10.3 Deterministic RBGs Based on Number Theoretic Problems

10.3.1 Discussion

A DRBG can be designed to take advantage of number theoretic problems (e.g., the
discrete logarithm problem). If done correctly, such a generator’s properties of randomness
and/or unpredictability will be assured by the difficulty of finding a solution to that
problem. Section 10.3.2 specifies a DRBG based on elliptic curves; Section 10.3.3
specifies a DRBG based on the RSA integer factorization problem.

10.3.2 Dual Elliptic Curve Deterministic RBG (Dual_EC_DRBG)

10.3.2.1 Discussion

Dual EC_DRBG (...) is based on the following hard problem, sometimes known as the
“elliptic curve logarithm problem”: given points P and Q on an elliptic curve modulo »,
find a such that O = aP.

Dual EC_DRBG (...) uses a seed m bits in length to initiate the generation of m-bit
pseudorandom strings by performing scalar multiplications using two random points in an
elliptic curve group, where the curve is defined over a field approximately 2™ in size,
where m > 192. Figure 16 depicts the Dual_EC_DRBG (...).

seed T’

1st Time &

E
Ty o (x(s * P) l-i_.‘ @ (x(S* Q)}l,)]‘;irt:a Pseudlt;irtasndom

(Opt)
UserInput
0 P Q

If User Tnput
is Null

Figure 16: Dual_EC_DRBG (...)

The initialization of this DRBG requires the selection of an appropriate elliptic curve for
the desired security strength. The curve shall be generated in accordance with ANSI]}(9.62 |

or X9.63, or shall be selected from the [NIST Recommended curves, If the DRBGis

reseeded, the same or a different curve may be used for the new DRBG instance.

During initialization and reseeding, two random points (P and () shall be generated for the
curve, such that each point generates a large cyclic group on the curve. These points may
be considered as the equivalent of keys and shall be handled as keys (see SP 800-57). The
points may be generated externally and entered into the DRBG during initialization and
reseeding, or may be generated internally.

The seed used to define the initial value (S) of the DRBG shall have entropy that is at least
twice the desired security strength. h’he length of the seed shall be m bits in lengthl:_E.l:]'I_'_t_h_E_:}"M_
requirements for the seed are provided in Section 9.4.

When optional user input (UserInput) is used, the length and value of Userlnput are
arbitrary.

_....-—| Comment [ebb1]: Page: 91
The revised version.

“1 Comment [ebb2]: Page: 91
What reference should be provided ? The
revised X9.62 ? FIPS 186-2 ? Should there be
other references ?

---| Comment [ebb3]: Page: 91
How is this guaranteed, given our current
philosophy ? Presumably, when m = 192, 80
bits of security are obtained, requiring 160 bits
of entropy. How does one get exactly 192 bits ?
Do we use a KDF and run until we get enough
bits ? Which KDF ?

Figure 17 depicts the insertion of test input for the seed and the UserInput. The tests shall
be run on the output of the generator. Validation and Operational testing are discussed in
Section 11. Detected errors shall result in a transition tothe error state.

seed
Test Input

(Opt) ol (s * f-Roaf Firact
UserInput
0

Pseudorandom
Bits

Test Input

Figure 17: Dual_EC_DRBG (...) {(with Tests)

10.3.2.2 Description

10.3.2.2.1 General

The initialization of Dual EC_DRBG (...) consists of selecting an appropriate elliptic
curve, selecting two random points on that curve and obtaining a seed that is used to
determine an initial value (S) for the DRBG that is one element of the initial szate. The
state consists of:

1.

