9.12 Choosing a DRBG Algorithm

Almost no system designer starts out with the idea that he's going to generate good random
bits. Instead, he typically starts with some goal he wishes to accomplish, then decides on
some cryptographic mechanisms such as digital signatures or block ciphers that can help
him achieve that goal. Typically, as he comes to understand the requirements of those
cryptographic mechanisms, he learns that he will also have to generate some random bits,
and that this must be done with great care, or he may inadvertently weaken the
cryptographic mechanisms he has chosen to implement. At this point, there are two things
that may guide the designer's choice of DRBG:

a. He may already have decided to include a block cipher, hash function, keyed hash
function, etc., as part of his implementation. By choosing a DRBG based on one of
these mechanisms, he can minimize the cost of adding that DRBG. In hardware,
this translates to lower gate count, less power consumption, and less hardware that
must be protected against probing and power analysis. In software, this translates
to fewer lines of code to write, test, and validate.

For example, a designer of a module that does RSA signatures probably already has
available some kind of hashing engine, so one of the three hash-based DRBGs is a
natural choice.

b. He may already have decided to trust a block cipher, hash function, keyed hash
function, etc., to have certain properties. By choosing a DRBG based on similar
properties of these mechanisms, he can minimize the number of algorithms he has
to trust.

For example, a designer of a module that does encryption with AES can implement
an AES-based DRBG. Since the DRBG is based for its security on the strength of
AES, the module's security is not made dependent on any additional cryptographic
primitives or assumptions.

The seven DRBGs specified in this standard have different performance characteristics,
implementation issues, and security assumptions.

9.12.1 DRBGs Based on Hash Functions

Three DRBGs are based on some underlying approved hash function: Hash DRBG,
HMAC_DRBG, and KHF DRBG. These three DRBGs allow for some tradeoffs between
performance, security assumptions required for the security of the DRBGs, and ease of
implementation.

9.12.1.1 Hash DRBG

Hash DRBG is closely related to the DRBG specified in FIPS-186, and can be seen as an
updated version of that DRBG, for use as a general-purpose DRBG. Although we do not
have a formal analysis of this DRBG, it is clear that the security of the DRBG depends on



the security of the hash function, and that, more specifically, an attacker can get a large
number of values:

hash(V),hash(V+1),hash(V+2),...

If the attacker can distinguish this kind sequence from a random sequence of values, then
he can break the DRBG.

9.12.1.1.1 Implementation Issues

In implementation terms, this DRBG requires a hash function and some surrounding logic,
and the ability to add numbers modulo 2*{seedlen}, where seedlen is the length of the seed
maintained. Hash DRBG also makes use of hash_df internaily, but only when
instantiating,

reseeding, or processing additional input. Note that hash_df requires

only access to a general-purpose hashing engine, and the use ofa

32-bit counter. The DRBG state requires no more that seedlen+64-+hlen

bits, and can save a few bits in implementations that limit the number

of calls to the DRBG.

X.1.1.2 Performance Properties

Each time the Hash DRBG is called, there is a certain amount of
overhead in updating the seed after the generation (this requires one
hash computation and some additions modulo 2" {seedlen}). This is
required to achieve backtracking resistance. When the DRBG is called
to generate a long pseudorandom bitstring, it requires one hash
compression call for each hlen bits of output, where hlen is the size

of the output of the hash function, and updating a counter. The DRBG
is thus quite efficient.

If the Hash DRBG is called to generate a single hlen-bit output in a
call, with no additional input, it requires two hash compression
functions. :

Note that both of these assume that seedlen <= inlen-80. (Thus, for
SHA?256, seedlen would have to be less than 432 bits to get this
performance.) The Hash DRBG allows a seedlen up to inlen, which for
SHA?256 is 512 bits, but this size of seed will cause a factor of two
slowdown in the performance of the DRBG, with no known security
improvement.

X.1.2 HMAC_DRBG

HMAC_DRBG is a DRBG whose security is based on the assumption that
HMALC is a pseudorandom function. The security of HMAC_DRBG is based



on an attacker getting sequences of up to 2°{32} bytes, generated by
the equation:

tmp = mnn

for i = 0 to outputBlocks -1:
X =hmac(K,X)
tmp =tmp || X

Intuitively, so long as X does not repeat, any algorithm that can
distinguish this output sequence from an ideal random sequence can be
used in a straightforward way to distinguish HMAC from a pseudorandom
function.

