ANS X9.82, Part 3 - DRAFT August 2005

DRAFT X9.82 (Random Number Generation)

Part 3, Deterministic Random Bit Generator
Mechanisms

August 2005

Contribution of the U.S. Federal Government and not subject to copyright

N OO A WN A

ANS X9.82, Part 3 - DRAFT August 2005

Table of Contents

7.1
7.2 Functional Model COomponents..........cccoveveeersvrnens etetennse et s e an e e ro e aan 14
7.2.1 Introduction 8 c R 14
7.2.2 Entropy Input
7.2.3 Other Inputs
7.2.4 The Internal State..... Lenrebteanre s e e e s s e enas 15
7.2.5 The Internal State Transition FUNCHONccoeveeiunieeeceeeseneesceessesessssessesseseseesseseeessenseese 15
7.2.6 The Output Generation Function 16
7.2.7 Support Functions... . - 16
DRBG Concepts and General REQUIFEMENLSoceeveveerreeeereesremeseseeeeeeeeee e eessens 17
8.1 Introduction st e 17
8.2 DRBG Functions and a DRBG INStANtAtIONccevirsreeereeseseeesssessesessasessssessseseesseseeseneseeesseas 17
8.2.1 Functions e R bRt ae e e pRe bR e RR R st dnaas 17
8.2.2 DRBG INStANtiatioNSccoviveeecnrrsneeserinsssisssesesseeessessssessasesnssssesessssses 17
8.2.3 Internal States . . - 17
8.2.4 Security Strengths Supported by an INSEANTIAtIONce.ee.eevevereeeees oo seessseessee st e eeeeeeenns 18
8.3 DRBG Boundaries..........ccccecverrunrernnnens . - 19
8.4 Seeds...... Sabeeresreseee s e an e 21
841 GeNEral DISCUSSIONu.ciuiireeeees e sessssse st ssesse st seeseessessseeseesonssess e sesee e seeses e 21
8.4.2 Generation and Handling of Seedsco.......... 21
8.5 Other INPuts t0 the DRBGccicrensrnenmererreessssssssssssssisseeseaeessssssesssosssssessesstess sessessesens e eessene 24
8.5.1 DiSCUSSIONccccnvvrerrrrrcrcrre v " ttssstessanresaesasnnasatesnnn s e rn st nanneennren 24
8.6.2 Personalization Stringccevue... “ 24
8.6.3 Additional Input T T san s anararasasanatansanne 25

10

ANS X9.82, Part 3 - DRAFT August 2005

8.6 Prediction Resistance and BacKtracking RESISTANCEccovuereveeerseeesessrsrssessrseessssesesesesemseeersensas 25
DRBG FUNCHONS ..ottt ssse s b emese oo eesese st sen e s ves s semese st s 27
9.1 General DiSCUSSIONccccevvveeuciireeescreeeeeenceseesnens Ty 27
9.2 Instantiating @ DRBG.........c.ccmuiveiminsstannisnessnns s ssssssssssssssssesesorsssesssssssesrassssntasssesssstosssssesssosas 27
9.3 Reseeding a DRBG INSIANHIAtIONccvuvururiiereririnrinsnnnsesenssessssesssssersassesesssssmsassnnes 30
9.4 Generating Pseudorandom Bits USING @ DRBG............cceuccieeeeeermreosaeeessssnesrssessessssssesssssesssssesesens 32
9.5 Removing a DRBG Instantiation...........eceveevsmnnene. e e 35
9.6 AuXilliary FUNCLIONSccvvvererirnreirsessrersseseseesssssessesesesens 36
9.6.1 Introduction.........ccuevemrrmrrnnrvrvsnsenrisnene PN 36
9.6.2 Derivation Function Using a Hash Function (Hash_df)...... 36
9.6.3 Derivation Function Using a Block Cipher AIGOFthmcceceveeercresseressesseseseessessseseses 37
9.6.4 Block_Cipher_Hash FUNCLION........cccceeiivmnmrmrecsssesreeeeesesesessesessessesssssssssenss 39
9.7 Self-Testing of the DRBG.......cccveveerrmemrcerenecesersssesersens 39
9.7.1 Discussion.. : e .39
9.7.2 Testing the Instantiate FUNCHON «...ocevcevveeceeee e reans 39
9.7.3 Testing the Generate Function...... . SSRansinsnnnsasasasnssnn RTRTS TR TSRS .40
9.7.4 Testing the Reseed FUNCLIONcccvevcverieieicsssisssecsceesesssssssessonesssesssnens 40
9.7.5 Testing the Uninstantiate Function TN 41
DRBG Algorithm SpecifiCationscc.coccccciiiieinsinnsie e seseeserensesesssasasesessnesens 42
10.1 Deterministic RBGs Based on Hash FUNCLIONScccc.cuveeeecrvenrerseseessesesares 42
10.1.1 DISCUSSION ...cccvermrrrncstsimrernmssesersessnsessnssnsssassessessann 42
10.1.2 HaSh_DRBGcueercirrrercinineesseiss s ssseesesassssssssssssmsessesessasssssssessaes 43
10.1.2.1 DISCUSSION ...ttt ettt aee e et en e e rer s et 43
10.1.2.2 SPECfICAtONS.....coiiiuirerieiieeeeei ittt es e 43
10.1.2.2.1 Hash_DRBG Internal Statecococcevoviveesirooesosieoeorin. 43
10.1.2.2.2 Instantiation of HaSh_DRBGccoociieeieciiciiiiesionseressssssessesenesinnss
10.1.2.2.3 Reseeding a Hash_DRBG Instantiation....................
10.1.2.2.4 Generating Pseudorandom Bits Using Hash_DRBG.............c.cr.ovooo...
10.1.3 HMAC_DRBG (...) cucureeriiseeecereoseessrenns S 49
10.1.3.1 DiScUSSIONcceciviirinreiieerinnnn

10.1.3.2 SPECIICAHONSviveviviiisiieeeeieseceit ittt ettt

10.1.3.21
iii

ceeereneneenn. HMAC_DRBG Intel

ANS X9.82, Part 3 - DRAFT August 2005

10.1.3.2.2 The Update FUNCHON (UPAAE)..........ovviveormeiicinsitiieessieeeetenecseennee 50

10.1.3.2.3 Instantiation of HMAC_DRBGcccovimivimiinniiiiiiiiiiiiiinieisissincsinanes 51

10.1.3.2.4 Reseeding an HMAC_DRBG Instantiation.............cccccvvioviiiiniiiiniens 52

10.1.3.2.5 Generating Pseudorandom Bits Using HWAC_DRBGccc....... 53

10.2 DRBGs Based on Block Ciphers 55
10.2.1 DISCUSSION wuiiieiiiiiiiiniiisiiiiinisitiesins e scianasesonse sainessssassinassssosssnss st ssssessse s sssnassanssosenssnes 55
T30 o G 0 = £ C 57
10.2.2,1 DiSCUSSION iseesvsnsssnssnrsnasimimismansssans sos artsosessssassnsivnssanis sosuss s iisesessns s s smussabmni s 57
10.2.2.2 SPECIfICAtIONSciciiiiisiiie et nnaeins DT
10.2.2.2.1 CTR_DRBG Internal Statecccoomeeeiiiiieciricicieeceesiieeieaeeaeneeeay D7

10.2.2.2.2 The Update Function (Update)ccoeiiiaioeniiviecenniniieeniree e 58

10.2.2.2.3 Instantiation 0Of CTR_DRBGcccciciiiiciiiiiiniiiaiieiiiininisiecisinesseansieas 59

10.2.2.2.4 Reseeding a CTR_DRBG Instantiation.............ccccoooceiiiiiiiiiiiicn. 60

10.2.2.2.5 Generating Pseudorandom Bits Using CTR_DRBG................ccceivienns 62

10.2.3 OFB_DRBGcoeiiuuisrnnmssrasssssssasssossnssssssssnssssassssssssnssssssasansssasssasasssassas ..65

10.2.3.1 DISCUSSION ,..evereeeearsaerrnsirranssisssrenessnssnseressessssnessssmsasserssssassssmsnsessansessssnsnsesrssnsarssnsns O
10.2.3.2 SPECIHICAtIONS ...oiiiiiiiiiiiiiiiii ittt ittt ae e st e et ee s e e s sanreaesansasssaranasenieses OO

10.2.3.2.1 OFB_DRBG Internal Statecccociiemiiiiiieiiiesieiee i sescessi e aeisas 65

10.2.3.2.2 The Update Function(Update)cocuvimimmimmmiminienimniemmismmessnsneeans 66

10.2.3.2.3 Instantiation of OFB_DRBG (...} cccociiviicviiisisneiicmmmisiissssmssersisaemaeies 07

10.2.3.2.4 Reseeding an OFB_DRBG Instantiation..............cc.cccvevrvrrniersiienniennnn. 67

10.2.3.2.5 Generating Pseudorandom Bits Using OFB_DRBG..........cccccvevnnrrenrs. 87

10.3 Deterministic RBGs Based on Number Theoretic Problems.............. ; : 68
10.3.1 DiSCUSSION ...ovvvcianisinsairininssssnisssnissssssisssssssssssssasssssnssanasas 68
10.3.2 Dual Elliptic Curve Deterministic RBG (Dual_EC_DRBG).......cocccesnreniicscnnismsisnsssassssenisin 68
10.3.2.1 DiSCUSSION ysevisissssuminsemsns osiimososioon sesvsms ssnesss ssniss 15 esmss snassns s sos susswosiss Samsiiessssisntonsss 68
10.3.2.2 SPeCifiCatiONSvueriieieeeiieieiieiiioitirae et eeeencsmaassteseemssmsseseansseessnasassanasaassreenerrnnne £ |
10.3.2.2.1 Dual_EC_DRBG Internal State and Other Specification Details.......... 71

10.3.2.2.2 Instantiation of DUal_EC_DRBGcccciiieiimmirmiiminiciiasisrenssniesisneeans 71

10.3.2.2.3 Reseeding of a Dual_EC_DRBG Iinstantiation..............c.....cccccernnie 73

10.3.2.2.4 Generating Pseudorandom Bits Using Dual_EC_DRBG...........cccc...... 74

10.3.3 Micali-Schnorr Deterministic RBG (MS_DRBG).......ccccccunsmmmmnmnnimnsssmnnnissssssssssnsssssnens 77

v

ANS X9.82, Part 3 - DRAFT August 2005

10.3.3.1 DISCUSSION sisinsssuiiesrasivicinnssisnssssss ik s s e s 5 uns s aiar s AR 7 s A F o 77

10.3.3.2 MS_DRBG SpeCifications.c.ccociirmiieiiriiiiriiir i i e 79

10.3.3.2.1 Internal State for MS_DRBG.........cccoiuicciiiaiaciiiiiiicisiniciesassisnacnies 19

10.3.3.2.2 Selection of the M-S parametersccovvriviiiiiniinccc s 79

10.3.3.2.3 Instantiation of MS_DRBGcccoociiciniiiiniiiiiiiiiisisiis e 80

10.3.3.2.4 Reseeding of a MS_DRBG Instantiation.........cc.ccciviiiiiciiniiiiiiniinnnns 82

10.3.3.2.5 Generating Pseudorandom Bits Using MS_DRBGcccccecciiiuninnnnne 83

11 ASSUTANCE ..ovieirerimirrintissir st s s s s m s ers s e r s e e s ms e E R4 H AR e ER AR e R ER RSO H e R R E e O e e P Evae e v smnanantas 86
11.1 Overview e 86

11.2 Minimal Documentation Requirements U OTPRNY 87

11.3 Implementation Validation Testing........c..ccouvuinnnnens R 87
11.4 Operational/Health Testingccoccevcmminicnniiiane T 87
11.4.1 Overview87

11.4.2 Known Answer Testing.........ccceccvvininineiine - 88

Annex A: (Normative) Application-Specific Constantsccceneiiicicinn. 89
A.1 Constants for the Dual_EC_DRBG . . . 89