(Optional) The purpose of the DRBG instantiation; if the DRBG is used for
multiple purposes, requiring multiple instantiations, then the purpose shall be
indicated, and the implementation shall accommodate multiple states
simultaneously; if the DRBG will be used for only one purpose, then the purpose
may be omitted),

A value (S) that is updated during each request for pseudorandom bits,

(Optional) The m-bit prime modulus p for curves over Fy; if the DRBG will be
using a curve over Fp, the value of p shall be present; otherwise, a value for p shall
not be present,

The elliptic curve domain parameters (g, a, b, G, n [, h]i_yyﬂhgpqlgl is the field size, a
and b are two field elements that define the equation of the curve, G is a generating

point of prime order on the curve, » is the order of the point G, and 4 is the optional
cofactor,

6. The two random points on the curve (P and Q),

7. The maximum security strength provided by the instance of the DRBG, and

(Optional) A record of the seeding material in the form of a one-way function that
is performed on the seed for later comparison with a new seed when the DRBG is
reseeded; this value shall be present if the DRBG will potentially be reseeded; it
may be omitted if the DRBG will not be reseeded.

-1 Comment [ebb4]: Page: 92
Note that the basis Indlcation and the SEED are
not present, Do we need them ?

The state shall be retained within the DRBG.

For each request of pseudorandom bits, a requested_strength is provided and checked
against the strength indicated in the state. If the requested_strength exceeds the strength
afforded by the DRBG, an indication of failure is returned.

The variables used in the description of Dual EC_DRBG (...) are:

a, b

E
entropy
G

h

i

m

n

no_of bits per_block

NRBG (entropy)

order P
order (O

p
PO

pseudorandom_bits
purpose

q

R

random_bits
random_for P
random_for Q
requested_no_of bits
requested_stength

s

Two field elements that define the equation of the curve.
An elliptic curve defined over F," or over F,.

The entropy of the seed.

A generating point of prime order on the curve.

The cofactor.

A temporary value that is used as a loop counter.
Length of the seed; m > 192.

The order of the point G on the curve.

The number of pseudorandom bits to be used from each
iteration of the elliptic curve process.

A function that acquires a string of bits from an Approved
NRBG or an Approved DRBG (or chain of Approved
DRBGs) that is seeded by an Approved NRBG. The
parameter indicates the entropy to be provided in the
returned bits.

The order of the point P.
The order of the point Q.
The modulus; an m-bit prime, where m> 192.

Random points on the elliptic curve E, such that each
generates a large cyclic subgroup on E..

The pseudorandom_bits produced by the DRBG.

The purpose of a DRBG instance.

The field size of the curve.

A value from which pseudorandom bits are extracted.

A temporary value.

A random value used to determine the point P.

A random value used to determine the point Q.

The number of pseudorandom bits to be generated.

The security strength of the bits requested from the DRBG.

A temporary value.

save_seed

seed

selected_random_bits

state

status

Strength

temp
Userinput
Userlnput_flag

x(4)

A value that is initially determined by a seed, but assumes
new values during each request of pseudorandom bits from
the DRBG.

A representation of the seed of this instance of the DRBG.

The seed for this instance of the DRBG. The seed is used to
derive the initial value of S.

A temporary value.

The state of the DRBG that is carried between calls to the
generator. In the following specifications, the entire state is
([purpose, 1S, m, [p,] ¢, a, b, G, n, [h], P, order_P, O,
order Q, strength [, save_initial_state]). A particular
element of the state is specified as state.element, e.g., state.S.

The status returned from the initialization, reseeding or
Dual EC_DRBG (..) processes, where status = Success or
Failure.

The maximum strength of an instance of the DRBG (see
Table).

A temporary value.
Optional user input.

A flag that indicates whether or not user input may be used,
with values as follows:

1 =Request UserInput, but return 0 if no input is available.

2 = Request Userlnput, wait until Userlnput is available
before continuing.

3 = Obtain Userlnput only during the first loop of the call.
If no input is available, return 0. Subsequent loops
should use the same value as the first loop.

4 = Obtain UserInput only during the first loop of the call;
wait until UserInput is available before continuing,
Subsequent loops should use the same value as the first
loop.