Between these output sequences, both X and K are updated by the
formula (assuming no additional inputs)

K = hmac(K,X]|0x01)
X = hmac(K,X)

X.1.2.1 Implementation Properties

The only thing required to implement this DRBG is access to a hashing
engine. However, the performance of the implementation will improve
enormously (by about a factor of two!) with either a dedicated HMAC
engine, or direct access to the hash function's underlying compression
function. The DRBG state takes up 2*hlen bits in its most compact
form, but for reasonable performance, 3*hlen bits are required.

X.1.2.2 Performance Properties

In performance terms, HMAC_DRBG is about a factor of two slower than
the other two hash-based DRBGs for long bitstrings produced by a

single request. That is, each hlen-bit piece of the output requires

two compression function calls to generate. Each output request

incurs another five compression function calls.

Note that an implementation which has access only to a high-level
hashing engine loses another factor of two in performance--if the
performance of the DRBG is at all important, HMAC _DRBG probably
requires either a dedicated HMAC engine or access to the underlying
compression function. However, if performance is not an important
issue, the DRBG can be implemented using nothing but a high-level
hashing engine.

X.1.3 KHF_DRBG



KHF DRBG is also based on a hash-function-based PRF construction, but
one which requires only one compression function call per output. It

has essentially the same structure as HMAC_DRBG, but with the

substitution of the KHF function. This function is only defined for

hlen-bit inputs, and has a total key of hlen+inlen-72 bits. (Thus

with SHA256, it has a total key of 696 bits.) It is defined as:

F(K0,K1,X) = Compress(K0,K1 xor pad(X))
where

KO is hlen bits

K1 is inlen-72 bits

where pad(X) is the hlen-bit X, padded to inlen-72 bits. (This
specific length is chosen to allow the use of general-purpose hashing
engines with a minimal loss in performance.)

The basic design principle of F() is to put as many unknown bits into
the input of the compression function as we can, without impacting
performance too heavily.

X.1.3.1 Implementation Issues

All that is needed to implement KHF DRBG is a general-purpose hashing
engine. However, an implementation that doesn't have access to the
underlying compression function will suffer a factor of two

performance penalty. (KHF is defined with a hlen-bit key K0', such

that hash(K0")==K0.) An implementation also makes use of hash_df(),
which itself uses only general-purpose hashing calls and a 32-bit

counter. The total memory needed to hold the KHF DRBG state is
hlen*2-inlen bits.

X.1.3.2 Performance Characteristics

A single request always incurs some substantial overhead--using SHAI,
the overhead is five compression function calls; using SHA256, the
overhead is three compression function calls. Each hlen bits of

output within a single request is produced with a single compression
function call.

X.1.4 Summary and Comparison
X.1.4.1 Security

It is interesting to contrast the three ways the hash compression
function is used in these three DRBGs:



Hash DRBG:
Compress(I,V), Compress(I,V+1), Compress(L,V+2)

Here, the only unknown input into Compress() is this sequence of
secret values, V. The attacker is given full knowledge of all but
seedlen bits of input into the compression function, and knowledge of
the close relationship between these inputs, as well.

KHF DRBG:

X1 = Compress(K0,pad(K1 xor X0)))

X2 = Compress(K0,pad(K1 xor X1)))

X3 = Compress(K0,pad(K1 xor X2)))

etc.

where pad(t) is the hash function's standard message padding scheme,
and K1 xor t means that t is zero padded on the right to the same
length as K1, and then XORed with K1.

Here, the attacker knows only 72 bits of the input to the compression
function, but he also knows exactly what the XOR differences are
between these inputs. Thus, if there is a differential attack on the
compression function using only known (not chosen) hlen-bit
differences in the input block, which allows a distinguisher on the

whole hash function which can be checked with less than 2" {hlen} work
total, then the DRBG is broken. Our intuition is that good hash
compression functions are quite hard to attack in this very restricted
way.

HMAC DRBG:

X1 = Compress(K0,pad(Compress(K1,pad(X0))))
X2 = Compress(K0,pad(Compress(K1,pad(X1))))
X3 = Compress(K0,pad(Compress(K1,pad(X2))))
etc

where pad(t) is the standard padding and length extension of the hash
on input t. Here, the attacker knows many specific bits of the input
to the compression function whose output he sees--for SHA256, the
compression function takes a total of 768 bits of input, and the
attacker knows 256 of those bits. (This is worse for SHA1 and
SHA384.) On the other hand, the attacker doesn't even know XOR
relationships for hlen bits of the message input.

