ANS X9.82, Part 3 - DRAFT February 2006

DRAFT X9.82 (Random Number Generation)

Part 3, Deterministic Random Bit Generator
Mechanisms

February 2006

~N OO O R W A

ANS X9.82, Part 3 - DRAFT February 2006

Table of Contents
R T o o T N

O O I ANIC G i ssauisinnisarmonmansssadnonsansss sesis svauas i oviaues (oni auaT o8 s s a4 RS FENITHEAESEBNOFREAI RN EONSHOBRIORGINBRITRORE T

NOrmMative refErenCes ... s s as s ssbe s be s s e s s s s s snsrensss O
Definitions and ACFONYMScooviiiiicimiinii it ssserentrsinsssssssms st s sssessmsssnsmessasssasansnans 8
SYMDOIS .ot —————- 9
General Discussion and Organizationc.cccccvccirinicrcinres s s ccsnes s smnes 1
DRBG Functional Model.........coccmmiimicsininininisinnsnis s ssssensssnssnssssssssssssnsssnsesssnsas 13
7.1 Functional Model 13
7.2 Functional Model Components 13
7.2.1 Entropy Input...... 13
7.2.2 Other Inputs 14
7.2.3 The Internal State 14
7.24 The DRBG Functions 14
DRBG Concepts and General Requirementscccceeeceeeecisnisssssessccsnsesssssssssnsssssses 19
8.1 Introduction 15
8.2 DRBG Functions and a DRBG Instantiation 15
8.2.1 FUNCHONS wiiiaiiiiinivisiinisaissiiiiseiiasadsiaissiisiaasss i e i s snas s s s b b s sdarsaiiad 15
8.2.2 DRBG Instantiations 16
8.2.3 Internal States 15
8.2.4 Security Strengths Supported by an Instantiation 16
8.3 DRBG Boundaries 17
8.4 Seeds 19
8.4.1 General Discussion 19
8.4.2 Generation and Handling of Seeds 19
8.5 Other Inputs to the DRBG .. 22
8.5.1 DISCUSSION ciiiiinineersnirrissassiniissnsssamssssnasnsasssenssinssnassnsessnsnasssnssanasssas 22
8.5.2 Personalization String 22
8.5.3 Additional Input 23
8.6 Prediction Resistance and Backtracking Resistance 23

10

ANS X9.82, Part 3 - DRAFT February 2006

DRBG FUNCHONS ...c.coviemiereriimerierenesnnssee st s sss s nsenensnnessannsnasssssssnssvanssssssassasssssansnes
9.1 General Discussion.
9.2 Instantiating a DRBG
9.3 Reseeding a DRBG Instantiationc.cccmvesniinninnnnsinienns

9.4 Generating Pseudorandom Bits Using a DRBG.....
9.4.1 The Generate Function

9.4.2 Reseeding at the End of the Seedlife

9.4.3 Handling Prediction Resistance Requests
9.5 Removing a DRBG Instantiation....
9.6 Self-Testing of the DRBG (Health Testing)

9.6.1 Discussion

9.6.2 Testing the Instantiate Function ...

9.6.3 Testing the Generate Function

9.6.4 Testing the Reseed Function

9.6.6 Testing the Uninstantiate Function

9.7 Error Handling

9.7.1 General Discussion

9.7.2 Errors Encountered During Normal Operation

9.7.3 Errors Encountered During Self-Testing
DRBG Algorithm Specificationscccciiiiininninn e

10.1 Overview...

10.2 Deterministic RBG Based on Hash Functions.............cceae.

10.2.1 Discussion

10.2.2 HMAC_DRBG (...)..

10.2.2.1 DISCUSSION ...vvevireeersireeerreeriiiaiarere st siaessbesssas sesbtsssnesabasssanssses naesasns sabssssesseas
10.2.2.2 SPECIfiCAtONSco.viiiiiiieiiciie e e
10.3 DRBG Based on Block Ciphersouuerveessannas

10.3.1 Discussion
10.3.2 CTR_DRBG
10.3.2.1 CTR_DRBG DeSCHPONc..eeiemieeiarieceesiceemnnsrrmsassnessms s mnesnssnns

10.3.2.2 Specifications s R i s R T s iy S N

i

24
24
27
29
29
31
32
32
33
33
33
34
34
35
35
35
35
35

36
36
36
37
37
38
43
43
43

.. 43

45

ANS X9.82, Part 3 - DRAFT February 2006

10.4 Deterministic RBG Based on Number Theoretic Problems 54
10.4.1 Discussion 54
10.4.2 Dual Elliptic Curve Deterministic RBG (Dual_EC_DRBG)......... 54

10.4.2.1 DISCUSSION ..vvviesirnseesessiiesienessssisssesssensassusnsmsssssessssanssnsssasssssssssssssensasnesesessensness 04
10.4.2.2 SPECITICAIIONS .. .euvererrercscsirssiererasessisiassessssesnsssrsrs s e seas s smssssnsssssasansessssnssns DO

10.5 Auxilliary Functions 61
10.5.1 Discussion 61
10.5.2 Derivation Function Using a Hash Function (Hash_df) 61
10.5.3 Derivation Function Using a Block Cipher Algorithm (Block_Cipher_df}ccoerciciancne 62
10.5.4 Block_Cipher_Hash Function 64

11 ASSUTANCE ..civeiriruriararisrssrsesssssessesserasssssesssassasssssssssessessassasssnssnssssstssassssansssassassasssssnsassaass OO

111 OVEIVIBW ... oiiiiricetiintmiimimnniinineseisnnssaeemsneessmnsssssasnessnesssssasensssan sssesenaasasas 66

11.2 Minimal Documentation Requirementscccvvirmimmiesonen 67

11.3 Implementation Validation Testing 67

11.4 Health Testing 67
11.4.1 Overview ... 67
11.4.2 Known-Answer Testing 68

Annex A: (Normative) Application-Specific CONStaNtScccourvervimcrisimnmsnsmsssssssessssseses 69

A.1 Constants for the Dual_EC_DRBGccccouvrmnmmisnencisosieesammssssnensnsssssssnsessssasssmssnsasssssssnssasses 69

A.1.1 Curves over Prime Fields 69
A1 CUIVE Pu256 ...iiiieeiiieeeeerre et sn e ssts st s es b sns bbb e ab s e s s ta s s sn et 69
A1.1.2 CUIVE P-3B4 ... bbbt e et vt eaes 70
AL1.1.3 CUIVE P-B21 (.ot e b s et 70

A.2 Using Alternative Points in the Dual_EC_DRBG() ... 71
A.2.1 Generating Alternative P,Q... 71
A.2.2 Additional Self-testing Required for Alternative P,Q 72

ANNEX B : (Normative) Conversion and Auxilliary Routinesc.ccoceveenniinnncnsiisininnan 73

B.1 Bitstring to an Integer 73

B.2 Integer to @ BitStringccccoourmmimniiniiennnnireneersstsseesess s st e s e s e st ae e 73

B.3 Integer to an Octet String 73

B.4 Octet String to an Integer.. 74

ANS X9.82, Part 3 - DRAFT February 2006

Annex C: (Informative) Security CONSIAErationscceeceeereereernerresssssessssessssessessssssnsssses

(o |

C.2

Extracting Bits in the Dual_EC_DRBG (...)

C.1.1 Potential Bias Due to Modular Arithmetic for Curves Over F,

C.1.2 Adjusting for the Missing Bit(s) of Entropy in the x Coordinates...

Reserve for a discussion of the nonce specified in Section 8.4.2, item 7cccceerveemsseesnssonenias

ANNEX D: (Informative) DRBG Selection........c.cccocvveueuanens T

D.1
D.2
D.3
D.4

Choosing @ DRBG AlGOFithm ..ueciiicrrsniiinssinirarssrsresesnseenssesssrmrsmerssssstssssssssesesssssssssssssmassss sssssnsas
HMAC_DRBG...........
CTR_DRBG........
DRBGs Based on Hard Problems

ANNEX E: (Informative) Example Pseudocode for Each DRBGcccccecrenmnmininessissessisnns

E.A
E.2

E.3

E4 -

E.5

Preliminaries........
HMAC_DRBG Example

E.2.1 Discussion
E.2.2 Instantiation of HMAC_DRBG
E.2.3 Generating Pseudorandom Bits Using HMAC_DRBG........

CTR_DRBG Example Using a Derivation Function

E.3.1 Discussion........

E.3.2 The Update Function

E.3.3 Instantiation of CTR_DRBG Using a Derivation Function

E.3.4 Reseeding a CTR_DRBG Instantiation Using a Derivation FUNCHION........c.oveseescermseesnanne
E.3.5 Generating Pseudorandom Bits Using CTR_DRBG
CTR_DRBG Example Without a Derivation Function

E.4.1 Discussion

E.4.2 The Update Function

E.4.3 Instantiation of CTR_DRBG Without a Derivation Function
E.4.4 Reseeding a CTR_DRBG Instantiation Without a Derivation FUnNctioncceeeeeeeevuenes
E.4.5 Generating Pseudorandom Bits Using CTR_DRBG
Dual_EC_DRBG Example

E.5.1 Discussion

E.5.2 Instantiation of Dual_EC_DRBG

75
75
75
75
77
78
78
78
79
80
82
82
82
82
83
84
86
86
86
87
89
90
92
92
92
92
93
93
93
93
94

ANS X9.82, Part 3 - DRAFT February 2006

E.5.3 Reseeding a Dual_EC_DRBG Instantiationcccccvrrrvereenscrnsmnsnssana 96

E.5.4 Generating Pseudorandom Bits Using Dual_EC_DRBG..... 97

ANNEX F: (Informative) DRBG Provision of RBG Security Propertiesc.cccecevnncninas 99
F.1 Introduction 99

F.2 Security Strengths. 99

F.3 Entropy and Min-Entropyccccecvimmimesnnnsicensnneonmminiminsnsmmmsssssssmas e 99

F.4 Backtracking Resistance and Prediction Resistance 99

F.5 Indistinguishability and Unpredictability 99

F.6 Desired RBG Output Properties 100

F.7 Desired RBG Operational Properties 100
ANNEX G: (Informative) Bibliographyc.ccccoimmnmnmninnn st 102

Vi

ANS X9.82, Part 3 - DRAFT - February 2006

Random Number Generation
Part 3: Deterministic Random Bit Generator Mechanisms

1 Scope

The Standard consists of four parts:
e Part 1: Overview and Basic Principles
e Part 2: Entropy Sources
e Part 3: Deterministic Random Bit Generator Mechanisms
e Part 4: Random Bit Generator Construction
Part 1 should be read for a basic understanding of this Standard before reading Part 3.

This part of ANSI X9.82 defines techniques for the generation of random bits using
deterministic methods. This part includes:

1. A model for a deterministic random bit generator,
2. Requirements for deterministic random bit generator mechanisms,

3. Specifications for deterministic random bit generator mechanisms that use hash
functions, block ciphers and number theoretic problems,

4. Implementation issues, and
5. Assurance considerations.

This part of ANS X9.82 specifies several diverse DRBG mechanisms, all of which
provided acceptable security when this Standard was approved. However, in the event that
new attacks are found on a particular class of mechanisms, a diversity of approved
mechanisms will allow a timely transition to a different class of DRBG mechanism.

Random number generation does not require interoperability between two entities, e.g.,
communicating entities may use different DRBG mechanisms without affecting their
ability to communicate. Therefore, an entity may choose a single appropriate DRBG
mechanism for their applications; see Annex D for a discussion of DRBG selection.