If an implementation does not require this flexibility, the
implementation may include only the appropriate capability
(e.g., if UserInput is not desired, then the step requesting
UserInput may be eliminated). .

The x-coordinate of the point 4 on the curve E.

|A mapping from field elements to integers, which takes the
bit vector representation of a field element and interprets it
as the binary expansion of an integer. |

Comment [ebb5]: Page: 85
Does this need to be defined here 7

* Scalar multiplication.
10.3.2.2.2 Initialization of Dual_EC_DRBG (...)

The following process or its equivalent shall be used to initialize the Dual EC_DRBG

(...) process. [Let One_Way (...) be a one-way ﬁmclionL .| Comment [ebb6]: Page: 85
o We prabably wanl lo specify something here,
Initialize Dual EC_DRBG (...): .g., an Approved hash function of the
- - - appropriate strength,
Input: integer ([purpose,} . requested strength). Com;mentebb7]:Page:95]
Is this the entropy 7

Output: integer status, where status = Success or Failure.
Process:
1. If (m < 192), then Return (Failure).

Comment : Determine the strength by
the size of m.

2. If (m < 224), then strength = 80
Else if (m < 256), then strength = 112
Else if (m < 384), then strength = 128
Else if (m < 512), then strength = 192
Else strength = 256.
3. If (requested_strength > strength), then Return (Failure).

4. Choose a suitable elliptic curve E defined over 7 or over Fy, where p is an m-

bit prime and m > 192. The curve may be entered from an external source, or
may be generated interally. NIST Recommended elliptic curves are provided in
FIPS 186-2/3. This process results in values for ¢, a, b, G, n [, h] where g is the
field size, a and b are two field elements that define the equation of the curve, G
is a generating point of prime order on the curve, is the order of the point G,
and is the cofactor. For curves ov Fp, the value of p shall also be obtained.

Comment: Select random values for
two points, P and Q.

5. If P and Q are to be obtained from an external source, then
5.1 GetP.
5.2 [Determine-thg order of P.
53 If (order of P<?7?), then go to step 5.1)
54 GetQ.
5.5 Determine the order_of Q.
5.6 If (order of O <D, then go to step 5.4.
5.7 Gotostep 8.

.| Comment [ebb8]: Page: 86
2 Is this right 7

Comment: Get points P and Q using
the random values.

6. Ifthe curve is over F:
6.1 itk iph ok

62 random_for P=(NRBG (entropy)modpl ___.......[c;<ekiselesess |

6.3 Using random_for_P, determine a point P.
6.4 Determine the order_of P.

6.5 If (order of P <D, then go to step 6.2.
6.6 random_for Q= (NRBG (entropy)) mod p.
6.7 Using random_for_Q, determine a point Q.
6.8 Determine the order_of Q.

6.9 If (order_of Q <[, then go to step 6.6.
6.10 Go to step 8.

7. If the curve is over F;™

7.1 entropy =l + 64, [Comment [ebb10]: Page: 9
"""""""""" i This will provide enough extra bils in steps 7.2
7.2 ran or P=NRBG i mod m. and 7.3 that a mod can be used o reduce to the
“ dom_f = RBG (entropy) desjred number of bifs (m),

7.3 Using random_for_P, determine a point P.

7.4 Determine the order_of P.

1.5 If (order_of P <[, then go to step 7.2.

7.6 random_for_Q = NRBG (entropy) mod m.

7.7 Using random_for_(, determine a point 0.

7.8 Determine the order_of Q.

7.9 If (order_of Q < [f), then go to step 7.6.
8. entropy=m+ 64,

Comment: Request the seed material.

9. S=seed=NRBG (entropy) mod m.

Comment : Perform a one-way
function on the state values for later
compatrison.

11. (Optional) save_seed = One_Way (seed).
12. state = {[purpose,] S, m, [p.] g, a, b, G, n,[h], P, Q, strength [, save_seed]}.
13. Return (Success).

