Version 0.3, July 15, 2004

1 Current Hash-Based DRBGs

The current hash-based DRBGs are given in a more traditional algorithmic format. The
algorithm description here is confined to the DRBG-boundary. To illustrate the separation
expected to be given by the DRBG-boundary a Conceptual AP that is accessible external to the
cryptographic boundary is given. This should result in a clear deterministic algorithmic
description of the DRBG, and guidance on the implementing a secure DRBG-boundary. In
addition, it gives a deterministic presentation to the algorithm that are suitable to their
deterministic nature and known answer tests.

Before giving the presentation we repeat a necessary table for enforcing security parameters

Hash Security Required Entropy Seed Length
Function Strength | Minimum Input for
Entropy Lengths Hash_ DRBG

SHA-1 80 128 128 -2 160

112 128 128 - 2°° 176

128 128 128 - 2% 192

SHA-224 80, 112, 128 128 - 2% 224
128

192 192 192 -2% 256

SHA-256 80, 112, 128 128 -2 256
128

192 192 192 -27 256

256 256 256 - 2% 320

SHA-384 80, 112, 128 128 -2% 384
128

192 192 192 -2” 384

256 256 256 - 27 384

SHA-512 80, 112, 128 128 -2% 512
128

192 192 192 - 2% 512

256 256 256 -2 512

EBB: This is an old table: in particular. some ot the seed lengths are wrong. | believe that the

current formula is seedlen = max (highest strength + 64 outlen). which means that for SI1A-1
the seedlenn = 192; tor SHA-224. seedlen = 236: and for SHA-256. seedlen = 320. [these are
wrong. please correct me.

Hash_df()

INPUT: An input buffer and a requested length
OUTPUT: A output buffer of length length; or an ERROR

1) Iflength > max output length return ERROR
2) Set temp € NULL.

3) Set n = ceil(length/outlen)

4) For i=I to n. (i an 8-bit counter)

Version 0.3, July 15, 2004 2

a. Settemp € temp||Hash(i||length||input)
5) Set output € leftimost length-bits of temp.
EBB: This doesn't look that different from the way this is presented in Part 3. [s there some
particular part of this specification that needs to be changed from the workshop version of the
document? Is there any reason to use “<«" instead of ~="". Is there any reason that ~Set™ and
“Compute™ (see below) are used? A possible revision might be the folowing:

Input:
1)y input_string: The string from which the output will be derived.
2) number of bits_to_return: The length of the bit string to be returned. The maximum
length is implementalion depended, but shall be < max_ouput _length. where
max_output_length = (235 * outlen) bits.

Output:
1) output_string: A string of the requested length.

Process:
1) [If number_of bits_to_return > max_outpui_length, return ERR(H-!L_
2) Set temp = Null.
. B [number _of _bits_to_ return—l
3) len= .

outlen
4) Fori=1tolen Comment: i is an 8-bit counter
Set temp = temp || Hash (i || number of bits to return || input_string).
3) output string — leftmost number of bits to return of temp.
6) Return owtput string.

EBB: In the following procedures. the internal state must not be passed to and from the
consuming application. but must be retained within the DRBG boundary. Also. the entropy bits

used to derive the seed must not be provided to the procedures by the consuming application. For

the instantiation procedure, a state_handle is returned and used to the reseed and generation
procedure calls. ['ve shown a status code being returned for a successful process, but should this
be shown here? The procedures have been specified in accordance with the workshop drafl of

X9.82. Note that the node parameter (for testing) has been omitted as suggested at the workshop.

Instantiation Function

INPUT: A requested strength rstrength, an entropy input seed with estrength-bits of entropy and
an optional input bit array, an optional pflag to indicate prediction resistance

OUTPUT: A composite state S = {¥, C, ctr, seedlen, strength, flag}, or an ERROR.

1) Set strength to the nearest strength greater than or equal to rstrength supported by the
underlying hash function. if possible: otherwise. return ERROR.