The precise structure, design and development of a random bit generator is outside the
scope of this Standard.

2 Conformance
An implementation of a deterministic random bit generator (DRBG) may claim

conformance with ANS X9.82 if it implements the mandatory provisions of Part 1, the
mandatory requirements of one or more of the DRBG mechanisms specified in this part of

7

ANS X9.82, Part 3 - DRAFT - February 2006

the Standard, an entropy source from Part 2 and the appropriate mandatory requirements of
Part 4.

Conformance can be assured by a testing laboratory associated with the Cryptographic
Module Validation Program (CMVP) (see http:/csrc.nist.gov/cryptval). Although an
implementation may claim conformance with the Standard apart from such testing,
implementation testing through the CMVP is strongly recommended.

3 Normative references

The following referenced documents are indispensable for the application of this Standard.
For dated references, only the edition cited applies. Nevertheless, parties to agreements
based on this document are encouraged to consider applying the most recent edition of the
referenced documents indicated below. For undated references, the latest edition of the
referenced document (including any amendments) applies.

ANS X9.52-1998, Triple Data Encryption Algorithm Modes of Operation.

ANS X9.62-2006, Public Key Cryptography for the Financial Services Industry - The Elliptic
Curve Digital Signature Algorithm (ECDSA).

ANS X9.63-2000, Public Key Cryptography for the Financial Services Industry - Key
Agreement and Key Transport Using Elliptic Key Cryptography.

ANS X9.82, Part 1-200x, Overview and Basic Principles, Draft.

ANS X9.82, Part 2-200x, Entropy Sources, Draft.

ANS X9.82, Part 4-200x, RBG Constructions, Draft.

FIPS 140-2, Security Requirements for Cryptographic Modules; ASC X9 Registry 00001.
FIPS 180-2, Secure Hash Standard (SHS), August 2002; ASC X9 Registry 00003.

FIPS 197, Advanced Encryption Standard (AES), November 2001; ASC X9 Registry 00002.
FIPS 198, Keyed-Hash Message Authentication Code (HMAC), March 6, 2002; ASC X9
Registry 00004.

4 Definitions and Acronyms

Definitions used in this part of ANS X9.82 are provided in Part 1.

The following abbreviations are used in this document:

Abbreviation Meaning
AES Advanced Encryption Standard.

ANS American National Standard

ASC Accredited Standards Committee

8

ANS X9.82, Part 3 - DRAFT - February 2006

DRBG Deterministic Random Bit Generator.
ECDLP Elliptic Curve Discrete Logarithm Problem.
FIPS Federal Information Processing Standard.
HMAC Keyed-Hash Message Authentication Code.
NRBG Non-deterministic Random Bit Generator.
RBG Random Bit Generator.
TDEA Triple Data Encryption Algorithm.
5 Symbols
The following symbols are used in this document.
Symbol Meaning
+ Addition
(X1 Ceiling;: the smallest integer > X. For example, [5| =5,and [5.3] = 6.
Lx] Floor: The largest integer less than or equal to X. For example, [5]=5,and
[5.3]=5.
XeY Bitwise exclusive-or (also bitwise addition mod 2) of two bitstrings X and ¥ of
the same length.
XY Concatenation of two strings X and Y. X and Y are either both bitstrings, or
both octet strings.
ged (x,y) The greatest common divisor of the integers x and y.
len (a) The length in bits of string a.
x mod n The unique remainder » (where 0 < r < n-1) when integer x is divided by n.

For example, 23 mod 7 = 2.

Used in a figure to illustrate a "switch" between sources of input.

ANS X9.82, Part 3 - DRAFT - February 2006

{aq, ...a} The internal state of the DRBG at a point in time. The types and number of
the a; depends on the specific DRBG.

Oxab Hexadecimal notation that is used to define a byte (i.e., 8 bits) of information,
where a and b each specify 4 bits of information and have values from the
range {0, 1, 2,...F}. For example, 0xc6 is used to represent 11000110, where
¢ is 1100, and 6 is 0110.

OX

A string of x zero bits.

10

ANS X9.82, Part 3 - DRAFT - February 2006

6 General Discussion and Organization

Part 1 of this Standard (Random Number Generation, Part 1: Overview and Basic
Principles) describes several cryptographic applications for random numbers and specifies
the characteristics for random numbers and random number generators, introducing the
concept of non-deterministic random bit generators (NRBGs) and deterministic random bit
generators (DRBGs). In addition, Part 1 also introduces a general functional model and
identifies the security properties expected for cryptographic random number generators.

Part 2 of this Standard (Entropy Sources) discusses entropy sources used by random bit
generators. In the case of DRBGs, the entropy sources are required to obtain seeds for the
DRBG.

Part 4 of this Standard (Random Bit Generator Constructions) provides guidance on
combining components to construct secure random bit generators.

This part of the Standard (Random Number Generation, Part 3: Deterministic Random Bit
Generator Mechanisms) specifies Approved DRBG mechanisms. A DRBG mechanism is
an RBG component that utilizes an algorithm to produce a sequence of bits from an initial
internal state that is determined by an input that is commonly known as a seed, which is
constructed using entropy input. Because of the deterministic nature of the process, a
DRBG mechanism is said to produce “pseudorandom™ rather than random bits, i.e., the
string of bits produced by a DRBG mechanism is predictable and can be reconstructed,
given knowledge of the algorithm, the entropy input, the seed and any other input
information. However, if the seed and entropy input are kept secret, and the algorithm is
well designed, then the bitstrings will be unpredictable, up to the security level provided by
the DRBG.

The seed for a DRBG mechanism requires that sufficient entropy be provided during
instantiation and reseeding (see Parts 2 and 4 of this Standard). While a DRBG mechanism
may conform to this part of the Standard (i.e., Part 3), an implementation cannot achieve
the properties specified in Part 1 unless the entropy input source is included as specified in
Part 4. That is, the security of an RBG that uses a DRBG mechanism is a system
implementation issue; both the DRBG mechanism and its entropy input source must be
considered.

Throughout the remainder of this document, the term “DRBG mechanism™ has been
shortened to “DRBG”.

The remaining sections of this part of the Standard are organized as follows:

— Section 7 provides a functional model for a DRBG that particularizes the general
functional model of Part 1.

— Section 8 provides DRBG concepts and general requirements.

— Section 9 specifies the DRBG functions that will be used to access the DRBG
algorithms specified in Section 10.

11

ANS X9.82, Part 3 - DRAFT - February 2006

— Section 10 specifies Approved DRBG algorithms.
— Section 11 addresses assurance issues for DRBGs.
This part of the Standard also includes the following normative annexes:
— Annex A specifies additional DRBG-specific information.
— Annex B provides conversion routines.
The following informative annexes are also included:
— Annex C discusses security considerations for selecting and implementing DRBGs.
— Annex D provides a discussion on DRBG selection.
— Annex E provides example pseudocode for each DRBG.

— Annex F relates the security properties identified in Part 1 to the requirements and
specifications in Part 3.

— Annex G provides a bibliography for related informational material.

12

ANS X9.82, Part 3 - DRAFT - February 2006

7 DRBG Functional Model
7.1 Functional Model

Part 1 of this Standard provides a general functional model for random bit generators
(RBGs). Figure 1 particularizes the functional model of Part 1 for DRBGs. The
components of this model are discussed in the following subsections.

Personalization

String Nonce Entropy Input Additional Input
l l A N b
Instantiate Reseed
Function Function
Y

Uninstantiate
Function

Generate
Function

__,s:s &
e e l
SRR State Pseudorandom Output

Figure 1: DRBG Functional Model

7.2 Functional Model Components

7.21 Entropy Input

The entropy input is provided to a DRBG for the seed (see Section 8.4.2). The entropy
input and the seed shall be kept secret. The secrecy of this information provides the basis
for the security of the DRBG. At a minimum, the entropy input shall provide the requested
amount of entropy for a DRBG. Appropriate sources for the entropy input are discussed in
Parts 2 and 4 of this Standard.

Ideally, the entropy input will be full entropy; however, the DRBGs have been specified to
allow for some bias in the entropy input by allowing the length of the entropy input to be
longer than the required amount of entropy (expressed in bits). The entropy input can be
defined to be a variable length (within limits), as well as fixed length. In all cases, the
DRBG expects that when entropy input is requested, the returned bitstring will contain at
least the requested amount of entropy. Additional entropy beyond the amount requested is
not required, but is desirable.

13

ANS X9.82, Part 3 - DRAFT - February 2006

7.2.2 Other Inputs

Other information may be obtained by a DRBG as input. This information may or may not
be required to be kept secret by a consuming application; however, the security of the
DRBG itself does not rely on the secrecy of this information. The information should be
checked for validity when possible.

During DRBG instantiation, a nonce may be required, and if used, it is combined with the
entropy input to create the initial DRBG seed. The nonce and its use are discussed in
Section 8.4.2.

This Standard recommends the insertion of a personalization string during DRBG
instantiation; when used, the personalization string is combined with the entropy bits and a
nonce to create the initial DRBG seed. The personalization string shall be unique for all
instantiations of the same DRBG type (e.g., HMAC DRBG). See Section 8.5.2 for
additional discussion on personalization strings.

Additional input may also be provided during reseeding and when pseudorandom bits are
requested. See Section 8.5.3 for a discussion of this input.

7.2.3 The Internal State

The internal state is the memory of the DRBG and consists of all of the parameters,
variables and other stored values that the DRBG uses or acts upon. The internal state
contains both administrative data (e.g., the security level) and data that is acted upon
and/or modified during the generation of pseudorandom bits (i.e., the working state). The
contents of the internal state is dependent on the specific DRBG and includes all
information that is required to produce the pseudorandom bits from one request to the next.

7.2.4 The DRBG Functions
The DRBG functions handle the DRBG’s internal state. The DRBGs in this Standard have
five separate functions:

1. The instantiate function acquires entropy input and may combine it with a nonce
and a personalization string to create a seed from which the initial internal state is
created.

2. The generate function generates pseudorandom bits upon request, using the current
internal state, and generates a new internal state for the next request.

3. The reseed function acquires new entropy input and combines it with the current
internal state and any additional input that is provided to create a new seed and a
new internal state.

4. The uninstantiate function zeroizes (i.e., erases) the internal state.

5. The health test function determines that the DRBG continues to function correctly.

14

ANS X9.82, Part 3 - DRAFT - February 2006

8. DRBG Concepts and General Requirements
8.1 Introduction

This section provides concepts and general requirements for the implementation and use of
a DRBG. The DRBG functions are explained and requirements for an implementation are
provided.

8.2 DRBG Functions and a DRBG Instantiation

8.2.1 Functions

A DRBG requires instantiate, uninstantiate, generate, and health testing functions. A
DRBG may also include a reseed function. A DRBG shall be instantiated prior to the
generation of output by the DRBG. These functions are specified in Section 9.

8.2.2 DRBG Instantiations

A DRBG may be used to obtain pseudorandom bits for different purposes (e.g., DSA
private keys and AES keys) and may be separately instantiated for each purpose.

A DRBG is instantiated
using a seed and may be

reseeded; when reseeded, Instantiate: itise wif ceed)

the seed shall be ’ Seed period 1
different than the seed v

used for instantiation. [(Opt) Reseed with seed; |

Each seed defines a seed

period for the DRBG Seed period 2
instantiation; an A

instantiation consists of | (Opt Resecd with wed, |

one or more seed periods
that begin when a new
seed is acquired (see
Figure 2).