A.1.1 Curves over Prime Fields .. e ——————— " 89
A1 CUIVE P-224 i il ia vins e fiadissansiasabvaassadimavsaaaiinn.89
A.1.1.2 Curve P-256 iimsaiisisiaiusiaiimdininitad i idimias i nmammeannsn 0
A.1.1.3 Curve P-384 iiunumcisasamsaataismivisinsindasinasnsmeinmmaeaaran 90
A 11,4 CUINVE P-B21 s iicauriaiimsensisaivnssnss snsinsebss issassisisns ion saas s sasnssesnss sssaiass sisnnss s paoms sopess sisss 91

A.1.2 Curves over Binary Fleldsccccerirmemminicccnimmnnencsnnnnenne, 91
A1.2.1 CUIVE K233 .ot sreseessassss s am s mn s e smene e sasns s s siesssnie 92
A.1.2.3 Curve B-233 . isiiinnaiminr i o amanisneriviesissivivne i 93
A.1.2.2 Curve K-283
A.1.2.4 Curve B-283 ...
A.1.2.5 Curve K-409
A.1.2.6 CUVe B-409. o ummsnmsmmmmmssseosyn sy s tressppasmmuessm siasecs sy sasmranmmszmasssosssasrasmingrasss
N B0 A 01 V- o SO - ¥
A.1.2.8 CUIVE B-571 i iiisnmiscisnnmasmiismauenssssiriasia 98

A.2 Test Moduli for the MS_DRBG {...).... T e L T 5 99

ANS X9.82, Part 3 - DRAFT August 2005

A.2.1 The Test Modulus n of Size 2048 BitSccciuvirmriirncenvecnmme s 100

A.2.2 The Test Modulus n of Size 3072 BitScccccvvmmnvmnccsmncnrn s 100

ANNEX B : (Normative) Conversion and Auxilliary Routines............................ 101
B.1 Bitstring t0 @an INteger ..o s s 101

B.2 Integer to a Bitstring . e T T T T L T e e e e e e 101

B.3 Integer to an Octet StriNg.......ccivriimiiminiiiecies s s st ssn e e e 101

B.4 Octet String t0 an INtEger.. ..o iiciiriiiicierrctetse s e e n s s e s nn s 102
Annex C: (Informative) Security Considerations............ccouevninnnicninsniencnnenn. 103
C.1 The Security of Hash FUNCLIONS ...ttt e 103

C.2 Algorithm and Keysize Selection........c.cccvvciniininnennnnnresis st 103

C.3 Extracting Bits in the Dual_EC_DRBG (...) ccccooviiimmmiinimninnmssrnnnmninnnssssinsss st s s e 105

C.3.1 Potential Bias Due to Modular Arithmetic for Curves Over Fy....ccrviiinnnninnnennnnee 105

C.3.2 Adjusting for the missing bit(s) of entropy in the x coordinates.cc.cccocrrmmimrcneiienns 106

ANNEX D: (Informative) Functional Requirementscccovvnrnissienvnenvnnne 110
D.1 General Functional ReqUIrementsccccereecimnrcrinim i esssese st s e snssssnsas 110

D.2 Functional Requirements for Entropy INput...........cccccvveiminimmnnmnnmnnee e 110

D.3 Functional Requirements for Other INputs..............ccccuimimimnnn s e 110

D.4 Functional Requirements for the Internal State...........cccuimiiiiiiciiinieninns e 111

D.5 Functional Requirements for the Internal State Transition Function........ccccoveinmnimnnnncccvinnnins 11

D.6 Functional Requirements for the Output Generation Function...........cccvvuvceeennnnnn 112

D.7 Functional Requirements for SUpport FUNCLIONSccciiimnimimnnmemnnnneeene e nanss 113
ANNEX E: (Informative) DRBG Selectioncuvicinnccninvcnnciisiniisnseisenns 118
E.1 Choosing @ DRBG AIGOIithM......cccccecimrimieeiinminmmesininmnsn e ceecmnn s stssss s snmssnasnns 11§

E.2 DRBGs Based on Hash FUNCiONS.........ccccoiiiniiniiecininn s cccsmn s s e 115

E.21 Hash_DRBG : U U OOTPPFPS 116

E.2.1.1 Implementation ISSUES........c..coiiiiiiii it e 116

E.2.1.2 Performance PrOPErtiesccoccvuerirririrmsresseiimsssnesssssssessssssiesssanssesssssssssssnsisenses 116

E.2.2 HMAC_DRBGocceeirmrmrrmscmsmmsnssreesssanss tessatinnasantsnmmnsassssesseasasasess nssmsnnssnnsssssssnssasssnnssane 116

E.2.2.1 Implementation Properties.........cccccovveiciiiciiniiinii e 117

E.2.2.2 Performance Properties.coo i iicsiiiieisssscsisssssrsnssssnsnsssssasssnsnsases 117

E.2.3 Summary and Comparison of Hash-Based DRBGS..........cccocrvrmniirvecssmmmmnmmsnnnnsnssssssss s 118

Vi

E.3

E.4

F.1
F.2

F.3

F.4

F.5

ANS X9.82, Part 3 -

E.2.3.1 Security 118

DRAFT August 2005

E.2.3.2 Performance / Implementation Tradeoffsc..oovvinveimnnsnnmmnnnsnnnneccsnnnescccennnnnan 119
DRBGs Based on BIOCK CIPherscccuvmernnninmmmnciieomonmnmnne s s ssseseas 120
E.3.1 The Two Constructions: CTR and OFB..........ccovimiicicinminmnninmnc s sssesssscsens 120
E.3.2 Choosing a BIOCK CIPRer......cccviviiiisiiiimisiniiinseesssisssns s ssenssmnnsses s sssnns st sssssssssns assess 120
E.3.3 Conditioned Entropy Sources and the Derivation FUNCtion........c.ccevvmnserreresnnscesneniaennns 122
DRBGs Based on Hard Problems.. PPN OIS 122
E.4.1 Implementation Considerations N SO, 123
E.4.1.1 DUALEC_DRBG ...cooutivoceeisirmiiesnimisseaseessemssmnssnsamsssesseases s ssasss s ssssstesssassssesssanaear 123
E.4.1.2. MICAlI-SCRNOIT.......ciiiiitiiiiciece it 123
ANNEX F: (Informative) Example Pseudocode for Each DRBG...........cconmnmrvervnnnncecienianne 125
PreliMINATIES.cci ittt e e s e e s oo b e e s s R e e e s e s R b e e SRR 125
Hash_DRBG Example......c.corerrinnee saasaeunnnannn h e aans e S ——— 125
F.2.1 DISCUSSION tiiiiiriiimsiismmisanemssinasetsastntssnssassissianiassassisaenan s soneesastnssannasnnssmssanssss et sosnessnns nsneas 125
F.2.2 Instantiation of Hash_DRBGcccccccmmimmcmmerisnnscesorsninssmunmsmmmsmm s e ssorassssssarmnmanans 126
F.2.3 Reseeding a Hash_DRBG Instantiationccccvemennmniiiininnncniiicniiiens 127
F.2.4 Generating Pseudorandom Bits Using Hash_DRBG..........ccceorveriveniennnnsercnennnmnnnsnine 129
HMAC_DRBG Example..........ccovnuans b brreeeseeeesERREEiEREAREERSeTASEOSIICEROS S R RTER SRR AR SR e r R e e va e Rna s 131
F.3.1 DISCUSSION weceiiecisrstiiintisnesiiimiianiis s isas s aeaseesbasssmnne s sasssmn s s sbr s assa e g am s sa s n e smnsann e santnes 131
F.3.2 Instantiation of HMAC_DRBGc.cccccrmmmimnrmmmmmneemrmimeeenissmnsmmnnns s nssssssssssssssssannenss 131
F.3.3 Generating Pseudorandom Bits Using HMAC_DRBG..........cccceerctimmmecnnnnmnnsnisinissiisnae 133
CTR_DRBG EXAMPI@.....eeiriuiiimniriiniiaiiiiimssassesimnses s ssas s s neseasss snsssassmssse s masmasante sssasssnsnassnss 134
F.idl DISCUSSION ..cccieiieeirsunsnnsiriasssnsirsn it snasasas s ssansnnsass s sam e naena e sn e s e s s an st nannnsnnmmr s a s s sk srnssansanes 134
F.4.2 The Update FUNCLIONcceerrierrisciirsssensssnsnsnnnnnas s ssssanesssssnnnssssmscessmnnnsssesssssnss sosnnnnenss 136
F.4.3 Instantiation of CTR_DRBG......ccccccciirmmrinmscninimieniimmnissrsiissssssessssssanssssesssassssssasssssssesas 136
F.4.4 Reseeding a CTR_DRBG Instantiation............ccccvevnmnmimnnniiiiiisnn s 137
F.4.5 Generating Pseudorandom Bits Using CTR_DRBGcccvuirevcncininicinecc e 138
OFB_DRBG EXAMPI@..ccciiciinrscasmrestnniinmiiiinsissiismssssissastsonsssssmnssnseasnmsssnnsssssnass sansnasass susnassmsssass sssnns 141
F.5.1 DISCUSSION wccouriamiseirinisnissesssesssissnssnmssssssrsasssssssnssssssasnensanessanssmeassssns sessasass e s mmansannnsmnssanases 141
F.5.2 The Update FUNCLIONccovomimiieciiminisirsnsssssssenssnmnnsrnsseranssssssessansmnsssssnnsmnnsnnsnssss vosasses 142
F.5.3 Instantiation of OFB_DRBG...........ccceiiinmmrmmnnceinmiesmnmmmminssssssnnes e nes s smersssssnsssane 142
F.5.4 Reseeding the OFB_DRBG Instantiation 143

vii

ANS X9.82, Part 3 - DRAFT August 2005

F.5.5 Generating Pseudorandom Bits using OFB_DRBG e 145

F.6 Dual_EC_DRBG EXaMPIe....ccccrirmrrirarnmrrnssmnersssssessssnissmnimmmsnmsassenmssmsstsssnnssessasssasennaamssnneasasnes sose 147
F.6.1 DiSCUSSION wcivieermrerrmnnnersmrnn s ssnsssseserenennasnnns 147

F.6.2 Instantiation of Dual_EC_DRBG..........cccorecriismmmminnnnnmnmmmmmmmmsimssssesssserssssssessssssessansennans 147

F.6.3 Reseeding a Dual EC_DRBG Instantiationc.iiiimiisimmetm s 150

F.6.4 Generating Pseudorandom Bits Using Dual_EC_DRBG.........ccccecerrrmnmnimrmmmsnnsnscansonnines 151

F.7 MS_DRBG EXaMPI..ciiicciriiirenirieenssssitisinnmmimmninrinesinsmnssessessssseseseassenmessannanmasansesass nssssss sasaannesass 153
F.7.1 DISCUSSION .uevceiceciirineisniicmsmmsn s rssasestssansssessssssnsnas s sassn s same s s ssaenaenass sonssnnsssenansnsannnsnnnnnnnsns 153

F.7.2 Instantiation of MS_DRBG......cccccccccctieriinmmreiissmermismnrmsss s rssseseassessssssnassssssnssssasnass snsasaas 154

F.7.3 Reseeding an MSDRBG Instantiationcoiiciimimnininimninccnsensininoneonssssea. 156

F.7.4 Generating Pseudorandom Bits Using MS_DRBG 157
ANNEX G: (Informative) Bibliography160

viii

ANS X9.82, Part 3 - DRAFT - August 2005

Random Number Generation
Part 3: Deterministic Random Bit Generator Mechanisms

Contribution of the U.S. Federal Government and not subject to copyright

1 Scope

This part of ANSI X9.82 defines techniques for the generation of random bits using
deterministic methods. This part includes:

1. A model for a deterministic random bit generator,
2. Requirements for deterministic random bit generator mechanisms,

3. Specifications for deterministic random bit generator mechanisms that use hash
functions, block ciphers and number theoretic problems,

4. Implementation issues, and
5. Assurance considerations.

The precise structure, design and development of a random bit generator is outside the
scope of this standard.

This part of ANS X9.82 specifies several diverse DRBG mechanisms, all of which
provided acceptable security when this Standard was approved. However, in the event that
new attacks are found on a particular class of mechanisms, a diversity of approved
mechanisms will allow a timely transition to a different class of DRBG mechanism.

