Selected text from Section 9:
9.2 DRBG Boundary

A DRBG shall be implemented within a DRBG boundary; the state (see Section 9.3) and
any other inputs shall not be output, but shall exist solely within the DRBG boundary.
When implemented within a FIPS 140-2 cryptographic module, the DRBG boundary shall
either be identical to the cryptographic boundary or the DRBG shall be fully contained
within the cryptographic boundary.

When the DRBG boundary does not coincide with the cryptographic boundary, a basic
DRBG component within the cryptographic boundary (e.g., a hash function or btack cipher
algorithm) shall not be accessible for other purposes by a function outside the DRBG
boundary. For example, an encryption function that is within the cryptographic boundary,
but not within the DRBG boundary shall not use an algorithm that resides within the
DRBG boundary for its encryption operation.

A basic cryptographic function within a DRBG boundary may be used by other functions
within the DRBG boundary. However, the internal state of the DRBG shall not be used by
functions other than the DRBG. For example, a hash function used by the DRBG may also
be used for digital signature generation within the DRBG boundary as long as any
informajtion associated with the DRBG is not used or affected by the digital signature

9.3 States

An initial state of a DRBG shall be generated prior to the generation of output by the
DRBG. The state of a DRBG includes information that is acted upon, the strength of the
generator and, optionally, keys used by the generator. The initial state includes:

1. One or more values that are derived from the seed(s); at least one of these derived
values is updated during the operation of the DRBG (e.g., at least one component
of the state is updated during each call to the DRBG),

2. Any keys required by the DRBG,

3. A transformation of the initial state; this information remains static until replaced
by new values during reseeding,

4. Other information that is particular to a specific DRBG; this information may
remain static or may be updated during the operation of the DRBG, and

5. The security strength provided by the DRBG if an implementation is designed to
handle multiple levels of security.

At any given time after a DRBG has been initialized, a DRBG exists in a state that is
defined by all prior input information. No portion of the DRBG state shall be accessible
from outside the DRBG (i.e., all portions of the state shall be retained within the DRBG
boundary) and shall be protected at least as well as the intended use of the output bits by the
consuming application.

A DRBG shall transition between states on demand (i.e., when the generator is requested
to provide new pseudorandom bits). A DRBG may also be implemented to transition in

Comment [ebb1]: Page: 39
Do we want to allow this ?

response to external events (e.g., system interrupts) or to transition continuously (e.g.,
whenever time is available to run the generator). Additional unpredictability is introduced
when the generator transitions between states continuously or in response to external
events, However, when the DRBG transitions from one state to another between requests,
reseeding and rekeying may need to be performed more frequently.

Re Seeds (selection from Section 9.4):

1.

Seed use: DRBGs may be used to generate both secret and public information. In
either case, the seed shall be kept secret. A single instantiation of a DRBG should
not be used to generate both secret and public values. Cost and risk factors must be
taken into account when determining whether different instantiations for secret and
public values can be accommodated.

A seed that is used to initialize one instantiation of a DRBG shall not be intentially
used as a seed for another instantiation of the DRBG.

Seed entropy: A seed shall have entropy that is equal to or greater than twice the
required security strength s for the consuming application; if the application
requires a security strength of s, then the required entropy is at least 2s. Table 1
identifies the five security strengths provided by Approved DRBGs, along with the
associated entropy requirements. If a selected DRBG and the seed are not able to
provide the required strength, then a different DRBG shall be used. t[f multiple
seeds are required, then each individual seed shall have entropy equal to or greater
than the required strength of the consuming application.[

Table 1: Minimum Entropy and Seed Size

..« | Comment [ebb2]: Page: 41

Need to check that Lhis statement is true - see
Section 10.

Bits of Security 80 112 128 192 256
Strength

Minimum Entropy and 160 224 256 384 512
Seed Size

Seed size: The minimum size of the seed depends on the selected DRBG, the
security strengh required by the consuming application and the entropy source. The
seed size shall be at least equal to the required entropy and may be larger,
depending on the entropy source (see above discussion). For example, if 160 bits of
entropy are required, the quality of the entropy source may necessitate a seed size
of 240 bits or more to achieve the 160 bits of entropy. Table 1 lists the minimum
seed size for a security strength and entropy requirement.

