10.1.2.3.2

Instantiation of Hash_DRBG (...)

The following process or its equivalent shall be used to instantiate the Hash_DRBG (...)
process. Let Hash (...) be the Approved hash function to be used; let outlen be the output
length of that hash function, and let inlen be the input length.

Instantiate_ Hash DRBG (...):

Input

: integer (usage_class, requested_strength, prediction_resistance_flag,

personalization_string).

Output : string status.
Process :

L.

2.

3.

10.

11

12.

13.
14.

15.
16.

If requested strength > the maximum security strength that can be provided for
the hash function (see Table 1), then Return (“Invalid requested strength”).
If (prediction resistance_flag = 1) and prediction resistance cannot be
supported, then Return (“Prediction resistance cannot be supported”).

Set the strength to one of the five security strengths.

If (requested_strength < 80), then strength = 80

Else if (requested_strength < 112), then strength = 112

Else (requested _strength < 128), then strength = 128

Else (requested strength < 192), then strength = 192

Else strength = 256.

Set up ¢ in accordance with the indicated usage class. If no value of ¢ is
available for the usage class, then Return (“No value of 7 is available for the
usage_class”).

min_entropy = max (128, strength).

min_length = max (outlen, strength).

Comment Get the seed.
(status, entropy bits) = Get_entropy (min_entropy, min_length, inlen).
If (status = “Failure”), then Return (“Failure indication returned by the entropy
source”).
seed _material = entropy bits || personalization_string.
seedlen = max (strength + 64, outlen).

. If (seedlen > inlen), then seedlen = inlen.

Comment: Ensure that the entropy is
distributed throughout the seed.
seed = Hash_df (seed material, seedlen).

Comment : Perform a one-way
function on the seed formlater
comparison during reseeding.

transformed_seed = Hash (entropy bits).
ctr = 1.

V= seed.
C=Hash (¢| V).

17. state = {usage_class, V, C, ctr, t, strength, seedlen, prediction_resistance_flag,
transformed_seed}.

18. Return (“Success”).
Note that multiple state storage is required if the DRBG is used for multiple usage_classes.
If an implementation does not need the usage_class as a calling parameter (i.e., the
implementation does not handle multiple usage classes), then the usage_class parameter
can be omitted, step 4 must set ¢ to the value to be used, and the usage_class indication in
the state (see step 17) must be omitted.
If an implementation does not handle all five security strengths, then step 3 must be
modified accordingly. ‘
If no personalization_string will ever be provided, then the personalization_string
parameter in the input may be omitted, and step 9 becomes seed_material = entropy.
If an implementation will never be reseeded using the process specified in Section
10.1.2.3.3, then step 13 may be omitted, as well as the transformed_seed in the state (see
step 17).
If an implementation does not need the prediction_resistance_flag as a calling parameter
(i.e., the Hash_DRBG (....) routine in Section 10.1.2.3.4 either always or never acquires
new entropy in step 5), then the prediction_resistance_flag in the calling parameters and in
the state (see step 17) may be omitted.

10.1.2.3.3 Reseeding a Hash_DRBG (...) Instantiation

The following process or its equivalent shall be used to reseed the Hash_ DRBG (...)
process. Let Hash (...) be the Approved hash function to be used; let outlen be the output
length of that hash function, and let inlen be the input length.
Reseed Hash_ DRBG_Instantiation (...):
Input: integer (usage_class).
Output: string status.
Process:
1. If a state is not available for the indicated usage class, then Return (“State not
available for the indicated usage class”).
2. Get the appropriate state values for the indicated usage_class, e.g., V= state.V,
t = state.t, strength = state.strength, old_seedlen = state.seedlen,
old_transformed_seed = state.transformed_seed.
min_entropy = max (128, strength).
min_length = max (outlen, strength).
(status, entropy_bits) = Get_entropy (min_entropy, min_length, inlen).
If (status = “Failure”), then Return (“Failure indication returned by entropy
source”).