10.3.2.2.3 Reseeding of Dual_EC_DRBG (...)

The following process or its equivalent shall be used to reseed the Dual_EC_DRBG (...
process. Let One_Way (...) be a one-way function.

Reseed_Dual EC_DRBG (...):
Input: integer ([purpose, 1 m, requested_strength).

Output: integer status, where status = Success or Failure.

Process:

1. If (m < 192), then Return (Failure).

2. - Get the appropriate state values for the indicated purpose, e.g., g = state.q, a =
state.a, b = state.b, save_seed = state.save_seed. If a state is not available for
the indicated purpose, Return (Failure).

3. [if (m < 224), then strength= 80
Else if (m < 256), then strength = 112
Else if (m < 384), then strength = 128
Else if m<512),thenstrength =192 . -
Else strength = 256.

4. 1f (requested_strength > strength), then Return (Failure).

Comment : Select a new curve, if
desired ; otherwise, use the old curve.

5. (Optional) Choose a suitable elliptic curve E defined over F7™ or over Fj, where
p is an m-bit prime and m > 192. The curve may be entered from an external
source, or may be generated interally. NIST Recommended elliptic curves are
provided in FIPS 186-2/3. This process results in values for ¢, a, b, G, n [A
where ¢ is the field size, @ and b are two field elements that define the equation
of the curve, G is a generating point of prime order on the curve, » is the order
of the point G, and # is the cofactor. For curves ov), the value of p shall also
be obtained.

6. If P and Q are to be obtained from an external source, then
6.1 GetP.
6.2 Determine the order_of P.
6.3 If (order of P <[, then go to step 6.1.
64 GetQ.
6.5 Determine the order_of Q.
6.6 If (order_of O <. then go to step 6.4.
6.7 Go tostep 9.

7. Ifthe curve is over F),

new DRBG instance and the old DRBG
instance need not be the same.

| Comment [ebb11]: Pags: 57
There is an assumption that the strength of the

10.3.2.24

Generating Pseudorandom Bits Using Dual_EC_DRBG {...)

The following process or its equivalent shall be used to generate pseudorandom bits.
Dual_EC_DRBG (...):

Input:

integer ([purpose, | requested_no_of bits, no_of bits_per block,
requested_strength, UserInput_flag).

Output: integer (status, pseudorandom_bits), where status = Success or Failure.

Process:

1. Set up the state in accordance with the indicated purpose, e.g., S = state.S, m =

o woa W

10.

11.
12.

13.
14.

state.m, p = state.p, P = state.P, Q = state.Q, strength = state.strength, efc..

If (no_of bits_per_block < 0) or (no_of bits_per_block > m)), then Return
(Failure, 0).

If (requested_strength > strength), then Return (Failure, 0).
If ((UserInput_flag < 0) or (UserInput_flag > 4)), then Return (Failure, 0).
temp = then Null string.
If (Userinput_flag = 0), then UserInput =0
Else If (UserInput_flag = 3) and (i # 0)), then go to step 7
Else Userinput = Get_userInput (UserInput_flag).

s = (S ® Userinput). Comment: If Userlnput is shorter than
S, then XOR UserInput to the
rightmost bits of S.

S=0(x(s*P))
R=0p(x(S*Q)). k’)omment: R is an m-bit number.

If the curve is over Fp:
10.1 Doi=mto 1by-1
If ((Bit i of p=1) and (Bit i of R = 0)), then go to step 10.2.
10.2 random_bits = Rightmost (i - 1) bits of R.
10.3 Go to step 12.
If the curve is over F,": random_bits = Rightmost (m-8) bits of R.

If (no_of bits_per_block > || random_bits), then selected_random_bits =
random_bits

Else selected_random_bits = Leftmost no_of bits_per_block of random_bits.
temp = temp || selected_random_bits.

If (|| temp || < requested_no_of bits), then go to step 6.