9.5 Keys

Some DRBGs require the use of one or more keys. When not explicitly prohibited, these
keys may be provided from an external source (i.e., from a source outside the DRBG
boundary), or the DRBG may be designed to generate keys from seed material. The use of
externally provided keys may be appropriate, for example, in low risk applications with
memory constraints (e.g., smart cards), when the generation of sufficient seed material for

keys is impractical (e.g., the source of sufficient entropy is too costly), or the quality of the
DRBG’s entropy source is questionable, but high-quality keys can be obtained outside the
DRBG boundary. A key and its use in a DRBG shall conform to the following:

1.

Key use: Keys shall be used as specified in a specific DRBG. A DRBG requiring a
key(s) shall not provide output until the key(s) is available.

Key entropy: The entropy for the combination of keys shall be at least twice the
required security strength of the consuming application. For example, when 112
bits of security are required by an application, the key(s) shall have at least 224 bits
of entropy.

Key size: Key sizes shall be selected to support the desired security strength of the
consuming application (see SP 800-57).

Keys determined from a seed: [A key determined from a seed shall be independent

of the rest of the initial input determined by that seed, If multiple keys are used by a .

DRBG, as opposed to the same key used in multiple places, then each key shall be
independent of all other keys.

For DRBGs that determine a key from the same seed as an initial value and any
other keys (i.e., a single seed is used to determine all initial inputs for the DRBG,
including keys), the seed shall have entropy that is equal to or greater than twice
the required strength of the consuming application.

For DRBGs that use multiple seeds to determine a DRBG instance, each seed shall
be used to determine a different part of the initial input (e.g., the initial value for the
DRBG and each distinct key shall be determined from different seeds). The
combination of all seedsshall have entropy that is equal to or greater than twice the
required strength of the consuming application.

Keys provided from an external source: Keys generated externally bhall have full
entropy (i.e., each bit of a key shall be independent of every other bit of the key)

and shall be generated using an Approved NRBG or an Approved DRBG (or chain
of DRBGs) that is seeded by an Approved NRBG. The keys shall be protected in
accordance with [SP 800-57].

Rekeying: Rekeying (i.e., replacement of one key with a new key) is a means of
recovering the secrecy of the output of the DRBG if a key becomes known.
Periodic rekeying is a good countermeasure to the potential threat that the keys and
DRBG output become compromised. However, the result from rekeying is only as
good as the NRBG (or chain of DRBGs that is initiated by a NRBG) used to
provide the new key. In some implementations (e.g., smartcards), an adequate
rekeying process may not be possible, and rekeying may actually reduce security.
In these cases, the best policy might be to replace the DRBG, obtaining a new key
in the process (e.g., obtain a new smart card).

Generating too many outputs using a given key may provide sufficient information
for successfully predicting future outputs. Periodic rekeying will reduce security
risks, reducing the likelihood of a compromise of the target data that is protected by
cryptographic mechanisms that use the DRBG.

| Comment [eb3]: Page: 43
I'm not sure that lhis has been accomplished by
the 3BlockCipherDRBG.

.~| Comment [ebb4]: Page: 43

Do we want {o require this ?

Keys shall have a specified finite keylife (i.e. a cryptoperiod). Keys shall be
updated (i.e., replaced) periodically. Expired keys or keys that have been updated
shall be destroyed (see Sp 800-57). If keys become known (e.g., the seeds are
compromised), unauthorized entities may be able to determine the DRBG output.

7. Key separation: A key used within a DRBG shall net be used for any purpose other

than random bit generation. Different instances of a DRBG Should|use different | Comment [ebb5]: Page: 44
kevs. s e Do we want to allow this ? If the seed is
ys-. supplied extemally, the seed would still be
9.7 Forward and Backward Secrecy| uforsnt
Comment {ebb6]: Page: 44
o } . is secti d for now. H 3
Each of the DRBGs in this Standard has been designed to provide forward and backward miﬂ:&,ﬂ'}:ﬁ%dggﬁﬁéﬁg P ka4,
secrecy when observed from outside the DRBG boundary, given that the observer does not (that may not be correct right now).

know the seed or any state values.

When observed from within the DRBG boundary, k:ach of the DRBGs provides backward

secrecy. | [Comment [ebb7]: Page: 44
, : OS]

Forward secrecy may be provided by the addition of user input. However, the degree of
forward secrecy depends on the amount of entropy introduced by the user input. If
the user input introduces entropy that is at least equal to the strength of the DRBG
for every request for pseudorandom bits, then “full” forward secrecy is provided.
This may be impractical for many applications. However, user input with even a
small amount of entropy provides some degree of forward secrecy. It may be
appropriate for an application to require user input with high entropy for critical
applications (e.g., the generation of digital signature keys).