Random number generation does not require interoperability between two entities, e.g.,
communicating entities may use different DRBG mechanisms without affecting their
ability to communicate. Therefore, an entity may choose a single appropriate DRBG
mechanism for their applications; see Annex E for a discussion of DRBG selection.

2 Conformance

An implementation of a deterministic random bit generator (DRBG) may claim
conformance with ANSI X9.82 if it implements the mandatory provisions of Part 1, the
mandatory requirements of one or more of the DRBG mechanisms specified in this part of
the Standard, an entropy source from Part 2 and the appropriate mandatory requirements of
Part 4.

Conformance can be assured by a testing laboratory associated with the Cryptographic
Module Validation Program (CMVP) (see http://csrc.nist.gov/cryptval). Although an
implementation may claim conformance with the Standard apart from such testing,
implementation testing through the CMVP is strongly recommended.

9

ANS X9.82, Part 3 - DRAFT - August 2005

3 Normative references

The following referenced documents are indispensable for the application of this
document. For dated references, only the edition cited applies. Nevertheless, parties to
agreements based on this document are encouraged to consider applying the most recent
edition of the referenced documents indicated below. For undated references, the latest
edition of the referenced document (including any amendments) applies.

ANS X9.52-1998, Triple Data Encryption Algorithm Modes of Operation.

ANS X9.62-2000, Public Key Cryptography for the Financial Services Industry - The Elliptic
Curve Digital Signature Algorithm (ECDSA).

ANS X9.63-2000, Public Key Cryptography for the Financial Services Industry - Key
Agreement and Key Transport Using Elliptic Key Cryptography.

ANS X9.82, Part 1-200x, Overview and Basic Principles, Draft.

ANS X9.82, Part 2-200x, Entropy Sources, Draft.

ANS X9.82, Part 4-200x, RBG Constructions, Draft.

FIPS 180-2, Secure Hash Standard (SHS), August 2002; ASC X9 Registry 00003.

FIPS 197, Advanced Encryption Standard (AES), November 2001; ASC X9 Registry 00002.

FIPS 198, Keyed-Hash Message Authentication Code (HMAC), March 6, 2002; ASC X9
Registry 00004.

4 Terms and definitions

Definitions used in this part of ANS X9.82 are provided in Part 1.

5 Symbols
The following symbols are used in this document.
Symbol Meaning
+ Addition
X1 Ceiling: the smallest integer > X. For example, [5| = 5, and

[5.3] =6.

XeoY Bitwise exclusive-or (also bitwise addition mod 2) of two

bitstrings X and Y of the same length.

10

ANS X9.82, Part 3 - DRAFT - August 2005

X\IlY Concatenation of two strings X and Y. X and Y are either both
bitstrings, or both octet strings.

ged (x,y) The greatest common divisor of the integers x and y.

len (a) The length in bits of string a.

x mod n The unique remainder » (where 0 < r < n-1) when integer x is
divided by n. For example, 23 mod 7 = 2.
Used in a figure to illustrate a "switch" between sources of

@ input.

{as, ..a} The internal state of the DRBG at a point in time. The types
and number of the a; depends on the specific DRBG.

0 A string of x zero bits.

"

ANS X9.82, Part 3 - DRAFT - August 2005

6 General Discussion and Organization

Part 1 of this Standard (Random Number Generation, Part 1. Overview and Basic
Principles) describes several cryptographic applications for random numbers, specifies the
characteristics for random numbers and random number generators, and provides
mathematical and cryptographic background information on the concept of randomness.
Random bit generators are used for the generation of random numbers. Part 1 specifies
requirements for random bit generators that are applicable to both non-deterministic
random bit generators (NRBGs) and deterministic random bit generators (DRBGs). In
addition, Part 1 also introduces a general functional model and a conceptual cryptographic
Application Programming Interface (API) for random bit generators.

Part 2 of this Standard (Entropy Sources) discusses entropy sources used by random bit
generators. In the case of DRBGs, the entropy sources are required to seed and reseed the
DRBG.

Part 4 of this Standard (Random Bit Generator Constructions) provides guidance on
combining components to construct random bit generators.

This part of the Standard (Random Number Generation, Part 3: Deterministic Random Bit
Generator Mechanisms) specifies Approved DRBG mechanisms. A DRBG mechanism is
an RBG component that utilizes an algorithm to produce a sequence of bits from an initial
internal state that is determined by an input that is commonly known as a seed. Because of
the deterministic nature of the process, a DRBG mechanism is said to produce
“pseudorandom” rather than random bits, i.e., the string of bits produced by a DRBG
mechanism is predictable and can be reconstructed, given knowledge of the algorithm, the
seed and any other input information. However, if the input is kept secret, and the
algorithm is well designed, the bitstrings will appear to be random. [

The seed for a DRBG mechanism requires that sufficient entropy be provided during
instantiation and reseeding (see Parts 2 and 4 of this Standard). While a DRBG mechanism
may conform to this part of the Standard (i.e., Part 3), an implementation cannot achieve
the goals specified in Part 1 unless the entropy input source is included as specified in Part
4, That is, the security of an RBG that uses a DRBG mechanism is a system
implementation issue; both the DRBG mechanism and its entropy input source must be
considered.

Throughout the remainder of this document, the term “DRBG mechanism™ has been
shortened to “DRBG”.

The remaining sections of this part of the Standard are organized as follows:

— Section 7 provides a functional model for a DRBG that particularizes the functional
model of Part 1.

— Section 8 provides DRBG concepts and general requirements.

— Section 9 specifies the DRBG functions that will be used to access the DRBG
12

l

Comment [ebb1]: Page: 21
Mike to provide alternate text ?

ANS X9.82, Part 3 - DRAFT - August 2005

algorithms specified in Section 10.

— Section 10 specifies Approved DRBG algorithms.

— Section 11 addresses assurance issues for DRBGs.
This part of the Standard also includes the following normative annexes:

— Annex A specifies additional DRBG-specific information.

— Annex B provides conversion routines,

— Annex C discusses security considerations for selecting and implementing DRBGs.
The following informative annexes are also included:

— Annex D discusses the functional requircments specified in Part 1 as they are
fulfilled by this part of the Standard,

— Annex E provides a discussion on DRBG selection.
— Annex F provides example pseudocode for each DRBG,
— Annex G provides a bibliography for related informational material.

13

ANS X9.82, Part 3 - DRAFT ~ August 2005

7 DRBG Functional Model
7.1 Functional Model

Part 1 of this Standard provides a general functional model for random bit generators
(RBGs). Figure 1 particularizes the functional model of Part 1 for DRBGs.

Personalization
String Nonce Entropy Input Additional Input
X I
Instantiate Reseed
Function Function

\ 4
Unmstar.mate IuterRalState Gener.ate
Function Function

SN - Error l
Tests |
State Pseudorandom Output

Figure 1: DRBG Functional Model

7.2 Functional Mode! Components
7.2.1 Introduction

Part 1 of this Standard provides general functional reguirements for random bit generators,
These requirements are discussed briefly in this section.

7.2.2 Entropy Input

The entropy input is provided to a DRBG for the seed (see Section Jiil]). The entropy
input and the seed shall be kept secret. The secrecy of this information provides the basis
for the security of the DRBG. At a minimum, the entropy input shall provide the requested
amount of entropy for a DRBG. Appropriate sources for the entropy input are discussed in
Parts 2 and 4 of this Standard.

The DRBGs, as specified in this part of the Standard and further discussed in Part 4, allow
14

‘| Comment [ebb2]: Page: 23
Does the material in Annex D need to be
included here 7

ANS X9.82, Part 3 - DRAFT — August 2005

for some bias in the entropy input. Whenever a bitstring containing entropy is required by
the DRBG, a request is made that indicates the minimum amount of entropy to be returned;
the request may obtain entopy input bits from a buffer containing readily available entopy
bits or may cause entropy input bits to be acquired. The request may be fulfilled by a
bitsting that is equal to or greater in length than the requested entropy. The DRBG expects
that the returned bitstring will contain at least the amount of entropy requested. Additional
entropy beyond the amount requested is not required, but is desirable.

7.2.3 Other Inputs

Other information may be obtained by a DRBG as input. This information may or may not
be required to be kept secret by a consuming application; however, the security of the
DRBG itself does not rely on the secrecy of this information. The information should be
checked for validity when possible.

During DRBG instantiation, a nonce is required and is combined with the entropy input to
create the initial DRBG seed. Criteria for the nonce are provided in Section 8.4.

This Standard recommends the insertion of a personalization string during DRBG
instantiation; when used, the personalization string is combined with the entropy bits and a
nonce to create the initial DRBG seed. The personalization string shall be unique for all
instantiations of the same DRBG type (e.g., HMAC_DRBG). See Section 8.5.2 for
additional discussion on personalization strings.

Additional input may also be provided during reseeding and when pseudorandom bits are
requested. See Section 8.5.3 for a discussion of this input.
7.2.4 The Internal State

The internal state is the memory of the DRBG and consists of all of the parameters,
variables and other stored values that the DRBG uses or acts upon. The internal state
contains both administrative data and data that is acted upon and/or modified during the
generation of pseudorandom bits (i.e., the working state). The contents of the internal state
is dependent on the specific DRBG and includes all information that is required to produce
the pseudorandom bits from one request to the next.

7.2.5 The DRBG Functions
The DRBG functions handle the DRBG’s internal state. The DRBGs in this Standard have
four separate functions:

1. The instantiate function acquires entropy input and combines it with a nonce and a
personalization string to create a seed from which the initial internal state is
created.

2. The generate function generates pseudorandom bits upon request, using the current
internal state, and generates a new internal state for the next request.

3. The reseed function acquires new entropy input and combines it with the current

15

ANS X9.82, Part 3 - DRAFT - August 2005

internal state and any additional input that is provided to create a new seed and a
new internal state.

4. The uninstantiate function zeroizes (i.e., crases) the internal state.
7.2.6 Testing

Testing is concerned with assessing and reacting to the health of the DRBG. The health
tests are discussed in Sections il and HH.

16

ANS X9.82, Part 3 - DRAFT - August 2005

8. DRBG Concepts and General Requirements
8.1 Introduction

This section provides concepts and general requirements for the implementation and use of
a DRBG. The DRBG functions are explained and requirements for an implementation are
provided.

8.2 DRBG Functions and a DRBG Instantiation
8.21 Functions

A DRBG requires instantiate, uninstantiate, generate, and testing functions. A DRBG may
also include a reseed function. A DRBG shall be instantiated prior to the generation of
output by the DRBG.

8.2.2 DRBG Instantiations

A DRBG may be used to obtain pseudorandom bits for different purposes (e.g., DSA
private keys and AES keys) and may be separately instantiated for each purpose.

A DRBG is instantiated using a seed and may be reseeded; when reseeded, the seed shall
be different than the seed used for instantiation. Each seed defines a seed period for the
DRBG instantiation; an instantiation consists of one or more seed periods that begin when
a new seed is acquired (see Figure 2).

8.2.3 Internal States

During instantiation, an Instantiate: Initialize with seed
initial internal state is
derived from the seed.
The internal state for an
instantiation includes:

1. Working state: Seed period 2

A

a. One or more [(Opt) Reseed withseed , |
values that
are derived . Seed periods 3ton
from the seed
and become
part of the

] Seed period 1
k4
[(Opt) Reseed with seed ; |

internal state;
these values Figure 2: DRBG Instantiation

must usually
remain secret, and

b. A count of the number of requests or blocks produced since the instantiation

17

ANS X9.82, Part 3 - DRAFT - August 2005

was seeded or reseeded.
2. Administrative information (e.g., security strength and prediction resistance flag).

The internal state shall be protected at least as well as the intended use of the
pseudorandom output bits requested by the consuming application. Each DRBG
instantiation shall have its own internal state. The internal state for one DRBG
instantiation shall not be used as the internal state for a different instantiation.

A DRBG transitions between internal states when the generator is requested to provide
new pseudorandom bits. A DRBG may also be implemented to transition in response to
internal or external events (e.g., System interrupts) or to transition continuously (e.g.,
whenever time is available to run the generator).

A DRBG implementation may be designed to handle multiple instantiations. Sufficient
space must be available for the expected number of instantiations, i.e., sufficient memory
must be available to store the internal state associated with each instantiation.