2) If pflag is TRUE and prediction resistance is supported set flag = pflag; if prediction
resistence is not supported return ERROR

3) Verify strength, estrength and seedlen are appropriate to the underlying hash function as
defined by above table, other return ERROR.

.| Comment [ebb1]: Page: 2

Is this really needed, since the calling
pracedures control this ?

Version 0.3, July 15, 2004 3

4) Set min_entropy<max(128, strength)

5) If min_entropy > estrength return ERROR

6) Set min_length € max(outlen, strength)

7) If min_length > len(seed) return ERROR

8) Set seed material € seed || input.

9) Set seedlen € max(strength + 64, outlen)

10) Compute V € Hash_df(seed_material, seedlen)

11) Compute C € Hash(0x00||V)

12) Set ctr €1

13)Return S &{V, C, ctr, seedlen, strength, flag}.

14)
EBB: Using the above as a model (sort of), I would tend to rewrite the instantiation specification
as follows:

Input from a consuming application:
1) requested strength: A requested strength for the instantiation.
2) prediction resistance request flag: An indication as to whether or not prediction
resistance is required for this instantiation . This parameter may be omitted if prediction
resistance will never be supported; in this case. step 2 below may be omitted. and the
internal state will not contain a prediction_resistance flag. In the following steps. a
prediction_resistance request flag of TRUE indicates that prediction resistance is
requested for the instantiation.

3) personalization string: An optional input that provides personalization information. The
maximum length of the personalization string is implementation dependent. but shall be
< 2% bits. 1f a personalization string will never be used, then the input parameter may be
omitted. and step 3 may be modified to remove the personalization string.

Other input:
1) entropy input: Input containing min_entropy bits of entropy. The maximum length of the
enfropy input is implementation dependent. but shall be < 2% pits.

Qutput to a consuming application:
1) status: The status returned from the procedure. The stafus will indicate SUCCESS or an
ERROR.
2) state handle: A pointer or index that indicates the newly instantiated internal state for
subsequent processing using this instantiation.

Other output/information retained within the DRBG boundary:
An inlernal state containing:
[) F: An initial value that will be updated for each request for pseudorandom bits.
2) C: A constant for the seed period.
3) reseed counter: A counter of the number of requests for pseudorandom bits during
the seed period.
4y strength: The security strength for the instantiation.
3) prediction_resistance flag: Indicates whether or not prediction resislance requests
may be made during the instantiation.
Process:

Version 0.3, July 15, 2004 4

D]

8)
9)

Set strength to the nearest strength greater than or equal to requested strength that is
supported by the underlying hash function. it possible: otherwise. if the
requested strength is too large. return ERROR.
It prediction resistance is supported. sct prediction resistance flag
prediction resistance_request flag; il prediction resistance is not supported and
prediction resistance request flug = TRUE. return ERROR.
Set min entropy = max (128, strength)
Obtain entropy input with at least min_entropy bits of entropy. If there is a failure in the
entropy input source. return ERROR.
Comment: Steps 3-7 contain the
instantiation algorithm,
Set seed _material = entropy_input || personalization string.

Compute I = Hash_df (seed maleriad seedled). .~ | comment [ebb2]: Page: 4

‘ - “0Ov Y 24 Note that since seedlen is fixed for a given hash
(,ompute C'=Hash (O'\OO K. function, Lhis value can be hardcoded into the
procedure .

Sct reseed counter — |
Get a state handle that will be used to locate the internal state for this instantiation. [t an
unused internal state cannot be found. return ERROR.

10) Set the internal state indicated by state handle to the initial values: V. C. reseed counter.

strength. prediction resistance_flag.

11)Return SUCCESS and state handle.

EBB: Is this at a high enough level? Note that the mode parameter has been removed. and that
whatever handles obtaining the entropy _input in step 4 will check that the entropy source has not

failed.