8.2.3 Internal States

Seed periods 3ton

L . Figure 2: DRBG Instantiation
During instantiation, an

initial internal state is
derived from the seed. The internal state for an instantiation includes:

1. Working state:

a. One or more values that are derived from the seed and become part of the
internal state; these values must usually remain secret, and

15

ANS X9.82, Part 3 - DRAFT - February 2006

b. A count of the number of requests or blocks produced since the instantiation
was seeded or reseeded.

2. Administrative information (e.g., security strength and prediction resistance flag).

The internal state shall be protected at least as well as the intended use of the
pseudorandom output bits requested by the consuming application. Each DRBG
instantiation shall have its own internal state; the internal state for one DRBG instantiation
shall not be used as the internal state for a different instantiation.

A DRBG transitions between internal states when the generator is requested to provide
new pseudorandom bits. A DRBG may also be implemented to transition in response to
internal or external events (e.g., system interrupts) or to transition continuously (e.g.,
whenever time is available to run the generator).

A DRBG implementation may be designed to handle multiple instantiations. Sufficient
space must be available for the expected number of instantiations, i.e., sufficient memory
must be available to store the internal state associated with each instantiation.

8.2.4 Security Strengths Supported by an Instantiation

The DRBGs specified in this Standard support four security strengths: 112, 128, 192 or
256 bits. The actual security strength supported by a given instantiation depends on the
DRBG implementation and on the amount of entropy provided to the instantiate function
in the entropy input. Note that the security strength actually supported by a particular
instantiation could be less than the maximum security strength possible for that DRBG
implementation (see Table 1). For example, a DRBG that is designed to support a
maximum security strength of 256 bits could be instantiated to support only a 128-bit
security strength if the additional security provided by the 256-bit security strength is not
required.

Table 1: Possible Instantiated Security Strengths

Maximum Designed 112 128 192 256
Security Strength

Possible Instantiated 112 112,128 112, 128, 192 | 112, 128, 192,
Security Strengths 256

A security strength for the instantiation is requested by a consuming application during
instantiation, and the instantiate function obtains the appropriate amount of entropy for the
requested security strength. Any security strength may be requested, but the DRBG will
only be instantiated to one of the four security strengths above, depending on the DRBG
implementation. A requested security strength that is below the 112-bit security strength or
is between two of the four security strengths will be instantiated to the next highest
strength (e.g., a requested security strength of 96 bits will result in an instantiation at the
112-bit security strength).

16

ANS X9.82, Part 3 - DRAFT - February 2006

Following instantiation, requests can be made to the generate function for pseudorandom
bits. For each generate request, a security strength to be provided for the bits is requested.
Any security strength can be requested up to the security strength of the instantiation, e.g.,
an instantiation could be instantiated at the 128-bit security strength, but a request for
pseudorandom bits could indicate that a lesser security strength is actually required for the
bits to be generated. The generate function checks that the requested security strength does
not exceed the security strength for the instantiation. Assuming that the request is valid, the
requested number of bits is returned.

When an instantiation is used for multiple purposes, the minimum entropy requirement for
each purpose must be considered. The DRBG needs to be instantiated for the highest
security strength required. For example, if one purpose requires a security strength of 112
bits, and another purpose requires a security strength of 256 bits, then the DRBG needs to
be instantiated to support the 256-bit security strength.

8.3 DRBG Boundaries

As a convenience, this Standard uses the notion of a “DRBG boundary” to explain the
operations of a DRBG and its interaction with and relation to other processes; a DRBG
boundary contains all DRBG functions and internal states required for a DRBG. A DRBG
boundary is entered via the DRBG’s public interfaces, which are made available to
consuming applications.

Within a DRBG boundary,

1. The DRBG internal state and the operation of the DRBG functions shall only be
affected according to the DRBG specification.

2. The DRBG internal state shall exist solely within the DRBG boundary. The
internal state shall be contained within the DRBG boundary and shall not be
accessed by non-DRBG functions.

3. Information about secret parts of the DRBG internal state and intermediate values
in computations involving these secret parts shall not affect any information that
leaves the DRBG boundary, except as specified for the DRBG pseudorandom bit
outputs.

Each DRBG includes one or more cryptographic primitives (e.g., a hash function). Other
applications may use the same cryptographic primitive as long as the DRBG’s internal
state and the DRBG functions are not affected.

A DRBG’s functions may be contained within a single device, or may be distributed across
multiple devices (see Figures 3 and 4). Figure 3 depicts a DRBG for which all functions
are contained within the same device. Figure 4 provides an example of DRBG functions
that are distributed across multiple devices. In this latter case, each device has a DRBG
sub-boundary that contains the DRBG functions implemented on that device, and the
boundary around the entire DRBG consists of the aggregation of sub-boundaries providing
the DRBG functionality. The use of distributed DRBG functions may be convenient for

17

ANS X9.82, Part 3 - DRAFT - February 2006

restricted environments (e.g., smart card applications) in which the primary use of the
DRBG does not require repeated use of the instantiate or reseed functions.

DRBG Boundary
Instantiate Instantiate |,
Function
—— Eniropy
Input
Reseed Resed [+
Instaniiation Funciion
" - Generate
Request Bits ___ Function
Test > Test [Stat]
DRBG = Function
Uninstantiate .
DRBG Ummwgmw
Function

Figure 3: DRBG Functions Within a Single Device

Although the entropy input that is used to create the seed is shown in the figures as
originating outside the DRBG boundary, it may originate from within the boundary.

Entropy Input
e |
[|
1 |
: |
| . |
| Uninstantiate Instantiate Protected State | | Generate Uninstantiate :
: Function Function *| Function Function i
! |
! |
! I
= Test Test :
: Function Function :
: |
1
1 DRBG Sub-Boundary (Instantiate) DRBG Sub-Boundary (Generate) :
|

DRBG Boundary

Figure 4: Distributed DRBG Functions

18

ANS X9.82, Part 3 - DRAFT - February 2006

Each DRBG boundary or sub-boundary shall contain a test function to test the “health” of
other DRBG functions within that boundary. In addition, each boundary or sub-boundary
shall contain an uninstantiate function in order to perform and/or react to health testing.

When DRBG functions are distributed, appropriate mechanisms shall be used to protect
the confidentiality and integrity of the internal state or parts of the internal state that are
transferred between the distributed DRBG sub-boundaries. The confidentiality and
integrity mechanisms and security strength shall be consistent with the data to be protected
by the DRBG’s consuming application (see ASC X9 Registry).

8.4 Seeds

8.4.1 General Discussion

When a DRBG is used to generate pseudorandom bits, entropy input is acquired in order to
generate a seed prior to the generation of output bits by the DRBG. The seed is used to
instantiate the DRBG and determine the initial internal state that is used when calling the
DRBG to obtain the first output bits.

Reseeding is a means of restoring the secrecy of future outputs of the DRBG if a seed or
the internal state becomes known. Periodic reseeding is a good way of addressing the
threat of the DRBG seed, entropy input or working state being compromised over time. In
some implementations (e.g., smartcards), an adequate reseeding process may not be
possible. In these cases, the best policy might be to replace the DRBG, obtaining a new
seed in the process (e.g., obtain a new smart card).

8.4.2 Generation and Handling of Seeds

The seed and its use by a DRBG is generated and handled as follows:

1. Seed construction for

instantiation: Figure 5 depicts the

. Optional
§eed C(.)ns'tructlon process for' Entropy Nonce Personalization
instantiation. The seed material Input String

used to determine a seed for
instantiation consists of entropy
input, a nonce and an optional Opt.
personalization string. Entropy dr
input is always used in the
construction of a seed,;
requirements for the entropy input
are discussed in item 3. Except
for the case noted below, a nonce
is used; requirements for the
nonce are discussed in item 7.
This Standard also recommends the inclusion of a personalization string;
requirements for the personalization string are discussed in Section §.5.2.

Seed

Figure 5: Seed Construction for Instantiation

19

ANS X9.82, Part 3 - DRAFT - February 2006

Depending on the DRBG and the source of the entropy input, a derivation function
may be required to derive a seed from the seed material. However, in certain
circumstances, the DRBG based on block cipher algorithms (see Section 10.3) may
be implemented without a derivation function. When implemented in this manner, a
nonce (as shown in Figure 5) is not used. Note, however, that the personalization
string could contain a nonce, if desired.

2. Seed construction for

reseeding: Figure 6 depicts the

seed construction process for I“s‘:;':‘:‘ Entropy A(;l;‘i't‘i’::;l
)) ol —

reseeding an instantiation. The Value npu Tnput

seed material for reseeding

consists of a value that is
carried in the internal state!, +
new entropy input and, od‘}"
optionally, additional input.

The internal state value and the
entropy input are required; Seed
requirements for the entropy
input are discussed in item 3.
Requirements for the additional Figure 6: Seed Construction for Reseeding
input are discussed in Section

8.5.3. As in item 1, a derivation function may be required for reseeding. See item 1
for further guidance.

3. Entropy requirements for the entropy input: The entropy input shall have entropy
that is equal to or greater than the security strength of the instantiation. Additional
entropy may be provided in the nonce or the optional personalization string during
instantiation, or in the additional input during reseeding and generation, but this is
not required. The use of more entropy than the minimum value will offer a security
“cushion”. This may be useful if the assessment of the entropy provided in the entropy
input is incorrect. Having more entropy than the assessed amount is acceptable;
having less entropy than the assessed amount could be fatal to security. The presence
of more entropy than is required, especially during the instantiatiation, will provide a
higher level of assurance than the minimum required entropy.

4. Seed length: The minimum length of the seed depends on the DRBG and the
security strength required by the consuming application. See Section 10.

5. Entropy input source: The source of the entropy input shall be either:
a. An Approved NRBG,

! See each DRBG specification for the value that is used.

20

ANS X9.82, Part 3 - DRAFT - February 2006

b. An Approved DRBG, thus forming a chain of at least two DRBGs; the
highest-level DRBG in the chain shall be seeded by an Approved NRBG or
an entropy source, or

c. An appropriate entropy source.

Further discussion about the entropy input source is provided in Parts 2 and 4 of
this Standard.

6. Entropy input and seed privacy: The entropy input and the resulting seed shall be
handled in a manner that is consistent with the security required for the data
protected by the consuming application. For example, if the DRBG is used to
generate keys, then the entropy inputs and seeds used to generate the keys shall (at
a minimum) be protected as well as the key.

7. Nonce: A nonce may be required in the construction of a seed during instantation in
order to provide a security cushion to block certain attacks. The nonce shall be
either:

a. A random value with at least (security strength/2) bits of entropy,

b. A non-random value that is expected to repeat no more often than a
(security_strength/2)-bit random string would be expected to repeat.

For case a, the nonce may be acquired from the same source and at the same time
as the entropy input. In this case, the seed could be considered to be constructed
from an “extra strong” entropy input and the optional personalization string, where
the entropy for the entropy input is equal to or greater than (3/2 security_strength)
bits.

The nonce is required for instantiation to provide security_strength bits of security.
When a DRBG is instantiated many times without a nonce, a compromise may
become more likely. In some consuming applications, a single DRBG compromise
may reveal long-term secrets (e.g., a compromise of the DSA per-message secret
reveals the signing key). Further discussion is provided in Annex C.2.

8. Reseeding: Generating too many outputs from a seed (and other input information)
may provide sufficient information for successfully predicting future outputs.
Periodic reseeding will reduce security risks, reducing the likelihood of a
compromise of the data that is protected by cryptographic mechanisms that use the
DRBG.