8.2.4 Security Strengths Supported by an Instantiation

The DRBG:s specified in this Standard support four security strengths: 112, 128, 192 or
256 bits. The actual security strength supported by a given instantiation depends on the
DRBG implementation and on the amount of entropy provided to the instantiate function
in the entropy input. Note that the security strength actually supported by a particular
instantiation may be less than the maximum security strength possible for that DRBG
implementation (see Table 1). For example, a DRBG that is designed to support a
maximum security strength of 256 bits may be instantiated to support only a 128-bit
security strength.

Table 1: Possible Instantiated Security Strengths

Maximum Designed 112 128 192 256
Security Strength

Possible Instantiated 112 112,128 112,128,192 | 112, 128,192,
Security Strengths 256

A security strength for the instantiation is requested by a consuming application during
instantiation, and the instantiate function obtains the appropriate amount of entropy for the
requested security strength. Any security strength may be requested, but the DRBG will
only be instantiated to one of the four security strengths above, depending on the DRBG
implementation. A requested security strength that is below the 112-bit security strength or
is between two of the four security strengths will be instantiated to the next highest level
(e.g., a requested security strength of 96 bits will result in an instantiation at the 112-bit
security strength).

Following instantiation, requests can be made to the generate function for pseudorandom
bits. For each generate request, a security strength to be provided for the bits is requested.

18

ANS X9.82, Part 3 - DRAFT - August 2005

Any security strength can be requested up to the security strength of the instantiation, e.g.,
an instantiation could be instantiated at the 128-bit security strength, but a request for
pseudorandom bits could indicate that a lesser security strength is actually required for the
bits to be generated. The generate function checks that the requested security strength does
not exceed the security strength for the instantiation. Assuming that the request is valid, the
requested number of bits is returned.

When an instantiation is used for multiple purposes, the minimum entropy requirement for
each purpose must be considered. The DRBG needs to be instantiated for the highest
security strength required. For example, if one purpose requires a security strength of 112
bits, and another purpose requires a security strength of 256 bits, then the DRBG needs to
be instantiated to support the 256-bit security strength.

8.3 DRBG Boundaries

As a convenience, this Standard uses the notion of a “DRBG boundary” to explain the
operations of a DRBG and its interaction with and relation to other processes; a DRBG
boundary contains all DRBG functions and internal states required for a DRBG. A DRBG
boundary is entered via the DRBG’s public interfaces, which are made available to
consuming applications.

Within a DRBG boundary,

1. The DRBG internal state and the operation of the DRBG functions shall only be
affected according to the DRBG specification.

2. The DRBG internal state shall exist solely within the DRBG boundary. The
internal state shall be contained within the DRBG boundary and shall not be
accessed by non-DRBG functions.

3. Information about secret parts of the DRBG internal state and intermediate values
in computations involving these secret parts shall not affect any information that
leaves the DRBG boundary, except as specified for the DRBG pseudorandom bit
outputs.

Each DRBG includes one or more cryptographic primitives (e.g., a hash function). Other
applications may use the same cryptographic primitive as long as the DRBG’s internal
state and the DRBG functions are not affected.

A DRBG’s functions may be contained within a single device, or may be distributed across
multiple devices (see Figures 3 and 4). Figure 3 depicts a DRBG for which all functions
are contained within the same device. Figure 4 provides an example of DRBG functions
that are distributed across multiple devices. In this case, each device has a DRBG sub-
boundary that contains the DRBG functions implemented on that device, and the boundary
around the entire DRBG consists of the aggregation of sub-boundaries providing the
DRBG functionality. The use of distibuted DRBG functions may be convenient for
restricted environments (e.g., smart card applications) in which the primary use of the

19

ANS X9.82, Part 3 - DRAFT - August 2005

DRBG does not require repeated use of the instantiate or reseed functions.

DREG Boundary
Instantiate Instantiate |,
Function
— Eniropy
Input
Reseed Reseed -
Instantiation Function
i Generate
Request Bits _ Function
Test Test LTS
DRBG = Function
Uninstantiate e e
DREC U .mw
Funetion

Figure 3: DRBG Functions Within a Single Device

Although the entropy input that is used to create the seed is shown in the figures as
originating outside the DRBG boundary, it may originate from within the boundary.

___________________________ S
|
1
I
Promcmd St |
Generuie Test t
Function | | Fune tan |
|
|
|
|
|
DRBG Sub Boundary (Canerat) :
e i e oo e A B i i i e

Figure 4: Distributed DRBG Functions
Each DRBG boundary or sub-boundary shall contain an uninstantiate function and a test
function to test the “health” of other DRBG functions within that boundary.

When DRBG functions are distributed, appropriate mechanisms shall be used to protect
20

ANS X9.82, Part 3 - DRAFT - August 2005

the confidentiality and integrity of the internal state or parts of the internal state that are
transferred between the distributed DRBG sub-boundaries. The confidentiality and
integrity mechanisms and security strength shall be consistent with the data to be protected
by the DRBG’s consuming application (see SP 800-57).

8.4 Seeds

8.4.1 General Discussion

When a DRBG is used to generate pseudorandom bits, entropy input is acquired in order to
generate a seed prior to the generation of output bits by the DRBG. The seed is used to
instantiate the DRBG and determine the initial internal state that is used when calling the
DRBG to obtain the first output bits.

Reseeding is a means of recovering the secrecy of the output of the DRBG if a seed or the
internal state becomes known. Periodic reseeding is a good countermeasure to the potential
threat that the seeds and DRBG output become compromised. In some implementations
(e.g., smartcards), an adequate reseeding process may not be possible. In these cases, the
best policy might be to replace the DRBG, obtaining a new seed in the process (e.g., obtain
a new smart card).

8.4.2 Generation and Handling of Seeds

The seed and its use by a DRBG is generated and handled as follows:

1. Seed construction for

instantiation: Figure 5 depicts the

. Optional
§eed cgns'truc‘uon process for‘ Entropy Nonce Personalization
instantiation. The seed material Input String

used to determine a seed for
instantiation consists of entropy
input, a nonce and an optional Opt.
personalization string. Entropy dr
input is always be used in the
construction of a seed;
requirements for the entropy input
are discussed in item 3. A nonce
is also be used; requirements for Figure 5: Seed Construction for Instantiation
the nonce are discussed in item 7.

This Standard also recommends

the inclusion of a personalization string; requirements for the personalization string
are discussed in Section 8.5.2.

Seed

Depending on the DRBG and the source of the entropy input, a derivation function
is required to derive a seed from the seed material, When full entropy input is
readily available, the DRBGs based on block cipher algorithms (see Section 10.2)
may be implemented without a derivation function. When implemented in this

21

ANS X9.82, Part 3 - DRAFT - August 2005

manner, a nonce is not used as shown in Figure 5. Note, however, that the
personalization string could contain a nonce, if desired.

The goal of this seed construction is to ensure that the seed is statistically unique.

2. Seed construction for

reseeding: Figure 6 depicts the

seed construction process for I"S‘:; ;‘e“' Entropy A(‘)i"’iti't‘i’:s:d
. . . -

reseeding an instantiation. The Value npu Input

seed material for reseeding
consists of a value that is /
carried in the internal state!, L2

new entropy input and, odp["
optonally, additional input. The

internal state value and the
entropy input are required; Seed
requirements for the entropy
input are discussed in item 3.
Requirements for the additional Figure 6: Seed Construction for Reseeding
input are discussed in Section

8.5.3. Asinitem 1, a derivation function may be required for reseeding. See item 1
for further guidance.

3. Entropy requirements for the entropy input: The entropy input for the seed shall
contain sufficient entropy for the desired security strength. Additional entropy may
be provided in the nonce or the optional personalization string during instantiation,
or in the additional input during reseeding, but this is not required. Entropy
contained in the seed components is distributed across the seed (e.g., using an
appropriate derivation function) by the instantiate and reseed functions.

The entropy input shall have entropy that is equal to or greater than the security
strength of the instantiation. Note that the use of more entropy than the minimum
value will offer a security “cushion”. This may be useful if the assessment of the
entropy provided in the entropy input is incorrect. Having more entropy than the
assessed amount is acceptable; having less entropy than the assessed amount could be
fatal to security. The presence of more entropy than is required, especially during the
instantiatiation, will provide a higher level of assurance than the minimum required

entropy.
\4. Seed length: The minimum length of the seed depends on the DRBG and the
security strength required by the consuming application. See Section 10, Comment [ebb3]: Page: 31
"""" This may need to be revised if lhe
5. Entropy input source: The source of the entropy input may be an Approved NRBG, Dual EC_DRBG is not retained.

an Approved DRBG (or chain of Approved DRBGs) that is seeded by an Approved
NRBG, or an Approved entropy source. Further discussion about the entropy input
is provided in Parts 2 and 4 of this Standard.

! See each DRBG specification for the value that is usze%.

6.

7.

ANS X9.82, Part 3 - DRAFT - August 2005

Entropy input and seed privacy: The entropy input and the resulting seed shall be
handled in a manner that is consistent with the security required for the data
protected by the consuming application. For example, if the DRBG is used to
generate keys, then the entropy inputs and seeds used to generate the keys shall be
treated at least as well as the key.

Nonce: A nonce is required to construct a seed during instantation. The nonce shall
be either:

a. A random value with at least (security_strength/2) bits of entropy,
b. A non-random value that is guaranteed to never repeat, or

c. A non-random value that is expected to repeat no more often than a
(security_strength/2)-bit random string would be expected to repeat.

For case a, the nonce may be acquired from the same source and at the same time
as the entropy input. In this case the seed could be considered to be constructed
from an “extra strong” entropy input and the optional personalization string, where
the entropy for the entropy input is equal to or greater than (3/2 security_strength)
bits.

Reseeding: Generating too many outputs from a seed (and other input information)
may provide sufficient information for successfully predicting future outputs unless
prediction resistance is provided (see Section 8.6). Periodic reseeding will reduce
security risks, reducing the likelihood of a compromise of the data that is protected
by cryptographic mechanisms that use the DRBG.

Seeds have a finite seedlife (i.e., the length of the seed period); the maximum
seedlife is dependent on the DRBG used. Reseeding is accomplished by 1) an
explicit reseeding of the DRBG by the application, or 2) by the generate function
when prediction resistance is requested (see Section 8.6) or the limit of the seedlife
is reached. An alternative to reseeding is to create an entirely new instantiation.

Reseeding of the DRBG shall be performed in accordance with the specification
for the given DRBG. The DRBG reseed specifications within this Standard are
designed to produce a new seed that is determined by both the old seed and newly-
obtained entropy input that will support the desired security strength.

Seed use: [DRBGs may be used to generate both secret and public information. In
either case, the seed and the entropy input from which the seed is derived shall be
kept secret. A single instantiation of a DRBG should not be used to generate both
secret and public values. However, cost and risk factors must be taken into account
when determining whether different instantiations for secret and public values can
be accommodated|

intentionally used to reseed the same instantiation or used as a seed for another
DRBG instantiation.

23

Comment [EBB4]: Page: 32
Should this be addressed in Part 4 ?

ANS X9.82, Part 3 - DRAFT - August 2005

A DRBG shall not provide output until a seed is available, and the internal state
has been initialized.

10. Seed separation: Seeds used by DRBGs shall not be used for other purposes (e.g.,
domain parameter or prime number generation).

8.5 Other Inputs to the DRBG

8.5.1 Discussion

Other input may be provided during DRBG instantiation, pseudorandom bit generation and
reseeding. This input may contain entropy, but this is not required. During instantiation, a
personalization string may be provided and combined with entropy input and a nonce to
derive a seed (see Section 8.4, item 1). When pseudorandom bits are requested and when
reseeding is performed, additional input may be provided (see Section 8.5.3).

Depending on the method for acquiring the input, the exact value of the input may or may
not be known to the user or application. For example, the input could be derived directly
from values entered by the user or application, or the input could be derived from
information introduced by the user or application (e.g., from timing statistics based on key
strokes), or the input could be the output of another DRBG or an NRBG.