SAIN Al

Comment: Determine the larger of the
key sizes so that entropy is not lost.

7. seedlen = max (strength + 64, outlen).
Comment: Combine the new
entropy_bits with the entropy present
in V, and distribute throughout the
seed.

8. seed material = entropy bits|| V.

9. seed=Hash_df (seed material, seedlen).

Comment: Perform a one-way
function on the seed and compare with
the old transformed seed.

10. transformed_seed = Hash (entropy_bits).
11. If (transformed_seed = old_transformed_seed), then Return (“Entropy source

failure”).

12. V = seed.

13.ctr=1.

14. C=Hash (¢ || V).

15. Update the appropriate state values for the usage_class.

15.1 state.V=".

15.2 state.C=C.

153 state.cir = ctr.

15.4 state.seedlen = seedlen.

15.5 state.transformed_seed = transformed.seed.

16. Return (“Success”).
If an implementation does not need the usage_class as a calling parameter (i.e., the
implementation does not handle multiple usage classes), then the usage_class parameter
and step 1 can be omitted, and steps 2 and 15 will use the only stare available.
10.1.2.3.4 Generating Pseudorandom Bits Using Hash_DRBG (...)

The following process or its equivalent shall be used to generate pseudorandom bits. Let
Hash (...) be the Approved hash function to be used; let outlen be the output length of that
hash function, and let inlen be the input length.
Hash_DRBG (...):

Input: integer (usage_class, requested_no_of bils, requested_strength,

additional_input, prediction_resistance_requested).

Output: string status, bitstring pseudorandom_bits.

Process:

1. If a state for the indicated usage class is not available, then Return (“State not
available for the indicated usage class”, Null).

2. Set up the state in accordance with the indicated usage_class, e.g., V' = state. v,
C = state.C, ctr = state.ctr, strength = state.strength, seedlen = state.seedlen,
prediction_resistance_flag = state.prediction_resistance_flag.

3. If (requested_strength> strength), then Return (“Invalid requested_strength”).

4. If ((prediction_resistance_requested = 1) and (prediction_resistance flag = 0)),
then Return (“Prediction resistance capability not instantiated”).

5. If (prediction_resistance_requested = 1), then
5.1 status=Reseed_Hash_DRBG_Instantiation (usage_class).

5.2 If (status # “Success”), then Return (status, Null).

6. If (additional_input # Null), then do
6.1 w = Hash (additional_input || V).

6.2 V= (V + w) mod 2°¢°%".

7. pseudorandom_bits = Hashgen (requested_no_gf_bits, V).

8. V= (V+ pseudorandom_bits + C + ctr) mod 2° fen

9. ctr=ctr+1.

10. If (ctr = max_updates), then

10.1 status=Reseed Hash_DRBG_Instantiation (usage_class).
10.2 If (status # “Success”), then Return (status, Null).
Else Update the changed values in the state.
103 stateV="V.
10.4 state.ctr = ctr.

11. Return (“Success”, pseudorandom_bits).
Hashgen (...): .
Input: integer requested_no_of bits, bitstring V.
Output: bitstring pseudorandom_bits.
Process:

1.

2.
3.

5.
6.

"= [requested _no _of _ bits-’
outlen .

data="V.

W = the Null string.

Fori=1tom

4.1 w; = Hash (data).

42 W=W|w.

4.3 data = data + 1. [Note that in Figures 5 and 7, this step
is shown a bit differently; a suggestion
for reconciliation is welcome.]

pseudorandom_bits = Leftmost (requested no_of bits) bits of W.

Return (pseudorandom_bits).

If an implementation does not need the usage_class as a calling parameter (i.e., the
implementation does not handle multiple usage classes), then the usage_class input
parameter and step 1 can be omitted, and step 2 uses the only state available.

If an implementation does not need the prediction_resistance_flag, then the
prediction_resistance_flag and steps 4 may be omitted. If prediction resistance is never
used, then step 5 may be omitted.