Seeds have a finite seedlife (i.e., the length of the seed period); the maximum
seedlife is dependent on the DRBG used. Reseeding is accomplished by 1) an
explicit reseeding of the DRBG by the consuming application, or 2) by the generate
function when either prediction resistance is requested, or when the limit of the
seedlife is reached.

Reseeding of the DRBG shall be performed in accordance with the specification
for the given DRBG. The DRBG reseed specifications within this Standard are

21

ANS X9.82, Part 3 - DRAFT - February 2006

designed to produce a new seed that is determined by both the current internal state
and newly-obtained entropy input that will support the desired security strength.

An alternative to reseeding is to create an entirely new instantiation. However,
reseeding is preferred over creating a new instantiation. If there is an undetected
failure in the entropy input source, a reseeded DRBG instantiation will still retain
any previous entropy, whereas a newly instantiated DRBG may not have sufficient
entropy to support the requested security strength.

9. Seed use: A seed that is used to initialize one instantiation of a DRBG shall not be
intentionally used to reseed the same instantiation or used as a seed for another
DRBG instantiation.

A DRBG does not provide output until a seed is available, and the internal state has
been initialized.

10. Seed separation: Seeds used by DRBGs and the entropy input used to create those
seeds shall not be used for other purposes (e.g., domain parameter or prime
number generation).

8.5 Other Inputs to the DRBG

8.5.1 Discussion

Other input may be provided during DRBG instantiation, pseudorandom bit generation and
reseeding. This input may contain entropy, but this is not required. During instantiation, a
personalization string may be provided and combined with entropy input and a nonce to
derive a seed (see Section 8.5.2). When pseudorandom bits are requested and when
reseeding is performed, additional input may be provided (see Section 8.5.3).

Depending on the method for acquiring the input, the exact value of the input may or may
not be known to the user or consuming application. For example, the input could be
derived directly from values entered by the user or consuming application, or the input
could be derived from information introduced by the user or consuming application (e.g.,
from timing statistics based on key strokes or movements of the computer’s mouse), or the
input could be the output of another DRBG or an NRBG.

8.5.2 Personalization String

During instantiation, a personalization string should be used to derive the seed (see
Section 8.4.2). The intent of a personalization string is to differentiate this DRBG
instantiation from all other instantiations that might ever be created. The personalization
string should be set to some bitstring that is as unique as possible, and may include secret
information. The value of any secret information contained in the personalization string
should be no greater than the claimed strength of the DRBG, as the DRBG's cryptographic
mechanisms (specifically, its backtracking resistance and the entropy provided in the
entropy input) will protect this information from disclosure. Good choices for the
personalization string contents include:

e Device serial numbers, e Public keys,
22

ANS X9.82, Part 3 - DRAFT - February 2008

¢ User identification, o Special secret key values for this

o Private keys, specific DRBG instantiation,

o PINs and passwords, e Application identifiers,

: . e Protocol version identifiers,
o Secret per-module or per-device

values, e Random numbers, and
e Timestamps, e Nonces.

e Network addresses,
8.5.3 Additional Input

During each request for bits from a DRBG and during reseeding, the insertion of additional
input is allowed. This input is optional, and the ability to enter additional input may or may
not be included in an implementation. Additional input may be restricted, depending on the
implementation and the DRBG. The use of additional input may be a means of providing
more entropy for the DRBG internal state that will increase assurance that the entropy
requirements are met. If the additional input is kept secret and has sufficient entropy, the
input can provide more assurance when recovering from the compromise of the entropy
input, the seed or one or more DRBG internal states.

8.6 Prediction Resistance and Backtracking Resistance

Part 1 discusses backtracking and prediction resistance. All DRBGs in this Standard have
been designed to provide backtracking resistance. Prediction resistance can be provided
only by ensuring that a DRBG is effectively reseeded between DRBG requests. The
DRBGs in this Standard can (optionally) be implemented to support prediction resistance
(see Section 9), and a user or application can request prediction resistance when needed.

23

ANS X9.82, Part 3 - DRAFT - February 2006

9 DRBG Functions
9.1 General Discussion

The DRBG functions in this Standard are specified as an algorithm (see Section 10) and an
“envelope” of pseudocode around that algorithm (defined in this section). The pseudocode
in the envelopes checks the input parameters, obtains input not provided by the input
parameters, accesses the appropriate DRBG algorithm and handles the internal state. A
function need not be implemented using such envelopes (e.g., all code may be
implemented in-line), but the function shall have equivalent functionality.

In the specifications of this Standard, a Get_entropy_input pseudo-function is used for
convenience. This function is not fully specified in this Standard, but has the following
meaning:

Get_entropy_input: A function that is used to obtain entropy input. The function call
is:

(status, entropy_input) = Get_entropy_input (min_entropy, min_ length, max_
length)

which requests a string of bits (entropy_input) with at least min_entropy bits of
entropy. The length for the string shall be equal to or greater than min_Jength bits, and
less than or equal to max_length bits. A status code is also returned from the function.

Note that an implementation may choose to define this functionality differently; for
example, for many of the DRBGs, the min_length = min_entropy for the
Get_entropy_input function, in which case, the second parameter could be omitted.

9.2 Instantiating a DRBG
A DRBG shall be instantiated prior to the generation of pseudorandom bits. The instantiate
function:
1. Checks the validity of the other input parameters,
. Determines the security strength for the DRBG instantiation,

. Determines any DRBG specific parameters (e.g., elliptic curve domain parameters),

. Obtains the nonce (if required),

2
3
4. Obtains entropy input with entropy sufficient to support the security strength,
5
6. Determines the initial internal state using the instantiate algorithm,

7

. Returns a state_handle for the internal state to the consuming application (see
below).

24

ANS X9.82, Part 3 - DRAFT - February 2006

Let working _state be the working state for the particular DRBG, and let min_length, max_
length, and highest supported_security_strength be defined for each DRBG (see Section
10). The following or an equivalent process shall be used to instantiate a DRBG.

Input from a consuming application for instantiation:

1.

requested_instantiation_security strength: A requested security strength for the
instantiation. DRBG implementations that support only one security strength do not
require this parameter; however, any application using that DRBG implementation
must be aware of this limitation.

2. prediction_resistance_flag: Indicates whether or not prediction resistance may be

required by a the consuming application during one or more requests for
pseudorandom bits. DRBGs that are implemented to always or never support
prediction resistance do not require this parameter. However, the user of a
consuming application must determine whether or not prediction resistance may be
required by the consuming application before electing to use such a DRBG
implementation. If the prediction_resistance_flag is not needed (i.e., because
prediction resistance is always or never performed), then the input parameter may
be omitted, and the prediction resistance flag may be omitted from the internal
state in step 11 of the instantiate process.

3. personalization_string: An optional input that provides personalization information

(see Sections 8.4.2 and 8.5.2). The maximum length of the personalization string
(max_personalization_string length) is implementation dependent, but shall be
less than or equal to the maximum length specified for the given DRBG (see
Section 10). If a personalization string will never be used, then the input parameter
and step 3 of the instantiate process may be omitted, and instantiate process step 9
may be modified to omit the personalization string.

Required information not provided by the consuming application during

instantiation:
Comment: This input shall not be provided
by the consuming application as an input
parameter during the instantiate request.
1. entropy_input: Input bits containing entropy. The maximum length of the

entropy_input is implementation dependent, but shall be less than or equal to the
specified maximum length for the selected DRBG (see Section 10).

nonce: A nonce as specified in Section 8.4.2. Note that if a random value is used as
the nonce, the entropy input and nonce could be acquired using a single
Get_entropy_input call (see step 6 of the instantiate process); in this case, the first
parameter would be adjusted to include the entropy for the nonce (i.e.,

security strength would be increased by at least security_strength/2), process step
8 would be omitted, and the nonce would be omitted from the parameter list in
process step 9.

25

ANS X9.82, Part 3 - DRAFT - February 2006

Output to a consuming application after instantiation:

1. status: The status returned from the instantiate function. The status will indicate
SUCCESS or an ERROR. If an ERROR is indicated, either no state_handle or an
invalid state_handle shall be returned. A consuming application should check the
status to determine that the DRBG has been correctly instantiated.

2. state_handle: Used to identify the internal state for this instantiation in subsequent
calls to the generate, reseed, uninstantiate and test functions.

Information retained within the DRBG boundary after instantiation:

The internal state for the DRBG, including the working_state and administrative
information (see Sections 8.2.3 and 10).

Instantiate Process:

Comment: Check the validity of the input
parameters.

1. If requested instantiation_security_strength>
highest_supported_security strength, then return an ERROR_FLAG.

2. If prediction_resistance_flag is set, and prediction resistance is not supported, then
return an ERROR_FLAG.

3. If the length of the personalization_string > max_personalization_string_length,
return an ERROR_FLAG.

4 Set security strength to the nearest security strength greater than or equal to
requested_instantiation_security_strength.

Comment: The following step is required by
the Dual EC_DRBG when multiple curves
are available (see Section 10.4.2.2.2).
Otherwise, the step should be omitted.

5. Using the security _strength, select appropriate DRBG parameters.
Comment: Obtain the entropy input.

6. (status, entropy_input) = Get_entropy_input (security_strength, min_length,

max_length).
7. If an ERROR is returned in step 6, return a CATASTROPHIC_ERROR_FLAG.
8. Obtain a nonce. Comment: This step shall include any

appropriate checks on the acceptability of the
nonce. See Section 8.4.2.

Comment: Call the appropriate instantiate
algorithm in Section 10 to obtain values for
the initial working state.

26

ANS X9.82, Part 3 - DRAFT - February 2006

9. initial working state = Instantiate_algorithm (entropy input, nonce,
personalization_string).

10. Get a state_handle for a currently empty state. If an empty internal state cannot be
found, return an ERROR_FLAG.

11. Set the internal state indicated by state_handle to the initial values for the internal
state (i.e., set the working_state to the values returned as initial_working_state in
step 9 and any other values required for the working_state (see Section 10), and set
the administrative information to the appropriate values (e.g., the values of
security strength and the prediction_resistance_flag).

12. Return SUCCESS and state_handle.
9.3 Reseeding a DRBG Instantiation
The reseeding of an instantiation is not reéquired, but is recommended whenever a

consuming application and implementation are able to perform this process. Reseeding
will insert additional entropy into the generation of pseudorandom bits. Reseeding may be:

o explicitly requested by a consuming application,
e performed when prediction resistance is requested by a consuming application,

e triggered by the generate function when a predetermined number of pseudorandom
outputs have been produced or a predetermined number of generate requests have
been made (i.€., at the end of the seedlife), or

o triggered by external events (e.g., whenever sufficient entropy is available).

If a reseed capability is not available, a new DRBG instantiation may be created (see
Section 9.2).

The reseed function:
1. Checks the validity of the input parameters,
2. Obtains entropy input with sufficient entropy to support the security strength, and

3. Using the reseed algorithm, combines the current internal state with the new
entropy input and any additional input to determine the new internal state.

Let working_state be the working state for the particular DRBG, and let min_length and
max_ length be defined for each DRBG (see Section 10).

The following or an equivalent process shall be used to reseed the DRBG instantiation.
Input from a consuming application for reseeding:

1) state_handle: A pointer or index that indicates the internal state to be reseeded.
This value was returned from the instantiate function specified in Section 9.2.

2) additional_input: An optional input. The maximum length of the additional _input
(max_additional input_length) is implementation dependent, but shall be less than

27

ANS X9.82, Part 3 - DRAFT - February 2006

or equal to the maximum value specified for the given DRBG (see Section 10). If
additional_input will never be used, then the input parameter and step 2 of the
reseed process may be omitted, and step 5 may be modified to remove the
additional_input from the parameter list.