8.5.2 Personalization String

During instantiation, a personalization string should be used to derive the seed (see
Section 8.4). The intent of a personalization string is to differentiate this DRBG
instantiation from all the others that might ever appear. The personalization string should
be set to some bitstring that is as unique as possible, and may include secret information.
The value of any secret information contained in the personalization string should be no
greater than the claimed strength of the DRBG, as the DRBG's cryptographic mechanisms
(specifically, its backtracking resistance and the entropy provided in the entropy input) will

protect this information from disclosure. Good choices for the personalization string
contents include:

1. Device serial numbers,

Public keys,

User identification,

Private keys,

PINs and passwords,

Secret per-module or per-device values,
Timestamps,

Network addresses,

W X N kWb

Special secret key values for this specific DRBG instantiation,

24

ANS X9.82, Part 3 - DRAFT - August 2005

10. Application identifiers,
11. Protocol version identifiers,
12. Random numbers, and

13. Nonces.
8.5.3 Additional Input

During each request for bits from a DRBG and during reseeding, the insertion of additional
input is allowed. This input is optional and may be either secret or publicly known; its
value is arbitrary, although its length may be restricted, depending on the implementation
and the DRBG. The use of additional input may be a means of providing more entropy for
the DRBG internal state that will increase assurance that the entropy requirements are met.
If the additional input is kept secret and has sufficient entropy, the input can provide more
assurance when recovering from the compromise of the seed or one or more DRBG
internal states.

8.6 Prediction Resistance and Backtracking Resistance

Figure 7 depicts the sequence of DRBG internal states that result from a given seed. The
internal state is used to generate pseudorandom bits upon request by a user. The following
discussions will use the figure to explain backtracking and prediction resistance. Suppose
that a compromise occurs at State,, where State, contains both secret and public
information.

Seed — | State; State, | * * ° State, 5| |State,, || State, State,,| |State | * * ®

Figure 7: Sequence of DRBG States

Backtracking Resistance: Backlracking resistance means that a compromise ol the DRBG
internal state has no efTect on the security ol prior outputs. That is, an adversary who is
given access to all ol any-subset-etthat prior output sequence cannot distinguish it from
random; if the adversary knows only part of the prior output, he cannot determine any bit
of that prlor output sequence that the—aévefsaﬁthe has not already seen. fn-etheryverds—ea

For example, suppose that an adversary knows State;g\;;aﬂd—alse-kﬂews—ﬂwe%pa{—bi{s
from-State,to-State, o Backtracking resistance means that:

2. The output bits from State; to State,., cannot be distinguished from random. + [Formatted: Bullets and Numbering]
a—b, The prior internal state values themselves (State; to Stare, |) cannot be (Formatted =
[Formatted]

25

ANS X9.82, Part 3 - DRAFT - August 2005

recovered, given knowledge of the secret information in State,.Stete, _-and-Hs
autput-bits-cannot-be-determined-from-knowledge-of-State AheSidle eannotbe
%&W&mn—mﬂwaﬁ&pwmm ArSere, o pppeario-be
random=—the-outputbitsfor State, -cannot-be predicted-from-the-output-bits-of

Stertento-Stette - | . [comment [ebb5]: Page: 34
..... . e e convolusd.

Backtracking resistance can be provided by ensuring that the internal state transition
function of a DRBG is a one-way function. All DRBGs in this Standard have been
designed to provide backtracking resistance.

Prediction Resistance: Prediction resistance means that a compromise ol the DRBG
internal state has no effect on the seeurity of future DRBG outputs. Ha-compromise-ol
Stette - +!b€ﬂl+fiwtﬁeﬂﬁwe%ﬁﬂcﬂ&ﬁﬂd%ﬁmﬂﬂte+hdi—ﬁw—ﬂu$u Esequence-fest lebng
from-states-efierthe-compromise remains-seeure—That Is, an adversary who is given access
to all of any-subsetefthe output sequence after the compromise cannot distinguish it from

random; if the adversary knows only part of the future output sequence, an-adversaryhe
cannot predict any bit of that future output sequence that he has not already seen.-tr-other
words—rcompromise-tic-Ho-effect-on-theseenrity-offitire-onipitis:
For example, suppose that an adversary knows State,: -and-also-knows-the-output-bitstrom
Stateoto-State,,~Prediction resistance means that:

a.The outpul bits from State,; and forward cannot be distinguished from an ideal < [Formatted: Bullets and Numbering
random bitstring by the adversary. [Formatted
b—b. The future internal state values themselves (Statey | and forward) cannot be [Formatted

predicted, given knowledge of State,.-Stete, \and-itsoutput-bits-cannot-be

deterpined-from-knowledge-of-Site -(heState ~cannot-be—backed-up=-In

addition—stnece-the-output-bitsfrom-Stafe to-State, » appeaito-berandor-the

outputbitsfor-State_-eannot-be predictedfromthe-output- bits- ot State to-Stete. o
State,. and-its-ouputbits-cannot-be predicted-from-knowledge-ob-State —tn-addition:
beeause-the-output-bitsfrom-Stafe . Ao-Mafe, appear lt%fﬂﬂtl&ﬂ%—thefliﬂwl—hﬂﬂ
State. -eannotbe-determinedtrom-the-output-bits-oF-Stete - to-Stette

Prediction resistance can be provided only by ensuring that a DRBG is effectively reseeded
between DRBG requests. That is, an amount of entropy that is sufficient to support the
security strength of the DRBG (i.e., an amount that is at least equal to the security strength)
must be added to the DRBG in a way that ensures that knowledge of the currentprevious
DRBG internal state does not allow an adversary any useful knowledge about future
DRBG internal states or outputs.

26

ANS X9.82, Part 3 - DRAFT - August 2005

9 DRBG Functions
9.1 General Discussion

The DRBG functions in this Standard are specified as an algorithm and an “envelope” of
pseudocode around that algorithm. The pseudocode in the envelopes checks the input
parameters, obtains input not provided by the input parameters, accesses the appropriate
DRBG algorithm and handles the internal state. A function need not be implemented using
such envelopes, but the function shall have equivalent functionality.

In the specifications of this Standard, the following pseudo-functions are used. These
functions are not specifically defined in this Standard, but have the following meaning:

e Get_entropy: A function that is used to obtain entropy input. The function call is:

(status, entropy_input) = Get_entropy (min_entropy, min_ length, max_
length)

which requests a string of bits (entropy input) with at least min_entropy bits of
entropy. The length for the string shall be equal to or greater than min_length bits,
and less than or equal to max_length bits. A status code is also returned from the
function.

e Block_Encrypt: A basic encryption operation that uses the selected block cipher
algorithm. The function call is:

output block = Block_Encrypt (Key, input_block)

For TDEA, the basic encryption operation is called the forward cipher operation;
for AES, the basic encryption operation is called the cipher operation. The basic
encryption operation is equivalent to an encryption operation on a single block of
data using the ECB mode.

Note that an implementation may choose to define this functionality differently; for
example, for many of the DRBGs, the min_length = min_entropy for the Get_entropy
function, in which case, the second parameter could be omitted.

9.2 Instantiating a DRBG
A DRBG shall be instantiated prior to the generation of pseudorandom bits. The instantiate
function shall:
1. Check the validity of the other input parameters,
2. Determine the security strength for the DRBG instantiation,
3. Determine any DRBG specific parameters (e.g., elliptic curve domain parameters),
4. Obtain entropy input with entropy sufficient to support the security strength,
5. Obtain the nonce,

27

8.

ANS X9.82, Part 3 - DRAFT - August 2005

Determine the initial internal state using the instantiate algorithm,

If possible, request that pseudorandom bits be generated; the generate function will
test that successive internal state values are not identical.

Return a state handle for the internal state to the consuming application.

Let working state be the working state for the particular DRBG, and let min_length, max
length, and highest_supported security_strength be defined for each DRBG (see Section
10). If a generate function is not contained in the same sub-boundary as the instantiate
function, steps 13 and 14 are not performed.

The following or an equivalent process shall be used to instantiate a DRBG.

Input from a consuming application:

1.

requested_instantiation_security_strength: A requested security strength for the
instantiation. DRBG implementations that support only one security strength do not
require this parameter; however, any application using that DRBG implementation
must be aware of this limitation.

. prediction resistance_flag: Indicates whether or not prediction resistance may be

required by a the consuming application during one or more requests for
pseudorandom bits. DRBGs that are implemented to always or never support
prediction resistance do not require this parameter. However, the user of a
consuming application must determine whether or not prediction resistance may be
required by the application before electing to use such a DRBG implementation. If
the prediction_resistance_flag is not needed (i.e., because prediction resistance is
always or never performed), then the input parameter may be omitted, and the
prediction resistance_flag may be omitted from the internal state in step 12.

. personalization_string: An optional input that provides personalization information

(see Sections 8.4 and 8.5.2). The maximum length of the personalization string
(max_personalization_string length) is implementation dependent, but shall be <
2% bits. If a personalization string will never be used, then the input parameter and
step 3 may be omitted, and step 9 may be modified to omit the personalization
string.

DRBG _specific_input_parameters : Any additional parameters that are allowed for
a specific DRBG (see Section 10). The use of the DRBG-specific input parameters

is discussed for the DRBG instantiate algorithms. If a DRBG or a DRBG
implementation does not use these parameters, then step 5 may be omitted.

Required information not provided by the consuming application:

1.

Comment: This input shall not be provided
by the consuming application as an input
parameter during the instantiate request.

entropy _input: Input bits containing entropy. The maximum length of the
28

ANS X9.82, Part 3 - DRAFT - August 2005

entropy_input is implementation def)endent, but shall be < 2°° bits.

nonce: A nonce as specified in Section 8.4. Note that if a random value is used as
the nonce, the entropy input and nonce could be acquired using a single
Get_entropy call (see step 6); in this case, the first parameter would be adjusted to
include the entropy for the nonce (i.e., security strength would be increased by at
least security strength/2), step 8 would be omitted, and the nonce would be omitted
from the parameter list in step 9.

OQutput to a consuming application:

1.

status: The status returned from the instantiate function. The status will indicate
SUCCESS or an ERROR. If an ERROR is indicated, either no state handle or an
invalid state_handle shall be returned. A consuming application should check the
status to determine that the DRBG has been correctly instantiated.

state_handle: Used to identify the internal state for this instantiation in subsequent
calls to the generate, reseed, uninstantiate and test functions.

Information retained within the DRBG boundary:

The internal state for the DRBG, including the working_state and administrative
information (see Sections 8.2.3 and 10).

Process:

Comment: Check the validity of the input
parameters.

If requested_instantiation_security_strength >
highest_supported security strength, then reruen an ERROR.

If prediction resistance flag is set, and prediction resistance is not supported, then
return an ERROR.

If the length of the personalization string > max_personalization_string_length,
return an ERROR.

Set security_strength to the nearest security strength greater than or equal to
requested_instantiation_security strength.

Comment: The following step is required by
the Dual EC_DRBG when multiple curves
are available (see Section 10.3.2.2.2), and by
the MS_DRBG (see Section 10.3.3.2.3).
Otherwise, the step should be omitted.

. Using security_strength and DRBG specific_input parameters (if available), select

appropriate DRBG parameters.

Comment: Obtain the entropy input.

29

ANS X9.82, Part 3 - DRAFT - August 2005

6. (status, entropy_input) = Get_entropy (security_strength, min_length,
max_length).

7. If an ERROR is returned in step 6, return an ERROR.

8. Obtain a nonce. Comment: This step shall include any
appropriate checks on the acceptability of the
nonce. See Section 8.4

Comment: Call the appropriate instantiate
algorithm in Section 10 to obtain values for
the initial working state.

9. (status. working state) = Instantiate_algorithm (entropy input, nonce,
personalization_string, other DRBG_parameters).

10. If an ERROR is returned trom step 9, then
[0.1 Delete all instantiations using the uninstantiate function.
10.2 Return the ERROR status from step 9.
Comment: Set up the initial internal state.

11. Get a state_handle that will be used to locate the internal state for this instantiation.
If an unused internal state cannot be found, return an ERROR.

12. Set the internal state indicated by state_handle to the initial values for the
working_state and administrative information, as appropriate.

Comment: Invoke the generate function in
Section 9.4 to test that two consecutive
internal states are not identical?. Ignore the
returned pseudorandom bits.