15. pseudorandom_bits = Leftmost requested_no_of bits of temp.

Commtent [ebb12]: Page: 99
Do these require substeps ?

16. Update the changed values in the state, e.g., state.S = S.

17. Return (Success, pseudorandom_bits).
10.3.2.3 Generator Strength and Attributes

[To be determined]
10.3.2.4 Reseeding and Rekeying

[To be determined]

7.1 entropy =| p| +64.
7.2 random_for_P = (NRBG (entropy)) mod p.
7.3 Using random_for_P, determine a point P.
7.4 Determine the order_of P.
7.5 If (order_of P <D, then go to step 7.2.
7.6 random_for Q= (NRBG (entropy)) mod p.
7.7 Using random_for_Q, determine a point Q.
7.8 Determine the order_of Q.
7.9 1If (order_of Q <D, then go to step 7.6.
7.10 Go to step 9.

8. Ifthe curve is over F7™:
8.1 entropy =m+ 64.
8.2 random_for P =NRBG (entropy) mod m.
8.3 Using random_for P, determine a point P.
8.4 Determine the order_of P.
8.5 If (order of P<ED, then go to step 8.2.
8.6 random _for Q=NRBG (entro1-)y) mod m.
8.7 Using random_for_Q, determine a point Q.
8.8 Determine the order_of Q.
8.9 If (order_of O <[, then go to step 8.6.

Comment: Get points P and O using
the random values.

9. entropy=m+ 64.
Comment: Request the seed material.
10. S = seed = NRBG (entropy) mod m.

Comment : Perform a one-way
function on the state values for later
comparison.

11. temp = One_Way (seed).

12. If (temp = save_ seed), then go to step 5.

13. state = {[purpose, 1S, m[p.] 4, a, b, G, n, (A, P, Q, strength [, save_seed]}.
14. Return (Success).

Part 1 of this Standard provides general functional objectives and requirements for random
bit generators. These objectives and requirements are specified below in italics, followed
by a discussion about how they are satisfied by DRBGs in this part of the Standard.

The following testable functional requirements apply to all random bit generators:

1. The implementation shall be able to be validated, including specific design
assertions about what the RBG is not intended to do. LS‘ecurity—reIevant branches
that govern behavior in exceptional conditions (e.g. initialization, failed health
tests, etc.) shall be verified by forcing all error conditions to occur during

validation testing)| .| Comment [ebb1]: Page: 32
O e —— = O Voo, Pt T 1 L e B o B
Implementation validation is discussed in Section 11. Test points have been reworded or removed, since it appears (o be a

requirement of the validalor.

included in the functional model (see Figure 1).

2. The RBG shall satisfy all the appropriate top-level requirements, particularly the
requirements for RBG output.

This has been addressed in Section 7.1.
The objectives for the functions in an RBG are as follows:

1. There must be design evidence (theoretical, empirical, or both) to support all
security requirements for the RBG, including protection from misbehavior.

This is provided by the design of the DRBG, as well as by the operational testing
described in Section 11. When an implementation is validated, testing will provide
further assurance that the DRBG will not misbehave.

2. Depending on application requirements, the RBG must be capable of supporting
Sforward and backward secrecy. Given anything that is meant to be observable
about a RBG at a particular point in time, it must be infeasible to compute or
predict any future or prior output bit.

Forward and backward secrecy has been designed into the DRBGs specified herein
when observed from outside the DRBG boundary. When an implementation is
validated, design evidence shall be provided and testing will be conducted to
provide assurance that information that is internal to the DRBG is not observable
from outside the DRBG boundary. '

8.2 DRBG Components of the Model and Functional Objectives and Requirements
for Each Component

8.2.1 Entropy Source

The entropy source is the source of digitized bits for the DRBG. This source shall be either
an Approved NRBG as specified in Part 2 of this Standard, or an Approved DRBG or
chain of DRBGs in which the first DRBG in the chain has an Approved NRBG as an
entropy source.