Reseed Function

INPUT: A state S = {V, C, ctr, seedlen, strength, flag}, an entropy input seed with estrength-bits
of entropy and optional input bit array.
OUTPUT: A composite state S = {V, C, ctr, seedlen, strength, flag} or an ERROR

Set min_entropy = max(128, strength)

If min_entropy > estrength return ERROR

Set min_length = max(128, outlen)

If min_length > len(seed) return ERROR

Set seed _material € 0x01||V||seed||input.
Compute V' € Hash dffseed material, seedlen).
Compute C € Hash(0x00||V)

Return S €& {V, C, ctr, seedlen, strength, flag}.

EBB: Using the above as a model. 1 would tend to rewrite the reseed specification as follows:

[nput from a consuming application:

1
2)

state_handle: A pointer or index that indicates the internal state (o be reseeded.
additional _input: An optional input. The maximum length of the additional _input is
implementation dependent. but shall be < 2% bits. 1 additional input will never be used.
then the input parameter may be omitted. and step 4 may be modified to remove the

Version 0.3, July 15, 2004 5

additional input.

Other input:
1) entropy_input: Input containing min_entropy bits of entropy. The maximum length of the
entropy_input is implementation dependent. but shall be < 2% bits.
2) Internal state values:
a) /7 The latest value of I
by sirengrh: The security strength for the instantiation.

Output to a consuming application:
1) status: The status returned from the procedure. The status will indicate SUCCESS or an
ERROR.

Other output/information retained within the DRBG boundary:
Replaced internal state values:
1) 2 A new initial value of F for the new seed period.
2) C: A new constant for the new seed period.
3) reseed counter: A counter of the number of requests for pseudorandom bits during
the seed period.

Process:
1) Using state handle. obtain the current value of ¥ and the strength tor the instantiation. It
state handle indicates an invalid or unused internal state. return ERROR.
2) Set min entropy = max (128. strength).
3) Obtain entropy inpus with at teast min entropy bits of entropy. If there is a failure in the
entropy input source. return ERROR.
Comment: Steps 4-6 contain the reseed
algorithm.
4y Set seed material = Ox01 || F'| entropy input || additional input.
3) V= Hash_df (seed material. secdlen).
6) Compute C'= Hash (0x00 | 1.

7) reseed counter=1.

8) Replace the values ot . C"and reseed counter in the internal state indicated by
state handfe with (he new values.

9) Return SUCCESS.

Generation Function

Note the generation function as given does not allow for a nice implementation of adding new
entropy in the case of a counter interval being reached.

INPUT: State S = {V, C, ctr, seedlen, strength, flag}, a requested length, and rstrength a
requested strength, and optional arguments(input array, an optional prediction resistance pflag, if
pflag is TRUE an entropy input seed with estrength-bits of entropy.

OUTPUT: A new state S = {V, C, cir, seedlen, strength, flag} and output bit string of length
length, or an ERROR.

Version 0.3, July 15, 2004

1)

3)
4)

If ctr > max_ctr_value return ERROR
If rstrength > strength return ERROR
If pflag = TRUE and flag = FALSE return ERROR
If pflag = TRUE
a. Set min_entropy € max(128, strength)
b. If min_entropy > estrength return ERROR
c. Setmin_length € max(outlen, strength)
d. If min_length > len(seed) return ERROR
e. Set input € seed||input
If input then
a. Setw € Hash(0x02{|V||input)
b. Set ¥V €w + V mod 25"
Set output € HashGen(length, V)
Compute H € Hash(0x03||V)
Compute ¥V € V + C + H + ctr mod 2"
Setctr €ctr + 1

10)Return state S € {V, C, ctr, seedlen, strength} and output.

HashGen

INPUT: An input buffer and a requested length.
OUTPUT: An output buffer of length length.

