10.1.3 Hash Function DRBG Using Any Approved Hash Function (Hash_DRBG)

[Further work awaits the definition of a revised Hash. DRBG (...).]
10.1.3.1 Discussion

Figures [l and [l| present a DRBG that uses any Approved hash function.

Hash_DRBG (...) employs an Approved hash function that produces a block of
pseudorandom bits using a seed (seed) and an application specific constant (7). Optional
additional input (additional input) may be provided during each access of Hash_DRBG
(...) to obtain bits; the size of the additional input is arbitrary.

Hash_DRBG (...) has been designed to meet different security levels, depending on the
hash function used. The security strengths that can be accommodated by each hash
function, the associated entropy requirement and the seed lengths are specified in Table
2. For each security strength, the requited minimum entropy (min_entropy) shall be the
maximum of 128 and the security strength (i.e., min_entropy = max (128, strength)). The
minimum length of the seed (seedlen) shall be the maximum of the hash output block
size (outlen) and the security strength; the maximum length of the seed shall be the size
of the hash input block (inlen); i.e., max (outlen, strength) < seedlen < inlen. Further
requirements for the seed are provided in Section 9.4.

Table 1: Security Strength, Entropy Requirement and Seed Length for Each Hash Function

Hash Function Security Strength Required Seed Length
Minimum Entropy
SHA-1 80 128 160-512
112 128 160-512
128 128 160-512
SHA-224 80 128 224-512
112 128 224-512
128 128 224-512
192 192 256-512
SHA-256 80 128 256-512
112 128 256-512
128 128 256-512
192 192 256-512
256 256 384-512
SHA-384 80 128 384-1024
112 128 384-1024
128 128 384-1024
192 192 384-1024
256 256 384-1024
SHA-512 80 128 512-1024
112 128 512-1024

128 128 512-1024

192 192 512-1024

256 256 512-1024

The application-specific constant (¢) shall be outlen bits in length. See Annex E.??2 for
some values for 7.

Figures [JJj and . depict the insertion of test input for the seed, the application-specific
constant (¢) and the additional input values (additional input). The tests shall be run on
the output of the generator.

Validation and operational testing are discussed in Section 11. Detected errors shall
result in a transition to the error state.

10.1.3.2 Interaction with Hash_DRBG (...)

10.1.3.2.1 Instantiating Hash_DRBG {(...)

Prior to the first request for pseudorandom bits, Hash_DRBG (...) shall be instantiated
using the following call:
status = Instantiate_Hash_DRBG (usage_class, requested strength,
prediction _resistance_flag, personalization string),

as described in Section 9.6.1.

10.1.3.2.2 Reseeding a Hash_DRBG {...) Instantiation

When a DRBG instantiation requires reseeding (see Section 9.7), the DRBG shall be
reseeded using the following call:

status = Reseed_ Hash_DRBG_Instantiation (usage class)

as described in Section 9.7.2.
10.1.3.2.3 Generating Pseudorandom Bits Using Hash_DRBG (...)

An application shall request the generation of pseudorandom bits by Hash_DRBG (...)
using the following call:

(status, pseudorandom bits) = Hash_DRBG (usage class, requested_no_of bils,
requested_strength, additional input flag, prediction resistance_flag)

as described in Section 9.8.2.

10.1.3.2.5 Inserting Additional Entropy into the State Using the Hash_DRBG {(...) Process

Additional entropy may be inserted into the state of the Hash_ DRBG (...) between
requests for pseudorandom bits as follows:
(status) = Add_Entropy_to_Hash_DRBG (usage class,
request sufficient entropy flag, always update_flag)
as described in Section 9.9.

10.1.3.3 Specifications

10.1.3.3.1 General

The instantiation and reseeding of Hash_DRBG (...) consists of obtaining a seed with at
least the requested amount of entropy. The seed is used to derive elements of the initial
state, which consists of:

1.

& S

Sl 4

The variables used in the description of Hash DRBG (...

(Optional) The usage class for the DRBG instantiation; if the DRBG is used for
multiple usage classes, requiring multiple instantiations, then the usage class
parameter shall be present, and the implementation shall accommodate multiple
states simultaneously; if the DRBG will be used for only one usage class, then
the usage class parameter may be omitted).

A value (V) that is updated during each call to the DRBG.

A constant C that depends on the application-specific constant (¢) and the seed.
A counter (ctr) that indicates the number of ipdates of V since the seed was
acquired.

The application specific constant (f) (see Annex E).

The security strength of the DRBG instance.

The length of the seed (seedlen).

A prediction resistance flag that indicates whether or not prediction resistance is
required by the DRBG, and

(Optional) A transformation of the seed using a one-way function for later
comparison with a new seed when the DRBG is reseeded; this value shall be
present if the DRBG will potentially be reseeded; it may be omitted if the DRBG
will not be reseeded.

Comment [ebb1]: Page: 1
| This may not make sense.

rediction_resistance should never be provided.

10.1.3.3.2

Instantiation of Hash_DRBG (...)