Required information not provided by the consuming application during reseeding:

Comment: This input shall not be provided
by the consuming application in the input
parameters.

1. entropy_input: Input bits containing entropy. The maximum length of the
entropy_input is implementation dependent, but shall be less than or equal to the
specified maximum length for the selected DRBG (see Section 10).

2. Internal state values required by the DRBG for reseeding, i.e., the working_state
and administrative information, as appropriate.

Output to a consuming application after reseeding:

1. status: The status returned from the function. The status will indicate SUCCESS or
an ERROR.

Information retained within the DRBG boundary after reseeding:
Replaced internal state values (i.e., the working_state).

Reseed Process:

Comment: Get the current internal state and
check the input parameters.

1. Using state_handle, obtain the current internal state. If state_handle indicates an
invalid or empty internal state, return an ERROR_FLAG.

2. If the length of the additional input > max_additional_input_length, return an
ERROR_FLAG.

Comment: Obtain the entropy input.

3. (status, entropy_inpuf) = Get_entropy_input (security_strength, min_length,
max_length).

4, If an ERROR is returned in step 3, return a CATASTROPHIC_ERROR_FLAG.

Comment: Get the new working_state using
the appropriate reseed algorithm in Section
10.

5. new_working state = Reseed_algorithm (working_state, entropy_input,
additional _input).

Comment: Save the new values of the internal
state.

28

6.

7.

ANS X9.82, Part 3 - DRAFT - February 2006

Replace the working_state in the internal state indicated by state_handle with the
values of new_working_state obtained in step 5.

Return SUCCESS.

9.4 Generating Pseudorandom Bits Using a DRBG

This function is used to generate pseudorandom bits after instantiation or reseeding (see
Sections 9.2 and 9.3). The generate function:

1.
2.

4.
5.

Checks the validity of the input parameters,

Calls the reseed function to obtain sufficient entropy if the instantiation needs
additional entropy because the end of the seedlife has been reached or prediction
resistance is required; see Sections 9.4.2 and 9.4.3 for more information on
reseeding at the end of the seedlife and on handling prediction resistance requests.

Generates the requested pseudorandom bits using the generate algorithm. The
generate algorithm will check that two consecutive outputs are not the same.

Updates the working state.

Returns the requested pseudorandom bits to the consuming application.

9.4.1 The Generate Function

Let outlen be the length of the output biock of the cryptographic primitive (see Section 10).

The following or an equivalent process shall be used to generate pseudorandom bits.

Input from a consuming application for generation:

i.
2.

state_handle: A pointer or index that indicates the internal state to be used.

requested_number_of bits: The number of pseudorandom bits to be returned from
the generate function. The max_number_of bits_per_request is implementation
dependent but shall be less than or equal to the value provided in Section 10 for a
specific DRBG.

requested_security_strength: The security strength to be associated with the
requested pseudorandom bits. DRBG implementations that support only one
security strength do not require this parameter; however, any consuming
application using that DRBG implementation must be aware of this limitation.

4. prediction_resistance_request: Indicates whether or not prediction resistance is to

be provided. DRBGs that are implemented to always or never support prediction
resistance do not require this parameter. However, the user of a consuming
application must determine whether or not prediction resistance may be required by
the application before electing to use such a DRBG implementation.

If prediction resistance is never provided, then the prediction_resistance_request
input parameter and step 5 of the generate process may be omitted, and step 7 may
be modified to omit the check for the prediction_resistance_request.

29

ANS X9.82, Part 3 - DRAFT - February 2006

If prediction resistance is always performed, then the prediction_resistance_request
input parameter and step 5 may be omitted, and steps 7 and 8 are replaced by:

status = Reseed (state_handle, additional_input).
If status indicates an ERROR, then return status.
Using state_handle, obtain the new internal state.

(status, pseudorandom_bits, new_working_state) = Generate_algorithm
(working state, requested_number_of bits).

Note that if additional_input is never provided, then the additional _input parameter
in the Reseed call above may be omitted.

5. additional_input: An optional input. The maximum length of the additional input
(max_additional_inpui_length) is implementation dependent, but shall be less than
or equal to the specified maximum length for the selected DRBG (see Section 10).
If additional_input will never be used, then the input parameter, process step 4,
step 7.4 and the additional_input input parameter in steps 7.1 and 8 may be
omitted.

Required information not provided by the consuming application during generation:

1. Internal state values required for generation for the working_stare and
administrative information, as appropriate.

Output to a consuming application after generation:

1. status: The status returned from the function. The status will indicate SUCCESS
or an ERROR.

2. pseudorandom_bits: The pseudorandom bits that were requested.
Information retained within the DRBG boundary after generation:

Replaced internal state values (i.e., the new working_state).
Generate Process:

Comment Get the internal state and check the
input parameters.

1. Using state_handle, obtain the current internal state for the instantiation. If
state_handle indicates an invalid or empty internal state, then return an
ERROR_FLAG.

2. If requested number of bits > max_number_of bits_per_request, then return an
ERROR_FLAG.

3. If requested security_strength > the security strength indicated in the internal
state, then return an ERROR _FLAG. ’

4. Ifthe length of the additional_input > max_additional_input_length, then return an
ERROR_FLAG.

30

ANS X9.82, Part 3 - DRAFT - February 2006

5. If prediction_resistance_request is set, and prediction_resistance_flag is not set,
then return an ERROR_FLAG.

6. Clear the reseed_required_flag. Comment: See Section 9.4.2 for discussion.

Comment: Reseed if necessary (see Section
9.3).

7. If reseed required flag is set, or if prediction_resistance_request is set, then
7.1 status = Reseed (state_handle, additional_input).
7.2 If status indicates an ERROR, then return status.
7.3 Using state_handle, obtain the new internal state.
7.4 additional input = the Null string.
7.5 Clear the reseed required flag.

Comment: Request the generation of
pseudorandom_bits using the appropriate
generate algorithm in Section 10.

8. (status, pseudorandom_bits, new_working_state) = Generate_algorithm
(working_state, requested_number_of bits, additional_input).

9. If starus indicates that a reseed is required before the requested bits can be
generated, then

9.1 Set the reseed_required_flag.
9.2 Gotostep7.

10. Replace the old working_state in the internal state indicated by state_handle with
the values of new_working_state.

11. Return SUCCESS and pseudorandom_bits.

Implementation notes:

If a reseed capability is not available, then steps 6 and 7 may be removed; and step 9 is
replaced by:

9. If status indicates that a reseed is required before the requested bits can be
generated, then

9.1 status = Uninstantiate (state_handle).

9.2 Return an indication that the DRBG instantiation can no longer be used.
9.4.2 Reseeding at the End of the Seedlife

When pseudorandom bits are requested by a consuming application, the generate function
checks whether or not a reseed is required by comparing the counter within the internal

3

ANS X9.82, Part 3 - DRAFT - February 2006

state (see Section 8.2.3) against a predetermined reseed interval for the DRBG
implementation. This is specified in the generate function (see Section 9.4.1) as follows:

a.
b.

g.

9.4.3

Step 6 clears the reseed_required_flag.

Step 7 checks the value of the reseed_required_flag. At this time, it is clear, so step
7 would be skipped unless prediction resistance was requested by the consuming
application. For the purposes of this explanation, assume that prediction resistance
was not requested.

Step 8 calls the Generate_algorithm, which will check whether a reseed is
required. If it is required, an appropriate status will be returned.

Step 9 checks the status returned by the Generate_algorithm. If the status
indicates that a reseed is not required, the generate process continues with step 10.

If the status indicates that a reseed is required, then the reseed required flag is set,
and processing continues by going back to step 7 (see steps 9.1 and 9.2).

The substeps in step 7 are executed. The reseed function will be called; any
additional_input provided by the consuming application in the generate request
will be used during reseeding. The new values of the internal state are acquired, any
additional _input provided by the consuming application in the generate request is
replaced by a Null string, and the reseed_required_flag is cleared.

The generate algorithm is called (again) in step 8, the check of the returned status is
made in step 9, and (presumably) step 10 is then executed.

Handling Prediction Resistance Requests

When pseudorandom bits are requested by a consuming application with prediction
resistance, the generate function specified in Section 9.4.1 checks that the instantiation
allows prediction resistance requests (see step 5 of the generate process); clears the
reseed_required_flag (even though the flag won’t be used in this case); executes the
substeps of step 7, resulting in a reseed, a new internal state for the instantiation and a Null
value for any additional input provided during the generate request; obtains pseudorandom
bits (see step 8); passes through step 9, since another reseed will not be required; and
continues with step 10.

9.5 Removing a DRBG Instantiation

The internal state for an instantiation may need to be “released” by erasing the contents of
the internal state. The uninstantiate function:

1.
2.

Checks the input parameter for validity.

Empties the internal state.

The following or an equivalent process shall be used to remove (i.e., uninstantiate) a
DRBG instantiation:

Input from a consuming application for uninstantiation:

32

ANS X9.82, Part 3 - DRAFT - February 2006

1. state_handle: A pointer or index that indicates the internal state to be “released”.

Output to a consuming application after uninstantiation:

1. status: The status returned from the function. The status will indicate SUCCESS or
ERROR_FLAG.

Information retained within the DRBG boundary after uninstantiation:
An empty internal state.
Uninstantiate Process:
1. If state_handle indicates an invalid state, then return an ERROR_FLAG.
2. Erase the contents of the internal state indicated by state_handle.
3. Return SUCCESS.
9.6 Self-Testing of the DRBG (Health Testing)

9.6.1 Discussion

A DRBG shall perform self testing to obtain assurance that the implementation continues
to operate as designed and implemented (health testing). The testing function(s) within a
DRBG boundary (or sub-boundary) shall test cach DRBG function within that boundary.
Note that this may require the creation and use of an instantiation for testing purposes only.

Errors occurring during testing shall be perceived as catastrophic DRBG failures (see
Section 9.7.3). The condition causing the failure shall be corrected and the DRBG re-
instantiated before requesting pseudorandom bits (also, see Section 9.7)

9.6.2 Testing the Instantiate Function

Known-answer tests on the instantiate function shall be performed prior to creating ¢ach
operational instantiation. However, if several instantiations are performed in quick
succession using the same input parameters, then the testing may be reduced to testing only
prior to creating the first instantiation using that parameter set until such time as the
succession of instantiations is completed. Thereafter, other instantiations shall be tested as
specified above.

The security_strength and prediction_resistance_flag to be used in the operational
invocation shall be used during the test. Representative fixed values and lengths of the
entropy_input, nonce and personalization_string (if allowed) shall be used; the value of
the entropy_input used during testing shall not be intentionally reused during normal
operations (either by the instantiate or the reseed functions). Error handling shall also be
tested, including whether or not the instantiate function handles an error from the entropy
input source correctly.

33

ANS X9.82, Part 3 - DRAFT - February 2006

If the values used during the test produce the expected results, and errors are handled
correctly, then the instantiate function may be used to instantiate using the tested values of
security_strength and prediction_resistance_flag.

An implementation should provide a capability to test the instantiate function on demand.
9.6.3 Testing the Generate Function

Known-answer tests shall be performed on the generate function before the first use of the
function and at reasonable intervals defined by the implementer. The implementer shall
document the intervals and provide a justification for the selected intervals.