The DRBGs specified in this Standard allow for some bias in the entropy source.
Whenever a source of entropy is required by the DRBG, the minimum entropy that shall
be provided by the entropy source is indicated. Depending on the entropy source,
additional redundant bits may also be provided.

The primary use of the entropy source for DRBGs, is the acquisition of initializing inputs
called seeds. These seeds shall be obtained prior to requesting pseudorandom bits from the
DRBG. Additional entropy may also be introduced during the operation of the DRBG. An
example of this might be information that is entered by a user. Further discussions on seeds
and user input are provided in Section 9. ‘

Part 1 of this Standard provides functional objectives and requirements for the entropy
sources for random bit generators. These objectives and requirements are specified below.
They are met when an entropy source that conforms to Part 2 of this Standard is used, and
the interface between the entropy source and the DRBG is protected against influence,
manipulation and observation.

The requirements for the entropy source of an RBG are:

1. The entropy source shall be based upon well-established physical principles, or
extensively characterized behavior.

2. The entropy rate shall be assessable, or the collection self-regulating, so that the
amount of entropy per collection unit or event will reliably obtain or exceed a
designed lower bound,

The objectives for the entropy source of an RBG are:

1. The RBG must be free from predictable and controllable influence, manipulation,
and observation.

2. Loss or severe degradation of an entropy source must be detectable.

3. The entropy source may be formed from multiple sources of random bits.
8.2.2 Other Input information

Other information is required by a DRBG as input during the generation process. This
information includes the input parameters when the DRBG is called by the consuming
application. Input information shall be checked for validity when possible.

Depending on the DRBG, time variant information may also be required, e.g., a counter or
a date/time value.

A counter used by a deterministic RBG shall not repeat during the "instance" of the
deterministic RBG. When the deterministic RBG is initialized with a new seed, the counter
may be set to a fixed value (e.g., set to 1), but shall be updated for each state of the DRBG
and shall not repeat.

A date/time value used by a deterministic RBG shall not repeat; a different date/time value
shall be used whenever a date/time value is requested by the DRBG or another technique
shall supplement the date/time value to provide uniqueness.

8.2.3 Internal State

The internal state is the memory of the DRBG and consists of all of the parameters,
variables and other stored values that the DRBG uses or acts upon. The internal state
includes values that are acted upon by the internal state transition function between
requests, keys used during each call, user input that has been obtained while a request is

serviced, and time-variant parameters used by the DRBG. The internal state is dependent
on the specific DRBG and includes all information that is required to produce the
pseudorandom bits from one request to the next. Some portion of the internal state shall be
changed by the internal state transition function at each iteration of the DRBG.

Part 1 of this Standard provides objectives and requirements on the internal state ofa
random bit generator. These objectives and requirements are specified below in italics,
followed by a discussion about how they are satisfied by this part of the Standard.

The requirements for the internal state of a RBG are:

1.

The internal state shall be protected in a manner consistent with the use and
sensitivity of the output.

This requirement is fulfilled by an implementation that conforms with this part of
the Standard, particularly if implemented within an appropriate level of FIPS 140-2
cryptographic module.

The internal state shall be functionally maintained properly across power failures,
reboots, efc. or regain a secure condition quickly (i.e., either the integrity of the
internal state shall be assured, or the internal state shall be re-initialized).

The fulfillment of this requirement is dependent on the physical embodiment of the
DRBG and how it has been designed. When a DRBG is validated, design evidence
shall be provided and testing will be conducted to establish that this requirement is
fulfilled.

The state elements that accumulate or carry entropy for the RBG shall be at least
2x, where x is the desired cryptographic strength expressed in bits of security. (x
bits of security means that it takes about 2" operations to attack the cryptographic
system.

This requirement is inherent in the specification of the DRBGs herein and by the
use of an appropriate entropy source that conforms to Part 2 of this Standard.