It is clear that Hash DRBG makes the strongest assumptions on the
strength of the compression function, especially when seedlen = hlen,



which is the minimum value allowed. Although it's not precisely

comparable, HMAC DRBG seems to make somewhat weaker assumptions on the
compression function than KHF_DRBG. Specifically, HMAC_DRBG allows

an attacker to precisely know many bits of the input to the

compression function, but not to know complete XOR or additive

relationships between these bits of input. KHE_DRBG allows an

attacker to precisely know only 72 bits of input to the compression

function, but to precisely know (but not choose) the complete XOR

relationships between these inputs.

X.1.4.2 Performance / Implementation Tradeoffs

Hash DRBG (seedlen < inlen-80)

Request Overhead: one compress, several additions mod 2" {seedlen}
Cost for hlen Bits: one compress

State Size: seedlen + hlen + 64

Hash DRBG (seedlen == inlen)

Request Overhead: two compress, several additions mod 2" {seedlen}
Cost for hlen Bits: two compress

State Size: seedlen + hlen + 64

HMAC_DRBG (compression function access)

Request Overhead: five compress

Cost for hlen Bits: two compress

State Size: hlen*3 bits

HMAC_DRBG (hash engine only)

Request Overhead: four compress

Cost for hlen Bits: three compress

State Size: hlen*2 bits

KHF DRBG (compression function access)

Request Overhead: six to ten compress (depends on inlen and hlen)
Cost for hlen Bits: two compress

State Size: inlen+2*hlen bits

KHF DRBG (hash engine only)

Request Overhead: three to five compress (depends on inlen and hlen)
Cost for hlen Bits: one compress



State Size: inlen+2*hlen bits

For all these DRBGs, additional inputs add considerably to the request
overhead. For all three DRBGs, instantiation and reseeding is

somewhat more expensive than output generation; our assumption here is
that these relatively rare operations can afford to be somewhat more
expensive to minimize the chances of successful attack.

X.2 DRBGs Based on Block Ciphers

[[This is all assuming my block cipher based schemes are acceptable to
the NSA guys doing the review.--JMK]]

X.2.1 The Two Constructions: CTR and OFB

This standard describes two classes of DRBG based on block ciphers:
One uses the block cipher in OFB-mode, the other in CTR-mode. There
are almost no security differences between these two DRBGs; CTR mode
guarantees that short cycles cannot occur in a single output request,
while OFB-mode simply guarantees that short cycles will have an
extremely low probability. OFB-mode makes slightly less demanding
assumptions on the block cipher, but the security of both DRBGs

relates in a very simple and clean way to the security of the block

cipher in its intended applications. This is a fundamental difference
between these DRBGs and the ones based on hash functions, where the
DRBG's security was ultimately based on pseudorandomness properties
that don't form a normal part of the requirements for hash functions.

An attack on any of the hash-based DRBGs would not necessarily
represent a weakness in the hash function; for these constructions, a
weakness in the DRBG is directly related to a weakness in the block
cipher.

To be a little more concrete, each request for pseudorandom bits made
without any additional input produces up to 2*{32} bytes under AES, or
27{16} bytes under TDEA. Each request leads to the generation of these
required bits, followed by a rekeying done using some additional

output bits.

For CTR mode, suppose there is an attack that allows the attacker to
distinguish the outputs from random. This can be used to distinguish
the block cipher from random in a chosen plaintext attack with the
same text requirements and resources. For OFB mode, this is also

true, unless we happen to land in a short cycle. With the limits on
output sizes per request imposed for AES and TDEA, this happens with
negligible probability. (27{16} outputs are allowed with TDEA; this
leaves approximately a 2/ {-48} probability of a short cycle. With



AES, 2{32} outputs are allowed,; this leaves approximately a 2"{-96}
probability of a short cycle.)

At the end of each request, the block cipher and IV are regenerated by
the DRBG. Suppose the selection of this key led to a bias in the next
output. Then, an attacker would again have a straightforward way to
convert that attack into one that demonstrated a weakness in CTR or
OFB modes, and thus in the underlying block cipher.

Assuming the outputs are indistinguishable from random, the maximum of
27{64} rekeyings lead to the following rough probabilities of a short
cycle:

Cipher Total P(cycle) in
State 2°{64} Tries
AES128 (256) 27{-128}
AES192 (384) 27{-256}
AES256 (512) 27{-384}
2KTDEA (176) 2"{-48}
3KTDEA (232) 2"{-104}

For all of these, the cycling probabilities in 2 {64} requests are
negligible.

X.2.1.1 Implementation Issues

The only thing required to implement the raw DRBGs is access to a
block cipher, both the key schedule and the encryption function.
(Even the decryption function can be ignored here, which is somewhat
helpful for ciphers like AES, whose decryption function is a bit
different than their encryption function.)

