10.1.2.2.2 Instantiation of Hash_DRBG

Notes for the instantiate function:

The instantiation of Hash_DRBG requires a call to the instantiate function specified in
Section 9.2; step 10 of that function calls the instantiate algorithm in this section. For
this DRBG, no DRBG _specific_input_parameters are required for the instantiate
function specified in Section 9.2 (i.e., step 5 should be omitted).

The values of highest _supported_security_strength and min_entropy_input_length are
provided in Table 3 of Section 10.1.1. The contents of the internal state are provided in
Section 10.1.2.2.1.

The instantiate algorithm:

Let Hash_df be the hash derivation function specified in Section 9.6.2 using the
selected hash function. The output block length (outlen), seed length (seedlen) and
appropriate security _strengths for the implemented hash function are provided in Table
3 of Section 10.1.1.

The following process or its equivalent shall be used as the instantiate algorithm for
this DRBG (see step 10 in Section 9.2).

Input:
1. entropy input: The string of bits obtained from the entropy input source.

2. personalization_string: The personalization string received from the consuming
application. If a personalization_string will never be used, then steps 1 and 2
may be combined as follows:

seed = Hash_df (entropy_input, seedlen).
Output:

1. working state: The inital values for V, C and reseed counter (see Section
10.1.2.2.1).

Process:
1. seed material = entropy input || personalization_string.
2. seed=Hash_df (seed material, seedlen).

V= seed.

4, C=Hash_df (0x00 || V), seedlen). Comment: Preceed V with a byte of
ZETOoes.

5. reseed counter = 1.

6. Return V, C and reseed_counter as the working_state.
10.1.2.2.3 Reseeding a Hash_DRBG Instantiation

Notes for the reseed function:

The reseeding of a Hash_DRBG instantiation requires a call to the reseed function
specified in Section 9.3; step 5 of that function calls the reseed algorithm specified in
this section. The values for min_entropy input length are provided in Table 3 of
Section 10.1.1.

The reseed algorithm:

Let Hash_df be the hash derivation function specified in Section 9.6.2 using the
selected hash function. The value for seedlen is provided in Table 3 of Section 10.1.1.

The following process or its equivalent shall be used as the reseed algorithm for this
DRBG (see step 6 in Section 9.3):

Input:
1.

working state: The current values for V, C and reseed counter (see Section
10.1.2.2.1).

2. entropy input: The string of bits obtained from the entropy input source.
3. additional input: The additional input string received from the consuming
application. If additional_input will never be provided, then step 1 may be
modified to remove the additional input.
Output:
1. working state: The new values for V, C and reseed counter.
Process:
1. seed material = 0x01 || V|| entropy _input || additional _input.
2. seed=Hash_df (seed material, seedlen).
3. V=seed.
4, C=Hash_df (0x00 || V), seedlen). Comment: Preceed with a byte of all
Zeros.
S. reseed counter=1.
6. Return V, C and reseed counter as the new working state.
10.1.2.2.4 Generating Pseudorandom Bits Using Hash_DRBG

Notes for the generate function:

The generation of pseudorandom bits using a Hash_DRBG instantiation requires a call
to the generate function specified in Section 9.4; step 8 of that function calls the
generate algorithm specified in this section. The values for

max_number of bits per request and outlen are provided in Table 3 of Section 10.1.1.

The generate algorithm:

Let Hash be the selected hash function. The seed length (seedlen) and the maximum
interval between reseeding (reseed interval) are provided inTable 3 of Section 10.1.1.
Note that for this DRBG, the reseed counter is used to update the value of V as well as
to count the number of generation requests.

The following process or its equivalent shall be used as the generate algorithm for this
DRBG (see step 8 of Section 9.4):

Input:

1. workiné_state: The current values for V, C and reseed_counter (see Section
10.1.2.2.1).

2. requested number of bits: The number of pseudorandom bits to be returned to
the generate function.

3. additional input: The additional input string received from the consuming
application. If additional_input will never be provided, then step 2 may be
omitted.

Output:

1. status: The status returned from the function. The status will indicate
SUCCESS or indicate that a reseed is required before the requested
pseudorandom bits can be generated. In the latter case, either nothing but the
reseed indication shall be returned as output, or a Nu/l string shall be returned
as the returned bits (see below).

2. returned bits: The pseudorandom bits to be returned to the generate function.
3. working state: The new values for V, C and reseed counter.
Process:

1. Ifreseed counter > reseed interval, then return an indication that a reseed is
required.

2. If (additional input # Null), then do
2.1 w=Hash (0x02 || V|| additional input).
2.2 V'=(V + w) mod 24"

3. returned bits = Hashgen (requested number_of bits, V).
4. H=Hash (0x03 || V).
5. V=(V+H+C+reseed counter) mod 25"
6. reseed counter =reseed counter + 1.
7. Return SUCCESS, returned bits, and the new values of V, C and
reseed counter for the new working state.
Hashgen (...):
Input:

1. requested no of bits: The number of bits to be returned.
2. V: The current value of V.
Output:

1. returned bits: The generated bits to be returned to the generate function.

Process:

1 me requested _no _of _ bits—‘
. outlen '

2. data=V.
W = the Null string.
4, Fori=1tom
4.1 w; = Hash (data).
42 W=W || wi
4.3 data = (data + 1) mod 2°¢¢%",
5. returned bits = Leftmost (requested no_of bits) bits of W.

6. Return returned bits.