The known-answer tests shall be performed for each implemented security _strength.
Representative fixed values and lengths for the requested_number_of bits and
additional_input (if allowed) and the working state of the internal state value (see Sections
8.2.3 and 10) shall be used. If prediction resistance is available, then each combination of
the security_strength, prediction_resistance_request and prediction_resistance_flag shall
be tested. The error handling for each input parameter shall also be tested, and testing shall
include setting the reseed counter to meet or exceed the reseed_interval in order to check
that the implementation is reseeded or that the DRBG is “shut down”, as appropriate.

If the values used during the test produce the expected results, and errors are handled
correctly, then the generate function may be used during normal operations.

Bits generated during health testing shall not be output as pseudorandom bits.

An implementation should provide a capability to test the generate function on demand.
9.6.4 Testing the Reseed Function

A known-answer test of the reseed function shall use the security_strength in the internal
state of the instantiation to be reseeded. Representative values of the entropy_input and
additional_input (if allowed) and the working state of the internal state value shall be used
(see Sections 8.2.3 and 10). Error handling shall also be tested, including an error in
obtaining the entropy_input (e.g., the entropy_input source is broken).

If the values used during the test produce the expected results, and errors are handled
correctly, then the reseed function may be used to reseed the instantiation.

Self-test shall be performed as follows:

1. When prediction resistance is available in an implementation, the reseed function
shall be tested whenever the generate function is tested (see above).

2. When prediction resistance is not available in an implementation, the reseed
function shall be tested whenever the reseed function is invoked and before the
reseed is performed on the operational instantiation.

An implementation should provide a capability to test the reseed function on demand.

34

ANS X9.82, Part 3 - DRAFT - February 2006

9.6.5 Testing the Uninstantiate Function

The uninstantiate function shall be tested whenever other functions are tested. Testing
shall attempt to demonstrate that error handling is performed correctly, and the internal
state has been zeroized.

9.7 Error Handling

9.7.1 General Discussion

The expected errors are indicated for each DRBG function (see Sections 9.2 - 9.5) and for
the derivation functions in Section 10.5. The error handling routines should indicate the
type of error.

9.7.2 Errors Encountered During Normal Operation

Many errors during normal operation may be caused by a consuming application’s
improper DRBG request; these errors are indicated by “ERROR_FLAG” in the
pseudocode. In these cases, the consuming application user is responsible for correcting
the request within the limits of the user’s organizational security policy. For example, if a
failure indicating an invalid requested security strength is returned, a security strength
higher than the DRBG or the DRBG instantiation can support has been requested. The user
may reduce the requested security strength if the organization’s security policy allows the
information to be protected using a lower security strength, or the user shall use an
appropriately instantiated DRBG.

For catastrophic errors (i.e., those errors indicated by the
CATASTROPHIC_ERROR_FLAG in the pseudocode), the DRBG shall not produce
further output until the source of the error is corrected, and the DRBG is re-instantiated.

9.7.3 Errors Encountered During Self-Testing

During self-testing, all unexpected behavior is catastrophic. The DRBG shall be corrected,
and the DRBG shall be re-instantiated before the DRBG can be used to produce
pseudorandom bits. Examples of unexpected behavior include:

o A test deliberately inserts an error, and the error is not detected, or

o A different result is returned from the instantiate, reseed or generate function
than was expected.

35

HMAC_DRBG ANS X9.82, Part 3 - DRAFT - February 2006

10 DRBG Algorithm Specifications
10.1 Overview

Several DRBGs are specified in this Standard. The selection of a DRBG depends on
several factors, including the security strength to be supported and what cryptographic
primitives are available. An analysis of the consuming application’s requirements for
random numbers should be conducted in order to select an appropriate DRBG. A detailed
discussion on DRBG selection is provided in Annex D. Pseudocode examples for each
DRBG are provided in Annex E. Conversion specifications required for the DRBG
implementations (e.g., between integers and bitstrings) are provided in Annex B.

10.2 Deterministic RBG Based on Hash Functions

10.2.1 Discussion

A hash DRBG is based on a hash function that is non-invertible or one-way. The hash-
based DRBG specified in this Standard has been designed to use any Approved hash
function and may be used by consuming applications requiring various security strengths,
providing that the appropriate hash function is used and sufficient entropy is obtained for
the seed.

The maximum security strength that could be supported by each hash function is provided
in ASC X9 Registry 0003. This Standard supports only four security strengths for DRBGs:
112, 128, 192, and 256 bits. Table 2 specifies the values that shall be used for the function
envelopes and DRBG algorithm for each Approved hash function.

Table 2: Definitions for the Hash-Based DRBG

SHA<1 ‘ SHA-224 ‘ SHA-256 \ SHA-384 | SHA-512

Supported security strengths See ASC X9 Registry 0003

highest supported_security_strength See ASC X9 Registry 0003

Output Block Length (outlen) 160 ‘ 224 | 256 \ 384 | 512
Required minimum entropy for security_strength

instantiate and reseed

Minimum entropy input length security_strength
(min_length)

Maximum entropy input length < 2% bits

(max_ length)

Seed length (seedlen) 440 \ 440 | 440 ‘ 888 \ 888
Maximum personalization string < 2% bits
length

(max_personalization_string_length)

36

HMAC_DRBG ANS X9.82, Part 3 - DRAFT - February 2006

SHA-1 \ SHA-224 | SHA-256 | SHA-384 | SHA-512

Maximum additional_input length < 2% bits
(max_additional_input_length)

max_number_of_bits_per_request < 2" bits
Number of requests between <2%

reseeds (reseed_interval)

Note that since SHA-224 is based on SHA-
256, there is no efficiency benefit for using
the SHA-224; this is also the case for SHA-
384 and SHA-512, i.e., the use of SHA-256 or
SHA-512 instead of SHA-224 or SHA-384,
respectively, is preferred. The value for
seedlen is determined by subtracting the count
field (in the hash function specification) and
one byte of padding from the hash function
input block length; in the case of SHA-1,
SHA-224 and SHA 256, seedlen =512 - 64 -
8 = 440; for SHA-384 and SHA-512, seedlen
=1024-128 - 8 = 888.

10.2.2 HMAC_DRBG (...)
10.2.2.1 Discussion

HMAC _DRBG uses multiple occurrences of
an Approved keyed hash function, which is
based on an Approved hash function. This -
DRBG uses the Update function specified in
Section 10.2.2.2 and the HMAC function
within the Update function as the derivation
function during instantiation and reseeding.
The same hash function shall be used
throughout an HMAC DRBG instantiation.
The hash function used shall meet or exceed
the security requirements of the consuming
application.

Figure 7 depicts the HMAC_DRBG in three
stages. HMAC_DRBG is specified using an
internal function (Update). This function is
called by the HMAC_DRBG instantiate,
generate and reseed algorithms to adjust the
internal state when new entropy or additional

37

{Opt) additional input

l If=Null

UPDATE

State H J

Key | v [resesd | H HMAC
countor

additional input

|

. | UPDATE

y | resced

lKey
counter

Figure 7: HMAC_DRBG Generate
Function

HMAC_DRBG ANS X9.82, Part 3 - DRAFT - February 2006

input is provided, as well as to update the internal state after pseudorandom bits are
generated. The operations in the top portion of the figure are only performed if the
additional input is not null. Figure 8 depicts the Update function.

10.2.2.2 Specifications

provided
daia

10.2.2.2.1 HMAC_DRBG Internal State

v
The internal state for HMAC_DRBG V [|0x00 [previded data
consists of:
1. The working state: Key ,
a. The value ¥ of outlen bits ey
’ HMAC
which is updated each time {;‘
another outlen bits of output s
are produced (where outlen is z ey
specified in Table 2 of Section
10.2.1). s | pmtadds
b. The outlen-bit Key, which is
updated at least once each time
that the DRBG generates

pseudorandom bits.

c. A counter (reseed_counter)
that indicates the number of
requests for pseudorandom bits

since instantiation or
reseeding. Figure 8: HMAC_DRBG Update Function

2. Administrative information:
a. The security_strength of the DRBG instantiation.

b. A prediction_resistance_flag that indicates whether or not a prediction
resistance capability is required for the DRBG instantiation.

The values of ¥ and Key are the critical values of the internal state upon which the security
of this DRBG depends (i.e., ¥ and Key are the “secret values™ of the internal state).

10.2.2.2.2 The Update Function (Update)
The Update function updates the internal state of HMAC_DRBG using the

provided_data. Note that for this DRBG, the Update function also serves as a derivation
function for the instantiate and reseed functions.

Let HMAC be the keyed hash function specified in FIPS 198 using the hash function
selected for the DRBG from Table 2 in Section 10.2.1.

The following or an equivalent process shall be used as the Update function.
Input:
38

HMAC_DRBG ANS X9.82, Part 3 - DRAFT - February 2006

1. provided _data: The data to be used.
2. K: The current value of Key.
3. V: The current value of V.

Output:
1. K: The new value for Key.
2. V: The new value for V.

HMAC_DRBG Update Process:
1. K=HMAC (X, V| 0x00 || provided_datay).
2. V=HMAC (&, V).
3. If (provided data = Null), then return K and V.
4, K=HMAC (X, V| 0x01 || provided_data).
5. V=HMAC (X,).
6. Return Kand V.

10.2.2.2.3 Instantiation of HMAC_DRBG

Notes for the instantiate function specified in Section 9.2:

The instantiation of HMAC_DRBG requires a call to the instantiate function specified
in Section 9.2. Process step 9 of that function calls the instantiate algorithm specified in
this section. For this DRBG, step 5 of the instantiate process should be omitted. The
values of highest_supported_security strength and min _length are provided in Table 2
of Section 10:2.1. The contents of the internal state are provided in Section 10.2.2.2.1.

The instantiate algorithm:

Let Update be the function specified in Section 10.2.2.2.2. The output block length
(outlen) is provided in Table 2 of Section 10.2.1.

The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG (see step 9 of the instantiate process in Section 9.2):

Input:
1. entropy_input: The string of bits obtained from the entropy input source.
2. nonce: A string of bits as specified in Section 8.4.2.

3. personalization_string: The personalization string received from the consuming
application. If a personalization_string will never be used, then step 1 may be
modified to remove the personalization_string.

Output:

1. initial_working_siate: The inital values for ¥, Key and reseed counter (see
Section 10.2.2.2.1).

39

HMAC_DRBG ANS X9.82, Part 3 - DRAFT - February 2006

HMAC_DRBG Instantiate Process:

—

seed_material = entropy_input || nonce || personalization_string.
Key = 0x00 00...00. Comment: outlen bits.
¥V =0x0101...01. Comment: outlen bits.

»

Comment: Update Key and V.
4. (Key, V)= Update (seed material, Key, V).
5. reseed_counter =1,

6. Return ¥, Key and reseed_counter as the initial_working_state.
10.2.2.2.4 Reseeding an HMAC_DRBG Instantiation

Notes for the reseed function specified in Section 9.3:

The reseeding of an HMAC_DRBG instantiation requires a call to the reseed function
specified in Section 9.3. Process step 5 of that function calls the reseed algorithm
specified in this section. The values for min_length are provided in Table 2 of Section
10.2.1.

The reseed algorithm:

Let Update be the function specified in Section 10.2.2.2.2. The following process or its
equivalent shall be used as the reseed algorithmn for this DRBG (see step 5 of the
reseed process in Section 9.3):

Input:

1. working_state: The current values for ¥, Key and reseed_counter (see Section
10.2.2.2.1).

2. entropy_input: The string of bits obtained from the entropy input source.

3. additional_input: The additional input string received from the consuming
application. If additional_input will never be used, then process step 1 may be
modified to remove the additional_input.