13. (status, pseudorandom_bits) = Generate_Function (state_handle, 64,
security_strength, No_prediction_resistance, Null, additional _input).

14. If status indicates that two consecutive internal states were identical, then
14.1 Delete all instantiations using the uninstantiate function.
142 Return the ERROR status from step 14.
15. Return SUCCESS and state_handle.
9.3 Reseeding a DRBG Instantiation
The reseeding of an instantiation is not required, but is recommended whenever an

application and implementation are able to perform this process. Reseeding will insert
additional entropy into the generation of pseudorandom bits. Reseeding may be:

¢ explicitly requested by an application,

. . . 0
2 This 1s the continuous random number test from FIP% 140-2

ANS X9.82, Part 3 - DRAFT - August 2005

e performed when prediction resistance is requested by an application,

e triggered by the generate function when a predetermined number of pseudorandom
outputs have been produced (i.e., at the end of the seedlife), or

o triggered by external events (e.g., whenever sufficient entropy is available).

If a reseed capability is not available, a new DRBG instantiation may be created (see
Section 9.2).

The reseed function shall:
1. Check the validity of the input parameters,
2. Obtain entropy input with sufficient entropy to support the security strength, and

3. Using the reseed algorithm, combine the current working state with the new
entropy input and any additional input to determine the new working state. The
reseed algorithm will check that two consecutive states are different.

Let working state be the working state for the particular DRBG, and let min_length and
max_length be defined for each DRBG (see Section 10).

The following or an equivalent process shall be used to reseed the DRBG instantiation.
Input from a consuming application:
1) state_handle: A pointer or index that indicates the internal state to be reseeded.
This value was returned from the instantiate function specified in Section 9.2.

2) additional_input: An optional input. The maximum length of the additional input
(max_additional _input_length) is implementation dependent, but shall be < 2%
bits. If additional_input will never be used, then the input parameter and step 2
may be omitted, and step 5 may be modified to remove the additional input from
the parameter list.

Required information not provided by the consuming application:

Comment: This input shall not be provided
by the consuming application in the input
parameters.
1. entropy input: Input bits containing entropy. The maximum length of the
entropy_input is implementation dependent, but shall be < 2°° bits.
2. Internal state values required by the DRBG for reseeding, i.e., the working state
and administrative information, as appropriate.
Output to a consuming application:

1. status: The status returned from the function. The starus will indicate SUCCESS or
an ERROR.

31

ANS X9.82, Part 3 - DRAFT - August 2005

Information retained within the DRBG boundary:
Replaced internal state values (i.e., the working _state).
Process:

Comment: Get the current internal state and
check the input parameters.

1. Using state_handle, obtain the current internal state. If state_handle indicates an
invalid or unused internal state, return an ERROR.

2. Ifthe length of the additional input > max_additional_input length, return an
ERROR.

Comment: Obtain the entropy input.

3. (status, entropy_input) = Get_entropy (security_strength, min_length,
max_length).

4. Ifan ERROR is returned in step 3, return an ERROR.

Comment: Get the new working_state using
the appropriate reseed algorithm in Section
10.

5. (status, working state) = Reseed_algorithm (working_state, entropy_input,
additional input).

Comment: If an ERROR is returned, two
consecutive states are the same.

6. If an ERROR is returned from step 6, then
6.1 Delete all instantiations using the uninstantiate function.
6.2 Return the ERROR status from step 5.

Comment: Save the new values of the internal
state.

7 Replace the working state in the internal state indicated by state_handle with the
new values.

8. Return SUCCESS.
9.4 Generating Pseudorandom Bits Using a DRBG
This function is used to generate pseudorandom bits after instantiation or reseeding (see
Sections 9.2 and 9.3). The generate function shall:

1. Check the validity of the input parameters,

2. Ifthe instantiation needs additional entropy because the end of the seedlife has
been reached or prediction resistance is required, call the reseed function to obtain

32

ANS X9.82, Part 3 - DRAFT - August 2005

sufficient entropy.

3. Generate the requested pseudorandom bits using the generate algorithm. The
generate algorithm will check that two consecutive states are not the same.

4. Update the working state.

5. Return the requested pseudorandom bits to the consuming appication.
Let outlen be the length of the output block of the cryptographic primitive (see Section 10).
The following or an equivalent process shall be used to generate pseudorandom bits.

Input from a consuming application:
1. state_handle: A pointer or index that indicates the internal state to be used.

2. requested number of bits: The number of pseudorandom bits to be returned from
the generate function. The max_number_of bits per_request is implementation
dependent but shall be < the value provided in Section 10 for a specific DRBG..

3. requested security strength: The security strength to be associated with the
requested pseudorandom bits. DRBG implementations that support only one
security strength do not require this parameter; however, any application using that
DRBG implementation must be aware of this limitation.

4. prediction resistance request: Indicates whether or not prediction resistance is to
be provided. DRBGs that are implemented to always or never support prediction
resistance do not require this parameter. However, the user of a consuming
application must determine whether or not prediction resistance may be required by
the application before electing to use such a DRBG implementation. If the
prediction_resistance_request parameter is not needed, then the input parameter
and step 5 may be omitted.

If prediction resistance is never provided, then step 5 may be omitted, and step 7
may be modified to omit the check for the prediction_resistance_request.

If prediction resistance is always performed, then step 5 may be omitted, and steps
7 and 8 are replaced by:

status = Reseed (state_handle, additional inpuf).
If status indicates an ERROR, then return ERROR.
Using state_handle, obtain the new internal state.

(status, pseudorandom_bits, working_state) = Generate_algorithm
(working_state, requested number_of bits).

Note that if additional input is never provided, then the additional _input parameter
in the Reseed call above may be omitted.

5. additional input. An optional input. The maximum length of the additional input
(max_additional_input_length) is implementation dependent, but shall be < 2%
33

ANS X9.82, Part 3 - DRAFT - August 2005

bits. If additional _input will never be used, then the input parameter, step 4, step
7.4 and the additional input input parameter in step 8 may be omitted.

Required information not provided by the consuming application:

1. Internal state values required for generation for the working state and
administrative information, as appropriate.

Output to a consuming application:

1. status: The status returned from the function. The starus will indicate SUCCESS
or an ERROR.

2. pseudorandom_bits: The pseudorandom bits that were requested.
Information retained within the DRBG boundary:

Replaced internal state values (i.e., the working state).
Process:

Comment Get the internal state and check the
input parameters.

1. Using state handle, obtain the current internal state for the instantiation. If
state _handle indicates an invalid or unused internal state, then return an ERROR.

2. Ifrequested number of bits > max_number of bits per request, then return an
ERROR.

3. If requested security strength> the security strength indicated in the internal
state, then return an ERROR.

4. Ifthe length of the additional input > max_additional input length, then return an
ERROR.

5. If prediction_resistance_request is set, and prediction_resistance_flag is not set,
then return an ERROR.

6. Clear the reseed required flag.

Comment: Get the requested pseudorandom
bits.

7. Ifreseed required flag is set, or if prediction resistance_request is set, then

Comment: Reseed the instantiation (see
Section 9.3).

7.1 status = Reseed (state_handle, additional_input).
7.2 If status indicates an ERROR, then return an ERROR.
7.3 Using state _handle, obtain the new internal state.
7.4 additional _input = the Null string.
34

ANS X9.82, Part 3 - DRAFT - August 2005

7.5 Clear the reseed required flag.

Comment: Request the generation of
pseudorandom_bits using the appropriate
generate algorithm in Section 10.

8. (Status, pseudorandom_bits, working_state) = Generate_algorithm
(working state, requested number of bits, additional input).

9. If status indicates that a reseed is required before the requested bits can be
generated, then

9.1 Set the reseed required flag.
9.2 Gotostep 7.

Comment: If an ERROR is returned, two
consecutive states are the same.

10. If an ERROR is returned from step 8,
10.1 Delete all instantiations using the uninstantiate function.
10.2 Return the ERROR received from step 8.

10. Replace the old working_state in the internal state indicated by state handle with
the new working_state.

11. Return SUCCESS and pseudorandom_bits.

Implementation notes:

If a reseed capability is not available, then steps 6 and 7 may be removed; and step 9 is
replaced by:

9. 1If status indicates that a reseed is required before the requested bits can be
generated, then

9.1 status = Uninstantiate (state_handle).
9.2 If an ERROR is returned in step 9.1, then return the ERROR.
9.3 Return an indication that the DRBG instantiation can no longer be used.
9.5 Removing a DRBG Instantiation
The internal state for an instantiation may need to be “released”. This may be required, for

example, following health testing of the instantiation function. The uninstantiate function
shall:

1. Check the input parameter for validity.
2. Empty the internal state.
The following or an equivalent process shall be used to remove (i.e., uninstantiate) a

35

ANS X9.82, Part 3 - DRAFT - August 2005

DRBG instantiation:
Input from a consuming application:

1. state_handle: A pointer or index that indicates the internal state to be “released”.
Output to a consuming application:

1. status: The status returned from the function. The status will indicate SUCCESS or
ERROR.

Information retained within the DRBG boundary:
An empty internal state.

Process:
1. If state handle indicates an invalid state, then return an ERROR.
2. Erase the contents of the internal state indicated by state handle.
3. Return SUCCESS.

9.6 Auxilliary Functions
9.6.1 Introduction

Derivation functions are internal functions that are used during DRBG instantiation and
reseeding to either derive internal state values or to distribute entropy throughout a
bitstring. Two methods are provided. One method is based on hash functions (see Section
9.6.2), and the other method is based on block cipher algorithms (see 9.6.3). The block
cipher derivation function uses a a CBC_MAC that is specified in Section 9.6.4.

9.6.2 Derivation Function Using a Hash Function (Hash_df)
The hash-based derivation function hashes an input string and returns the requested

number of bits. Let Hash (...) be the hash function used by the DRBG, and let outlen be its
output length.

The following or an equivalent process shall be used to derive the requested number of
bits.

Input:
1. input string: The string to be hashed.

2. no_of bits_to_return: The number of bits to be returned by Hash_df. The
maximum length (max_number _of bits) is implementation dependent, but shall be
< (255 x outlen). no_of bits_to_return is represented as a 32-bit integer.

Output:

1. status: The status returned from Hash_df. The status will indicate SUCCESS or
36

ANS X9.82, Part 3 - DRAFT - August 2005

ERROR.
2. requested_bits : The result of performing the Hash_df.
Process:
1. Ifno_of bits to_return > max_number of bits, then return an ERROR.
2. temp = the Null string.

no _of bits to return
3. len= [-l == :
outlen

4. counter = a 32-bit binary value representing the integer "1".
5. Fori=1to lendo
5.1 temp = temp || Hash (counter || no_of bits to return | input string).
5.2 counter = counter + 1.
6. requested bits = Lefimost (no of bits_to_return) of temp.
7. Return SUCCESS and requested_bits.
9.6.3 Derivation Function Using a Block Cipher Algorithm
Let Block_Cipher_Hash be the function specified in Section 9.6.4. Let Let outlen be its
output block length, and let keylen be the key length.

The following or an equivalent process shall be used to derive the requested number of
bits.

Input:
1. input string: The string to be operated on. This string shall be a multiple of 8 bits.

2. no of bits to_return: The number of bits to be returned by Block_Cipher_df. The
maximum length (max_number_of bits) is 512 bits for the currently approved block cipher
algorithms.

Output:
1. status: The status returned from Block_Cipher_df. The status will indicate
SUCCESS or ERROR.

2. requested bits : The result of performing the Block_Cipher_df.

Process:

1. If (number_of bits to_return> max _number of bits), then return an ERROR.

2. L=len (input_string)/8. Comment: L is the bitstring represention of
the integer resulting from len (input_string)/8.

37

ANS X9.82, Part 3 - DRAFT - August 2005

L shall be represented as a 32-bit integer.

N = number_of bits to_return/8. Comment : N is the bitsting represention of
the integer resulting from
number of bits _to return/8. N shall be
represented as a 32-bit integer.

Comment: Prepend the string length and the
requested length of the output to the
input _string.