1)
2)
3)

4
5)

Set m € ceil(length/outlen)
Set data €V, and W = NULL
Fori=1tom

a. Setw € Hash(data)

b. Set W € W||w.

c. Setdata € data+ 1
Set output € leftmost length bits of W
Return output

EBB: Using the above as a model. | would tend to rewrite the reseed specitication as follows:

Input from a consuming application:

D)
2)

(5}
—

state_handle: A pointer or index that indicates the internal state to be used.

requested _number of bits: The number of pseudorandom bits to be returned from the
generation procedure. The maximum number of bits that may be requested is
implementation dependent. but shall be < 27 bits.

requested_strength: The security strength to be associated with the requested
pseudorandom bits.

additional _input: An optional input. The maximum length of the additional_input is
implementation dependent. but shall be < 2% bits. [additional input will never be used.
then the input parameter may be omitted. and steps 3b and 4a may be modified to remove
the additional inpul.

3) prediction_resistance request flag: [f TRUE. prediction resistance is requested for the

pseudorandom bits to be provided. This parameter may be omitted if prediction resistance

Version 0.3, July 15, 2004 7

will never be supported; in this case, steps 2 and 3 may be modified to omit the
prediction resistance requesi flag and prediction_resistunce_flag. as appropriate.

Other input:
1) Internal state values:
a) V: The latest value of /.
b) C: The constant for the seed period.
c) reseed counter: The number of requests for pseudorandom bits for the current seed
period.

OQutput to a consuming application:
1) status: The status returned from the procedure. The status will indicate SUCCESS or an
ERROR.
2) pseudorandom bits: The pseudorandom bits that were requested.

Other output/information retained within the DRBG boundary:
Replaced internal state values:
) ¥: The updated value of V.
2) reseed counfer: The updated counter for the seed period.

Process:

1) Using state_handle. obtain the current values of V. C. reseed counter and
prediction_resistance flag for the instantiation. If srate_handle indicates an invalid or
unused internal state. return ERROR.

2) Verify that the requested number of bits is not too large, the requested_strength is <

strength, and that if prediction resistance request_flag is TRUE, then

prediction resistance_flag is also TRUE. If any of these checks fail, return ERROR.

3) Ttthe reseed counter = the maximum number of requests for the seed period. or the
prediction_resistance request flag is TRUE. then

a) Ifasource for entropy input is not available. return an indication that a reseed cannot
be performed.

b) Using state _handle and additional input (if provided). reseed the instantiation.

¢) Using state_handle. obtain the nev values of V. C. and reseed counter.

Comment: Steps 4-8 plus Hashgen contain
the generation algotithm.
4) [f additional input has been provided. then
a) Compute w = Hash (Ox02 || 17| additional input).
by Set 1= (1" + w) mod 27"
5) Compute pseudorandom bits = Hashgen (requested number_of bits_of bits. V).
6) Compute H = Hash (0x03 || .
7) Set V=(V+C+reseed counter)ymod
8) Setreseed counter = reseed counter + 1

2.\vmllen

9) Replace the values of /" and reseed counter in the internal state indicated by
state_handle.
10) Return SUCCESS and pseudorandom bits.

Hashgen:

Version 0.3, July 15, 2004

[nput:

1) requested number of bits: The number of pseudorandom bits to be returned [rom the

Hashgen routine.
2) V- The current value of /.

Output:
1) pseudorandom bits: The requested pseudorandom bits.
Process:
equested . bit
1y Setm = |2 quested _number _of _ bits
outlen

y Setdata =V, and ' = NULL
3) Fori=1ltom
a) Setw — Hash (data).
b) Set W =11[w.
¢) Set data = data + 1.
6) Set pseudorandom bits = lefimost requested_number of bits of H’
7) Return pseudorandom bits

How this works with the Conceptual API

We can express our hash-based DRBG in terms of a conceptual API where we have the notions
of exported functions (or public functions) and internal functions (or private functions). To
make this more obvious we will adopt a naming convention that external functions will be begin
with the HashDRBGXxxx naming convention.