TR shall have a specified finite cryptoperiod, after which the seed shall be
updated with sufficient additional entropy or operations using that seed shall cease
operation.

This still needs to be addressed.

. A specific internal state shall not be deliberated reused, although this might

happen by chance.

This requirement is fulfilled if a DRBG conforms fo this part of the Standard and
uses an entropy source that conforms to Part 2 of this Standard. If an
implementation is validated, design evidence shall be provided to establish that this
requirement will be fulfilled.

The objective for the internal state of an RBG is:

1.

The internal states used to produce public data such as nonces and initialization
vectors must be fully independent from the states used to produce secret data such
as cryptographic keys.

This Standard recommends, but does not require, seed separation for different types
of random data, including using different seeds for the generation of public data
than are used to generate secret data (see Section 9.4).

8.2.4 Internal State Transition Function

The internal state transition function uses the internal state and one or more Approved
algorithms to produce pseudorandom bits. During this process, the internal state of the
DRBG is altered. The algorithms used and the method of altering the internal state depends
on the specific DRBG.

The DRBGs in this Standard have three separate state transition functions:

1. Prior to the initial use of the DRBG, seed material is obtained, and all initial input
is determined. The initial input is used as all or part of the initial state of the
DRBG.

2. Each request for pseudorandom bits produces the requested bits using the current
internal state and determines a new internal state that is used for the next request of
bits.

3. When an application determines that reseeding of the DRBG is required, a
reseeding function obtains new seed material, combines it with the current internal
state values, and determines a new internal state for the next request for
pseudorandom bits. By combining the new seed material with the current internal
state, the entropy available from the current state is not lost, but is enhanced by the
entropy of the new seed material.

Part 1 of this Standard provides objectives and requirements on the internal state transition
function of a random bit generator. These objectives and requirements are specified below
in italics, followed by a discussion about how they are satisfied by the DRBGs in this part
of the Standard.

The requirement for the internal state transition functions of an RBG is:

1. The deterministic elements of the transition function shall be verifiable via known-
answer testing.

This requirement is fulfilled by the operational testing specified in Section 11 and,
optionally, by implementation validation.

The objectives for the internal state transition functions of an RBG are:

1. The internal state transition function must depend on all the entropy carried by the
internal state.

This objective is fulfilled by the design of the DRBGs in this Standard (see Section
10).

2. It must not be feasible (either intentionally and unintentionally) to cause the
internal state transition function to return to a prior state in normal operation (this
excludes testing and authorized verification of the RBG output).

IThis objective is fulfilled by the design of each DRBG in this Standard during one

Need to bring the necessity of reseeding into
this.

Comment [ebb2]: Page: 36
instance of the DRBG, There is no such assurance between different instances of .~

the same DRBG. However, when an entropy source that complies with Part 2 of
this Standard is used so that the entropy source is statistically unique, there is a
very low probability of a recurrence.

3. The internal state transition functions must resist observation and analysis via
power consumption, timing, radiation emissions, or other side channels as
appropriate.

Fulfillment of this objective will depend on the embodiment of the DRBG. When
an implementation is validated, design evidence shall be provided that indicates
how this objective is satisfied; testing will be conducted to provide assurance that
this objective has been met .

4. The internal state transition function may enable the RBG to recover from the
compromise of the internal state through periodic incorporation of entropy.

When an implementation is validated, design evidence shall be provided to provide
assurance that the DRBG is able to fulfill this objective if such a capability has
been designed into the DRBG.

8.2.5 Output Generation Function

The output generation function of a DRBG produces pseudorandom bits that are a function
of the internal state of the DRBG and any input that is introduced while the internal state
transition function is operating. These pseuodorandom bits are deterministic with respect
to the input information. Any formatting of the bits prior to output is determined by a
patticular implementation.