S=L || N| input_string || 0x80.
Comment : Pad S with zeros, if necessary.
While (len (S) mod outlen) # 0, S =S || 0x00.

Comment : Compute the starting value.

5. temp = the Null string.

9.

i=0. Comment : i shall be represented as a 32-bit
integer.

K = Leftmost keylen bits of 0x010203...1F.
While len (femp) < keylen + outlen, do

8.1 [y =] govten-len) Comment: The integer represenation of 7 is
padded with zeros to outlen bits.

8.2 temp = temp | Block_Cipher_Hash (X, (IV || S)).
83 i=i+1.

Comment: Compute the requested number of
bits.

K = Leftmost keylen bits of temp.

10. X = Next outlen bits of temp.

11.
12

13.
14.

temp = the Null string.

. While len (temp) < number of bits_to_return, do

12.1 X =Block_Encrypt (X, X).

12.2 temp = temp || X.

requested_bits = Leftmost number_of bits to_return of temp.
Return SUCCESS and requested_bits.

38

ANS X9.82, Part 3 - DRAFT - August 2005

9.6.4 Block_Cipher_Hash Function

Let outlen be the length of the output block of the block cipher algorithm to be used.

The following or an equivalent process shall be used to derive the requested number of
bits.

Input:
1. Key: The key to be used for the block cipher opeation.

2. data_to_hash: The data to be operated upon. Note that the length of data to_hash
must be a multiple of outlen. This is guanteed by steps 4 and 8.1 in Section 9.6.3.

Output:
1. output_block: The result to be returned from the Block_Cipher_Hash operation.
Process:

Qotten, Comment: Set the first chaining value to outlen zeros.

1. chaining value =
2. n=len (data_to hash)loutlen.
3. Split the data_to_hash into n blocks of outlen bits each forming block, to block,.
4. Fori=1tondo
4.1 input block= chaining value @ block; .
4.2 chaining_value = Block_Encrypt (Key, input_block).
output_block = chaining_value.
6. Return output_block.
9.7 Self-Testing of the DRBG

9.7.1 Discussion

A DRBG shall perform self testing to obtain assurance that the implementation continues
to operate as designed and implemented (health testing). The testing function(s) within a
DRBG boundary (or sub-boundary) shall test each DRBG function within that boundary.

Errors occurring during testing shall be perceived as complete DRBG failures. The
condition causing the failure shall be corrected and the DRBG re-instantiated before
requesting pseudorandom bits (also, see Section 9.8)

9.7.2 Testing the Instantiate Function

Whenever the instantiate function is invoked, known-answer tests on the instantiate

function shall be performed prior to creating an operational instantiation. The

security_strength, prediction_resistance flag and DRBG specific_parameters used in the

invocation shall be used during the test. Representative fixed values and lengths of the

entropy_input, nonce and personalization_string (if allowed) shall be used; the value of
39

ANS X9.82, Part 3 - DRAFT - August 2005

the entropy_input used during testing shall net be intentionally reused during normal
operations (either by the instantiate or the reseed functions). Error handling shall be also
be tested, including an error in obtaining the entropy input (e.g., the entropy input source
is broken).

If the values used during the test produce the expected results, and errors are handled
correctly, then the instantiate function may be used to instantiate using the tested values of
security_strength, prediction_resistance_flag and DRBG specific_parameters.

An implementation should provide a capability to test the instantiate function on demand.
9.7.3 Testing the Generate Function

The generate function shall be tested upon power-up and at periodic intervals. The interval
between periodic tests shall be consistent with the environment in which the DRBG is
used. Note that in some environments, the periodic tests may need to be delayed until after
a critical event has concluded; in this case, the periodic test shall be performed at the
carliest possible opportunity.

Known-answer tests shall be performed on the generate function using each implemented
security_strength. Representative fixed values and lengths for the

requested number_of bits and additional input (if allowed) and the working state of the
internal state value (see Sections 8.2.3 and 10) shall be used. If prediction resistance is
available, then each combination of the security_strength, prediction resistance request
and prediction_resistance_flag shall be tested. The error handling for each input parameter
shall also be tested, and testing shall include setting the reseed counter to meect or exceed
the reseed_interval in order to check that the implementation is reseeded or that the DRBG
is “shut down”, as appropriate.

Ifthe values used during the test produce the expected results, and errors are handled
correctly, then the generate function may be used during normal operations.

Bits generated during health testing shall not be output as pseudorandom bits.

An implementation should provide a capability to test the generate function on demand.
9.7.4 Testing the Reseed Function

A known-answer test of the reseed function shall use the security _strength in the internal
state of the instantiation to be reseeded. Representative values of the entropy input and
additional input (if allowed) and the working state of the internal state value (see Sections

8.2.3 and 10) shall be used. Error handling shall also be tested, including an error in
obtaining the entropy_input (e.g., the entropy input source is broken).

Ifthe values used during the test produce the expected results, and errors are handled
correctly, then the reseed function may be used to reseed the instantiation.

The reseed function may be called every time that the generate function is called if
prediction resistance is available, and considerbly less frequently otherwise. In particular :

40

ANS X9.82, Part 3 - DRAFT - August 2005

1. When prediction resistance is available in an implementation, the reseed function
shall be tested whenever the generate function is tested (see above).

2. When prediction resistance is not available in an implementation, the reseed
function shall be tested whenever the reseed function is invoked and before the
reseed is performed on the operational instantiation.

An implementation should provide a capability to test the reseed function on demand.
9.7.6 Testing the Uninstantiate Function

The uninstantiate function shall be tested whenever other functions are tested. Testing
shall attempt to demonstrate that error handling is performed correctly, and the internal
state has been "emptied". The reseed function shall be tested:

9.8 Error Handling

The expected errors are indicated for each DRBG function (see Sections 9.2 - 9.5) and for
the derivation functions in Section 9.6. The error handling routines should indicate the
type of error. For catastrophic errors (e.g., entropy input source failure), the DRBG shall
not produce further output until the source of the error is corrected.

Many errors during normal operation may be caused by an application’s improper DRBG
request. In these cases, the application user is responsible for correcting the request within
the limits of the user’s organizational security policy. For example, if a failure indicating
an invalid requested security strength is returned, a security strength higher than the DRBG
or the DRBG instantiation can support has been requested. The user may reduce the
requested security strength if the organization’s security policy allows the information to
be protected using a lower security strength, or the user shall use an appropriately
instantiated DRBG.

Failures that indicate that the entropy source has failed or that the DRBG failed health
testing (see Sections 9.7 and 11.4) shall be handled as complete DRBG failures. The
indicated DRBG problem shall be corrected, and the DRBG shall be re-instantiated before
the DRBG can be used to produce pseudorandom bits.

41

Hash_DRBG ANS X9.82, Part 3 - DRAFT - August 2005

10 DRBG Algorithm Specifications

Several DRBGs are specified in this Standard. The selection of a DRBG depends on
several factors, including the security strength to be supported and what cryptographic
primitives are available. An analysis of the consuming application’s requirements for
random numbers shall be conducted in order to select an appropriate DRBG. A detailed
discussion on DRBG selection is provided in Annex E. Pseudocode examples for each
DRBG are provided in Annex F. Conversion specifications required for the DRBG
implementations (e.g., between integers and bitstrings) are provided in Annex B.

10.1 Deterministic RBGs Based on Hash Functions
10.1.1 Discussion

A hash DRBG is based on a hash function that is non-invertible or one-way. The hash
DRBGs specified in this Standard have been designed to use any Approved hash function
and may be used by applications requiring various security strengths, providing that the
appropriate hash function is used and sufficient entropy is obtained for the seed. The
following are provided as DRBGs based on hash functions:

1. The Hash_df_DRBG specified in Section 10.1.2.
2. The HMAC_DRBG specified in Section 10.1.3.

The maximum security strength that could be supported by each hash function is provided
in SP 800-57. However, this Standard supports only four security strengths: 112, 128, 192,
and 256. Table 3 specifies the values that shall be used for the function envelopes and
DRBG algorithm for each Approved hash function. The specifications in this Standard
assume that a single appropriate hash function will be selected for a DRBG
implementation; i.e., a DRBG implementation will not contain multiple hash functions
from which to choose during instantiation.

Table 3: Definitions for Hash-Based DRBGs

SHA-1 ‘ SHA-224 | SHA-256 ‘ SHA-384 | SHA-512

Supported security strengths See SP 800-57
highest_supported_security_strength " See SP 800-57

Output Block Length (outlen) 160 ‘ 224 | 256 —'l 384 [512 |
Required minimum entropy for security_strength

instantiate and reseed

Minimum entropy input length security_strength
(min_length)

Maximum entropy input length < 2% bits

(max_ length)

42

Hash_DRBG ANS X9.82, Part 3 - DRAFT - August 2005

SHA-1 | SHA-224 | SHA-256 | SHA-384 | SHA-512

Seed length (seedlen) for 368 368 368 816 816
Hash_df DRBG

Maximum personalization string < 2% bits
length

(max_personalization_string_length)

Maximum additional_input length < 2% bits
(max_additional_input_length)

max_number of bits_per request < 2" bits
Number of requests between <2®

reseeds (reseed_interval)

Note that since SHA-224 is based on SHA-256, there is no efficiency benefit for using the
SHA-224; this is also the case for SHA-384 and SHA-512, i.e., the use of SHA-256 or
SHA-512 instead of SHA-224 or SHA-384, respectively, is preferred. The value for
seedlen is determined by subtracting the count field and one byte of padding from the hash
funetion input block length: in the case of SHA-1, SHA-224 and SHA 256, seedlen = 512 -
64 - 8 = 440; for SHA-384 and SHA-512, seedlen = 1024 - 128 - 8 = 888.

10.1.2 Hash_DRBG

10.1.2.1 Discussion

Figure 8 presents the normal operation of the Hash_ DRBG. The Hash_DRBG requires
the use of'a hash function during the instantiate, reseed and generate functions; the same
hash function shall be used in all functions. The hash function to be used shall meet or
exceed the desired security strength of the consuming application.

Implementation validation testing and health testing are discussed in Sections 9.7 and 11.
10:1.2.2 Specifications
1A R2AC HaghzDRBOIALGIM A Etate
The internal state for Hash_DRBG consists of?
1. The working state:
a. A value (V) of seedlen bits that is updated during each call to the DRBG.
b. A constant C of seedle bits that depends on the seed.

¢. A counter (reseed counter) that indicates the number of requests for
pseudorandom bits since new enfropy. inpui was obtained during instantiation
or reseeding:

43

Hash_DRBG

2. Adminisirative information:

a. The security_strength of the
DRBG instantiation.

b. A prediction_resistance flag
that indicates whether or not a
prediction resistance
capability is required for the
DRBG.

The values of Fand C are the eritical
values of the internal state upon which
the security of this DRBG depends (i.e..
Vand € are the “secret values” of the
internal state).

10.1.2.2.2 nstantiation of Hash_DRBG

Notes for the instantiate function:

The instantiation of Hash_DRBG
requires a call to the instantiate
function specified in Section 9.2; step
9 of that function calls the instantiate
algorithm in this section. For this
DRBG, no

DRBG_SPGC l_'ﬁ C'_fﬂp ut _para melers
are required for the instantiate
function specified in Section 9.2 (i.e..
step 5 should be omitted),

The values of

highest _supported_security strength
and min_length are provided in Table
3 of Section 10.1.1. The contents of

ANS X9.82, Part 3 - DRAFT - August 2005

(Opt.)
additional reseed
v imput C counter

002V (| * et
.,
v
v
+
ilterate o chtain |] v
i enoughbits 4, Counter, V reseed ¢

! {From 0) counter
i Hash Pseudorandom Bits
! Function '

Figure 8: Hash_DRBG

the internal state are provided in Section 10.1.2.2.1.

The instantiate algorithm:

Let Hash_df be the hash derivation function specified in Section 9.6.2 using the
selected hush function. The output block length (cutfen), secd length (seedlen) and
appropriate security_strengths for the implemenited hash fusiction are provided in Table

3 of Section 10.1.1.

The following process o its equivalent shall be used as the instantiate algorithm for

this DRBG (see step 9 in Section 9.2).