In order to implement the full DRBG, with the ability to be

instantiated and reseeded with free-form input strings, rather than

only with full-entropy strings, we must also implement the be_df.

This currently amounts to CBC-MAC and OFB-mode, but we may change it
soon. [[!!--IMK]]

X.2.1.1 Performance Characteristics

The block cipher based DRBGs have excellent performance. For a single
request, the overhead is between three and four block encryptions and
one rekeying. Each blocklen-bit piece of the output (where blocklen

is the block size of the block cipher) is generated with a single
encryption operation.



These DRBGs can be used for any block cipher with blocklen>= 64 and
keylen>=112. (A block cipher such as Skipjack, with an 80 bit key and
64-bit block, would not work here; the probability of a short cycle in
27{64} requests would be about 2*{-16}, far too high to be
acceptable!) However, we note that block ciphers with extremely slow
key schedules, such as Blowfish and Khufu, are not very practical with
these DRBGs, because the per-request overhead will be very high.

X.3 DRBGs Based on Hard Problems

[[Okay, so here's the limit of my competence. Can Don or Dan or one
of the NSA guys with some number theory/algebraic geometry background
please look this over? Thanks! --JMK]]

Some DRBGs are based in an intuitive and powerful way on problems
believed to be hard, on which much of modern cryptography is based.
The DUAL_EC DRBG and MICALI_SCHNORR_DRBG are based on the difficulty
of the elliptic curve discrete log problem, and factoring,

respectively. These schemes are several orders of magnitude slower
than those based on hash functions and block ciphers, and so aren't
appropriate for most systems. However, in some devices, hash

functions must be computed by low-powered general-purpose processors,
while modular exponentiation or point multiplication is taken care of

by special-purpose hardware. In other devices and applications,

random numbers are needed at an extremely low rate, e.g., only when a
new keypair is being generated, or only once in a great while fora
signature or key agreement. In such cases, these DRBGs may be
reasonable.

The security of these DRBGs reduces to that of the underlying hard
problem. However, both of these DRBGs do rely to some extent on a
hash function and the hash_df function, to instantiate them from an
unguessable seed to a random starting state, and to process additional
input.

[[Do we have a simple proof of this for these two schemes?]]
We note two other important points about the security of these schemes:

a. Side-channel attacks are typically much easier against this kind

of algorithm than against symmetric algorithms. Thus, implementations
of these DRBGs need to resist timing, power, radiation, and

differential fault analysis. (Note that all algorithms are

susceptible to these attacks in unprotected hardware; it's just that
modular exponentiation and point multiplication are somewhat easier
targets for these attacks.)



X.3.1 Dual EC_DRBG

The DUAL_EC_DRBG relies for its security on the difficulty of the
elliptic curve discrete log problem--given (P,xP), determine x.

Widely used signature and key agreement schemes are based on this
problem, as well. A very conservative system design which had few
performance requirements on its random number generation mechanism
might thus choose the DUAL_EC_DRBG as its DRBG. This would ensure
that the security of the whole application or system relied very

cleanly on the difficulty of this one problem.

[[I'm really blowing smoke here. Would someone with some actual

understanding of these attacks please save me from diving off a cliff
right here? --JMK]]

One important security point with respect to DUAL_EC_DRBG: The best
known ways to compute discrete logs involve a massive precomputation,
after which it is in general easy to compute discrete logs. Thus, an

attacker who does this massive precomputation (equal to the difficulty

of violating the security level) can break all instances of this DRBG

being used with the same curve. The Hash_DRBG has a similar property
for minimum seedlen for each security level. The HMAC_DRBG and
KHF_DRBGs, and the block-cipher-based DRBGs, appear to require a much
larger precomputation than that needed to violate the security level

once, before the whole system is rendered vulnerable.

X.3.2 Micali_Schnorr DRBG

The Micali_Schnorr DRBG relies on the difficulty of factoring large
integers for its security. Given a properly-generated RSA key (e,n),
the DRBG can generate pseudorandom bits from an initial seed whose
security is provably equivalent to the difficulty of factoring n.
[[Nitpick: Is this using the same security assumption? Can I factor n
if I can predict the output bits, or if I can distinguish them from
random?]]

Note that if this DRBG is implemented in a way that uses and stores
knowledge of the factors of n (e.g., using CRT), then the DRBG cannot
achieve backtracking resistance. [[Is this right? Would it even make
sense to use CRT for doing these exponentiations with some small,
low-weight €7]]