The following process or its equivalent shall be used to instantiate the Hash_DRBG (...)
process. Let Hash (...) be the Approved hash function to be used; let outlen be the output
length of that hash function, and let inlen be the input length.

Instantiate_Hash_DRBG (...):

Input : integer (usage class, requested_strength, prediction_resistance_flag,
personalization_string).

Qutput : string status.

Process :

1. If requested strength > the maximum security strength that can be provided
for the hash function (see Table 2), then Return (“Invalid
requested strength”).

2. Set the strength to one of the five security strengths.

If (requested strength < 80), then strength = 80

Else if (requested strength < 112), then strength =112
Else (requested_strength < 128), then strength = 128
Else (requested_strength < 192), then strength = 192
Else strength = 256.

3. Set up ¢ in accordance with the indicated usage_class. If no value of is
available for the usage class, then Return (“No value of ¢ is available for the
usage class”).

4. min_entropy = max (128, strength).

5. min_length = max (outlen, strength).

. Comment Get the seed.

6. (status, entropy bits) = Get_entropy (min_entropy, min_length, inlen).

7. If (status = “Failure”), then Return (“Failure indication returned by the
entropy source”).

8. seed material = entropy bits || personalization_string.

9. seedlen = || seed malerial ||.

10. If (seedlen > inlen), then seedlen = inlen.

Comment: Ensure that the entropy is
distributed throughout the seed.
11. seed = Hash_df (seed material, seedlen).

Comment : Perform a one-way
function on the seed formlater
comparison during reseeding.

12. transformed_seed = Hash (seed).

13.ctr=1.

16. state = {usage_class, - ctr, t, strength, seedlen,
prediction_resistance_flag, transformed seed}.

17. Return (“Success”).
Note that multiple state storage is required if the DRBG is used for multiple
usage classes.
If an implementation does not need the usage_class as a calling parameter (i.e., the
implementation does not handle multiple usage classes), then the usage_class parameter
can be omitted, step 3 must set ¢ to the value to be used, and the usage class indication in
the state (see step 16) must be omitted.
If an implementation does not handle all five security strengths, then step 2 must be
modified accordingly.
If no personalization_string will ever be provided, then the personalization_string
parameter in the input may be omitted, steps 8 and 9 may be combined into seedlen=||
entropy bits ||, and step 10 may be omitted.
If an implementation will never be reseeded using the process specified in Section
10.1.3.3.3, then step 12 may be omitted, as well as the transformed seed in the state (see
step 16).
If an implementation does not need the prediction_resistance_flag as a calling parameter
(i.e., the Hash_DRBG (....) routine in Section 10.1.3.3.4 either always or never acquires
new entropy in step [ll}), then the prediction_resistance_flag in the calling parameters and
in the state (see step 16) may be be omitted.
10.1.3.3.3 Reseeding a Hash_DRBG (...) Instantiation

The following process or its equivalent shall be used to reseed the Hash_DRBG (...)
process. Let Hash (...) be the Approved hash function to be used; let outlen be the output
length of that hash function, and let inlen be the input length.
Reseed_Hash_DRBG_Instantiation (...):

Input: integer (usage_class).

Output: string status.

Process:

1. If a state is not available for the indicated usage class, then Return (“State
not available for the indicated usage class™).

2. Get the appropriate state values for the indicated usage_class, e.g., V=
state.V, t = state.t, strength = state.strength, old_seedlen = state.seedlen,
old_transformed_seed = state.transformed_seed.

min_entropy = max (128, strength).

min_length = max (outlen, strength).

(status, entropy_bits) = Get_entropy (min_entropy, min_length, inlen).

If (status = “Failure™), then Return (“Failure indication returned by entropy
source™).

SIm B g2

Comment: Determine the larger of
the key sizes so that entropy is not
lost.

7. seedlen = max (old seedlen, || entropy _bits |)).
Comment: Combine the new
entropy bits with the entropy present
in ¥, and distribute throughout the
seed.

e

seed_material = entropy bits || V.

9. seed = Hash_df (seed material, seedlen).
Comment: Perform a one-way
function on the seed and compare
with the old transformed seed.

10. transformed _seed = Hash (seed).

11. If (transformed_seed = old_transformed_seed), then Return (“Entropy source

failure™).

15. Update the appropriate state values for the usage_class.
15.1 state.V=1V0.
15.2 state.C=C.
153 state.ctr = cir.
15.4 state.seedlen = seedlen.
15.5 state.transformed seed = transformed.seed.
16. Return (“Success”).
If an implementation does not need the usage_class as a calling parameter (i.e., the
implementation does not handle multiple usage classes), then the usage_class parameter
and step 1 can be omitted, and steps 2 and 15 will use the only state available.
10.1.3.3.4 Generating Pseudorandom Bits Using Hash_DRBG (...}

The following process or its equivalent shall be used to generate pseudorandom bits. Let
Hash (...) be the Approved hash function to be used; let outlen be the output length of
that hash function, and let inlen be the input length.
Hash_DRBG (...):

Input: integer (usage_class, requested_no_of bits, requested_strength,

additional input_flag, prediction_resistance_requested).
Output: string status, bitstring pseudorandom_bits.
Process:

1. If a state for the indicated usage class is not available, then Return (“State
not available for the indicated usage_class”, Null).