Part 1 of this Standard provides objectives and requirements for the output generation
function of a random bit generator. These objectives and requirements are specified below
in italics, followed by a discussion about how they are satisfied by the DRBGs in this part
of the Standard.

The requirements for the output generation function are:

1. The (deterministic) output generation function shall be able to be validated via
known-answer testing.

Operational testing as specified in Section 11 shall be performed and shall include
known-answer testing. If an implementation is validated, known-answer testing
will be performed and the implementation will be examined to ensure that known-
answer testing will be performed during normal operations.

2. The output shall be inhibited until the internal state exhibits/obtains sufficient
entropy.

A DRBG shall be designed to inhibit operation and output until sufficient entropy
is obtained for the desired level of security (see Section 9.4). If the DRBG requires
one or more cryptographic keys, the DRBG shall not operate or produce output
until the keys are available as specified in this part of the Standard (see Section
9.5). When an implementation is validated, design evidence shall be provided that
will provide assurance that this requirement is fulfilled.

3. ‘Test output and public output shall be separated from secret outpu4

' Comment [ebb3]: Page: 37

This may need rewording ?

The DRBG shall be designed to provide test output only during testing, and to
otherwise provide output only from the appropriate DRBG instance.

4. When the internal siate is dependent on previous state(s), the output generation
function shall protect the internal state, so that analysis of randomizer outputs do
not reveal useful information (from the point of view of compromise) about the
internal state.

The DRBG:s in this Standard have been designed to fulfill this requirement.
The objectives for the output generation function of an RBG are:

1. The output generation function must depend on all of the entropy carried by the
internal state.

The DRBGs in this Standard have been designed to fulfill this objective. If an
implementation is validated, testing will be conducted to provide assurance that the
implementation conforms to the algorithm specification.

2. Within the constraints of the consuming application, the output generation function
rmust be resistant to influences that will produce a chosen, previously ungenerated
String.

Guidance has been provided about the DRBG boundary and its relation to other
functions inside and outside that boundary (see Section 9.2). If an implementation
is validated, testing will be conducted to provide assurance that the implementation
conforms to the algorithm specification.

3. The output generation function must resist observation and analysis via power
consumption, timing, radiation emissions, or other side channels as appropriate.

This objective depends on the embodiment of the DRBG. If an implementation is
validated, design evidence shall be provided that will provide assurance that this
objective is fulfilled.

4. When the output is generated in blocks from internal states whose bits are not Jully
independent (i.e., the RBG is functioning deterministically, or the entropy
collection of a non-deterministic RBG produces bits with non-zero correlation),
then changing one bit of the input must result in changing approximately half of
the bits of the output. It must be infeasible to predict which output bits will change,
without knowing the entire input.

This feature has been designed into the DRBGs. If an implementation is validated,
testing will be conducted to provide assurance that the implementation conforms to
the algorithm specification.

8.2.6 Support Functions

The support functions for a DRBG are concerned with assessing and reacting to the health
of the DRBG.

A DRBG shall be designed to permit testing that will ensure that the generator is correctly
implemented and continues to operate correctly. A test function shall be available for this
purpose. The test function shall also allow the insertion of predetermined values of the

input information in order to test for expected results. If any test fails, the DRBG shall
enter an error state and output an error indicator. The DRBG shall not perform any
operations while in an error state. All output shall be inhibited when an error state exists.

Error states may include "hard" errors that indicate an equipment malfunction that may
require maintenance, service, repair or replacement of the DRBG, or may include
recoverable "soft" errors that may require initialization or-resetting of the DRBG.
Recovery from error states should be possible except for those caused by hard errors that
require maintenance, service, repair or replacement of the DRBG. [Editor's note: We
probably need to include more advice an recovering from errors. |

Optional implementation validation is specified in Section 11.2 and in 7G-19, Part X
Implementation Validation of Random Bit Generators. Operational testing shall be
implemented in accordance with the tests specified in Section 11.3.

