e., different “strengths™) of security,
depending on the algorithm and the key size used. Two algorithms are considered to be of
equivalent strength for the given key sizes (X and ¥) if the amount of work needed to
“break the algorithms” or determine the keys (with the given key sizes) is approximately
the same using a given resource. The strength of an algorithm (sometimes called the work
factor) for a given key size is traditionally described in terms of the amount of work it
takes to try all keys for a symmetric algorithm with a key size of "X" that has no short cut
attacks (i.e., the most efficient attack is to try all possible keys). In this case, the best attack
is said to be the exhaustion attack. An algorithm that has a "¥" bit key, but whose strength
is equivalent to an "X" bit key of such a symmetric algorithm is said to provide “X bits of
security” or to provide "X-bits of strength". An algorithm that provides X bits of strength
would, on average, take 2% T to attack, where 7' is the amount of time that is required to
perform one encryption of a plaintext value and comparison of the result against the
corresponding ciphertext value.

Determining the security strength of an algorithm can be nontrivial. For example, consider
TDEA. TDEA uses three 56-bit keys (K1, K2 and K3). If each of these keys is
independently generated, then this is called the three key option or three key TDEA
(3TDEA). However, if K1 and K2 are independently generated, and K3 is set equal to K1,
then this is called the two key option or two key TDEA (2TDEA). One might expect that
3TDEA would provide 56 x 3 = 168 bits of strength. However, there is an attack on
3TDEA that reduces the strength to the work that would be involved in exhausting a 112-
bit key. For 2TDEA, if exhaustion were the best attack, then the strength of 2TDEA would
be 56 x 2 = 112 bits. This appears to be the case if the attacker has only a few matched

113

ANS X9.82, Part 3 - DRAFT - December 2004

plain and cipher pairs. However, if the attacker can obtain approximately 2% such pairs,
then 2TDEA has strength equivalent to an 80-bit algorithm (see [ASCX9.52], Annex B)
and, therefore, is not appropriate for this Standard, since teh lowest security level provides
112 bits of security.

The recommended key size equivalencies discussed in this section are based on
assessments made as of the publication of this Standard. Advances in factoring algorithms,
advances in general discrete logarithm attacks, elliptic curve discrete logarithm attacks and
quantum computing may affect these equivalencies in the future. New or improved attacks
or technologies may be developed that leave some of the current algorithms completely
insecure. In the case of quantum computing, the asymmetric techniques may no longer be
secure. Periodic reviews will be performed to determine whether the stated equivalencies
need to be revised (e.g., the key sizes need to be increased) or the algorithms are no longer
secure.

When selecting a block cipher cryptographic algorithm (e.g., AES or TDEA), the block
size may also be a factor that should be considered, since the amount of security provided
by several of the modes defined in [SP 800-38] is dependent on the block size3. More
information on this issue is provided in [SP 800-38].

Table 7 provides associated key sizes for the Approved algorithms and hash functions.

1. Column 1 indicates the security level provided by the algorithms and key sizes in a
particular row.

2. Column 2 provides the symmetric key algorithms and hash functions that provide
the indicated level of security (at a minimum), where TDEA is approved in [ASC
X9.52], and AES is specified in [FIPS 197]. The table entry for TDEA requires the
use of three distinct keys.

3. Column 3 provides the equivalent hash functions that are specified in FIPS180-2
for the given level of security,

4. Column 4 indicates the size of the parameters associated with the standards that use
discrete logs and finite field arithmetic (DSA as defined in ASC X9.30 for digital
signatures, and Diffie-Hellman (DH) and MQV key agreement as defined in [ASC
X9.42] , where L is the size of the modulus p, and N is the size of g. L is commonly
considered to be the key size for the algorithm, although L is actually the key size
of the public key, and N is the key size of the private key.

5. Column 5 defines the value for k (the size of the modulus #) for the RSA algorithm
specified in ASC X9.31 for digital signatures, and specified in ASC X9.44 for key
establishment. The value of k is commonly considered to be the key size.

3 Suppose that the block size is & blts The collision resistance of a MAC is limited by the size of the tag and
collisions become probable after p el messages, if the full b bits are used as a tag. When using the Output
Feedback mode of encryptmn the maximum cycle length of the cipher can be at most 2 blocks; the average
cipher length is less than 28 blocks When using the pher Block Chaining mode, plaintext information is
likely to begin to leak after 2%2 plocks have been encryp ed with the same key.

ANS X9.82, Part 3 - DRAFT - December 2004

6. Column 6 defines the value of f(the size of n, where n is the order of the base point
G) for the discrete log algorithms using elliptic curve arithmetic that are specified
for digital signatures in ASC X9.62, and for key establishment as specified in ANS
X9.63. The value of fis commonly considered to be the key size.

Table 7: Equivalent strengths.

Bits of Symmetric Hash DSA, D-H, MQV RSA Elliptic

security key algs. functions Curves

112 3-key TDEA | SHA-224 L =2048 k=2048 f=224
N=224

128 AES-128 SHA-256 L =3072 k= 3072 f=256
N=256

192 AES-192 SHA-384 f=384

256 AES-256 SHA-512

C.3 Extracting Bits in the Dual_EC_DRBG (...}
C.3.1 Potential Bias Due to Modular Arithmetic for Curves Over F;

For the mod p curves (i.e, a Prime field curve), there is a potential bias in the output due to
the modular arithmetic. This behavior is succinctly explained in Part 1 of this Standatd,
and two approaches to correcting the bias are presented there. The Negligible Skew
Method described in Section 14.2.2 of Part 1 is appropriate for the NIST curves, since all
were selected to be over prime fields near a power of 2 in size. Each NIST prime has at
least 32 leading 1's in its binary representation, and at least 16 of the leftmost (high-order)
bits are discarded in each block produced. These two facts imply that there is a small
fraction (< 1/2°%) of outlen outputs for which a bias to 0 may occur in one or more bits.
This can only happen when the first 32 bits of an x-coordinate are all zero. As the leftmost
16 bits (at least) are discarded, an adversary can never be certain when a “biased” block
has occurred. Thus, any bias due to the modular arithmetic may safely be ignored.

C.3.2 Adjusting for the missing bit(s) of entropy in the x coordinates.

In a truly random sequence, it should not be possible to predict any bits from previously
observed bits. With the Dual EC_DRBG (...), the full output block of bits produced by
the algorithm is “missing” some entropy. Fortunately, by discarding some of the bits,
those bits remaining can be made to have nearly “full strength”, in the sense that the
entropy that they are missing is negligibly small.

To illustrate what can happen, suppose that a mod p curve with m=256 is selected, and that
all 256 bits produced were output by the generator, i.e. that outlen =256 also. Suppose also
that 255 of these bits are published, and the 256-th bit is kept “secret”. About %; the time,

116

ANS X9.82, Part 3 - DRAFT - December 2004

the unpublished bit could easily be determined from the other 255 bits. Similarly, if 254 of
the bits are published, about % of the time the other two bits could be predicted. This is a
simple consequence of the fact that only about 1/2 of all 2" bit strings of length m occur in
the list of all x coordinates of curve points.

The situation is slightly worse with the binary curves, since each has a cofactor of 2 or 4.
This means that only about 1/4 or 1/8, respectively, of the m-bit strings occur as x
coordinates. Thus, the NIST elliptic curves have m-bit outputs that are lacking 1,2 or 3 bits
of entropy, when taken in their entirety.

The "abouts" in the preceding example can be made more precise, taking into account the
difference between 2™ and p, and the actual number of points on the curve (which is
always within 2 * p'/’ of p). For the NIST curves, these differences won't matter at the scale
of the results, so they will be ignored. This allows the heuristics given here to work for any
curve with "about" (2™)/f points, where = 1,2 or 4 is the curve's cofactor.

The basic assumption needed is that the approximately (2")/(2f) x coordinates that do occur
are "uniformly distributed": a randomly selected m-bit pattern has a probability 1/2fof
being an x coordinate. The assumption allows a straightforward calculation,--albeit
approximate--for the entropy in the rightmost (least significant) m-d bits of
Dual_EC_DRBG output, with d << m.

The formula is £ = - sum {j=0} to {j=2%} [2 binomprob(2, z, 2%-))] p; loga{p;}-

The term in braces represents the approximate number of (m-d)-bit strings, which fall into
one of 1+2% categories as determined by the number of times j it occurs in an x coordinate;
z = (2f-1)/2f is the probability that any particular string occurs in an x coordinate; p; =
(7*2f)/2™ is the probability that a member of the j-th category occurs. Note that the /=0
category contributes nothing to the entropy (randomness).

The values of E for d up to 16 are:

log2(): 0 d: 0 entropy: 255.00000000 m-d: 256
log2(f): 0 d: 1 entropy: 254.50000000 m-d: 255
log2(/): 0 d: 2 entropy: 253.78063906 m-d: 254
log2(): 0 d: 3 entropy: 252.90244224 m-d: 253
log2(H): 0 d: 4 entropy: 251.95336161 m-d: 252
log2(f): 0 d: 5 entropy: 250.97708960 m-d: 251
log2(f): 0 d: 6 entropy: 249.98863897 m-d. 250
log2(f): 0 d: 7 entropy: 248.99434222 m-d: 249
log2(f): 0 d: 8 entropy: 247.99717670 m-d: 248
log2(#): 0 d: 9 entropy: 246.99858974 m-d. 247
log2(f): 0 d: 10 entropy: 24599929521 m-d: 246

116

ANS X9.82, Part 3 - DRAFT - December 2004

log2(f: 0 d: 11 entropy: 244.99964769 m-d: 245
log2(f): 0 d- 12 entropy: 243.99982387 m-d. 244
log2(f): 0 d: 13 entropy: 242.99991194 m-d: 243
log2(f): 0 d: 14 entropy: 241.99995597 m-d: 242
log2(): 0 d: 15 entropy: 240.99997800 m-d: 241
log2(f): 0 d: 16 entropy: 239.99998900 m-d. 240

log2(f: 1 d: 0 entropy: 254.00000000 m-d: 256
log2(H: 1 d: 1 entropy: 253.75000000 m-d: 255
log2(f): 1 d: 2 entropy: 253.32398965 m-d: 254
log2(f): 1 d: 3 entropy: 252.68128674 m-d: 253
log2(f): 1 d: 4 entropy: 251.85475372 m-d: 252
log2(f): 1 d: 5 entropy: 250.93037696 m-d: 251
log2(): 1 d: 6 entropy: 249.96572188 m-d: 250
log2(f): 1 d: 7 entropy: 248.98298045 m-d: 249
log2(f): 1 d: 8 entropy: 247.99151884 m-d: 248
log2(f): 1 d: 9 entropy: 246.99576643 m-d. 247
log2(f): 1 d: 10 entropy: 245.99788495 m-d: 246
log2(f): 1 d: 11 entropy: 244.99894291 m-d: 245
log2(f): 1 d: 12 entropy: 243.99947156 m-d: 244
log2(f): 1 d: 13 entropy: 242.99973581 m-d. 243
log2(f): 1 d: 14 entropy: 241.99986791 m-d: 242
log2(f): 1 d: 15 entropy: 240.99993397 m-d. 241
log2(f): 1 d: 16 entropy: 239.99996700 m-d: 240
log2(#): 2 d: 0 entropy: 253.00000000 m-d: 256
log2(): 2 d: 1 entropy: 252.87500000 m-d: 255
log2(): 2 d: 2 entropy: 252.64397615 m-d. 254
log2(f): 2 d: 3 entropy: 252.24578858 m-d. 253
log2(f): 2 d: 4 entropy: 251.63432894 m-d. 252

117

ANS X9.82, Part 3 - DRAFT - December 2004

log2(): 2 d: 5 entropy: 250.83126431 m-d: 251
log2(f): 2 d: 6 entropy: 249.91896704 m-d: 250
log2(f): 2 d: 7 entropy: 248.96005989 m-d: 249
log2(): 2 4 8 entropy: 247.98015668 m-d: 248
log2(): 2 d: 9 entropy: 246.99010852 m-d. 247
log2(f): 2 d: 10 entropy: 245.99506164 m-d: 246
log2(f): 2 d: 11 entropy: 244.99753265 m-d. 245
log2(f): 2 d: 12 entropy: 243.99876678 m-d. 244
log2(f): 2 d: 13 entropy: 242.99938350 m-d: 243
log2(f): 2 d: 14 entropy: 241.99969178 m-d: 242
log2(f): 2 d: 15 entropy: 240.99984590 m-d. 241
log2(f): 2 d: 16 entropy: 239.99992298 m-d: 240

Observations:
a) Each table starts where it should, at 1, 2 or 3 missing bits;
b) The missing entropy rapidly decreases;

¢) Each doubling of the log2(f)actor requires about 1 more bit to be discarded for the
same level of entropy;

d) For log2(f) = 0, i.e, the mod p curves, @=13 leaves 1 bit of information in every
10,000 (m-13)-bit outputs.