44

Hash_DRBG ANS X9.82, Part 3 - DRAFT - August 2005

1. entropy_input: The string of bits obtained from the entropy input source.
2. nonce: A string of bits as specified in Section 8.4.

3. personalization_siving: The personelization string received from the consuming
application. If a personalization string wiil never be used, then steps 1 and 2
may be combined as follows:

seed = Hash_df (entropy input. seedlen).

L. working_state: The inital values for ¥, C and reseed counter (see Section
10:1.2:2:1).

1. seed material = entropy_input || nonee || personalization_string.
2. seed = Hash_df (seed_material, seedlen).

3, V=wseed.
4, C=Hash_df ((0x00 || V), seedlen). Comment: Preceed ¥ with a byte of
Zeroes.
5. reseed counter= 1.
6. Return V, C and reseed counter as the working state.
10.1.2.2.3 Resesding a Hash_DRBG Instantiation

Notes for the reseed function:
The reseeding of'a Hash_DRBG instantiation requires a call to the reseed function
specified in Section 9.3; step 5 of that function calls the reseed algorithm specified in
this section. The values for min_length are provided in Table 3 of Section 10.1.1.
The reseed algorithm:
Let Hash_df bz the hash derivation function specified in Section 9.6.2 using the
selected Lash function. The value for seedlen is provided in Table 3/of Section 10.1.1,
The following process or its equivalent shall be used us te reseed algorithm for this
DRBG (see step 5 in Section 9.3):
Input:
1. working state: The current values for V. C and reseed counter (see Section
10.1.2.2.1).
2. enirapy_inpui: The string of bits obtained from the entropy input source.
3. additional_input: The additional input string received from the consuming
applicwtion. Ifadditional_input will never be provided, thea step 2 may be
45

Hash_DRBG ANS X9.82, Part 3 - DRAFT - August 2005

modified to remove the additional_input.
Output:

1. status: The status of the reseed function. The returned status is either
SUCCESS or ERROR.

2. working state: The new values for I, € and reseed counter.
=
V_ald=1V.
seed_material = 0xO01 || ¥ || entropy_input || additional_input.
seed = Hash_df (seed material, seedlen).
V= seed.
If (V= V _old), then return an ERROR.

C = Hash_df ((0x00 || 1), seedlen), Comment: Preceed with a byte of all
Zeros.

T

7. reseed counter= 1.
8. Return V. € and reseed_counter as the new working state.
10.1.2.2.4 Generating Pseudorandom Bits Using Hash_DRBG
Notes for the generate function:
The generation of pseudorandom bits using a Hash_DRBG instantiation requires a call
to the generate function specified in Section 9.4; step 8 of that funetion calls the
generate algorithm specified in this section. The values for
max_number _of bits_per request and outlen are provided in Table 3 of Section 10.1.1.
The generate algorithm:
Let Hash be the selected hash function. The seed tength (seedlen) and the maxinium
interval between reseeding (reseed interval) are provided inTable 3 of Section 10.1.1.
Note that for this DRBG, the reseed counter is used to update the value of // as well as
to count the number of generition reguests.
The following process or its equivalent shall be used as the generite elgorithm for this
DRBG (see step 8 of Section 9.4):

e
1. working state: The curtent values for V. C and reseed counter (see Section
10:1.2.2.1).
2. requested_ntimber of bits: The number of peudorandom bits (o be rettirned to
the generate furiction,

3. additional input: The additional input string recsived from the consuming
46

Hash_DRBG ANS X9.82, Part 3 - DRAFT - August 2005

application. If additional_inpur will never be provided, then step 3 may be
omitted.

1. status: The status returned from the function. The status will indicate
SUCCESS, ERROR, or indicate that a reseed is required before the requested
pseudorandom bits can be generated.

2. returned_bits: The pseudorandom bits to be returned to the generate fanction.

3. working state: The new values for V, € and reseed counter.

Process:
1. V. old=V.
2. If reseed counter > reseed_interval, then retum an indication that a reseed is
required.

3. If(additional input # Null), then do
3.1'w = Hash (0x02 || V|| additional _inpur).
3.2 V= (V+ w) mod 27«4,
4. returned_bits = Hashgen (requested_number_of bits, V).
5. H=Hash (0x03 || V).
6. V=(V+ H+ C+ reseed. cowter) mod 2%,
7. If (V= V_old), return an ERROR.
8. reseed counter= reseed counter+ 1.
9. Return SUCCESS, returned bits, end the new values of V. C and
reseed counter forthe new working state.
Hashgen (..):
Input:
L. requested_no_of birs: The numiber of bits to be returned.
2, Vi The current value of 7,

1. returned_bits: The generated bits to be returned to the generate function.
s

I o |requested _no_of __birs-]
; outlen I

2. data=V.
47

Hash_DRBG ANS X9.82, Part 3 - DRAFT - August 2005

W = the Null string.
4. Fori=1tom
4.1 w; = Hash (data).
42 W =W | w.
4.3 data = (data + 1) mod 2°°°%".
5. returned bits = Leftmost (requested _no_of bits) bits of W.

6. Return returned_bits.

48

HMAC_DRBG ANS X9.82, Part 3 - DRAFT - August 2005

10.1.3 HMAC_DRBG {(...) (Opt) additional ingwl
10.1.3.1 Discussion lmmm
HMAC_DRBG uses multiple UPDATE
occurrences of an Approved keyed hash

function, which is based on an Approved
hash function. The same hash function
shall be used throughout. The hash
function used shall meet or exceed the
security requirements of the consuming

application.
Figure 9 depicts the HMAC_DRBGin |] L R
stages. HMAC_DRBG is specified .
using an internal function (Update). 1 :
This function is called during the Str : :
HMAC_DRBG instantiate, generate and i |:::‘m [| i | HMAC
reseed algorithms to adjust the internal v !
state when new entropy or additional o enazaat
input is provided. The operations in the V. =
top portion of the figure are only ————
performed if the additional input is not '
null. Figure 10 depicts the Update Brewdomndom bit
function.
10.1.3.2 Specifications adiitional input
10.1.3.2.1 HMAC_DRBG Internal State
. The internal state for HMAC_DRBG v v 9
consists of:

UFDATE

1. The working state:

a. The value V of outlen bits,
which is updated each time
another outlen bits of output

are produced (where outlen is
specified in Table 3 of Figure 9: HMAC_DRBG
Section 10.1.1).

b. The Key of outlen bits, which is updated at least once each time that the DRBG
generates pseudorandom bits.

¢. A counter (reseed_counter) that indicates the number of requests for
pseudorandom bits since instantiation or reseeding.

49

HMAC_DRBG ANS X9.82, Part 3 - DRAFT - August 2005

2. Administrative information:

10.1.3.2.2 The Update Function
{Update)

provided
a. The security strength of e T
the DRBG instantiation. v
b A V| 6x00 || provided data
prediction_resistance_flag
that indicates whether or Key B
not a prediction resistance s
capability is required for HMEI
the DRBG.
The values of ¥ and Key are the Key M S
critical values of the internal state TR
upon which the security of this DRBG
depends (i.e., ¥ and Key are the i
“secret values” of the internal state).

The Update function updates the

internal state of HMAC_DRBG using
the provided data. Let HMAC be the
keyed hash function specified in FIPS

198 using the hash function selected
for the DRBG from Table 3 in Section
10.1.1.

The following or an equivalent process shall be used as the Update function.

Figure 10: HMAC_DRBG Update Function

Input:
1. provided data: The data to be used.
2. K: The current value of Key.
3. V:The current value of V.
Output:
1. K:The new value for Key.
2. V: The new value for V.
Process:
1. K=HMAC (K, V| 0x00 || provided_data).
2, V=HMAC (K, V).
3. If (provided data = Null), then return K and V.

50

HMAC_DRBG ANS X9.82, Part 3 - DRAFT - August 2005

4. K=HMAC (X, V| 0x01 || provided data).
5. V=HMAC(K, V).
6. Return K and V.

10.1.3.2.3 Instantiation of HMAC_DRBG

Notes for the instantiate function:

The instantiation of HMAC_DRBG requires a call to the instantiate function specified
in Section 9.2; step 9 of that function calls the instantiate algorithm specified in this
section. For this DRBG, no DRBG _specific input_parameters are required for the
instantiate function specified in Section 9.2 (i.e., step 5 should be omitted). The values
of highest_supported security_strength and min _length are provided in Table 3 of
Section 10.1.1. The contents of the internal state are provided in Section 10.1.2.2.1.

The instantiate algorithm:

Let Update be the function specified in Section 10.1.3.2.2. The ouput block length
(outlen) is provided in Table 3 of Section 10.1.1.

The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG (see step 8 of Section 9.2):

Input:
1. entropy_input. The string of bits obtained from the entropy input source.
2. nonce: A string of bits as specified in Section 8.4.

3. personalization_string: The personalization string received from the consuming
application. If a personalization_string will never be used, then step 1 may be
modified to remove the personalization_string.

Output:

1. status: The status returned [rom the instantiate function. where status is either
SUCCESS or ERROR.

2. working _state: The inital values for V, Key and reseed_counter (see Section
10.1.3.2.1).

Process:
1. seed material = entropy input || nonce || personalization_string.
2. Key old =0x00 00...00. Comment: outlen bits.
3. V old=0x0101..01. Comment: outlen bits.
Comment: Update Key and V.
4. (Key, V)= Update (seed material, Key old, V_old).

51

HMAC_DRBG ANS X9.82, Part 3 - DRAFT - August 2005

5. If((Key = Key old) or (V= 1V _old)). then return an ERROR.
6. reseed counter=1.

7. Return SUCCESS, V, Key and reseed counter as the initial working_state.
10.1.3.2.4 Reseeding an HMAC_DRBG Instantiation

Notes for the reseed function:

The reseeding of an HMAC_DRBG instantiation requires a call to the reseed function
specified in Section 9.3; step 5 of that function calls the reseed algorithm specified in
this section. The values for min length are provided in Table 3 of Section 10.1.1.

The reseed algorithm:

Let Update be the function specified in Section 10.1.3.2.2. The following process or its
equivalent shall be used as the reseed algorithmn for this DRBG (see step 5 of Section
9.3):
Input:
1. working_state: The current values for ¥, Key and reseed_counter (see Section
10.1.3.2.1).
2. entropy_input: The string of bits obtained from the entropy input source.

3. additional input: The additional input
string received from the consuming application. If additional_input will
never be used, then step 1 may bemodified to remove the additional input.

Output:
1. status: The status returned from the reseed function. The starus is either
SUCCESS or an ERROR.

2. working state: The new values for ¥, Key and reseed_counter.
Process:

1. V old=V; Key old= Key.

2. seed_material = entropy_input || additional_input.

3. (Key, V)=Update (seed material, Key old, V old).

Comment: Check for “stuck”bits.
4. If (V' ="V _old)or (Key = Key_old)), then return an ERROR.
5. reseed counter=1.

6. Return SUCCESS, V, Key and reseed counter as the new working_state.

52

HMAC_DRBG ANS X9.82, Part 3 - DRAFT - August 2005

10.1.3.2.5 Generating Pseudorandom Bits Using HMAC_DRBG

Notes for the generate function:

The generation of pseudorandom bits using an HMAC_DRBG instantiation requires a
call to the generate function specified in Section 9.4; step 8 of that function calls the
generate algorithm specified in this section. The values for

max_number_of bits per request and outlen are provided in Table 3 of Section 10.1.1.

The generate algorithm :

Let HMAC be the keyed hash function specified in FIPS 198 using the hash function
selected for the DRBG. The value for reseed_interval is defined in Table 3 of Section
10.1.1.

The following process or its equivalent shall be used as the generate algorithm for this
DRBG (see step 8 of Section 9.4):

Input:

1. working state: The current values for V old, Key old and reseed_counter (see
Section 10.1.3.2.1).

2. requested number of bits: The number of pseudorandom bits to be returned to
the generate function.

3. additional input: The additional input string received from the consuming
application. If an implementation will never use additional input, then step 2
may be omitted. If additional input is not provided (regardless of whether or
not it will ever be provided), then a Null string shall be used as the
additional input in step 6.

Output:

1. status: The status returned from the function. The status will indicate
SUCCESS, an ERROR or indicate that a res