2. Set up the state in accordance with the indicated usage_class, e.g., V=
state.V, C = state.C, ctr = state.clr, strength = state.strength, seedlen =
state.seedlen, prediction resistance_flag = state. prediction_resistance_flag.

3. If (requested strength> strength), then Return (“Invalid
requested_strength™).

4. If ((additional input_flag < 0) or (additional_input_flag > 1), then Return
(“Invalid additional_input_flag value”, Null).

5. If ((prediction_resistance_requested = 1) and (prediction_resistance_flag =
0)), then Return (“Prediction resistance capability not instantiated”).

6. If (prediction_resistance_requested = 1), then
6.1 status = Reseed_Hash_DRBG_Instantiation (usage_class).

6.2 If (status # “Success”), then Return (status, Null).

7. If (additional_input_flag = 0), then additional_input = the Null string
Else {
7.1 (status, additional _input) = Get_additional_input ().
7.2 If (status = “Failure™), then Return (“Failure from request for
additional input”, Null).

11.ctr=ctr+ 1.

12. If (ctr 2 max_updates), then
12.1 status = Reseed_ Hash_DRBG_Instantiation (usage_class).
12.2 If (status # “Success”), then Return (status, Null).

Else Update the changed values in the state.

12.3 stateV=V.
12.4 state.ctr = ctr. | Comment [ebb2]: Page: 82

13. Return (“Success”, pseudorandom_bits). Does this make any.sense forthis DREG 7

If an implementation does not need the usage_class as a calling parameter (i.e., the
implementation does not handle multiple usage classes), then the usage_class input
parameter and step 1 can be omitted, and step 2 uses the only state available.

If an implementation will never request additional _input, then the additional_input ' flag
input parameter and step 4, 7 and 8 may be omitted.

If an implementation does not need the prediction resistance_flag, then the
prediction_resistance_flag and steps 5 and 6 may be omitted.

10.1.3.3.5 Adding Entropy to Hash_DRBG (...)

If additional entropy is to be inserted into the DRBG other than during the instantiation,
reseeding or the generation of pseudorandom bits, then the following process or its
equivalent shall be used to insert additional entropy into the Hash_DRBG (...) state. It is
recommended that the request_sufficient_entropy flag be setto 1 (see Section 9.9). Let
Hash (...) be the Approved hash function to be used; let outlen be the output length of
that hash function, and let inlen be the input length.
Add_Entropy_to_Hash_DRBG (...):
Input: integer (usage_class, request_sufficient_entropy flag, always_update_flag).
Output: string status.
Process:
1. If a state for the indicated usage_class is not available, then Return (“State
not available for the indicated usage class”, Null).
2. Set up the state in accordance with the indicated usage class, e.g., V'=
state.V, C = state.C, cir = state.ctr, strength = state.strength, seedlen =
state.seedlen.

3. If (request sufficient_entropy flag = 1), then
3.1 min_eniropy = max (128, strength).
3.2 min_length = max (outlen, strength).
Else
3.3 min_entropy = min length=1.
4. (status, entropy bits) = Get_entropy (min_entropy, min_length, inlen).
5. If (status = “Failure”), then Return (“Failure from request for additional
~ entropy”).
6. If ((entropy_bits =Null) and (always_update_flag =0)), then Return (“No
update performed”).
7. Perform steps 8-11 of Hash_DRBG (...

Comment [ebb3]: Page: 1
Not sure that this is right. Depends how
Get_entropy is implemented.

74 ctr=ctr+1.
8. If (ctr 2 max_updates), then
8.1 status = Reseed_Hash_DRBG_Instantiation (usage_class).
8.2 If (status # “Success™), then Return (status, Null).
Else Update the changed values in the state.
83 stateV=V.
8.4 state.ctr = cir.
9. Return (“Success”).

If an implementation does not need the usage_class as a calling parameter (i.e., the
implementation does not handle multiple usage classes), then the usage_class input
parameter and step | can be omitted, and step 2 uses the only state available.
If an implementation always requires sufficient entropy, then the
request_sufficient_entropy_flag may be omitted as an input parameter, and step 3 may
consist of only substeps 3.1 and 3.2. If an implementation never requires sufficient
entropy, then the request_sufficient entropy_flag may be omitted as an input parameter,
and step 3 may consist of only substep 3.3.
If an implementation will always update the state even when no additional entropy is
available, then the always update flag input parameter and step 6 may be omitted. If an
implementation will never update the state unless additional entropy is available, then the
always update_flag input parameter and the reference to the flag in step 6 may be
omitted, and step 7.1 can be changed to just steps 7.1.1.and 7.1.2.
Note that step 8 does not include a check for the prediction_resistance_flag. Since
pseudorandom bits are not being produced by this process, and since whatever entropy
was available is acquired in step 4, a check of the prediction_resistance_flag is not
required.
10.1.3.4 Generator Strength and Attributes

[To be determined)
10.1.3.5 Reseeding

A new seed shall be generated to reseed the generator [How often?]