Based on these calculations, for the mod p curves, it is recommended that an
implementation shall remove at least the leftmost, ie, most significant, 13 bits of every m-
bit output, and that the Dual_EC_DRBG (...) be reseeded every 10,000 iterations. For the
binary curves, either 14 or 15 of the leftmost bits shall be removed, as determined by the
cofactor being 2 or 4, respectively. Using this value for & in the mod p curves insures that
1o bit has a bias from the modular reduction exceeding 1/2*

For ease of implementation, the value of d should be adjusted upward, if necessary, until
the number of bits remaining , m-d= blocksize, is a multiple of 8. By this rule, the actual
number of bits discarded from each block will range from 16 to 19.

118

ANS X9.82, Part 3 - DRAFT - December 2004

ANNEX D: (Informative) Functional Requirements
D.1 General Functional Requirements

The following functional requirements apply to all random bit generators:

1. The implementation shall be designed to allow validation testing; including
documenting specific design assertions about howt the RBG operates. This shall
include mechanisms for testing all detectable error conditions.

Implementation validation testing for DRBGs is discussed in Section 11.3.

2. The RBG shall be designed with the intent of meeting the security properties in
Part 1, Section 8. This is on a best effort basis, as aspects of some of these
properties are not testable.

Documentation requirement: There shall be design documentation that describes
how the RBG is intended to meet all security properties, including protection from
misbehavior.

The functional requirements, which address the security properties, are discussed in
this annex. Documentation requirements are listed in Section 11.2.

3. The RBG shall support backiracking resistance.

Backtracking resistance has been designed into each DRBG specified in Section
10.

Optional attributes for the functions in an RBG are as follows:

4. The RBG may be capable of supporting prediction resistance.

An optional prediction resistance capability is specified for the DRBG functions in
Section 9.2 - 9.4 and is also discussed in Section 8.6.

D.2 Functional Requirements for Entropy input

These requirements are addressed in Parts 2 and 4 of this Standard.

D.3 Functional Requirements for Other Inputs

No general function requirements are stated for other inputs, which consist of the input
parameters indicating a personalization string to be used during instantiation or additional
input to be used during pseudorandom bit generation or during reseeding. Personalization
strings are discussed in Sections 8.4.2 and 8.5.2, and limits on the size of a personalization
string are specified in Sections 9.2 and 10.2.1. Additional input is discussed in Section
8.5.3, and limits on the size of the additional input are specified in Sections 9.3, 9.4 and
10.2.1.

119

ANS X9.82, Part 3 - DRAFT - December 2004

D.4 Functional Requirements for the Internal State

The requirements for the internal state of a RBG are:

1.

The internal state shall be protected in a manner that is consistent with the use and
sensitivity of the output.

The internal state shall be protected at least as well as the intended use of the
pseudorandom output bits requested by the consuming application. (see Section
8.2.3). A DRBG and its internal state(s) shall be contained within a DRBG
boundary (see Section 8.3).

The internal state shall be functionally maintained properly across power failures,
reboots, etc. or regain a secure condition before any output is generated (i.e.,
either the integrity of the internal state shall be assured, or the internal state shall
be re-initialized with a new statistically unique value).

This requirement is outside the scope of this Standard. Fulfilling this requirement
may be addressed, for example, by implementing the DRBG in a FIPS 140-2
validated module.

The RBG shall specify the requirements for a particular security level (from the set
of [112, 128, 192, 256, or potentially unlimited]) in the internal state components.

Documentation requirement: The security level provided by the RBG shall be
documented.

Sections 8.4, 9.2, 9.3 and the DRBG algorithms in Section 10 address the
acquisition of sufficent entropy for the seed to satisfy a given security level.
Documentation requirements are listed in Section 11.2.

D.5 Functional Requirements for the Internal State Transition Function

The requirements for the internal state transition functions of an RBG are:

1.

The deterministic elements of internal state transition functions shall be verifiable
via known-answer testing during installation and/or startup and/or initialization,
and periodic health tests.

A DRBG module shall perform self-tests to ensure that the DRBG continues to
function properly. Self tests are discussed in Sections 9.7 and 11.4.

The internal state transition function shall, over time, depend on all the entropy
carried by the internal state. That is, added entropy shall affect the internal state.

This requirement is fulfilled by the design of the DRBGs specified in Section 10.

. The Internal State Transition Function shall resist observation and analysis via

power consumption, liming, radiation emissions, or other side channels as
appropriate, depending on the access by an observer who could be an adversary.

120

ANS X9.82, Part 3 - DRAFT - December 2004

What is appropriate (if anything) depends on the details of the implementation and
shall be described by the implementation documentation.

Documentation requirement: This aspect of the design shall be documented.

This requirement is outside the scope of this Standard. Fulfilling this requirement
may be addressed, for example, by implementing the DRBG in a FIPS 140-2
validated module.

4. [t shall not be feasible (either intentionally orunintentionally) to cause the Internal
State Transition Function to return to a prior state in normal operation (this
excludes testing and authorized verification of the RBG output), except possibly by
chance (depending on the specific design).

This requirement is fulfilled by the design of the DRBGs specified in Section 10.
D.6 Functional Requirements for the Output Generation Function

The functional requirements for the output generation function are:

1. The output generation function shall be deterministic (given all inputs) and shall
allow known-answer testing when requested.

The determinism of the output generation function is inherent in the DRBG
algorithm designs of Section 10. Known answer testing is discussed in Sections 9.7,
11.3and 11.4.

2. The output shall be inhibited until the internal state obtains sufficient assessed
entropy.

Section 8.4 states that a DRBG shall not provide output until a seed is available.
Sections 9.2 - 9.5 request entropy at appropriate times during the instantiate, reseed
and generate functions.

3. Once a particular internal state has been used for output, the internal state shall be
changed before more output is produced. The OGF shall not reuse any bit from the
subset of bits of the pool that were used to produce output. An ISTF shall either
update the internal state between successive actions of the OGF, or the OGF shall
select independent subsets of bits in the internal state without reusing any
previously selected bits between updates of the internal state by the ISTF. In the
latter case, this process shall update the internal state in order to select a different
set of bits from the “pool” of bits from which output is to be dervied.

Documentation requivement: This aspect of the design shall be documented,

The specifications for the DRBG algorithms in Section 10 include an update of the
internal state prior to returning the requested pseudorandom bits to the consuming
application. Documentation requirements are listed in Section 11.2.

4. Test output from a known answer test shall be separated from operational output

121

ANS X9.82, Part 3 - DRAFT - December 2004

(e.g., random output that is used for a cryptographic purpose).

Section 11.4.1 states that all data output from the DRBG module shall be inhibited
while operational tests are performed. The results from known-answer tests shall
not be output as random bits during normal operation.

5. The output generation function shall protect the internal state, so that analysis of
RBG outputs does not reveal useful information (from the point of view of
compromise) about the internal state that could be used to reveal information
about other outputs.

The DRBG algorithms specified in Section 10 have been designed to fulfill this
requirement.

6. The output generation function shall use information from the internal state that
contains sufficient entropy to support the required security level.

Documentation requirement : This aspect of the design shall be documented.

Providing that the seed used to initialize the DRBG contains the appropriate
amount of entropy for the required security level, the output generation function in
the DRBGs in this Standard have been designed to fulfill this requirement.
Documentation requirements are listed in Section 11.2.

7. The output generation function shall resist observation and analysis via power
consumption, timing, radiation emissions, or other side channels as appropriate.

Documentation requirement: This aspect of the design shall be documented.

This requirement is outside the scope of this Standard. Fulfilling this requirement
may be addressed, for example, by implementing the DRBG in a FIPS 140-2
validated module.

D.7 Functional Requirements for Support Functions

The functional requirements for support functions in Part 1 are:

1. An RBG shall be designed to permit testing that will ensure that the generator
continues to operate correctly. These tests shall be performed at start-up (after
either initialization or re-initialization), upon request and may also be performed
periodically or continuously.

Section 11.4 specifies a requirement for operational testing. A general method for
operational testing is provided in Section 9.7.

2. Output shall be inhibited during power-up, on-request and periodic testing until
testing is complete and the result is acceptable. If the result is not acceptable, the
RBG shall enter an ervor state.

Section 11.4 specifies that operational testing shall be conducted during power-up,
on demand and at periodic intervals; this section also specifies that output shall be
122

ANS X9.82, Part 3 - DRAFT - December 2004

inhibited during testing. Section 9.7 specifies operational tests.

Output need not be inhibited during continuous testing unless an unacceptable
result is encountered. When an unacceptable result is thus determined, output shall
be inhibited, and the RBG shall enter an error state.

Continuous testing is not specified for DRBGs.

When an RBG fails a test, the RBG shall enter an error state and output an error
indicator. The RBG shall not perform any operations while in the error state. The
other parts of this Standard address error recovery in more detail, as appropriate.

Section 11.4 specifies this requirement. Sections 9.7 and 9.8 discuss the error
handling process.

. Any other support functions implemented shall be documented regarding their
purpose and the principles used in their design.

Documentation requirements are listed in Section 11.2.

123

ANS X9.82, Part 3 - DRAFT - December 2004

[ANNEX E: (Informative) DRBG Selection]______ | comment [ebb7]: Page: 123

Some of this may need to be revised, based on
the content of Part 4.

E.1 Choosing a DRBG Algorithm

Almost no system designer starts with the idea that he's going to generate good random
bits. Instead, he typically starts with some goal that he wishes to accomplish, then decides
on some cryptographic mechanisms such as digital signatures or block ciphers that can
help him achieve that goal. Typically, as he begins to understand the requirements of those
cryptographic mechanisms, he learns that he will also have to generate some random bits,
and that this must be done with great care, or he may inadvertently weaken the
cryptographic mechanisms that he has chosen to implement. At this point, there are two
things that may guide the designer's choice of a DRBG:

a. He may already have decided to include a block cipher, hash function, keyed hash
function, etc., as part of his implementation. By choosing a DRBG based on one of
these mechanisms, he can minimize the cost of adding that DRBG. In hardware,
this translates to lower gate count, less power consumption, and less hardware that
must be protected against probing and power analysis. In software, this translates
to fewer lines of code to write, test, and validate.

For example, a designer of a module that does RSA signatures probably already has
available some kind of hashing engine, so one of the three hash-based DRBGs is a
natural choice.

b. He may already have decided to trust a block cipher, hash function, keyed hash
function, etc., to have certain properties. By choosing a DRBG based on similar
properties of these mechanisms, he can minimize the number of algorithms he has
to trust.

For example, a designer of a module that provides encryption with AES can
implement an AES-based DRBG. Since the DRBG is based for its security on the
strength of AES, the module's security is not made dependent on any additional
cryptographic primitives or assumptions.

The DRBGs specified in this standard have different performance characteristics,
implementation issues, and security assumptions.

E.2 DRBGs Based on Hash Functions

Two DRBGs are based on any Approved hash function: Hash_DRBG, and
HMAC_DRBG. A hash function is composed of an initial value, a padding mechanism
and a compression function; the compression function itself may be expressed as
Compress (I, X), where [is the initial value, and X is the compression function input. All
of the cryptographic security of the hash function depends on the compression function,

124

ANS X9.82, Part 3 - DRAFT - December 2004

and the compression is by far the most time-consuming operation within the hash function.

The hash-based DRBGs in this Standard allow for some tradeoffs between performance,
security assumptions required for the security of the DRBGs, and ease of implementation.

E.21 Hash_DRBG

Hash_DRBG is closely related to the DRBG specified in FIPS-186-2, and can be seen as
an updated version of that DRBG that can be used as a general-purpose DRBG. Although
a formal analysis of this DRBG is not available, it is clear that the security of the DRBG
depends on the security of Hashgen. Specifically, an attacker can get a large number of
sequences of values:

Hash (V), Hash (V+1), Hash (V+2), ...

If the attacker can distinguish any of these sequences from a random sequence of values,
then the DRBG can be broken.

E.2.1.1 Implementation issues

This DRBG requires a hash function, some surrounding logic, and the ability to add
numbers modulo 2°" where seedlen is the length of the seed. Hash_DRBG also uses
hash_df internally when instantiating, reseeding, or processing additional input. Note that
hash_df requires only access to a general-purpose hashing engine and the use of a 32-bit
counter. The “critical state values” on which the Hash_DRBG depends for its security (¥,
C and reseed_counter) requite seedlen + outlen + 32 bits of memory*.

E.2.1.2 Performance Properties

Each time that Hash_DRBG is called, a compression function computation is required for
each outlen bits of requested output (or portion thereof), where outlen is the size of the
hash function output block. For example, if outlen = 160, and 360 bits of pseudorandom
data are requested, three compression function calls are made (two to produce the first 320
bits, and a third from which to select the remaining 40 bits. In addition, there is a certain
amount of overhead to updating the state in order to achieve backtracking resistance; this
requires one compression function call and some additions modulo 2seedlenn plus the update
of reseed_counter. For the above example, a total of four compression function calls are
required, three to generate the requested output bits, and one to update the state.

E.2.2 HMAC_DRBG

HMAC_DRBG is a DRBG whose security is based on the assumption that HMAC is a
pseudorandom function. The security of HMAC_DRBG is based on an attacker getting
sequences of up to 2% bits, generated by the following steps:

temp = the Null string.
While (len (temp) < requested no_of bits:

4V is seedlen bits long, C is outlen bits long (wherel Qgtlen is the length of the hash function output block),
and reseed_counter is a maximum of 32 bits in length.

ANS X9.82, Part 3 - DRAFT - December 2004

V=HMAC (X, V).

temp=temp || V.
The steps in the “While” statement iterate l_requested_no_of_bits/outlen-l times. Intuitively,
so long as ¥ does not repeat, any algorithm that can distinguish this output sequence from

an ideal random sequence can be used in a straightforward way to distinguish HMAC from
a pseudorandom function.

Between these output sequences, both ¥ and X are updated using the following steps
(assuming no additional inputs):

K=HMAC (K, (V|| 0x01)) = Hash (opad (X) || Hash (ipad (X) || (V|| 0x01))).
¥ =HMAC (X, V) = Hash (opad (X) || (Hash (ipad (X) || V).

where:
K and V are outlen bits long,
opad (K) is K exclusive-ored with (infen/8) bytes of 0x5c, for a total of inlen bits,
ipad (K) is K exclusive-ored with (inlen/8) bytes of 0x36, for a total of inlen bits,
outlen is the length of the hash function output block, and

inlen is the length of the hash function input block.
E.2.24 Implementation Properties

The only thing required to implement this DRBG is access to a hashing engine. However,
the performance of the implementation will improve enormously (by about a factor of
two!) with either a dedicated HMAC engine, or direct access to the hash function's
underlying compression function. The “critical state values” on which HMAC_DRBG
depends for its security (K and V) take up 2*outlen bits in the most compact form, but for
reasonable performance, 3 *outlen bits are required in order to precompute padded values.

E.2.2.2 Performance Properties

HMAC_DRBG is about a factor of two slower than the other two hash-based DRBGs for
long bitstrings produced by a single request. That is, each outlen-bit piece of the requested
pseudorandom output requires two compression function calls to perform the HMAC
computation. Each output request also incurs another six compression function calls to
update the state.

Note that an implementation that has access only to a high-level hashing engine loses
another factor of two in performance; if the performance of the DRBG is important,
HMAC_DRBG requires either a dedicated HMAC engine or access to the compression
function that underlies the hash function. However, if performance is not an important
issue, the DRBG can be implemented using nothing but a high-level hashing engine.

126

ANS X9.82, Part 3 - DRAFT - December 2004

E.3 DRBGs Based on Block Ciphers

E.3.1 The Two Constructions: CTR and OFB

This standard describes two classes of DRBGs based on block ciphers: One class uses the
block cipher in OFB-mode. the other class uses the CTR-mode. There are no practical
security differences between these two DRBGs: CTR mode guarantees that short eveles
cannot oceur in a single output request. while OFB-mode guarantees that short cycles will
have an extremely low probability. OFB-mode makes slightly less demanding
assumptions on the block cipher. but the security of both DRBGs relates in a very simple
and clean way o the security of the block cipher in its intended applications. This is a
fundamental difference between these DRBGs and the DRBGs based on hash functions.
where the DRBG's security is_ultimately based on pseudorandomness properties that don't
torm a normal part of the requirements for hash functions. An attack on any of the hash-
based DRBGs does not necessarily represent a weakness in the hash function: however, for
these block cipher-based constructions. a weakness in the DRBG is directly related to a
weakness in the block cipher.

Specifically. suppose that there is an algorithm for distinguishing the outputs of either
DRBG from random with some advantage. 1f that algorithm exists. it can be used to build
a new algorithm for distinguishing the block cipher from a random permutation. with the
same time and memory requirements and advantage.

Because there is no practical security difference between the two_classes of block-cipher
based DRBGs. the choice between Lhe two constructions is entirely a matter of
implementation convenience and performance. An implementation that uses a block
cipher in OFB. CBC. or full-block CFB mode can easily be used to implement the OFB-
based DRBG construction: an implementation that already supports counter mode can
reuse that hardware or software to implement the counter-mode DRBG. In terms of
performance. the CTR-mode construetion is more amenable to pipelining and parallelism.
while the OFB-mode construction seems to require slightly less supporting hardware.

E.3.2 Choosing a Block Cipher

While security is nol an issue in choosing between the two DRBG constructions. the
choice of the block cipher algotithm to be used is more of an issue. At present. only TDEA
and AES are approved block cipher algorithms. However. two block cipher DRBG
constructions_will work for any block cipher with a block length = 64 and key length >
112. TDEA's 64-bit block imposes some fundamental limits on the security of these
constructions. though these limits_don't appear to lead to practical security issues for most
applications.

127

ANS X9.82, Part 3 - DRAFT - December 2004

Consider a sequence of the maximum permitted number of generate requests, each

producing the maximum number of DRBG outputs from each generate call. Assuming

that the block cipher behaves like a pseudorandom permutation family. the probability of
distinguishing the full sequence of output bytes is:

I,

For AES-128. there are a maximum of 22 blocks (i.e., 2% bytes = 2% bits)
generated per Generate (...) request. 2*2 total Generate (...) requests allowed, 3%

possible keys. and 28 possible starting blocks.

a. The probability of an internal collision in a single Generate (...) request is
never higher than about 277°, and so the probability of an internal collision in
any given Generate (...) request is never higher than about 2%, _(This applies
only to the OFR-mode. but a collision of this kind would result in a very easy

distinguisher.)

b. The expected probability of an internal collision in a sequence 0l2% random
128-bit blocks is about 2. Thus. the probability of seeing an internal collision
in anv of the Generate {...) sequences is about 2%, This probability is low

enough that it does not provide an efficient way to distinguish between DRBG
outputs and ideal random outputs.

The probability ol a key colliding between any two Generate (...) requests in the
sequence of 2°2 such requests is never larger than about 2°%._This is also
negligible. (For AES-192 and AES-256. this probability is even smaller.)

For Two-kev TDEA with 112-bit keys and 64-bit blocks. things are a bit different:
There are 2'® Generate (...) requests allowed. and a maximum of 2" blocks (i.e.,
2'° bytes = 2P bits) generated per Generate (...) request. (Note that this breaks the
more general model in this document of assuming 2% innocent operations.) In this
case.

a. The probability of an internal collision is never higher than about 2°*' per
Generate (...) request. and with only 2'° such requests allowed. the probability
of ever seeing such an internal collision in a sequence of requests is never more
than about 27%°._(Note that if more requests are allowed, as required by the i
bound assumed elsewhere in the document. there would be_an unacceptably
high probability of this event happening at least once.)

b. The expected probability of an internal collision in a sequence of 2" 64-bit
blocks is about 2%, Thus, the probability of ever seeing an internal collision in
2'¢ gutput sequences is still an acceptably low 22 _(Note that if more
Generate (...) requests are allowed, there would be an unacceptably high
probability of this happening, leading to an efficient distinguisher between this
DRBG's outputs and ideal random outputs.

¢. The probability of a kev colliding between any two of the 2'® Generate (...)
requests is about 2, which is negligible. (Note that the probability would be

128

ANS X9.82, Part 3 - DRAFT - December 2004

much higher if the number of allowed Generate (...) requests is not limited.)

To summarize: block size matters much more than the choice of DRBG construction that is
used. The limits on the numbers of Generate (...) requests and the number of output bjts
per request require frequent reseeding of the DRBG. Furthermore. the limits_guarantee
that even with reseeding. an attacker that is given a really long sequence of DRBG outputs
from several reseedings cannot distinguish that output sequence from random reliably.

The block cipher DRBGs used with TDEA are suitable for low-throughput applications,
but not for applications requiring really large numbers of DRBG outputs. For
concreteness. if an application is going to require more than 2*° output bytes (2*° bits)
in its lifetime, that application should not use a block cipher DRBG with TDEA or
any other 64-bit block cipher.

E.3.3 Conditioned Entropy Sources and the Derivation Function

The block cipher DRBGs are defined to be used in one ol two ways for initializing the
DRBG state during instantiation and reseeding; Either with [reelorm input strings
containing some specified amount of entropy. or with full-entropy strings of precisely
specified lengths The freeform strings will require the use of a derivation function, whereas
the use of full-entropy strings will not. The block cipher derivation function has not been
finalized yet. but is expected to use the block cipher algorithm to compute a several
parallel CBC-MACs on the input string under a [ixed kev and using different IVs. o use
the result to produce a key and starting block. and run the block cipher in OF B-mode to
generate outputs from the derivation function. An implementation must choose whether to
provide conditioned entropy bits. or to support the derivation function. This is a high-level
system design decision: it affects the kinds of entropy sources that may be used. the gate
count or code size of the implementation. and the interface that applications will have to
the DRBG. On one extreme. a very low gate count design mayv use hardware entropy
sources that are easily conditioned. such as a bank of ring oscillators that are exclusive-
ored together. rather than to support a lot of complicated processing on inpul strings. On
the other extreme. a general-purpose DRBG implementation may need the ability to
process freeform input strings as personalization strings and additional inputs: in this case.
the block cipher derivation function_must be implemented.

E.4 Summary and Comparison

E.4.1 Security

It is interesting to contrast the three ways that the hash function is used in these DRBGs:
Hash_DRBG:
Hash (V), Hash (V+1), Hash (V+2)...

The only unknown input into the compression function used by the hash function is this

sequence of secret values, V/+i. Since the initial value of the hash function is publicly

known, the attacker is given full knowledge of all but seedlen bits of input into the

compression function, and knowledge of the close relationship between these inputs, as
129

ANS X9.82, Part 3 - DRAFT - December 2004

well.

HMAC_DRBG:
¥, = HMAC (K, V) = Hash (opad (X) || (Hash (ipad (X) || V).
V>, =HMAC (X, V)= Hash (opad (X) || (Hash (ipad (K) || "))
V3 =HMAC (K, V») = Hash (opad (X) || (Hash (ipad (X) || V2)).
etc

as specified in Annex E.2.2.

The attacker knows many specific bits of the input to the final compression function whose
output he sees; for SHA-256, the compression function takes a total of 768 bits of input,
and the attacker knows 256 of those bits’. (This is worse for SHA-1 and SHA-384.) On
the other hand, the attacker doesn't even know the exclusive-or relationships for outlen bits
of the message input. In the case of SHA-256, this means that 256 bits are unknown.

It is clear that Hash_ DRBG makes the strongest assumptions on the strength of the
compression function. Although they are not precisely comparable, and HMAC_DRBG
seems to make somewhat weaker assumptions on the compression function. Specifically,
HMAC_DRBG allows an attacker to precisely know many bits of the input to the
compression functions, but not to know complete exclusive-or or additive relationships
between these bits of input.

E.4.2 Performance / Implementation Tradeoffs

The following performance and implementation tradeoffs should be considered when
selecting a hash-based DRBG with regard to the overhead associated with requesting
pseudorandom bits, the cost of actually generating outlen bits (not including the overhead),
and the memory required for the critical state values for each DRBG. The overhead is,
essentially, the cost of updating the state prior to the next request for pseudorandom bits.
The cost of generating each outlen bits of output should be multiplied by the number of
outlen bit blocks of output required in order to obtain the true cost of pseudorandom bit
generation. Both the overhead and generation costs assume that prediction resistance and
reseeding are not required, and that additional input is not provided for the request; if this
is not the case, the costs are increased accordingly. Note that the memory requirements do
not take into account other information in the state that is required for a given DRBG.

Hash_DRBG:

5 The innermost hash function provides outlen bits of input after its two compression function calls on ipad
(K) and V. The outermost hash function also requires two compression functions: the first operates on opad
(K) and produces outlen bits that are used as the chaining value for the final compression function on the
result from the innermost hash function concatenated with the hash function padding. Therefore, the input to
the final compression function is the length of the chaining value (outlen bits) + the length of the ouput from
the innermost hash function (outlen bits) + the length of the padding (inlen - outlen bits). In the case of SHA-
256, where inlen = 512, and outlen = 256, the length.]%fd:he input to the last compression function is 768 bits,
of which only the padding bits are known (256 bits).

ANS X9.82, Part 3 - DRAFT - December 2004

Request overhead: one compression function and several additions mod 2°***”.
Cost for outlen bits of pseudorandom output: one compression function.

Memory required for the critical state values ¥, C and reseed_counter: inlen + outlen +
32.

HMAC_DRBG (with access to the hash function’s compression function):
Request overhead: six compression functions®.
Cost for outlen bits of pseudorandom output: two compression functions.

Memory required for the critical state values K and V: 3*outlen bits when
precomputation is used .

HMAC_DRBG (hash engine access only):
Request overhead: eight compression function calls.
Cost for outlen bits of pseudorandom output: four compression functions®.

Memory required for the critical state values K and V: 2*outlen bits, since
precomputation is unavailable.

For these DRBGs, additional inputs provided during pseudorandom bit generation add
considerably to the request overhead. Instantiation and reseeding are somewhat more
expensive than pseudorandom output generation; however, these relatively rare operations
can afford to be somewhat more expensive to minimize the chances of a successful attack.

E.3 DRBGs Based on Block Ciphers
E.4 DRBGs Based on Hard Problems

The Dual_EC_DRBG and MS_DRBG base their security on a "hard" number-theoretic
problem. For the types of curves used in the Dual_EC_DRBG, the Elliptic Curve Discrete
Logarithm Problem has no known attacks that are better than the "meet-in-the-middle"
attacks, with a work factor of sqrt(2™). In the case of MS_DRBG, which is based loosely
on the RSA problem, the work factor of the best algorithm is more complex to state, but
well-established.

These algorithms are decidedly less efficient to implement than some of the others.
However, in those cases where security is the utmost concern, as in SSL or IKE exchanges,
the additional complexity is not usually an issue. Except for dedicated servers, time spent
on the exchanges is just a small portion of the computational load; overall, there is no
impact on throughput by using a number-theoretic algorithm. As for SSL or IPSEC

6 Two compression functions for each HMAC computation, and two compression functions for
precomputation.

7 There are two HMAC computations, each requiring two hash function calls. Each hash computation
requires two compression function calls.

. . . 131. . L .
8 The single HMAC computation requires four comprgssmn functions as explained in the previous footnote.

ANS X9.82, Part 3 - DRAFT - December 2004

servers, more and more of these servers are getting hardware support for cryptographic
primitives like modular exponentiation and elliptic curve arithmetic for the protocols
themselves. Thus, it makes sense to utilize those same primitives (in hardware or software)
for the sake of high-security random numbers.

132

ANS X9.82, Part 3 - DRAFT - December 2004

ANNEX F: (Informative) Example Pseudocode for Each DRBG
F.1 Preliminaries

The internal states in these examples are considered to be an array of states, identified by
state_handle. A particular state is addressed as internal_state (state_handle), where the
value of state_handle begins at 0 and ends at n-1, and » is the number of internal states
provided by an implementation. A particular element in the internal state is addressed by
internal_state (state_handle).element.

The pseudocode in this annex does not include the necessary conversions (e.g., integer to
bit string) for an implementation. When conversions are required, they must be
accomplished as specified in annex B.

The following routines are defined for these pseudocode examples:

1. Find_state_space (): A function that finds an unused internal state. The function
returns a status (either “Success” or a message indicating that an unused internal
state is not available) and, if status = “Success”, a state_hand]e that points to an
available internal_state in the array of internal states. If status # “Success”, an
invalid state_handle is returned.

2. Get_entropy (min_entropy, min_length, max_length): A function that acquires a
string of bits from an entropy input source. The function returns a status (either
“Success” or a failure message) and, if status = “Success”, an entropy_input string.
If status # “Success”, a Null string is returned as the entropy_input. For this
routine, min_entropy is the minimum amount of entropy to be provided in the
entropy_input, min_length is the minimum length of the entropy_input string, and
max_length is the maximum length of the entropy_input string to be returned.

F.2 Hash_DRBG Example
F.2.1 Discussion

This example of Hash_DRBG uses the SHA-1 hash function, and prediction resistance is
supported in the example. Both a personalization string and additional input are allowed. A
total of 10 internal states are provided (i.e., 10 instantiations may be handled
simultaneously). For this implementation, the [unctions and algorithms are “inline”, i.e.,
the algorithms are not called as separate routines from the function envelopes.

The internal state contains values for V, C, reseed_counter, security level and
prediction_resistance_flag, where V and C are bitstrings, and reseed_counter,
security_level and the prediction_resistance_flag are integers. A requested prediction
resistance capability is indicated when prediction_resistance_flag = 1. Note: an empty
internal state is represented as {Nu/l, Null, 0, 0, 0}.

In accordance with Table 3 in Section 10.1.1, the 112 and 128 bit security levels may be
supported. Using SHA-1, the following definitions are applicable for the instantiate,
133

ANS X9.82, Part 3 - DRAFT - December 2004

generate and reseed functions and algorithms:

1. highest_supported security level =128.

2. Output block length (outlen) = 160.

3. Required minimum entropy for instantiation = security_level + 64.
4. Required minimum entropy for reseed = security_level.
5

. Minimum entropy input length (min_entropy_input_length) = min_entropy =
{security level + 64 for instantiation; security_level for reseed}.

Seed length (seedlen) = 440.

7. Maximum number of bits per request (max_number_of bits_per_request) = 5000
bits.

el

8. Reseed interval (reseed_interval) = 100,000 requests.

9. Maximum length of the personalization string (max_personalization_string_length)
=500 bits.

10. Maximum length of additional_input (max_additional_input_string_length) = 500
bits.

11. Maximum length of entropy input (max_entropy_input_length) = 1000.
F.2.2 Instantiation of Hash_DRBG

This implementation will return a text message and an invalid state handle (-1) when an
error is encountered.

Note that this implementation does not check the prediction_resistance_flag, since the
implementation can handle prediction resistance. However, if an application actually wants
prediction resistance, the implementation expects that prediction_resistance_flag =1
during instantiation; this will be used in the generate function in Annex F.2.4.

Instantiate_Hash_DRBG (...):

Input: integer (requested_security_level, prediction_resistance_flag), bitstring
personalization_string).

Output: string status, integer state_handle.
Process:
Comment: Check the input parameters.
1. If (requested strength> 128), then Return (“Invalid requested_strength”, -1).

2. If (len (personalization_string) > 500), then Return (“Personalization_string
too long”, -1).

Comment: Set the security level to one of the

134

ANS X9.82, Part 3 - DRAFT - December 2004

valid security strengths.

If (requested _security level < 112), then security_level =112
Else security level = 128.
Comment: Get the entropy_input.

min_entropy = security_level + 64.

5. (status, entropy_input) = Get_entropy (min_entropy, min_entropy, 1000).

7.
8.

9.

If (status # “Success”), then Return (“Failure indication returned by the
entropy_input source:” || status, -1).

Comment: The instantiate algorithm is
provided in steps 7-11.

seed_material = entropy_input || personalization_string.
seed = Hash_df (seed_material, 440).

V = seed.

10. C = Hash_df ((0x00 || V), 440).

11. reseed_counter = 1.

Comment: Find an unused internal
state and save the initial values.

12. (status, state_handle) = Find_state_space ().

13. If (status # “Success”), then Return (status, -1).

14. internal_state (state_handle) = {V, C, reseed_counter, security_level,

prediction_resistance_flag}.

15. Return (“Success”, state_handle).
F.2.3 Reseeding a Hash_DRBG Instantiation

The implementation is designed to return a text message as the status when an error is
encountered.

Reseed_Hash_DRBG_Instantiation (...):
Input: integer state_handle, bitstring additional_input.

Output: string status.

Process:

Comment: Check the validity of the

135

ANS X9.82, Part 3 - DRAFT - December 2004

state_handle.

If ((state_handle > 9) or (internal_state (state_handle) = {Null, Null, 0, 0, 0})),
then Return (“State not available for the state_handle”).

Comment: Get the internal state values
needed to determine the new internal state.

Get the appropriate internal_state values, e.g., V=
internal_state(state_handle).V, security_level =
internal_state(state_handle).security level.

Check the length of the additional input.
If (len (additional _input) > 500), then Return (“Additional_input too long”).
Comment: Get the entropy_input.

min_entropy = security_level.

5. (status, entropy_input) = Get_entropy (min_entropy, min_entropy, 1000).

If (status # “Success™), then Return (“Failure indication returned by the
entropy_input source:” || status).

Comment: The reseed algorithm is provided
in steps 7-11.

seed_material = 0x01 || V|| entropy_input || additional_input.

8. seed= Hash_df (seed _material, 440).

10.

11

12.

13.
F.2.4 Generating Pseudorandom Bits Using Hash_DRBG

V = seed.
C = Hash_df ((0x00 || V), 440).

. reseed _counter = 1.

Comment: Update the working_state portion
of the internal state.

Update the appropriate state values.

12.1 internal_state (state_handle).V="V.

12.2 internal _state (state_handle).C = C.

12.3 internal__state (state_handle.reseed_counter = reseed_counter.

Return (“Success™).

The implementation returns a Null string as the pseudorandom bits if an error has been
detected. Prediction resistance is requested when prediction_resistance_request = 1.

In this implementation, prediction resistance is requested by supplying

136

ANS X9.82, Part 3 - DRAFT - December 2004

prediction_resistance_request =1 when the Hash_DRBG function is invoked.
Hash_DRBG (...):

Input: integer (state_handle, requested_no_of bits, requested_security_level,
prediction_resistance_request), bitstring additional_input.

Qutput: string status, bitstring pseudorandom_bits.
Process:

Comment: Check the validity of the
state_handle.

1. If ((state_handle > 9) or (state (state_handle) = {Null, Null, 0, 0, 0})), then
Return (“State not available for the state_handle”, Null).

Comment; Get the internal state values.

2. V= internal- state (state_handle).V, C = internal_state (state_handle).C,
reseed_counter = internal_state (state_handle).reseed_counter, security_level =
internal_state (state_handle).security_level, prediction_resistance_flag =
internal_state (state_handle).prediction_resistance_flag.

Comment: Check the validity of the other
input parameters.

3. If (requested no_of bits > 5000) then Return (“Too many bits requested”,
Null).

4. 1f (requested _security level > security level), then Return (“Invalid
requested_security_level”, Null).

5. If (len (additional_input) > 500), then Return (“Additional_input too long”,
Null).

6. If ((prediction_resistance_request = 1) and (prediction_resistance_flag # 1)),
then Return (“Prediction resistance capability not instantiated”, Null).

Comment: Reseed if necessary. Note that
since the instantiate algorithm is inline with
the functions, this step has been written as a
combination of steps 6 and 7 of Section 9.4
and step 1 of the generate algorithm in
Section 10.1.2.2.4. Because of this combined
step, step 11.4 of Section 7.4.is not required.

7. If ((reseed_counter > 100,000) OR (prediction_resistance_request = 1)), then

7.1 status =Reseed_ Hash DRBG_Instantiation (state_handle,
additional_input).

137

10.
11.
12.

ANS X9.82, Part 3 - DRAFT - December 2004

7.2 If (status # “Success”), then Return (status, Null).
Comment: Get the new internal state values.

7.3 V= internal_state (state_handle).V, C = internal_state (state_handle).C,
reseed_counter = internal_state (state_handle).reseed_counter,
security_level = internal_state (state_handle).security_level,
prediction_resistance_flag = internal_state
(state_handle).prediction_resistance_flag.

7.4 additional input = Null.

Comment: Steps 8-16 provide the rest of the
generate algorithm. Note that in this
implementation, the Hashgen routine is also
inline as steps 9-13.

If (additional_input # Null), then do
7.1 w = Hash (0x02 || V|| additional_input).
7.2 V=(V+w) mod 2*“.

me [requested _no_of _ bitsw
outlen '

data=V.

W = the Null string.

Fori=1tom

12.1 w; = Hash (data).

122 W=W|w

12.3 data = (data + 1) mod 2°°**".

13. pseudorandom_bits = Lefimost (requested_no_of _bits) bits of W,

14.
15.
16.

13.

H = Hash (0x03 || V).
V=(V+ H+ C+reseed counter) mod 240
reseed_counter = reseed_counter + 1.
Comments; Update the working state.
Update the changed values in the staze.
13.1 internal state (state_handle).V =V.

13.2 internal_state (state_handle).reseed_counter = reseed_counter.

14. Return (“Success”, pseudorandom_bits).

138

ANS X9.82, Part 3 - DRAFT - December 2004

F.3 HMAC_DRBG Example

F.3.1 Discussion

This example of HMAC_DRBG uses the SHA-256 hash function. The reseed and, thus,
the prediction resistance is not provided. A personalization string is allowed, but additional
input is not. A total of 3 internal states are provided. For this implementation, the functions
and algorithms are written as separate routines.

The internal state contains the values for V, Key, reseed_counter, and security_level, where
¥ and C are bitstrings, and reseed_counter and security_level are integers.

In accordance with Table 3 in Section 10.1.1, security levels of 112, 128, 192 and 256 may
supported. Using SHA-256, the following definitions are applicable for the instantiate and
generate functions and algorithms:

1. highest supported_security_level = 256.

2. Output block (outlen) = 256.

3. Required minimum entropy for instantiation = security level + 64.

4. Minimum entropy input length (min_entropy_input_length) = security_level + 64.

5. Seed length (seedlen) = 440.

6. Maximum number of bits per request (max_number_of bits_per_request) =7500
bits.

7. Reseed interval (reseed_ interval) = 10,000 requests.

8. Maximum length of the personalization string (max_personalization_string_length)
=100.

9. Maximum length of the entropy input (max_entropy_input_length) = 1000.
F.3.2 Instantiation of HWAC_DRBG

This implementation will return a text message and an invalid state handle (-1) when an error
is encountered.
Instantiate. HMAC_DRBG (...):
Input: integer (requested_security_level), bitstring personalization_string.
Output: string status, integer state_handle.
Process:
Check the validity of the input parameters.

1. If (requested_strength > 256), then Return (“Invalid requested_security_level”,
-1).
2. If (len (personalization_string)>100), then Return (“Personalization_string
139

8.
9.

ANS X9.82, Part 3 - DRAFT - December 2004

too long”, -1)

Comment: Set the security_level to
one of the valid security levels.

If (requested_security level < 112), then security_level = 112
Else (requested_security level < 128), then security_level = 128
Else (requested_security level < 192), then security_level = 192
Else security_level = 256.
Comment: Get the entropy_input.
min_entropy = security level + 64.
(status, entropy_input) = Get_entropy (min_entropy, min_entropy, 1000).

If (status # “Success”), then Return (“Failure indication returned by the
entropy source” || status, -1).

Comment: Invoke the instantiate algorithm.

(V, Key, reseed_counter) = Instantiate_algorithm (entropy_input,
personalization_string).

Comment: Find an unused internal state and
save the initial values.

(status, state_handle) = Find_state_space ().

If (status # “Success”), then Return (“No available state space” || status, -1).

10. internal_state (state_handle) = {V, Key, reseed_counter, security_level}.

11. Return (“Success” and state_handle).

Instantiate_algorithm (...):

Input: bitstring (entropy_input, personalization_string).

Output: bitstring (¥, Key), integer reseed _counter.

Process:

1.

S P Bl D

seed material = entropy_input || personalization_string.
Set Key to outlen bits of zeros.

Set V' to outlen/8 bytes of 0x01.

(Key, V) = Update (seed_material, Key, V).
reseed_counter = 0.

Return (V, Key, reseed_counter).

140

ANS X9.82, Part 3 - DRAFT - December 2004

F.3.3 Generating Pseudorandom Bits Using HMAC_DRBG
The implementation returns a Null string as the pseudorandom bits if an error has been
detected. Ths function uses the Update function specified in Section 10.1.3.2.2.
HMAC_DRBG(...):

Input: integer (state_handle, requested_no_of bits, requested_security level).

Output: string (status), bitstring pseudorandom_bits.

Process:

Comment: Check for a valid state handle.

1. If ((state_handle > 3) or (internal_state (state_handle) = {Null, Null, 0, 0}),
then Return (“State not available for the indicated state_handle”, Null).

Comment: Get the internal state.

2. V= internal_state (state_handle).V, Key = internal_state (state_handle).Key,
security level = internal_state (state_handle).security_level, reseed_counter =
internal_state (state_handle).reseed_counter.

Comment: Check the validity of the rest of
the input parameters.

3. If (requested no_of bits > 7500), then Return (“Too many bits requested”,
Null).

4, 1f (requested_security level > security_level), then Return (“Invalid
requested_security level”, Null).

Comment: Invoke the generate algorithm.

6. (status, pseudorandom_bits, V, Key, reseed_counter) = Generate_algorithm
(V, Key, reseed_counter, requested_number _of bits).

7. If (status # “Success™), then Return (“DRBG can no longer be used. Please re-
instantiate or reseed”, Null).

Comment: Update the internal state.
11. internal_state (state_handle) = {V, Key, security_level, reseed_counter}.
12. Return (“Success”, pseudorandom_bits).
Generate_algorithm (...):
Input: bitstring (¥, Key), integer (reseed_counter, requested_number_of bits).
Output: string status, bitstring (pseudorandom_bits, V, Key), integer reseed_counter.
Process:

1 If (reseed_counter > 10,000), then Return (“Reseed required”, Null, V, Key,
141

ANS X9.82, Part 3 - DRAFT - December 2004

reseed _counter).
2. temp = Null.
While (len (femp) < requested_no_of bits) do:
3.1 V=HMAC (Key V).
32 temp=temp| V.
pseudorandom_bits = Leftmost (requested_no_of biis) of temp.

(Key, V) = Update (additional_input, Key, V).

SAN U

reseed_counter = reseed_counter + 1.
7. Return (“Success”, pseudorandom_bits, V, Key, reseed_counter).
F.4 CTR_DRBG Example

F.41 Discussion

This example of CTR_DRBG uses AES-128. The reseed and prediction resistance
capabilities are available, and a block cipher derivation function using AES-128 is used.
Both a personalization string and additiona input are allowed. A total of 5 internal states
are available. For this implementation, the functions and algorithms are written as separate
routines.

The internal state contains the values for ¥, Key, reseed_counter, security_level and
prediction_resistance_flag, where V and Key are integers, and all other values are integers.

In accordance with Table 4 in Section 10.2.1, security levels of 112 and 128 may be
supported. Using AES-128, the following definitions are applicable for the instantiate,
reseed and generate functions:

1. highest supported_security level = 128.
. Output block length (outlen) = 128.
. Key length (keylen) = 128.

. Required minimum entropy for instantiate = security level + 64.

2

3

4

5. Required minimum entropy for reseed = security _level.

6. Minimum entropy input length (min_entropy_input_length) = min_entropy.
7. Maximum entropy input length (max_entropy_input_length) = 1000.

8

. Maximum personalization string input length
(max_personalization_string_input_length) = 500.

9. Maximum additional input length (max_additional_input_length) = 500.
10. Seed length (seedlen) = 256.

142

ANS X9.82, Part 3 - DRAFT - December 2004

11. Maximum number of bits per request (max_number_of bits_per_request) = 4000.
12. Reseed_interval (reseed_interval) = 100,000 requests.
F.4.2 The Update Function

Update (...):
Input: bitstring (provided_data, Key, V).
Qutput: bitstring (Key, V).
Process:
1. temp = Null.
2. While (len (temp) < 256) do
3.1 V=(V+1)mod2",
3.2 output_block= AES_ECB_Encrypt (Key, V).
3.3 temp =temp | ouput_block.
4. temp = Leftmost 256 bits of temp.
5 temp = temp ® provided_data.
6. Key = Leftmost 128 bits of temp.
7. V=Rightmost 128 bits of remp.
8. Return (Key, V).
F.4.3 Instantiation of CTR_DRBG
This implementation will return a text message and an invalid state handle (-1) when an error
is encountered. Block Cipher_df is the derivation function in Section 9.6.3.

Note that this implementation does not check the prediction_resistance_flag, since the
implementation can provide prediction resistance. However, if an application actually
wants prediction resistance for a pseudorandom bit string, the implementation expects that
prediction_resistance_flag =1 during instantiation (i.e., an application may not require
prediction resistance for an instantiation).

Instantiate CTR_DRBG (...):

Input: integer (requested_security level, prediction_resistance_flag), bitstring
personalization_string.

Output: string status, integer state_handle.
Process:

Comment: Check the validity of the input
parameters.

143

ANS X9.82, Part 3 - DRAFT - December 2004

If (requested_security_level > 128) then Return (“Invalid
requested_security level”, -1).

If (ten (personalization_string) > 500), then Return (“Personalization_string
too long”, -1).

If (requested_security level < 112), then security level =112
Else security_level = 128.
Comment: Get the entropy input.
min_entropy = security_level + 64.
(status, entropy_input) = Get_entropy (min_entropy, min_entropy, 1000).

If (status # “Success”), then Return (“Failure indication returned by the
entropy source” || status, -1).

Comment: Invoke the instantiate algorithm.

(V, Key, reseed_counter) = Instantiate_algorithm (entropy_input,
personalization_string).

Comment: Find an available internal state and
save the initial values.

(status, state_handle) = Find_state_space ().
If (status # “Success”), then Return (“No available state space” || status, -1).

Comment: Save the internal state.

10. internal_state_(state_handle) = {V, Key, reseed_counter, security_level,

prediction_resistance_flag }.

11. Return (“Success”, state_handle).

Instantiate_algorithm (...):

Input: bitstring (entropy_input, personalization_string).

Output: bitstring (¥, Key), integer (reseed_counter).

Process:

1.

2
3. Key=
4,
5
6

seed_material = entropy input || personalization_string.

. seed_material = Block_Cipher_df (seed material, 256).

0'%, Comment: 128 bits.

V=02, Comment: 128 bits.

. (Key, V)= Update (seed_material, Key, V).

. reseed_counter =1.

144

7.

ANS X9.82, Part 3 - DRAFT - December 2004

Return (V, Key, reseed_counter).

F.4.4 Reseeding a CTR_DRBG Instantiation

The implementation is designed to return a text message as the status when an error is
encountered.

Reseed CTR_DRBG_Instantiation (...):
Input: integer (state_handle), bitstring additional_input.

Qutput: string status.

Process:
Comment: Check for the validity of
state_handle.
1. If ((state_handle > 5) or (internal _state(state_handle) = {Null, Null, 0, 0, 0, }),

S Cu ek 2

9.

then Return (“State not available for the indicated state_handle”™).
Comment: Get the internal state values.

V = internal_state (state_handle).V, Key = internal_state (state_handle).Key,
security level = internal_state (state_handle).security level,
prediction_resistance_flag = internal_state
(state_handle).prediction_resistance_flag.

If (len (additional_input) > 500), then Return (“Additional_input too long”).
min_entropy = security_level + 64.
(status, entropy_input) = Get_entropy (min_entropy, min_entropy, 1000).

If (status # “Success™), then Return (“Failure indication returned by the
entropy source” || status).

Comment: Invoke the reseed algorithm.

(V, Key, reseed_counter) = Reseed_algorithm (V, Key, reseed_counter,
entropy_input, additional_input).

Comment: Save the new internal state.

internal_state (state_handle) = {V, Key, reseed_counter, security_level,
reseed_counter, prediction_resistance_flag}.

Return (“Success™).

Reseed_algorithm (...):

Input: bitstring (V, Key), integer (reseed_counter), bitstring (entropy_input,

additional _input).

Output: bitstring (V, Key), integer (reseed_counter).

145

ANS X9.82, Part 3 - DRAFT - December 2004

Process:

1.
2.

3

4.
5.

seed_material = entropy_input || additional_input.
seed_material = Block_Cipher_df (seed material, 256).
. (Key, V) =Update (seed_material, Key, V).

reseed _counter =1,

Return (V, Key, reseed_counter).

F.4.5 Generating Pseudorandom Bits Using CTR_DRBG

The impl
detected.

ementation returns a Null string as the pseudorandom bits if an error has been

CTR_DRBG(...):

Inpu

t: integer (state_handle, requested no of bits, requested_security level,
prediction_resistance request), bitstring additional _input.

Output: string status, bitstring pseudorandom_bits.

Process:

1.

Comment: Check the validity of state_handle.

If ((state_handle > 5) or (internal_state (state_handle) = {Null, Null, 0, 0, 0}),
then Return (“State not available for the indicated state_handle”, Null).

Comment: Get the internal state.

V = internal_state (state_handle).V, Key = internal_state (state_handle).Key,
security_level = internal state (state_handle).security_level, reseed_counter =
internal_state (state_handle).reseed counter, prediction_resistance_flag =
internal_state (state_handle).prediction_resistance_flag.

Comment: Check the rest of the input
parameters.

If (requested no_of bits > 4000), then Return (“Too many bits requested”,
Null).

If (requested_security_level > security_level), then Return (“Invalid
requested_security level”, Null).

If (len (additional _input) > 500), then Return (“Additional_input too long”,
Null).

If ((prediction_resistance request = 1) and (prediction_resistance_flag # 1)),
then Return (“Prediction resistance capability not instantiated”, Null).

reseed _required_flag = 0.

146

ANS X9.82, Part 3 - DRAFT - December 2004

8. If (reseed required flag=1) or (prediction_resistance_request = 1)), then

8.1 status = Reseed_CTR_DRBG_Instantiation (state_handle,
additional_input).

8.2 If (status # “Success”), then Return (status, Null).

Comment: Get the new working state values;
the administrative information was not
affected.

8.3 V= internal_state (state_handle).V, Key = internal_state
(state_handle).Key, reseed_counter = internal_state
(state_handle).reseed_counter.

8.4 additional input = Null.
8.5 reseed request flag= 0.

Comment: Generate bits using the generate
algorithm.

9. (status, pseudorandom_bits, V, Key, reseed_counter) = Generate_algorithm
(V, Key, reseed_counter, requested_number_of bits, additional_input).

10. If (status # “Success”), then
10.1 reseed required flag=1.
10.2 Goto step 8.
Comment: Collect bits.

11. internal_state (state_handle) = {V, Key, security_level, reseed_counter,
prediction_resistance_flag).

Comment: Determine the pseudorandom bits
to be returned.

12. Return (“Success”, pseudorandom_bits).
Generate_algorithm (...):

Input: bitstring (¥, Key), integer (reseed_counter, requested_number_of bits)
bitstring addiional_input.

Output: string status, bitstring (returned_bits, V, Key), integer reseed_counter.
Process:

1. If (reseed_counter > 100,000), then Return (“Failure”, Null, V, Key,
reseed_counter).

2. If (additional_input # Null), then

147

ANS X9.82, Part 3 - DRAFT - December 2004

2.1 temp = len (additional_inpuf).

2.2 If (temp > 256), then additional_input = Block_Cipher_df
(additional _input, 256).

2.3 If (temp < 256), then additional _input = additional_input || %36 - temp,
2.4 (Key, V)= Update (additional_input, Key, V).

3. temp= Null. '

4, While (len (temp) < requested_number_of bits) do:

4.1 V=(V+1)mod2",

4.2 output block= AES_ECB_Encrypt (Key, V).

4.3 temp=temp || ouput_block.

returned_bits = Lefimost (requested_number_of _bits) of temp.

zeros = 0%,

(Key, V) = Update (zeros, Key, V)

reseed_counter = reseed_counter + 1.

Comment: Produce a string of 256 zeros.

© % N o w

. Return (“Success”, returned_bits, V, Key, reseed_counter).
F.5 OFB_DRBG Example

F.5.1 Discussion

This example of OFB_DRBG uses 3 key TDEA. Full entropy is available, and a block
cipher derivation function is not used. Prediction resistance is supported. A total of 5
internal states are available. A personalization string is allowed during instantiation, and
additional input is allowed during reseeding and a request for pseudorandom bit
generation. For this implementation, the functions and algotithms are written as separate
routines.

The internal state contains the values for ¥, Key, reseed_counter, security_level and
prediction_resistance_flag; V and Key are integers; reseed_counter, security_level and
prediction_resistance_flag are integers.

In accordance with Table 4 in Section 10.2.1, a security level of 112 is supported. Using 3
key TDEA, the following definitions are applicable for the instantiate, reseed and generate
functions:

1. highest_supported_security_level =112,

2. Output block length (outlern) = 64.

3. Key length (keylen) = 168.

4. Number of bits for entropy input if full entropy is supported and a derivation
148

ANS X9.82, Part 3 - DRAFT - December 2004

function is not used: 232.
5. Minimum entropy input length (min_entropy_input_length) = min_entropy = 232.
6. Maximum entropy input length (max_entropy_input_length) = 232.

7. Maximum personalization string input length
(max_personalization_string_input_length) = 232.

8. Maximum additional input length (max_additional_input_length) = 232.
9. Seed length (seedlen) = 232.
10. Maximum number of bits per request (max_number_of bits_per_request) =1000.
12. Reseed interval (reseed_interval) = 10,000 requests.
F.5.2 The Update Function

Update (...):
Input: bitstring (provided_data, Key, V).
Output: bitstring (Key, V).
Process:
1. temp = Null.
2. While (len (femp) <232) do
2.1 V=TDEA_ECB Encrypt (Key, V).
22 temp=temp| V.
temp = Leftmost 232 bits of temp.
temp = temp @ provided_data.
Key = Leftmost 168 bits of femp.
¥ = Rightmost 64 bits of temp.
7. Return (Key, V).
F.5.3 Instantiation of OFB_DRBG

o v AW

This implementation will return a text message and an invalid state handle (-1) when an error
is encountered.

Note that this implementation does not use the prediction_resistance_flag, since it is
known that prediction resistance is supported. However, if prediction_resistance_flag =1,
then a prediction resistance capability is requested for the instantiation.

Instantiate OFB_DRBG (...):

Input: integer (requested_security_level, prediction_resistance_flag), bitstring

149

ANS X9.82, Part 3 - DRAFT - December 2004

personalization_string.
Output: string status, integer state_handle.
Process:

Comment: Check the validity of the input
parameters.

1. If (requested security level > 112) then Return (“Invalid
requested_security_level”, -1).

2. If (len (personalization_string) > 232), then Return (“Personalization_string
too long”, -1).

3. security level =112.

Comment: Get the entropy input. The
min_entropy, min_length and max_length =
seedlen = 232.

4. (status, entropy_input) = Get_entropy (232, 232, 232).

5. If (status # “Success™), then Return (“Failure indication returned by the
entropy source” || status, -1).

Comment: Invoke the instantiate algorithm.

6. (V, Key, reseed_counter) = Instantiate_algorithm (eniropy_input,
personalization_string).

7. (status, state_handle) = Find_state_space ().
8. If (status # “Success™), then Return (“No available state space” || status, -1).
Comment: Save the internal state.

9. internal_state (state_handle) = {V, Key, reseed_counter, security level,
prediction_resistance_flag).

10. Return (“Success”, state_handle).
Instantiate_algorithm (...):

Input: bitstring (entropy _input, personalization_string).

Output: bitstring (¥, Key), integer reseed_counter.

Process:
1. seed material = entropy_input ® personalization_string.
2. Key=0'%, Comment: 168 bits.
3. r=0% Comment: 64 bits.

160

ANS X9.82, Part 3 - DRAFT - December 2004

4. (Key, V) =Update (seed_material, Key, V).
5. reseed counter=1.

6. Return (“Success”, V, Key, reseed_counter).

F.5.4 Reseeding the OFB_DRBG Instantiation
The implementation is designed to return a text message as the status when an error is
encountered.
Reseed_OFB_DRBG_ Instantiation (...):

Input: integer state_handle, bitstring additional_input.

Output: string status.

Process:

Comment: Check for the validity of
state_handle.

\. If ((state_handle > 5) or (internal_state (state_handle)= {Null, Nuil, 0, 0}),
then Return (“State not available for the indicated state_handle”).

Comment: Get the necessary internal state
values.

2. V=internal state (state_handle).V, Key = internal_state (state_handle).Key,
security_level = internal_state (state_handle).security_level.

3. If (len (additional _input) > 232), then Return (“Additional_input too long”).
Comment: Get the entropy_input.
4. (status, entropy_input) = Get_entropy (232, 232, 232).

5. If (status # “Success™), then Return (“Failure indication returned by the
entropy source” || status).

Comment: Invoke the reseed algorithm.

6. (V, Key, reseed counter) = Reseed_algorithm (V, Key, entropy_input,
additional _input).

7. internal_state (state_handle).V =V internal_state (state_handle).Key = Key,
internal_state (state_handle).reseed_counter = reseed_counter.

8. Return (“Success”).
Reseed_algorithm (...):
Input: bitstring (¥, Key), bitstring (entropy_input, additional_input).

151

ANS X9.82, Part 3 - DRAFT - December 2004

Output: bitstring (¥, Key), integer reseed_counter.

Process:

1.

temp = len (additional_input).

Comment: If the additional_input <232, pad
with zeros.

. If (temp < 232), then additional_input = additional _input || 0%* ",
. seed_material = entropy_input ® additional_input.

2
3
4.
5
6

(Key, V) = Update (seed_material, Key, V).

. reseed_counter = 1.

. Return (V, Key, reseed_counter).

F.5.5 Generating Pseudorandom Bits using OFB_DRBG

The implementation returns a Null string as the pseudorandom bits if an error has been
detected. Note that prediction resistance is requested when prediction_resistance_request=1.

OFB_DRBG(...):

Input: integer (state_handle, requested_no_of bits, requested_security_level,

prediction_resistance_request), bitstring additional_input.

Output: string status, bitstring pseudorandom_bits.

Process:

Comment: Check the validity of state_handle.

. Y ((state_handle > 5) or (internal_state (state_handle)= {Null, Null, 0, 0}),

then Return (“State not available for the indicated state_handle”, Null).
Comment: Get the internal state values.

V = internal_state (state_handle).V, Key = internal_state (state_handle) Key,
reseed_counter = internal_state (state_handle).reseed_counter, security_level
= internal_state (state_handle).security_level, prediction_resistance_flag =
internal_state (state_handle).prediction_resistance_flag.

Comment: Check the rest of the input
parameters.

If (requested_no_of bits > 1000), then Return (“Too many bits requested”,
Null).

If (requested_security_level > security_level), then Return (“Invalid
requested_security level”, Null).

If (len (additional_input) > 232), then Return (“Additional_input too long”,
162

ANS X9.82, Part 3 - DRAFT - December 2004

Null).

If (prediction_resistance_request = 1) and (prediction_resistance_flag # 1)),
then Return (“Invalid prediction_resistance_request”, Null).

reseed_required _flag="0.

8. If((reseed _required_flag = 1) or (prediction_resistance_request = 1)), then do

10.

11.

12.

Comment: Reseed.

8.1 status = Reseed_OFB_DRBG_Instantiation (state_handle,
additional_input).

8.2 If (status + “Success”), then Return (status, Null).

8.3 V=internal_state (state_handle).V, Key = internal_state
(state_handle).Key, reseed_counter = internal_state
(state_handle).reseed_counter.

8.4 additional input = Null.
8.5 reseed required flag=0.

(status, pseudorandom_bits, V, Key, reseed_counter) = Generate_algorithm
(V, Key, reseed_counter, requested_number_of bits, additional_input).

If (status # “Success™), then
10.1 reseed required flag= 1.
10.2 Go to step 8.

internal_state (state_handle) = {V, Key, security_level, reseed_counter,
prediction_resistance_flag).

Return (“Success”, pseudorandom_bits).

Generate_algorithm (...):

Input: bitstring (¥, Key), integer (reseed_counter, requested_number_of_bits),

bitstring additional_input.

integer (state_handle, requested_number_of bits).

Output: string status, bitstring returned_bits.

Process:

1. If (reseed _counter > reseed_interval), then Return (“Reseed required”).
2. If (additional input # Null), then
2.1 temp = len (additional_input).

2.2 If (temp < seedlen), then additional_input = additional_input || grecen-

153

ANS X9.82, Part 3 - DRAFT - December 2004

temp

2.3 (Key, V)= Update (additional _input, Key, V).
3. temp= Null.
4. While (len (temp) < requested number_of bits) do:
4.1 V==TDEA_ECB_Encrypt (Key, V).
42 temp=temp| V.
returned_bits = Leftmost (requested_number_of bits) of temp.

zeros = 072,

Comment: Produce a string of seedlen zeros.
(Key, V) = Update (zeros, Key, V)

reseed_counter = reseed_counter + 1.

® =N

Comment: Save the new values of V, Key and
reseed_counter.

9. Return (“Success”, returned bits, V, Key, reseed_counter).
F.6 Dual_EC_DRBG Example

F.6.1 Discussion

This example of Dual EC_DRBG allows a consuming application to instantiate using any
of the recommended elliptic curves, depending on the security level. A reseed capability is
available, but prediction resistance is not available. Both a personalization_string and
additional_input are allowed. A total of 10 internal states are provided. For this
implementation, the algorithms are provided as inline code within the functions.

The internal state contains values for s, curve_type, seedlen, p, a, b, n, P, Q,
reseed_counter and security_level. In accordance with Table 5 in Section 10.3.2.1, security
levels of 112, 128, 192 and 256 may be supported. SHA-256 has been selected as the hash
function. The following definitions are applicable for the instantiate, reseed and generate
functions:

1. highest_supported_security_level = 256.

Output block length (outlen): See Table.

Required minimum entropy for instantiation = security_level + 64.
Required minimum entropy for reseed = security_level.

Minimum entropy input length (min_entropy_input_length): See Table.
Maximum entropy input length (max_entropy_input_length) = 1000.

N o A e

Maximum personalization string length (max_personalization_string_length) =
500.

154

ANS X9.82, Part 3 - DRAFT -~ December 2004

8. Maximum additional input length (max_additional_input_length) = 500.
9. Seed length (seedlen): See Table.

10. Maximum number of bits per request (max_number_of bits_per_request) =
1000.

11. Reseed interval (reseed_interval) = 10,000.
F.6.2 Instantiation of Dual_EC_DRBG

This implementation will return a test message and an invalid state handle (-1) when an
ERROR is encountered. A DRBG-specific parameter requested_curve_type is required
(rather than optional) for this implementation for a consuming application to select a curve
type. Hash_df is specified in Section 9.6.2.

Instantiate_Dual EC_DRBG (...):

Input: integer (requested_security_level), bitstring personalization_string, integer
requested_curve_type.

Output: string status, integer state_handle.
Process:

Comment : Check the validity of the input
parameters.

1. If (requested security_level > 256) then Return (“Invalid requested_strength”,
-1).

2. If (len (personalization_string) > 500), then Return (“personalization_string
too long”, -1).

3. If ((requested_curve_type # Prime_field curve) and (requested_curve_type #
Random_binary_curve) and (requested_curve_type # Koblitz_curve)), then
Return (“Valid curve type not specified”, -1).

Comment : Determine an m that is appropriate
for the requested_strength this will depend
on curve_type.

4. If (requested curve_type = Prime_field_curve), then

Comment : Choose one of the prime field
curves

4.1 If (requested security level <112),then

{security level = 112; seedlen = 224; outlen = 208,
min_entropy input_len =224}

Else if (requested security level <128), then

155

4.2

ANS X9.82, Part 3 - DRAFT - December 2004

{security level = 128; seedlen =256, outlen =240;
min_entropy input len =256}
Else if (requested security_level <192), then

{security level = 192;, seedlen = 384; outlen =368,
min_entropy input_len =384}
Else {security level = 256;, seedlen = 521; outlen = 504;
min_entropy input_len=528}.

Select elliptic curve P-seedlen, if available. If this curve is not available,
then Return (“Prime_field curve of the correct length not available”, -1).

5. If (requested curve_type # Prime_field_curve), then

5.1

52
5.3

Comment: choose one of the binary or
Koblitz curves.

If (requested strength < 112), then

{security_level = 112; seedlen = 233; outlen = 216;
min_entropy input_len =240}

Else if (requested strength < 128), then -
{security_level = 128; seedlen = 283; outlen = 264,
min_entropy input len =288}

Else if (requested strength < 192), then

{security level = 192; seedlen = 409; outlen=392;
min_enropy input length =416}
Else {security level =256; seedlen=571; outlen =552,
min_enropy_input_length = 576}
r=0.
If (curve_type = Random binary_curve), then select elliptic curve B-

seedlen; if this curve is not available, then Return
(“Random_binary_curve of the correct length not available”, -1).

Else select elliptic curve K-seedlen; if this curve is not available, then
Return (“Koblitz_curve of the correct length not available”, -1).

Set the point P to the generator G for the curve, and set n to the order of G.

7. Set the corresponding point Q from Annex A.1.

Comment: Request entropy_input.

8. min_entropy = security_level + 64.

9. (status, entropy_input) = Get_entropy (min_entropy,

156

10.

11.

12.

13.

14.
15.
16.

17.

ANS X9.82, Part 3 - DRAFT - December 2004

min_entropy_input_length, 1000).

If (status # “Success”), then Return (“Failure indication returned by the
entropy_input source:” || status, -1).

Comment : Perform the instantiate algorithm.
seed_material = entropy_input || personalization_string.
s = Hash_df (seed material, seedlen).
reseed counter = 0.

Comment: Find an unused internal state and
save the initial values.

(status, state_handle) = Find_state_space ().
If (status # “Success”), then Return (status, -1).

internal_state (state_handle) = {s, curve_type, m, p, a, b, n, P, O,
reseed_counter, security level}.

Return (“Success”, state_handie).

F.6.3 Reseeding a Dual_EC_DRBG Instantiation

The implementation is designed to return a text message as the status when an error is
encountered.

Reseed_Dual EC_DRBG_Instantiation (...):
Input:

integer state_handle,string additional _input_string.

Output: string status.

Process:

Comment: Check the input parameters.

If ((state_handle > 10) or (internal_state (state_handle).security_level = 0)),
then Return (“State not available for the state_handle”).

If (en (additional_input) > 500), then Return (“Additional_input too long™).

Comment: Get the appropriate state values for
the indicated state_handle.

. s = internal_state (state_handle).s, seedlen = internal_state

(state_handle).seedlen, security level = internal_state
(state_handle).security level.

Comment: Request new entropy input with
the appropriate entropy and bit length.

157

ANS X9.82, Part 3 - DRAFT - December 2004

3. min_entropy = security_level.

4. (status, entropy input) = Get_entropy (min_entropy,
min_entropy input length, 1000).

5. If (status # “Success”), then Return (“Failure indication returned by the
entropy source:”|| status).

Comment: Perform the reseed algorithm.
9. seed _material = pad8 (s) || entropy_input || additional_input.
10. s = Hash_df (seed_material, seedlen).
11. reseed _counter = 0.

Comment: Update the changed values in the
state.

12. internal_state (state_handle).s = s.
13. internal_state.reseed_counter = reseed_counter.
14. Return (“Success™).
F.6.4 Generating Pseudorandom Bits Using Dual_EC_DRBG
The implemenation returns a Null string as the pseudorandom bits if an error is
encountered.
Dual EC_DRBG (...):

Input: integer (state_handle, requested_security_level, requested no_of bits),
bitstring additional _input.

Output: string status, bitstring pseudorandom_bits.
Process:
Comment: Check for an invalid state_handle.

1. If((state_handle > 10) or (internal_state (state_handle) = 0)), then Return
(“State not available for the state_handle”, Null).

Comment: Get the appropriate state
values for the indicated state_handle.

2. s=internal_state (state_handle).s, seedlen = internal_state
(state_handle).seedlen, security_level = internal_state
(state_handle).security level, P = internal_state (state_handle).P, Q =
internal_state (state_handle).Q, reseed_counter = internal_state
(state_handle).reseed_counter.

Comment: Check the rest of the input

158

ANS X9.82, Part 3 - DRAFT - December 2004

parameters.

. If (requested_number_of bits > 1000), then Return (“Too many bits

requested”, Null).

If (requested_security_level > security level), then Return (“Invalid
requested_strength”, Null).

If (len (additional_input) > 500), then Return (“Additional_input too long”,
Null).

Comment: Check whether a reseed is
required.

requested _number _of _ bits

If (reseed_counter +[

—'> 10,000, then
outlen

6.1 Reseed Dual EC_DRBG_Instantiation (state_handle,
additional _input).

6.2 additional _input = Null.

6.3 s=internal_state (state_handle).s, seedlen = internal_state
(state_handle).seedlen, security_level = internal_state
(state_handle).security_level, P = internal_state (state_handle).P, O =
internal_state (state_handle).Q, reseed_counter = internal_state
(state_handle).reseed_counter.

Comment: Execute the generate algorithm.

. If (additional_input = Null) then additional_input =0

Comment: additional_input set to m zeroes.
Else additional_input = Hash_df (pad8 (additional_input), seedlen).

Comment: Produce requested _no_of bits,
outlen bits at a time:

8. temp = the Null string.

9.

10.
11.
12.
13.
14.

i=0.

t = s @ additional_input.

s = Q(x(t * P)).

r =¢(x(s *Q)).

temp = temp || (rightmost outlen bits of r).