External/Public Functions
(Handle, Status) = HashDRBGInit(

integer requested_strength,
[bit array input,

bool prediction flag,
integer model)

Status = HashDRBGReseed(

Handle ADRBG,
[bit array input,
integer mode])

(bit array, Status) = HashDRBGGenerate(

Handle ADRBG,

integer length,

integer requested_strength,
[bit array input,

bool prediction_flag])

Internal/Private Functions

Version 0.3, July 15, 2004 9

/ This function allocates a state and the associated handle
(Handle, State) = AllocDRBG()
I This internal function obtains the state from the handle
(State, Status) = ObtainState(

Handle hDRBG)
7 This function acquires entropy_input from an RBG.
(bit array, Status) = GetEntropy(

integer min_length,

integer max_length)
I performs the Hash df algorithm above
bit array = Hash_df(

bit array input,

integer length)
1 This function implements the instantiation algorithm above
(State, Status) = hashInstantiate(

State emptyState

integer requested_strength,

bit array seed,

integer estrength,

[bit array input,

bool pflag])
/" This function implements the reseed algorithm above
(State, Status) = hashReseed(

State currentState,

bit array seed,

integer estrength,

[bit array input])
7 This function implements the generation algorithm above
(State, bit array, status) = hashGenerate(

State currentState,

Integer length,

Integer requested strength,

[bit array input,

Bool prediction_flag,

Bit array seed,

Integer estrength)
1 This function implements the hash generation algorithm defined above
bit array = hashGen(

bit array V,

Integer length)

{(Handle, Status) = HashDRBGInit(integer requested strength, [bit array input = NULL, bool
prediction flag = 0, integer mode])

1) Set strength to the appropriate value based on requested_strength defined by above table,
if possible otherwise return (NULL, ERROR)
2) Set min_entropy<max(128, strength)

Version 0.3, July 15, 2004

3) Obtain a new state and the associated handle (1(DRBG, emptyState) = allocDRBG()

4) Obtain the appropriate entropy (entropy_input, Status) =
GetEntropy(min_entropy,max_entropy_size). If Status is an error condition return
(NULL, ERROR)

5) Perform the instantiation function (newState, Status) = hashInstantiate(emptyState,
strength, entropy _input, min_entropy, input, prediction_flag). If Status is an error
condition return (NULL, ERROR)

6) Return (hDRBG, STATUS OK)

Status = HashDRBGReseed(Handle #DRBG, [bit array input=NULL, integer mode])

10

1) Obtain the underlying state (currentState, Status) = ObtainState(hDRBG). If Status is an

error condition return ERROR.

2) Set min_entropy = max(128, currentState.strength)

3) Obtain the appropriate entropy (entropy_input, Status) =
GetEntropy(min_entropy,max_entropy_size). If Status is an error condition return
ERROR.

4) Call the internal reseed function (newState, Status) = hashReseed(currentState,
entropy_input, min_entropy, input).

5) Return STATUS OKs

(bit array, Status) = HashDRBGGenerate(Handle #DRBG, integer length, integer
requested_strength, [bit array input = NULL, bool prediction_flag= FALSE])

1) Obtain the underlying state (currentState, Status) = ObtainState(hDRBG). If Status is an

error condition return (NULL, ERROR).
2) If currentState.ctr > max_counter return (NULL, ERROR).
3) If (prediction_flag = TRUE) then
a. If currentState flag = FALSE) return (NULL, ERROR)
b. Else Set min_entropy = max(128, currentState.strength)

c. (entropy input, Status) = GetEntropy(min_entropy, max_entropy_size). If Status

is an error condition return (NULL, ERROR).
d. Set estrength = min_entropy
4) Else entropy input = NULL, estrength = 0

5) Call the internal generation (newState, output, status) = hashGenerate(currentState,

length, requested strength, input, prediction_flag, entropy_input, min_entropy). If
status represents an etror condition return (NULL, ERROR).

6) If (newState.ctr > max_counter) set (newState, status) = HashDRBGReseed(newState,

NULL, mode).
7) Return (output, status).