Output:

1. new_working state: The new values for V, Key and reseed_counter.
HMAC_DRBG Reseed Process:

1. seed_material = entropy input || additional _input.

2. (Key, V)= Update (seed_material, Key_old, V_old).
3. reseed counter=1.
4

. Return ¥V, Key and reseed_counter as the new_working_state.

40

HMAC_DRBG ANS X9.82, Part 3 - DRAFT - February 2006

10.2.2.2.5 Generating Pseudorandom Bits Using HMAC_DRBG

Notes for the generate function specified in Section 9.4:

The generation of pseudorandom bits using an HMAC_DRBG instantiation requires a
call to the generate function specified in Section 9.4. Process step 8 of that function
calls the generate algorithm specified in this section. The values for
max_number_of bits_per_request and outlen are provided in Table 2 of Section 10.2.1.

The generate algorithm :

Let HMAC be the keyed hash function specified in ASC X9 Registry 00004 using the
hash function selected for the DRBG. The value for reseed_interval is defined in Table
2 of Section 10.2.1.

The following process or its equivalent shall be used as the generate algorithm for this
DRBG (see step 8 of the generate process in Section 9.4):

Input:

1. working state: The current values for V, Key and reseed_counter (see Section
10.2.2.2.1).

2. requested number_of bits: The number of pseudorandom bits to be returned to
the generate function.

3. additional_input: The additional input string received from the consuming
application. If an implementation will never use additional_input, then step 3 of
the HMAC generate process may be omitted. If an implementation does not
include the additional_input parameter as one of the calling parameters, or if
the implementation allows additional_input, but a given request does not
provide any additional_input, then a Null string shall be used as the
additional_input in step 6.

Output:

1. status: The status returned from the function. The status will indicate
SUCCESS or indicate that a reseed is required before the requested
pseudorandom bits can be generated.

2. returned_bits: The pseudorandom bits to be returned to the generate function.
3. new working state: The new values for V, Key and reseed counter.
HMAC _DRBG Generate Process:

1. If reseed counter > reseed_interval, then return an indication that a reseed is
required.

2. If additional_input # Null, then (Key, V) = Update (additional_input, Key, V).
3. temp= Null.
4. While (len (temp) < requested_number_of bits) do:

41

HMAC_DRBG ANS X9.82, Part 3 - DRAFT - February 2006

4.1 V=HMAC (Key,V).

4.2 temp=temp| V.

returned_bits = Lefimost requested_number_of bits of temp.
(Key, V) = Update (additional_input, Key, V).
reseed_counter = reseed_counter + 1.

Return SUCCESS, returned_bits, and the new values of Key, V and
reseed_counter as the new_working_state).

® =N A

42

CTR_DRBG ANS X9.82, Part 3 - DRAFT - February 2006

10.3 DRBG Based on Block Ciphers

10.3.1 Discussion

A block cipher DRBG is based on a block cipher algorithm. The block cipher DRBG
specified in this Standard has been designed to use any Approved block cipher algorithm
and may be used by consuming applications requiring various levels of security, providing
that the appropriate block cipher algorithm and key length are used, and sufficient entropy

is obtained for the seed.
10.3.2CTR_DRBG

10.3.2.1 CTR_DRBG Description

CTR_DRBG uses an Approved block cipher
algorithm in the counter mode as specified in
ASC Registry 00002. The same block cipher
algorithm and key length shall be used for all
block cipher operations. The block cipher
algorithm and key length shall meet or
exceed the security requirements of the
consuming application.

CTR_DRBG is specified using an internal
function (Update). Figure 9 depicts the
Update function. This function is called by
the instantiate, generate and reseed algorithms
to adjust the internal state when new entropy
or additional input is provided, as well as to
update the internal state after pseudorandom
bits are generated. Figure 10 depicts the
CTR_DRBG in three stages. The operations
in the top portion of the figure are only
performed if the additional input is not null.

Table 3 specifies the values that shall be used
for the function envelopes and DRBG
algorithms.

Table 3: Definitions for the CTR_DRBG

Figure 9: CTR_DRBG Update Function

\ 128 ‘ 128 \

3Key | AES-128 | AES-192 | AES-256
TDEA
Supported security strengths See ASC X9 Registry
highest_supported_security_strength See ASC X9 Registry
Output block length (outlen) 128

43

Comment [ebb1]: This only applies to AES, .
not TDEA. How should this be handled ?

CTR_DRBG

ANS X9.82, Part 3 - DRAFT - February 2006

(reseed_interval)

3Key | AES-128 | AES-192 | AES-256
TDEA
Key length (keylen) 168 128 192 256
Required minimum entropy for security_strength
instantiate and reseed
Seed length (seedlen = outlen + keylen) 232 \ 256 [320 | 384
If a derivation function is used:
a. Minimum entropy input length security_strength
(min _length)
b. Maximum entropy input length < 2% bits
(max _length)
¢. Maximum personalization string < 2% bits
length
(max_personalization_string_length)
d. Maximum additional_input length < 2% bits
(max_additional_input_length)
If a derivation function is not used:
a. Minimum entropy input length seedlen
(min _length = outlen + keylen)
b. Maximum entropy input length seedlen
(max _length) (outlen + keylen)
¢. Maximum personalization string seedlen
length
(max_personalization_string_length)
d. Maximum additional_input Iength seedlen
(max_additional_input_length)
max_number_of bits_per_request <2" <2®
Number of requests between reseeds <2*” <2

The CTR_ DRBG may be implemented to use the block cipher derivation function
specified in Section 10.5.2 during instantiation and reseeding. However, the DRBG is
specified to allow an implementation tradeoff with respect to the use of this derivation
function. The use of the derivation function is optional if either of the following is
available to provide entropy input when requested:

44

CTR_DRBG ANS X9.82, Part 3 - DRAFT - February 2006

o An Approved RBG with a security strength equal to or greater than the required
security strength of the CTR_DRBG instantiation, or

e An Approved
conditioned entropy (Op() widitionsl input
source. 1r+ Null

Otherwise, the derivation
functon shall be used. Table 3
provides lengths required for the
entropy_input,
personalization_string and
additional input for each case.

BLOCK CIPHER
+| DERIVATION
FUNCTION

swpcdiem bits

UFDATE

When a derivation function is
not used by an implementation,
the seed construction shall not
use a nonce? (see Section 8.4.2).

When using TDEA as the

selected block cipher algorithm,
the keys shall be handled as 64-
bit blocks containing 56 bits of i
key and 8 bits of parity as
specified for the TDEA engine State i .
in ANS X9.52. reseed Block

colinter E t
10.3.2.2 Specifications =L

Iterate

—_—

Keyl v

10.3.2.21 CTR_DRBG Internal
State BB B] |

The internal state for
CTR_DRBG consists of:

Pseudorandom bits

1. The working_state: : °
a. The value V of outlen
bits, which is updated 1
each time another el
outlen bits of output Ky l et | ~ | UPDATE

Table 3 in Section
10.3.2.1).

are produced (sec F [
a1 J

Figure 10: CTR-DRBG

2 The specifications in this Standard do not accommodate the special treatment required for a nonce in this
case.

45

CTR_DRBG ANS X9.82, Part 3 - DRAFT - February 2006

The keylen-bit Key, which is updated whenever a predetermined number of
output blocks are generated.

A counter (reseed_counter) that indicates the number of requests for
pseudorandom bits since instantiation or reseeding.

2. Administrative information:

a.
b.

The security_strength of the DRBG instantiation.

A prediction_resistance_flag that indicates whether or not a prediction
resistance capability is required for the DRBG.

The values of ¥ and Key are the critical values of the internal state upon which the security
of this DRBG depends (i.e., ¥ and Key are the “secret values” of the internal state).

10.3.2.2.2

The Update Function (Update)

The Update function updates the internal state of the CTR_DRBG using the
provided_data. The values for outlen, keylen and seedlen are provided in Table 3 of
Section 10.3.2.1. The block cipher operation in step step 2.2 of the CTR_DRBG update
process uses the selected block cipher algorithm (also see Section 10.5.4).

The following or an equivalent process shall be used as the Update function:

Input:
1.

provided_data: The data to be used. This must be exactly seedlen bits in length;
this length is guaranteed by the construction of the provided_data in the
instantiate, resced and generate functions.

2. Key: The current value of Key.

3. V: The current value of V.
Output:

1. K: The new value for Key.

2. V: The new value for V.
CTR_DRBG Update Process:

1. temp = Null.

2. While (len (temp) < seedlen) do

2.1 V=(V+1)mod 2°",
2.2 output_block = Block_Encrypt (Key, V).
2.3 temp=temp || ouput_block.

3. temp = Lefimost seedlen bits of temp.

temp = temp ®© provided data.

5. Key = Leftmost keylen bits of temp.

46

CTR_DRBG ANS X9.82, Part 3 - DRAFT - February 2006

6. V=Rightmost outlen bits of temp.

7. Return the new values of Key and V.,
10.3.2.2.3 Instantiation of CTR_DRBEG

Notes for the instantiate function specified in Section 9.2:

The instantiation of CTR_DRBG requires a call to the instantiate function specified in
Section 9.2. Process step 9 of that function calls the instantiate algorithm specified in
this section. For this DRBG, step 5 of the instantiate function should be omitted. The
values of highest_supported_security_strength and min _length are provided in Table 3
of Section 10.3.2.1. The contents of the internal state are provided in Section
10.3.2.2.1.

The instantiate algorithm:

Let Update be the function specified in Section 10.3.2.2.2. The output block length
(outlen), key length (keylen), seed length (seedlen) and security strengths for the block
cipher algorithms are provided in Table 3 of Section 10.3.2.1.

For this DRBG, there are two cases for the processing. The input to the instantiate
algorithm is the same for each case; likewise for the output from the instantiate
algorithm. However, the process steps are slightly different (see Sections 10.3.2.2.3.1
and 10.3.2.2.3.2).

Input:
1. entropy_input: The string of bits obtained from the entropy input source.

2. nonce: A string of bits as specified in Section 8.4.2; this string shall not be
present unless a derivation function is used.

3. personalization_string: The personalization string received from the consuming
application.

Output:

1. initial working state: The inital values for V, Key, and reseed_counter (see
Section 10.3.2.2.1).

10.3.2.2.3.1 The Process Steps for Instantiation When a Derivation Function is Not Used

The following process or its equivalent shall be used as the instantiate algorithm for this
DRBG:

CTR_DRBG Instantiate Process:
1. temp = len (personalization_string).

Comment: Ensure that the length of the
personalization_string is exactly seedlen bits.
The maximum length was checked in Section

47

CTR_DRBG ANS X9.82, Part 3 - DRAFT - February 2006

9.2, processing step 3, using Table 3 to define
the maximum length.

2. If (I(fﬁmp < seedlen), then personalization_string = personalization_string ||
oee en-lemp.

seed_material = entropy_input © personalization_string.
Key = 0f&'e", Comment: keylen bits of zeros.
y = °ulen, Comment: outlen bits of zeros.

(Key, V) = Update (seed material, Key, V).

reseed_counter = 1.

NS A

8. Return V, Key, and reseed_counter as the initial working_state.

Implementation note:

If a personalization_string will never be provided from the instantiate function, then steps
1-3 are replaced by:

seed_material = entropy_input.

That is, steps 1-3 collapse into the above step.
10.3.2.2.3.2 The Process Steps for Instantiation When a Derivation Function is Used

Let Block_Cipher_df be the derivation function specified in Section 10.5.3 using the
chosen block cipher algorithm and key size

The following process or its equivalent shall be used as the instantiate algorithm for this
DRBG:

CTR_DRBG Instantiate Process:
1. seed material = entropy_input || nonce || personalization_string.