Oseedlen

additional _input= Comment:’ seedlen zeroes; additional_input

159

ANS X9.82, Part 3 - DRAFT - December 2004

is added only on the first iteration.
15. reseed_counter = reseed_counter + 1.
16.i=i+1.
17. If (len (temp) < requested no_of bits), then go to step 11.
18. pseudorandom_bits = Truncate (femp, i x outlen, requested_no_of bits).

Comment: Update the changed values
in the state.

19. internal_state.s = s.
20. internal_state.reseed_counter = reseed_counter.
21. Return (“Success”, pseudorandom_bits).

F.7 MS_DRBG Example

F.7.1 Discussion

This example of MS_DRBG allows a consuming application to request specific values for
e and outlen. A reseed capability is available, but prediction resistance is dependent on the
user’s system. Both a personalization_string and additional_input are allowed. A total of 5
internal states are provided. For this implementation, the handling of the DRBG-specific
parameters and the algorithms are provided as separate routines.

The internal state contains values for n, e, seedlen, outlen, S, reseed_counter,
security_level and prediction_resistance_flag.

In accordance with Table 6 in Section 10.3.3.1, security levels of 112 and 128 may be
supported. SHA-1 has been selected as the hash function. The following definitions are
applicable for the instantiate, reseed and generate functions :

\. highest_supported_security level: Depends on the requested security level.

Output block length (outlen): 8, unless otherwise requested using requested_outlen.
Required minimum entropy for instantiation = security_level + 64.

Required minimum entropy for reseed = security_level.

Minimum entropy input length (min_entropy_input_length): min_entropy.

Maximum entropy input length (max_entropy _input_length) = 5000 bits.

N R e

Maximum personalization string length (max_personalization_string length) = 500
bits.

]

Maximum additional input length (max_additional_input_length) = 500 bits.
9. Number of hard bits = 11.

160

ANS X9.82, Part 3 - DRAFT - December 2004

10. Seed length (seedlen): 1g (n) - 8.

11. Maximum number of bits per request (max_number_of bits_per_request) =
200,000 bits.

12. Reseed interval (reseed_interval) = 25,000 blocks of outlen bits.
F.7.2 Instantiation of MS_DRBG
This implementation will return a test message and an invalid state handle (-1) when an
ERROR is encountered. DRBG-specific parameters (requested_e and requested_outlen)

are provided that will allow a consuming application to optionally select the values for e
and outlen. Hash_df is specified in Section 9.6.2.

If prediction_resistance_flag = 1, then a prediction resistance capability is requested for
the instantiation. If the user’s system is capable of handling prediction resistance (e.g., a
source of randomness is readily available), the user has been instructed to indicate the
ability to provide prediction resistance by setting prediction_resistance_capability = 1
during system configuration.

Let Get_random_modulus be a function that gets a random modulus 7 that meets the
criteria specified in Section 10.3.3.2.3, step 5.5.

Instantiate_ MS_DRBG (...):

Input: integer (requested_security_level , prediction_resistance_flag), bitstring
personalization_string, integer (requested_e , requested_outlen).

Output: string status, integer state_handle.
Process:

1. If (requested_security level > 128), then Return (“Invalid
requested_security_level”, -1).

2. If ((prediction_resistance_flag = 1) and (prediction_resistance_capability #
1)), then Return (“Cannot support prediction resistance”, -1).

3. If (len (personalization_string) > 500), then Return (“Personalization_string
too long”, -1).

4. If (requested_security level < 112), then security_level =112
Else security_level = 128.

5. (status, n, e, seedlen, outlen) = Get_DRBG_specific_parameters
(security_level, requested_e, requested_outlen).

Comment: Get entropy_input.

161

ANS X9.82, Part 3 - DRAFT - December 2004

6. min_entropy = security_level +64.
7. (status, entropy_input) = Get_entropy (min_entropy, min_entropy, 5000).

8. If (status = “Success™), then Return (“Failure indication returned by the
entropy source”, -1).

9. (S, reseed_counter) = Instantiate_algorithm (entropy_input,
personalization_string, seedlen).

Comment: Find an empty state in the state
space.

10. (status, state_handle) = Find_state_space ().

11. If (status # “Success), Return (status, -1).
Comment: Store all values in state .

12. internal_state (state_handle) = {n, e, seedlen, outlen, S, reseed_counter,
security level, prediction_resistance_flag}.

13. Return (“Success ”, state_handle).
Get_DRBG_specific_parameters (...).
Input: integer (security_level, requested_e, requested_outlen).
Output: string (status), integer (n, e, seedlen, outlen).
Process:
Comment: Determine modulus size (i.e.,
lg(n)).
1. If (security level = 112) then modulus_size = 2048
Else modulus_size =3072.
Comment: Select the exponent e.
2. If (requested e = 0) or is not provided, then ¢ =3
Else

2.1 e=requested e.

2.2 If((e<3)or(e> (2% - (2 x 2"2'8Myy) or (e mod 2 = 0)), then
Return (“Invalid requested e”, -1).
Comment: Determine outlen.

3. If (requested outlen = 0') or is not provided, then outlen =28
Else
3.1 outlen = requested_outlen.

3.2 If((outlen < 1) or (outlen > min ¢ lg(n) - 2*security_1eveIJ I lg(n) *
162

ANS X9.82, Part 3 - DRAFT - December 2004

(1-2/e) 1) or (outlen mod 8 # 0)), then Return (“Inappropriate value
for requested outlen”, -1).

4. seedlen = modulus size — outlen. Comment: Determine the seed length.
Comment: Select the modulus .
5. (status, n) = Get_random_modulus (modulus_size, e).

6. If (status # “Success ™), then Return (“Failed to produce an appropriate
modulus”, -1).

7. Return (“Success”, n, ¢, seedlen, outlen).
Instantiate_algorithm (...):
Input: bitstring (entropy_input, personalization_string), integer seedlen.
Output: integer (S, reseed_counter).
Process:
1. seed _material = entropy_input || personalization_string.
2. S=Hash_df (seed_material, seedlen).
3. reseed counter=0.

4. Return (S, reseed_counter).
F.7.3 Reseeding an MSDRBG Instantiation

The implementation is designed to return a text message as the status when an etror is
returned.
Reseed_MS_DRBG (...):

Input: integer state_handle, bitstring additional_input.

Output: string siatus.

Process:

1. If ((state_handle > 5) or (internal_state (state_handle).security_level = 0)), then
Return (“State not available for the indicated state_handle ™).

Comment: Get the required state values for
the indicated state_handle.

2. S=internal_state(state_handle).S, seedlen =
internal_state(state_handle).seedlen, security_level = internal_state
(state_handle).security level.

3. Uf (len (additional _input) > 500), then Return (“Additional_input too long ™, -
1).

163

ANS X9.82, Part 3 - DRAFT - December 2004

4. min_entropy = security_level.
5. (status, entropy_input) = Get_entropy (min_entropy, min_entropy, 5000).

6. If (status # “Success”), then Return (“Failure indication returned by the
entropy_input source).

7. (S, reseed_counter) = Reseed_algorithm (entropy_input, additional_input, S,
seedlen).

8. internal_state (state_handle).S = S, internal_state
(state_handle).reseed_counter = reseed_counter.

9. Return (“Success”).
Reseed_algorithm (...):
Input: bitstring (entropy_input, additional_input), integer (S, seedlen).
Output: integer (S, reseed_counter).
Process:
1. seed material = S || entropy_input || additional _input.
2. S=Hash_df (seed material, seedlen).
3. reseed counter=0.
4. Return (S, reseed_counter).
F.7.4 Generating Pseudorandom Bits Using MS_DRBG
The implementation returns a Null string as the pseudorandom bits if an error is
encountered. If prediction resistance is needed, then prediction_resistance_request = 1.
MS_DRBG (...):

Input: integer (state_handle, requested_no_of bits, requested_security_level,
prediction_resistance_request), bitstring additional _input.

Output: string status , bitstring pseudorandom_bits.
Process:

1. If ((state_handle > 5) or (internal_state (state_handle).security_level = 0)), then
Return (“State not available for the indicated state_handle ”, Null).

Comment: Get the appropriate stafe for the
indicated state_handle.

2. S = internal_state (state_handle).S, n = internal_state (state_handle).n, e =
internal_state (state_handle).e, outlen = = internal_state (state_handle).outlen,
seedlen = internal_state (state_handle).seedlen, security_level = internal_state
(state_handle).security level, reseed_counter = internal_state

164

ANS X9.82, Part 3 - DRAFT - December 2004

(state_handle).reseed_counter, prediction_resistance_flag = internal_state
(state_handle). prediction_resistance_flag.

3. If (requested no_of bits > (25000 x outlen)), then Return (“Too many bits
requested”, Null).

4. If (requested security level > security_level), then Return (“Invalid
requested_security_level”, Null).

5. If(len (additional_input) > 500), then Return (“Additional_input too long”,
Null).

6. If ((prediction_resistance_request = 1) and (prediction_resistance_flag # 1)),
then Return (“Prediction resistance capability not instantiated”, Null).

7. reseed required flag=0.
8. If (reseed_required flag = 1) ot (prediction_resistance_request = 1)), then
8.1 status = Reseed MS_DRBG (state_handle, additional_input).

82 S = internal_state (state_handle).S, reseed_counter = internal_state
(state_handle).reseed_counter.

8.3 additional_input = Null.
8.4 reseed request flag= 0.

9. (status, pseudorandom_bits, S, reseed_counter) = Generate_algorithm (n, e,
seedlen, outlen, S, reseed_counter, requested_number_of bits,
additional _input).

10. If (status # “Success”), then
10.1 reseed required flag=1.
10.2 Go to step 8.
11. internal _state.S = S, internal_state.reseed_counter = reseed_counter.
12. Return (“Success”, pseudorandom_bits).
Generate_algorithm (...):

Input: integer (1, e, seedlen, outlen, S, reseed_counter, requested_number_of_bits),
bitstring additional_input.

Output: string status, bitstring pseudorandom_bits.
Process:

1. If [(reseed counter + [requested _tumber g i -D > 25,000J , then
- outlen

Return (“Reseed required”, Null).
165

ANS X9.82, Part 3 - DRAFT - December 2004

2. If (additional_inpuwt = Null), then additional_input =0
Else additional_input = Hash_df (pad8 (additional input), seedleﬂ).
3. temp = the Null string.
4. i=0.
5. s=S® additional_input.
6. S=[(s modn)/2%er] Comment: S is an seedlen-bit number.
7. R = (5* mod n) mod 2™, Comment: R is an outlen-bit number.
8. temp=temp| R
9. additional_input=0°*"*"
10.i=i+1.
11. reseed_counter = reseed_counter+l.
12. If (len (tfemp) < requested_no_of _bits), then go to step 6.
13. pseudorandom_bits = Truncate (femp, i x outlen, requested_no_of bits).

14. Return (“Success”, pseudorandom_bits).

166

i1

2]
(3]

(4]
(5]

[6]

7

(8]

[9]

ANS X9.82, Part 3 - DRAFT - December 2004

ANNEX G: (Informative) Bibliography

Handbook of Applied Cryptography; Menezes, van Oorschot and Vanstone; CRC Press,
1997

Applied Cryptography, Schneier, John Wiley & Sons, 1996

RFC 1750, Randomness Recommendations for Security, IETF Network Working
Group; Eastlake, Crocker and Schiller; December 1994.

Cryptographic Random Numbers, Ellison, submission for IEEE P1363.

Cryptographic Randomness from Air Turbulence in Disk Drives; Davis, Ihaka and
Fenstermacher.

Yarrow-160: Notes on the Design and Analysis of the Yarrow Cryptographic
Pseudorandom Number Generator; Kelsey, Schneier, and Ferguson.

The Intel® Random Number Generator; Cryptography Research, Inc.; White paper
prepared for Intel Corporation; Jun and Kocher; April 22, 1999.

Federal Information Processing Standard 140-2, Security Requirements for
Cryptographic Modules, May 25, 2001,

National Institute of Standards and Technology Special Publication 800-38A,
Recommendation for Block Cipher Modes of Operation - Methods and Techniques,
December 2001

167