Comment: Ensure that the length of the
seed_material is exactly seedlen bits.

seed_material = Block_Cipher_df (seed_material, seedlen).
Key = 0n, Comment: keylen bits of zeros.
Y = (ouen, Comment: outlen bits of zeros.

(Key, V)= Update (seed_material, Key, V).

reseed_counter = 1.

S

7. Return V, Key, and reseed_counter as the initial_working_state.

Implementation note:

If a personalization_string will never be provided from the instantiate function, then steps
1-2 are replaced by:

48

CTR_DRBG ANS X9.82, Part 3 - DRAFT - February 2006

seed_material = Block_Cipher_df (entropy_input, seedlen).
10.3.2.2.4 Reseeding a CTR_DRBG Instantiation

Notes for the reseed function specified in Section 9.3:

The reseeding of a CTR_DRBG instantiation requires a call to the reseed function
specified in Section 9.3. Process step 5 of that function calls the reseed algorithm
specified in this section. The values for min _length are provided in Table 3 of Section
10.3.2.1.

The reseed algorithm:

Let Update be the function specified in Section 10.3.2.2.2. The seed length (seedlen) is
provided in Table 3 of Section 10.3.2.1.

For this DRBG, there are two cases for the processing. The input to the reseed algorithm is
the same for each case; likewise for the output from the reseed algorithm. However, the
process steps are slightly different (see Sections 10.3.2.2.4.1 and 10.3.2.2.4.2).

Input:

1. working state: The current values for V, Key, previous_output_block and
reseed_counter (see Section 10.3.2.2.1).

2. entropy_input: The string of bits obtained from the entropy input source.

3. additional_input: The additional input string received from the consuming
application.

Output :
1. new_working state: The new values for V, Key, and reseed_counter.
10.3.2.2.4.1 The Process Steps for Reseeding When a Derivation Function is Not Used

The following process or its equivalent shall be used as the reseed algorithm for this
DRBG (see step 5 of the reseed process in Section 9.3):

CTR_DRBG Reseed Process
1. temp = len (additional_input).
Comment: Ensure that the length of the
additional_input is exactly seedlen bits. The
maximum length was checked in Section 9.3,
processing step 2, using Table 3 to define the

maximum length.

2. If (temp < seedlen), then additional_input = additional_input || gFecdlen - temp,

3. seed material = entropy_input ® additional_input.
4, (Key, V)= Update (seed_material, Key, V).

49

CTR_DRBG ANS X9.82, Part 3 - DRAFT - February 2006

5. reseed counter = 1.
6. Return V, Key and reseed counter as the new_working_state.

Implementation note:

If additional_input will never be provided from the reseed function, then steps 1-3 are
replaced by:

seed_material = entropy_input.
That is, steps 1-3 collapse into the above step.
10.3.2.2.4.2 The Process Steps for Reseeding When a Derivation Function is Used
Let Block Cipher_df be the derivation function specified in Section 10.5.3 using the
chosen block cipher algorithm and key size.

The following process or its equivalent shall be used as the reseed algorithm for this
DRBG (see step 5 of Section 9.3):

CTR_DRBG Reseed Process:
1. seed material = entropy_input || additional_input.

Comment: Ensure that the length of the
seed_material is exactly seedlen bits.

2. seed material = Block_Cipher_df (seed_material, seedlen).
3. (Key, V)= Update (seed_material, Key, V).
4, reseed counter=1.

5. Return V, Key, and reseed counter as the new_working_state.

Implementation note:

If additional_input will never be provided from the reseed function, then steps 1-2
become:

seed_material = Block_Cipher_df (entropy_input, seedlen).
10.3.2.2.5 Generating Pseudorandom Bits Using CTR_DRBG

Notes for the generate function specified in Section 9.4:

The generation of pseudorandom bits using a CTR_DRBG instantiation requires a call
to the generate function specified in Section 9.4. Process step 8 of that function calls
the generate algorithm specified in this section. The values for

max_number _of bits_per request, max_additional_input_length, and outlen are
provided in Table 3 of Section 10.3.2.1. If the derivation function is not used, then the
maximum allowed length of additional_input = seedlen.

For this DRBG, there are two cases for the processing. The input to the generate
algorithm is the same for each case; likewise for the output from the generate

50

CTR_DRBG ANS X9.82, Part 3 - DRAFT - February 2006

algorithm. However, the process steps are slightly different (see Sections 10.3.2.2.5.1
and 10.3.2.2.5.2).

Let Update be the function specified in Section 10.3.2.2.2, and let Block_Enerypt be
the function specified in Section 10.5.4. The seed length (seedlen) and the value of
reseed_interval are provided in Table 3 of Section 10.3.2.1.

Input:

1. working state: The current values for V, Key, and reseed_counter (see Section
10.3.2.2.1).

2. requested number of bits: The number of pseudorandom bits to be returned to
the generate function.

3. additional _input: The additional input string received from the consuming
application. If additional_input will never be allowed, then step 3 becomes:

additional_input = 07",

Output:

1. status: The status returned from the function. The starus will indicate
SUCCESS, or indicate that a reseed is required before the requested
pseudorandom bits can be generated.

2. returned_bits: The pseudorandom bits returned to the generate function.
3. working_state: The new values for V, Key, and reseed_counter.
10.3.2.2.5.1 The Process Steps for Generating Pseudorandom BitsWhen a Derivation
Function is Not Used for the DRBG Implementation

The following process or its equivalent shall be used as the generate algorithm for this
DRBG (see step 8 of the generate process in Section 9.4.1):

CTR_DRBG Generate Process:

1. If reseed counter > reseed_interval, then return an indication that a reseed is
required.

2. If (additional input # Null), then

Comment: Ensure that the length of the
additional _input is exactly seedlen bits. The
maximum length was checked in Section
9.4.1, processing step 4, using Table 3 to
define the maximum length. If the length of
the additional input is < seedlen, pad with
zero bits.

2.1 temp =len (additional_input).

51

CTR_DREG ANS X9.82, Part 3 - DRAFT - February 2006

2.2 [If (temp < seedlen), then
additional_input = additional_input ||

2.3 (Key, V)= Update (additional _input, Key, V).

Oseedlen - temp

Else additional_input = 0°°",
3. temp = Null.
4. While (len (temp) < requested_number_of bits) do:

41 V=(V+1)mod 2"

4.2 output_block = Block_Encrypt (Key, V).

4.3 temp = temp || output_block.

returned_bits = Leftmost requested_number of bits of temp.

Comment: Update for backtracking
resistance.

6. (Key, V)= Update (additional _input, Key, V).

7. reseed counter = reseed counter + 1.

8. Return SUCCESS and returned_bits; also return Key, V, and reseed_counter as

the new_working_state.

10.3.2.2.5.2 The Process Steps for Generating Pseudorandom BitsWhen a Derivation

Function is Used for the DRBG Implementation

The Block_Cipher_df is specified in Section 10.5.3 and shall be implemented using the
chosen block cipher algorithm and key size.

The following process or its equivalent shall be used as generate algorithm for this DRBG
(see step 8 of the generate process in Section 9.4.1):

CTR_DRBG Generate Process:

1.

If reseed_counter > reseed_interval, then return an indication that a reseed is
required.

If (additional _input + Null), then
2.1 additional_input = Block_Cipher_df (additional_input, seedlen).
2.2 (Key, V)= Update (additional_input, Key, V).
Else additional_input = 0°°“°",
temp = Null.
While (len (femp) < requested number_of _bits) do:
41 V=(V+1)mod 2"

4.2 output_block = Block_Encrypt (Key, V).

52

CTR_DRBG ANS X9.82, Part 3 - DRAFT - February 2006

4.3 temp=temp | output_block.
5. returned bits = Leftmost requested_number _of bits of temp.

Comment; Update for backtracking
resistance.

6. (Key, V)= Update (additional_input, Key, V).
7. reseed counter =reseed counter+ 1.

8. Return SUCCESS and returned_bits; also return Key, V, and reseed_counter as
the new_working_state.

53

Dual_EC_DRBG ANS X9.82, Part 3 - DRAFT - February 2006

10.4 Deterministic RBG Based on Number Theoretic Problems

10.4.1 Discussion

A DRBG can be designed to take advantage of number theoretic problems (e.g., the
discrete logarithm problem). If done correctly, such a generator’s properties of randomness
and/or unpredictability will be assured by the difficulty of finding a solution to that
problem. Section 10.4.2 specifies a DRBG based on the elliptic curve discrete logarithm
problem.

10.4.2 Dual Elliptic Curve Deterministic RBG (Dual_EC_DRBG)

10.4.2.1 Discussion

The Dual_EC_DRBG is based on the following hard problem, sometimes known as the
“elliptic curve discrete logarithm problem” (ECDLP): given points P and Q on an elliptic
curve of order n, find a such that Q = aP.

Dual EC_DRBG uses a seed that is m bits in length (i.e., seedlen = m) to initiate the
generation of outlen-bit pseudorandom strings by performing scalar multiplications on two
points in an elliptic curve group, where the curve is defined over a field approximately 2"
in size. For all of the NIST curves given in this Standard for the DRBG, m > 256. Figure
11 depicts the Dual_EC_DRBG.

seed 3
Tnsland, ox
Teseed omly
t « s N | r Extract
t | i
[Optional] ® & (*B) @G (s*Q) Rits
additional input T T
0 P Q Psendorandom

¥ sditicnsl nput= il Bits

Figure 11: Dual_EC_DRBG

The instantiation of this DRBG requires the selection of an appropriate elliptic curve and
curve points specified in Annex A.1 for the desired security strength. The seed used to
determine the initial value (s) of the DRBG shall have entropy that is at least
security_strength bits. Further requirements for the seed are provided in Section 8.2. This
DRBG uses the derivation function specified in Section 10.5.2 during instantiation and
reseeding.

Backtracking resistance is inherent in the algorithm, even if the internal state is
compromised. As shown in Figure 12, Dual_EC_DRBG generates a seedlen-bit number
for each step i = 1,2,3,..., as follows:

54

Dual_EC_DRBG ANS X9.82, Part 3 - DRAFT - February 2006

8i = @(X(Si-s *P))

Ri=o(x(S; *Q)).
Each arrow in the figure represents an Elliptic Ss —1 8 &% —
Curve scalar multiplication operation, followed
by the extraction of the x coordinate for the l |
resulting point and for the random output &; T
followed by truncation to produce the output R R,
(formal definitions for @ and x are given in —
Section 10.4.2.2.4). Following a line in the
direction of the arrow is the normal operation;]
inverting the direction implies the ability to solve Figure 12: Dual_EC_DRBG (...)
the ECDLP for that specific curve. An Backtracking Resistance
adversary’s ability to invert an arrow in the figure implies that the adversary has solved the
ECDLP for that specific elliptic curve. Backtracking resistence is built into the design, as
knowledge of S does not allow an adversary to determine S (and so forth) unless the
adversary is able to solve the ECDLP for that specific curve. In addition, knowledge of R
does not allow an adversary to determine S, (and so forth) unless the adversary is able to
solve the ECDLP for that specific curve.

Table 4 specifies the values that shall be used for the envelope and algorithm for each
curve. Complete specifications for each curve are provided in Annex A.1. Note that all
curves can be instantiated at a security strength lower than its highest possible security
strength. For example, the highest security strength that can be supported by curve P-384 is
192 bits; however, this curve can alternatively be instantiated to support only the 112 or
128-bit security strengths).

Table 4: