X9.82 Part 4: Constructions for RBGs
[[Boilerplate]]

1.

L

Notes for X9.82 Editing Group

This is a really extensive rewrite; while I’ve reused a fair bit of text, I’ve gone
through each of the constructions and rewritten or cut them out.

I’ve cut down the number of options in many places, since there seemed little
benefit in having unlimited numbers of them.

I’ve made much greater use of Elaine’s DRBG mechanisms, rather than trying to
redo that work myself. I’m not sure where the best place to handle that stuff is
(basically, the interaction between a DRBG algorithm and its entropy source), but
I’'m absolutely sure we don’t want two incompatible versions, one here, one in
part 3. This enormously simplifies things.

I’ve left the external entropy source stuff in, but simplified it. I think the subset I
have kept here belongs here; the rest of what I wrote before either should go away
entirely, or should go to Part 2.

I’ve made a lot of use of pseudocode, and I’ve mostly stuck with Python-inspired
pseudocode because that’s the language I’m most comfortable in. I’ll say up front
that I can’t think of this stuff without putting it in object oriented terms in my own
head, and that’s probably coming out in the document. Thus:

o An internally-seeded DRBG construction is an object that contains a
DRBG algorithm and an entropy source, and provides a fixed interface to
the outside world.

o External accumulation, buffering, and conditioning constructions return
outputs that look just like the outputs from an entropy source. When I’ve
coded up bits of this, those things provide the same interface as an entropy
source, because that way, we can use those constructions anywhere we use
an entropy source. (These three constructions are just ways of hammering
an approved entropy source into a new one with somewhat different
shaped outputs.)

New Entries for Glossary

2.1.

2.2.
2.3.

2.4,

2.5.

Random Bit Generator (RBG) — the full mechanism that produces random bits
for some consuming application, including any entropy sources, deterministic
algorithms, and other components. [[This had better agree with Part 1!]]|___
[DRBG — An RBG providing only computational security.|__

DRBG Algorithm — The deterministic algorithm used in a DRBG mechanism; in
this Standard, Part 3 specifies the DRBG algorithms used in the DRBG
mechanisms.

DRBG Mechanism —[The DRBG algorithm wrapped in a package with its
entropy source and other sources of information. [In this Standard, Part 3
specifies DRBG mechanisms. [[I hope this is consistent with Part 3; I think
there’s some lurking confusion between DRBG algorithms and mechanisms!]]
INRBG — An RBG providing information-theoretic security. [[This had better
agree with Part 1!]]

.[Comment [ebb1]: Part 1 already hasa
| definition.

[comment [ebb2]: Part 1 already hasa

definition. This information belonfgs in the
| text, not the definition.

[comment [ebb3]: The DRBG Mechanism

consists of the DRBG algorithms and the
envelopes that check input parameters, acquire
the entropy bits, call the appropriate DRBG
algorithm and saves/retrieves the internal state.
To make a complete RBG (a DRBG, in this
case), the DRBG mechanism needs to be

| combined with the a source of entropy input.

[Comment [ebb4]: Part 1 already has a
definition. This information belongs in the text,
not the definition.

2.6. Basic NRBG — An NRBG whose security guarantees are entirely dependent on
its entropy source, as it does not guarantee a fallback to an approved DRBG.
Note that a Basic NRBG may have cryptographic components. [[Do we define
this in Part 17]]

2.7. Enhanced NRBG — An NRBG which both promises information theoretic
security, and also guarantees a fallback to an approved DRBG if the entropy
source fails. [[Do we define this in Part 1? I think so, so make sure it’s
consistent!]]l

2.8. Composite Access — Access to the DRBG mechanism of an enhanced NRBG in a

secure way.

2.9. External Accumulation of Entropy — Combining of one or more outputs from an
Approved entropy source into a single output that is shorter, but retains
approximately the same entropy as the orlgmal outputs Note that external
accumulation is done outside the entropy source. [Note that a definition for
Approved entropy source needs to be determined for ANSI. For the govt., it
could be something like validated and certified.]

2.10. External Buffering of Entropy — Storage of one or more outputs from an
Approved entropy source to support bursts of entropy requests that otherwise
could not be met by the entropy source. Note that external buffering is done
outside the entropy source.

2.11. External Conditioning of Entropy Source — Processing one or more outputs
from an Approved entropy source into an output string w:!h full entropy that is
suntabie for use directly asa conditioned entropy source. Note that external

tlme despite disruptions such as the removal of power.
[Note: the above is preliminary information. The document begins below with the
introduction. Each Section title has been styled as a header.]

1 Introduction

The preceding parts of this document have:

e Provided definitions of fundamental concepts, such as entropy, randomness, and
security levels, and framed the problem of random bit generation for cryptographic
and security applications,

e Provided guidance for developing approved entropy sources, mechanisms that
provide truly unpredictable bits from some nondeterministic process, and

o Specified a number of DRBG mechanisms containing cryptographic algorithms that,

when used correctly, are expected to produce bits that are indistinguishable from ideal

random bits, up to the specified security level of the instantiation.

At a high level, a consuming application needs to be able to interact with an RBG. In this
part of the Standard, guidance is provided for constructing RBGs from the various
components from Parts 2 and 3 into RBGs that will provide output bits that meet some
claimed security goal. An RBG must:

e Be powered on or instantiated,

Comment [ebb5]: Part | already has a
definition. This information belongs in the text,
not the definition

Comment [ebb6]: Part 1 already has a
definition. This information belongs in the text,
not the definition

Comment [ebb7]: What does it mean top
have an Approved entropy source, when Part 2
will not be providing Approved entropy
sources. For the govt., can say words like

| validated and certified.

[Comment [ebb8]: This needs to be defined. J

Comment [ebb9]: I don’t think this is quite
the right nuance. I think it’s more the ability or
condition of reliably retaining the RBG
internal state.

e Generate bits — produce (pseudo) random bits according to specified security
requirements, and

e Selftest — perform internal testing to check that the RBG is continuing to operate
as designed and implemented.

An RBG construction is an Approved method of building an RBG from an assortment of
RBG components. In this document, constructions are explicitly specified by the heading
"Construction:". The available components are:

e Entropy sources, as specified in Part 2; an entropy source may not provide full
entropy.

o Conditioned entropy sources, as specified in Part 2; a conditioned entropy source
provides full entropy.

o DRBG mechanisms, as specified in Part 3, consist of DRBG algorithms plus
management code.

o Derivation functions, as specified in Part 3; functions for securely mapping a
variable-length input string to a fixed-length output string.

Where one o more constiuctions are siven-tor some tashthev-represent-the vaby
l . i \

I the remainderof this doctmnentowhen an entropy source. NRBG DRBG: Composite
RBG: or RBG-is-discusseditshould beassumed-torefer to-an ANSEXGE2- Approved
eniropy-sourees NRBG-PDRBG: etewr unless stated-otherwise:

fundamentals—definitions, pseudocode conventions, etc. Section 3 discusses interfacing
with entropy sources, providing constructions for externally manipulating entropy
sources to fit specific requirements of a full RBG implementation. These constructions
provide approved ways to externally accumulate entropy from a relatively sparse
Approved entropy source into a much more condensed form. Constructions are also
provided for conditioning entropy sources externally; note that these constructions are
necessarily less efficient than conditioning routines that take into account knowledge of
some underlying probability model for the nondeterministic behavior of the source.
Section 4 discusses constructions for DRBGs. Section 5 discussed constructions for
NRBGs. Section 6 discusses methods of using multiple RBGs together in a secure and
approved way.

2 RBG Fundamentals
2.1 Definition of an RBG
An RBG produces random bits for some consuming application, providing some

assurances about the difficulty of distinguishing its output sequence from an ideal random
sequence (that is, a sequence of unbiased, independent, identically distributed bits). Any

[Comment [ebb10]: Define.

Comment [ebb11]: Personal pronouns (like
we) don’t belong in the Standard. Rewording
has been suggested.

RBG must consist of some ultimate source of unpredicability (an entropy source) to
provide an unguessable state, and some deterministic algorithm to generate random bits
from that unguessable state (typically a DRBG algorithm). ffverify-this-agrees-with-Part
Hi

(pseudo)random
bits

Figure 1: High-Level Outline of an RBG

Flgule | provides a very high- level conceptual v1ew of how any RBG must be designed,
- Part Two focuses on the

entropy source—the component that provides unpredictable bits for the RBG. Part Three
focuses on seme algorithms for generating random bits—the components that obtain
unpredictable bits from the entropy source, and use them to generate output bits that are
indistinguishable from ideal random bits. Part One and this part of ANS X9.82 describe
the whole RBG; Part One describes RBGs at a conceptual level, defining terms and
concepts, while this part specifies how they are to be constructed from components
descnbed in Parts II wao and Ihru; P’JBMHHW&M—RBG%SM%GHH

2.2 Entropy Sources

An entropy source, as discussed at-length in Part 2 of this-Standard, is a mechanism for
producing bit strings that cannot be completely predicted, and whose unpredictability can
be quantified in terms of min-entropy.

Approved entropy sources may provide full entropy bitstrings, or may provide bitstrings
whose entropy characteristics are known. When the Approved entropy source provides
full entropy bitstrings, a conditioning function has usually been included as part of the
entropy source; in this case, the term (Approved) conditioned entropy source is used.
When the Approved entropy source does not provide full entropy bitstrings, the entropy
source may not have included a conditioning function; without providing full entropy
bitstrings the entropy source cannot be classified as a (Approved) conditioned entropy
source. If full entropy bitstrings are required, the conditioning function may be provided
external to the entropy source; the combination of the entropy source and the external

4

1

Comment [ebb12]: And other components
that are not necessarily Part 3 DRBGs.

Comment [ebb13]: Not defined. Will Part 2
have this?

conditioning function results in a conditioned entropy source that is also approved by this
Standard.

Part 4 uses Approved entropy sources in three ways: to provide entropy input for DRBG
mechanisms, to provide full-entropy strings in some NRBG constructions, and to provide

sufficient entropy to achieve full entropy in outputs of other NRBG constructlons Part 4
also provides constructions for AEEESSITE - ource th RBG, and for
externathy accumulating, buffering, and condltlomng entropy output from an entropy
source.

2.3 DRBGs

A DRBG (Deterministic Random Bit Generator) is an RBG that provides security only
up to some computational limit, specified by a security level; that is, the DRBG provides
computational security. For example, an AES-CTR_DRBG using a 128-bit key from
Part 3 provides a 128-bit security level. The promise-made-by-this DRBG is-that-its
outputs will be indistinguishable from ideal random bits to an attacker who cannot do
about 2'%® work. This means-thatthe DRBG can be used to support any application
whose security level is 128 bits or less. It cannot be safely used to support an appllcatlon
with a higher security]eve!l.—hh :
attaekersvho-can-do-2"

A DRBG consists of a DRBG mechanism as specified in Part 3, together with a source of
entropy input. A DRBG mechanism consists of instantiate, uninstantiate, generate and
test functions, and may optionally include a reseed function; the instantiate, generate and
reseed functions contain DRBG algorithms to perform the required functions. A DRBG
mechanism’s functions may be contained within a single device, or may be distributed
across multiple devices. The source of entropy input may be an NRBG, another DRBG or
an entropy source whose entropy characteristics are known. A fut DRBG must have a
source of entropy input available at least once; to instantiate it. The DRBG may ot may
not have entropy available at any other time.

Several terms are used in Part 4 to describe the availability of a source of entropy input to
a DRBG or DRBG function. The term reliable is used to describe an entropy input source
that is a readily available (i.e., available at all times). The term /ive entropy input source
refers to an Approved NRBG or an Approved entropy source whose characteristics are
known. A non-live entropy input source refers to a properly instantiated DRBG (the
source DRBG) that provides entropy input for another DRBG (the target DRBG). Note
that the source DRBG could actually be a chain of DRBGs; the highest DRBG in the
chain shall obtain its entropy input from a live entropy input source, at least during
instantiation (i.e., the highest DRBG in the chain shall receive its entropy input from an
Approved NRBG or an Approved entropy source whose characteristics are known.

A DRBG requests entropy input using a call similar to the following:

(status, entropy. input) = Get_entropy (k, n, max_fength),

Comment [ebb14]: I don’t think this is
needed here.

where k is the amount of entropy required, » is the minimum length of the entropy input
bitstring to be returned, and max length is the maximum length allowed for the

entropy inpul. While Part 3 requires that a status be returned from the function, the status
will be ignored for purposes of the discussions in Part 4.

A properly instantiated DRBG remains secure even without additional entropy input as
long as its internal state and entropy input are not compromised. A fal definition of
DRBGs appears in Part 1 of this Standard, while a complete specification of Approved
DRBG mechanisms and requirements for their secure implementation are provided in
Part 3 of this Standard.

An NRBG (Nondeterministic Random Bit Generator) is an RBG that provides output bits
that are indistinguishable from ideal random bits to any observer, even one with
unlimited computing power--that is, it promises information-theoretic security. An
NRBG requires a live entropy source to be available at all times in order to operate.
NRBGs are divided into Sasic NRBGs, which simply consist of a conditioned entropy
source without eryptographic protection, and /nhanced NRBGs, which combine a
conditioned entropy source with an Approved DRBG to ensure a fallback to
computational security even if the entropy source should silently fail. Two methods for
constructing Enhanced NRBGs are provided:

e Using an Approved conditioned entropy source and an Approved DRBG, and
XORing the outputs (see Section X), and

e Using an Approved NRBG to provide entropy input to an Approved DRBG in a
manner that provides full entropy outputs from the DRBG.

2.5 Using RBGs Together

There are many situations in which an RBG design may use individual RBGs as
components. For example, there is a construction in Section 4 for combining multiple
RBGs together into a cascaded RBG, and Bfhers for using one RBG to provide entropy
input for a DRBG.

2.6 Pseudocode and Definitions

Many constructions and algorithms are best described in pseudocode. The following
notation will be used for pseudocode in the remainder of this part of the Standard.

e A DRBG algorithm is best considered as an object that supports three methods
(functions). These are denoted as follows:
o DRBG:.Instantiate (seed_material)
o DRBG.Reseed(seed material, additional_input) —
o DRBG.Generate (bits, additional_input)

|

Comment [ebb15]: Need to introduce
composite access, since it’s mentioned in
Section 2.6.

[

Comment [ebb16}: Do you mean without a
DRBG? It could contain a hash function.

e A DRBG mechanism is an object that contains a DRBG algorithm, a call to a
source of entropy input and some administrative information to allow the caller of
the DRBG to ignore all details of acquiring (pseudo) random bits.

o DRBG.Instantiate (nonce,personalization_string)
o DRBG.Reseed()
o DRBG.Generate(bits,additional_input,prediction_resistance requested)

e AnNRBG always supports the following two functions:

o NRBG.Instantiate ()
o NRBG.Generate (bits)

e AnNRBG that is configured to offer composite access hlso supports the function: (comment [ebb17): Not yet introduced.

o NRBG.Composite Generate (bits)
Note that such an NRBG has a specified security level for the DRBG.
e An RBG always supports one function:
o RBG.Generate ()
e An entropy source supports one function:

o EntropySource.Get_entropy () -- returns (e,s), where e = entropy estimate
and s = the string. When the entropy source is conditioned, e is the length
of s in bits.

e x|ly represents the concatenation of bitstring x with bitstring y.
e By convention, unless otherwise specified, integers are 32-bit unsigned, and when
used as bitstrings, they are represented in big-endian format.

Pseudocode conventions are not intended to constrain any real world implementation; the
goal is to have a consistent notation to describe how the constructions in this section
work. Thus, the pseudocode shows an entropy source returning an (entropy estimate,
string) pair, but a real-world implementation, for example, might only return the string,
with the entropy estimate always assumed to be |.

2.7 Using a Derivation Function

In Part 3, two “derivation functions™ are provided, of the form
output = df(input, n),

where input is a bitstring to be condensed, and # is the requested length of the output
string. Note that for DRBGs in Part 4, is the minimum length of the entropy input to be
returned (see Section 2.3).

The derivation functions use a cryptographic mechanism (either a hash function or a
block cipher) to map an input string to an arbitrary size, while distributing the
unpredicability throughout the resulting output. When a construction method requires the
use of a derivation function, one of these two derivation functions in Part 3 shall be used.

The following requirements apply to the parameters of the derivation function:
e When the block cipher derivation function is used, let r be the security strength of
the block cipher.

e When the derivation function uses a hash function, let r be the security strength of
the hash function.

3 Interfacing with Entropy Sources
3.1 Overview

An entropy source is needed for any RBG. |F0r NRBGs. entropy sources are expected to
be available at all times; for DRBGs, soutces of entropy input may not always be
available. However, an RBG may need to use the entropy source with somewhat different
parameters than it supports; for example, the entropy source may continuously provide
entropy at a low rate, while the RBG occasionally requires large amounts of entropy. In
this section, a number of constructions are provided for adapting the parameters of the

entropy source to the requirements of the larger RBG by which it is used.
3.2 Construction: Entropy Accumulation

The DRBG mechanisms defined in Part 3 specify an enormous range of acceptable
entropy input sizes; typically, these range up to around four billion bytes--far more than
is likely to be useful in practice. However, there are often good implementation reasons
to restrict the size of entropy input to some more manageable size; a real-world
implementation may not be able to support processing an enormously long string.
Accumulation of a bitstring containing entropy is required when the entropy source is
producing long output strings with sparse entropy, which must be condensed into shorter
strings in order to be used; in this case, the entropy source is not performing conditioning
on the raw entropy bits to obtain full entropy.

The following construction can be used to process the output of any Approved entropy
source: so that its outputs are more condensed, and thus useful in different DRBGs.

3.2.1 Components and Requirements

The required components and values for this construction are-+hus:

e AnlApproved entropy source), -

e Ao Approved derivation function (see Section 2.7).

® A nonce--a value that is of fixed-length, and that is guaranteed to never repeat
during the accumulation of entropy into the final n-bit output from the accumulate
algorithm (see Section 3.2.2). The simplest implementation of this uses a large
counter. The nonce should not repeat in the lifetime of the RBG.

e An accumulator--a value of » bits that is used to accumulate up to # bits of
entropy at a time. Note that an » bit accumulator can accumulate up to 4/2 bits of
entropy in this construction.

e A counter--a value that records the amount of entropy that has been accumulated.

Let & be the amount of entropy to be accumulated. The value of k has the following
restrictions when this construction is used:

Comment [ebb18]: We shouldn’t imply the
that sources of entropy are normally available.
For most RBGs currently in use, this is not the
case. This has been rewritten to be neutral,

Comment [ebb19]: Again, what is meant by
an Approved entropy source? This needs to be
discussed at X9F1.

e kshall be less than or equal to the security strength r of the cryptographic
algorithm used in the derivation function (i.e., K <r), and

e 2k shall be less than or equal to the requested length of the output string # (i.e., 2k
< n).

3.2.2 Description of the External-Accumulation Algorithm

In order to condense a bitstring containing k bits of entropy down to an #-bit string, a
temporary buffer (accumulator) is used; this buffer is initially set to the all-zero string.
As many requests as necessary are made to the entropy source to getat least & bits of
entropy. For each output returned from the entropy source, a nonce is prepended, and the

dertvation function is applied to the resulting string-tegquesting#-bits-efeutput. The

output of the derivation function is XORed into the temporary buffer.

Note that the nonce need only be unique for each input string processed in producing one
n-bit final output with at least k bits of entropy.

3.2.3 Pseudocode Description of the External Accumulation Algorithm

Accumulate k bits of entropy in a buffer of n bits.
def accumulate_entropy(EntropySource, k, n):
if 2*k>n: raise an error condition and exit

counter = 0

accumulator = ()...0)

while counter<k:
e is entropy estimate for this string, x is the string
e,x = EntropySource.Gel_entropy()
nonce = MakeNextNonce()
accumulator = accumulator XOR df(nonce||x,n)
counter = counter + e

veturn kaccumulator|

The output from this algorithm may be used exactly like any other entropy source query.
This algorithm can be used to build a kind of wrapper around any approved entropy
source, to provide more condensed outputs for the convenience of the other components
of an RBG.

B3t Accumulnting Entropy-in-aSingle DECaH

h\lote that this construction can be used m—a—vepy—smap{e—way to condense k bits of entropy
from a long input string to an #-bit string by simply calling the derivation function once.
That is, the above pseudocode could be condensed to:

e,s = EntropySource.Get_entropy()
if e<k: raise an error condition and exit

[Comment [ebb20]: I suggest that we rename

the Get_entropy function in Part 3 to
Get_entropy_input so that Parts 3 and 4 do not
define functions with the same name. The
name Get_entropy is more appropriate in Part
4.

Comment [ebb21]: & need not be returned.
When changing to non-python pseudocode, the
status and accumulator will need to be returned
(if using the Get_entropy call).

Comment [ebb22]: Since there’s no 3.2.3.2,
then this should be eliminated.

return dffil|s, n)

This pseudocode fragment would condense a single value from the entropy source to an n
bit result]

3.3 Construction: External Conditioning of Entropy Source Output

Many constructions in this part of the Standard require conditioned entropy sources.
Similarly, implemented DRBGs may need to obtain entropy input from conditioned
entropy sources.

This External Conditioning construction allows an RBG design to externally process the
output of an Approved entropy source that may not have an internal conditioning
capability in order to obtain a conditioned entropy source with full entropy.

This construction can be used to process the output of any Approved entropy source, so
that its outputs are conditioned, and may be used anywhere a conditioned entropy
source’s outputs may be used.

Note that when entropy_input is obtained for a DRBG using this construction, the
requested entropy & (see Section 2.3) equals the minimum length # of the requested
entropy _inpul.

[Note: The figure was not readable. Also need a reference to the figure if it’s to be
present.]

3.3.1 Components and Requirements

The required components and values for this construction are-thus:

e An Approved entropy source.

s An Approved derivation function (see Section 2.7).

e A nonce--a value that is of fixed-length, and that is guaranteed to never repeat
during the conditioning of entropy into the final n-bit output. The simplest
implementation of this uses a large counter. The nonce shall not repeat during
the computation of a single conditioned output, and should not repeat during the
lifetime of the lifetime of the RBGL

e The nonce should not repeat in the lifetime of the RBG.

e An accumulator--a value of n bits that is used to accumulate up to » bits of
entropy at a time. Note that at least 2# bits of entropy are (supposedly) obtained
in the accumulator during this process, but only # bits of entropy are returned as
output when using this construction; The over-sampling is provided in order to
allow for inaccurate entropy estimates.

e A counter--a value that records the amount of entropy that has been accumulated.

Let n be the amount of entropy to be accumulated and the length of the output from this

algorithm. » shall be less than or equal to the security strength r of the cryptographic
algorithm used in the derivation function (i.e., n < r).

10

Comment [ebb23]: Does this really add
anything? Do we still have the restriction that
2k <= n, or is this something else?

Comment [ebb24]: The DRBG
instantiation, for example. Do we needs a
definition for RBG lifetime?

3.3.2 Text Description of the Conditioning Algorithm

In order to produce a conditioned (full-entropy) » bit buffer from any Approved entropy
source, a temporary buffer (accumulator) is used; this buffer is initially set to the all-zero
string. As many requests as necessary are made to the entropy source to get at least 2n
bits of entropy. For each output returned from the entropy source, a nonce is prepended,
and the derivation function is applied to the resulting string. The output of the derivation
function is XORed into the temporary buffer. The final result in the buffer contains an »-
bit conditioned entropy source output.

Note that the nonce need only be unique for each input string processed in producing one
n-bit final output with # bits of entropy.

3.3.3 Pseudocode Description of Conditioning Algorithm

We candeseribe Hisaloarithm in-psendocode:

Produce a single n-bit conditioned entropy source oulpu.
def condition_entropy(EntropySource, n).

counter = ()

accumulator = 0...0.

while counter<2*n:
e is entropy estimate for this string, x is the string.
e,x = EntropySource.Get _entropy()
nonce = MakeNextNonce()
accumulator = accumulator XOR df(nonce||x,n)
counter = counter + e

veturn n, accumulatoﬁr

The resulting bits may be used in exactly the same way as the outputs of a conditioned

entropy source as specified in Part 2. Fhis-construction-alows-a-wrapper-to-be-put-around

any-Approved-entropy-souree-whieh-results-in-aeonditioned-entropy-seurce~ Thus, any
Approved entropy source may be used with this construction to support a Basic NRBG
and the Enhanced NRBG XOR Construction, which are described in Sections i and .

3.3.3. 1 Conditioning-from-a Single Kntropy-Seuree Output

Note that this construction can be used in-a-very-simple-way to condition a long entropy
source output. The following pseudocode describes a-way-to-de-this conditioning using a
single call.

e,s = EntropySource.Get_entropy()
if e<k: raise an error condition and exit
returndf{l)|'s. n)

This pseudocode fragment would condense a single value from the entropy source to an n
bit result.

11

Comment [ebb25]: Retum status instead of
n. nis an input.

Comment [ebb26]: Does this really add
anything?

3.4 Construction: External-Buffering of Entropy Source Outputs

An RBG may require entropy at a very different rate than the entropy source produces it.
Within some limits, an RBG designer can use external-buffering to allow the entropy
source to still service the RBG. Outputs from this construction siven-here can be used in
exactly the same way as outputs obtained directly from an entropy source, and this
construction may be used to “wrap” the outputs of an Approved entropy source for use by
other components of an RBG.

3.4.1 Components and Requirements

This construction requires the following components:

e A queue capable of storing up to » entropy source outputs, along with their
entropy estimates. The queue is-an-objeet-which stores a set of outputs in order,
and retrieves them as-eutputs upon request in the same order. In this case, the
queue’s entries consist of pairs of values: an entropy estimate, and a string
containing entropy.

o Q represents the queue.
o Q.put(estimate, string) represents inserting an (estimate. string) pair into
the queue.
o (estimate, string)=Q.get() is used to retrieve an (estimate,string) pair.
¢ An Approved entropy source, ES.
e A sum of the current amount of entropy contained in the queue, sum.

Specific requirements for this construction include:

o Each entry in the queue shall be irretrieveably deleted as soon as it is used.

e The external-accumulation and extersal conditioning constructions in Sections 3.2
and 3.3 may be used to store entropy from the entropy source more densely than it
is produced by the original entropy source. (This follows from the fact that the
outputs from those constructions may be used anywhere the outputs from an
Approved entropy source may be used.)

3.4.2 Text Description of the Buffering Algorithm
The-alzorithm-is-very-simple: Whenever it is convenient, an output is requested from the

entropy source, and stored in the queue, and the sum of the entropy in the queue is
updated to include the amount of newly acquired entropy. When a request for some
amount of entropy is presented to-the-buffer, the requested amount of entropy is returned
if there is enough entropy in the queue to satisfy the request—it-is-retusned; otherwise, the
request fails.

3.4.3 Pseudocode Description of the External-Buffering Algorithm

def put_entropy_in():
e,s = ES.Get_entropy()
Q.put(e,s)
sum=sumte
def get_entropy out(n):
if sum < n: raise an error condition and exit

12

ey

tmp
entropy =0
while entropy < n:
e,s = Q.get()
sum = sum—e
entropy = entropy + e
tmp=tmp|| s

4 Constructing a DRBG
4.1 Overview

A DRBG is an RBG that provides computational security up to a security level that is
dependent on its design and the amount of entropy provided during instantiation. The
entropy may be provided from a live source of entropy input during instantiation only, or
the live source of entropy input may be available at all times (i.e., the entropy input
source is reliable). Alternatively, another DRBG may be used as a “non-live” source of
entropy input.

A DRBG with a source of entropy input only during instantiation cannot provide
prediction resistance or reseeding. A DRBG with a reliable live source of entropy input
(see Section X) can be instantiated and can handle requests for prediction resistance and
automatic reseeding, jas can a DRBG that uses another DRBG as a source of entropy
input (see Section Y). |

4.2 Construction: DRBG Without a Live Source of Entropy Input

4.21 Overview

A DRBG that requires entropy input, but is without a live source of entropy input, is
dependent on some properly instantiated DRBG (a source DRBG) for its entropy input.
The source DRBG may be used by the subordinate DRBG T to provide all its entropy
input or to provide entropy input in addition to what is obtained from a live entropy input
source (e.g., to provide entropy input at those times when the live entropy input source is
not available, or to obtain additional assurance in case there is a failure by the live
entropy input source).

‘[n those cases where a live entropy input source is not available, DRBG T cannot support
prediction resistance, and can only instantiate and reseed when it is provided entropy

activity until entropy input is available.

The following DRBG constructions giver-here result in (full) RBGs, i.c., RBGs that can
be used, once properly instantiated, to generate random bits for cryptographic and other
applications.

13

Comment [ebb27]: This should probably be
a status code (i.e., Success). Is there any reason
that the calling function needs the sum? I
suppose that one reason would be to look
elsewhere (e.g,, another entropy source) if
there isn’t enough entropy available at a given
time,

‘| Comment [ebb28]: Is this true or not.
couldn’t quite determine this from the previous
wording.

Comment [ebb29]: Is this correct? If it can
reseed using the source DRBG, ccouldn’t it
also provide prediction resistance, or is this
relying too much on the source DRBG; or does
it deopend on whether the source DRBG
provides prediction resistance?

4.2.2 |Source DRBG

4.2.2.1 Overview

A source DRBG that provides entropy input to other DRBGs that may not have access to
a live source of entropy input shall be a properly instantiated DRBG with sufficient
entropy to support its subordinate DRBGs; the security level of the source DRBG shall
be equal to or greater than the security level of any subordinate DRBG. Any entropy
acquired by a subordinate DRBG may also be provided to the source DRBG to
supplement its entropy. This concept is used by several non-Approved DRBGs and is
commonly known as a seedfile.

4.2.2.2 Components

Constructions that use the source DRBG will use the following notation:

e kource.DRBG.instantiate(entropy_input,seed mater51al| 77777777777777
e source.DRBG.save(S) — save the entropy in S into the source DRBG
e |S=seedfile.get(n,optional additional input) — get n bits of seed material from the

seedfile, incorporating an optional additional input into the seedfile in the process[

4.2.2.3 Instantiating a Source DRBG

The source DRBG (or highest DRBG in the source DRBG chain) shall be instantiated
from an NRBG or an entropy source whose characteristics are known with sufficient
entropy to support the subordinate DRBGs (see Section [Jj and Part 3). A personalization
string shall be used.

4.2.2.4 Providing New Entropy to the Source DRBG

One common operation with a source DRBG is to provide seme new entropy to the
source DRBG that has been introduced into a subordinate. [This will improve the chances
that source DRBG output provided to other subordinate DRBGs will be qulllucnt]y
mdl.pemlcm oflhe 0111pur prowded to plewous sui}urdmah. DRBGs have su

Let S be a string containing seste entropy. To save this to the source DRBG, the
following DRBG operation is performed:

def source. DRBG.save(S):
tmp = source.DRBG.Generate(state _handle, 8,requested security strength,
prediction_resistance request, S)

The returned byte (returned as tmp) is discarded. The result of this operation is that the

entropy from S is stored in the internal state of the source DRBG, and will be available to
subordinate DRBGs in the future.

14

| Comment [ebb30]: This term is used instead

of a seedfile, as it seems to be what is intended.

Comment [ebb31]: I don’t think we need to
invent calls that are already in Part 3; this
should be just the Part 3 instantiate function
call.

Comment [ebb32]: This should be just the
generate function request in Part 3.

(comment [ebb33]: s this correct?]

4.2.2.5 Generating Entropy Input for a Subordinate DRBG from a Source DRBG
The other common operation performed by the source DRBG is to generate entropy input
for a subordinate DRBG. This may be the only source of entropy input for a subordinate
DRBG, or the source DRBG’s output may be combined with seme output from an
entropy source or other RBG output for added assurance. A new entropy input with k
bits of entropy is generated as follows:

def Get_entropy input (k k k):
return source. DRBG.Generate(state_handle, k, k, prediction_resistance_request,
ldditional input)

4.2.3 Construction: Subordinate DRBG With Persistant Memory

4.2.3.1 General Discussion
A subordinate DRBG with or without a live source of entropy input and with the
capability to maintain its internal state over time may use the source DRBG to obtain
entropy input during instantiation. There are a number of complications introduced by the
lack of a live source of entropy input. For example:
e Instantiation and reseeding are possible only when a source DRBG is available to
provide entropy input.
o Ifthe subordinate DRBG requires reseeding (e.g., the reseed interval has been
reached; see Part 3), the subordinate DRBG suspends activity.

4.2.3.2 Components and Requirements
The construction requires two components:
e T, the subordinate DRBG
o Entropy input for from the source DRBG for instantiation.

Some requirements:

o The source DRBG shall be capable of supporting the intended security level of
the subordinate DRBG; that is, the security level of the source DRBG shall meet
or exceed the intended security level of the subordinate DRBG.

e The entropy input provided by the source DRBG for instantiation shall be
protected from compromise.

4.2.3.3 Instantiation
The subordinate DRBG is instantiated as specified in Section 4.2.2.5.

4.2.3.4 Generation

Generating outputs is done by the subordinate DRBG as specified in Part 3. If entropy is
available in any additional input that is provided during generation, the subordinate
DRBG should accumulate this entropy.

15

" | we need it?

1 comment [ebb35]: Can’t this just be a

[Comment [ebb34]: The Get_entropy_input]
request in Part 3 does not currently support
providing additional input to the entropy input
source. The instantiate function does have a
personalization string, and the reseed function
does have additional input, but there is
currently no provision for passing them on. Do

reference to the Part 3 generate function call?

[Comment [ebb36]: shall? |

4.2.3.5 Reseeding

Reseeding the subordinate DRBG is possible only when entropy input is available with
sufficient entropy. If the source DRBG is available to provide entropy input, the entropy
input provided by the source DRBG and any additional input provided by the consuming
application is used to reseed the subordinate DRBG instantiation as specified in Part 3.

4.2.4 Construction: Subordinate DRBG Without Persistent Memory

A subordinate DRBG without persistent memory does not have the ability to maintain its
internal state over a long period of time, although short-term memory may be available.
A new instantiation needs to be created frequently, and may, in fact, need to be created
whenever the subordinate DRBG is required to generate pseudorandom bits. A source
DRBG may be used to provide the required entropy input to create a new instantiation for
the subordinate DRBG. An example of this case is a DRBG on a smart card that has no
persistent memory. Whenever the smart card is inserted into a reader, the DRBG on the
smart card (the subordinate DRBG) is instantiated by acquiring entropy input from a
properly instantiated DRBG (the source DRBG) that is built into the reader. The
subordinate DRBG is used to supply random bits to the application using the smart card.

At a high level, this construction works as follows:

1. A source DRBG is instantiated from some entropy source (possibly another RBG)
when it is available, such as during manufacturing or device setup.

2. At some point in time (e.g., during power up of the device containing the
subordinate DRBG), the subordinate DRBG is instantiated. This is accomplished
by requesting entropy input from the source DRBG (see Section 4.2.2.5) and
using that entropy input to instantiate the subordinate DRBG. Any additional
input that is available from the application using the subordinate DRBG should be
provided in the personalization string during subordinate DRBG’s instantiation.

- During operation, application data that might contain seme entropy is saved-and
periodicatty usedrasadditional inputin-ene-byte cenerate requests to-the source
PRBGHsee step H—TFheresuhinsane-brie outputs-are discarded:

4. Ata later point in time (e.g., during power down of the device containing the
subordinate DRBG), the subordinate DRBG generates a k bit output, where 4 is
. This output is used as additional input, along with any other available
application data that was acquired in step 3, in a ene-byte generate request to the
source DRBG (see Section 4.2.2.4). T—h&ene—by%e—eﬁtpat—nsmsemded—

5. [If the application rarely or never has a power downL then a k-bit value from the
subordinate DRBG is periodically (e.g., once a day) be generated and used as
additional input in a ere-byte generate request to the source DRBG (see Section
4.2.2.4),

(9]

4.2.4.1 Components and Requirements
This construction consists of two components and two values:
e A source DRBG as described in Section 4.2.2.
e A subordinate DRBG, a DRBG that is periodically instantiated, and that is used to
generate random bits for applications.

16

Comment [ebb37]: This needs to be
reworded.

e Entropy input furnished for at least the first instantiation.
e Jength, the number of bits needed to instantiate the subordinate DRBG.

[The two—stage external DRBG supports the following operations:
sthnstantiatelseed—materiah—A-fisstinstantation-which-gets-the seedfiletoa
sectre-starting-point:

ttetoptionib-nput—stantiation-of the-ephemeral DRBG

enerate(additional_input)—Generation of outputs from the ephemeral DRBG

Reseed(seed material)—Reseeding when external seed material is made available

e Save(optional input)}—Saving the state of the ephemeral DRBG back into the
seedfile, along with some optional inpul]

+—A-reak-implementation-probably-also-ineludesawayto-shut-down-CLRRENT-bw

this-dsn - hportanttorthe-construction,

4.2.4.2 Source DRBG Instantiation

The source DRBG is instantiated only once, from either another RBG or an entropy
source as specified in Section 4.2.2.3.

4.2.4.3 Instantiating the Subordinate DRBG

The consuming application instantiates the subordinate DRBG when random outputs are
required, and the subordinate DRBG is not instantiated (e.g., when power has not been
available to maintain the internal state for any previous instantiation). This is
accomplished by requesting the source DRBG to generate output, using that output as
entropy input to instantiate the subordinate DRBG. If the consuming application has
available entropy, it can be provided in the optional additional input of the generate
request to the source DRBG (see Part 3).

[Pseudocode may indeed be helpful here, but it needs to be constructed to use the Part 3
generate and instantiate functions.]

4.2.4.4 Providing Entropy from the Subordinate DRBG to the Source DRBG

Over time, the subordinate DRBG may accumulate a small amount of entropy from the
sequence of requests it processes, and alarse-amountof entropy from any additional
inputs that are provided by the subordinate DRBG’s consuming application. Periodically
(e.g., during power down of the subordinate DRBG), the subordinate DRBG can provide
this entropy baek to the source DRBG as specified in Section 4.2.2.4.

4.2.4.5 Reseed of the source DRBG

When entropy input is available, the source DRBG may be reseeded. If the subordinate
DRBG is currently using the source DRBG, fits internal state is saved, plong with the new
entropy input. Otherwise, the new entropy input is saved directly to the source DRBG.
Reseding the source DRBG is discussed in Section 4.2.3.5.

Comment [ebb38]: Shouldn’t define
anything that is also defined in Part 3.

Comment [ebb39]: Which internal state is
saved and why?

—efse:

In either case, if the source DRBG has been compromised, but the new entropy input for
the source DRBG is unknown, the new internal state of the source DRBG (and also the
internal state of the subordinate DRBG, if it’s being used) is also unknown to the
attacker. On the other hand, if the source DRBG has not been compromised, even new
entropy input chosen by the attacker cannot lead to a compromise of the source or
subordinate DRBGs.

4.3 Constructing a DRBG With a Live Source of Entropy Input

4.3.1 General Discussion

The ideal situation for a fall DRBG (the target DRBG T) is to have reliable live source of
entropy input (e.g., an Approved conditioned entropy source or an Approved NRBG). [n
addition to entropy input from a live entropy input source, DRBG T may obtain entropy
input from another (source) DRBG as discussed in Section 4.2.2.

The live entropy input source provides bit strings with a claimed amount of entropy. An
example of an entropy input source would be a ring oscillator that is sampled one
hundred times per second, and for which extensive analysis has been performed to
determine that each sampled sequence of 100 bits sampled has at least 80 bits of entropy.

Any-DRBG with-aceess to-a-live entropytpat-souree can-access-that-soureeiFthe
souree-PRBG-claimsA-bits-of security- then-each-new requestfor-k-or-mere-bits-efoutput
with-prediction resistance-front the souree- DPRBG-can-be assumed-to-contabr-k-bits of
EEeRES 5

When DRBG T has a reliable live entropy input source, instantiation and reseeding-and
instantiation-can be done on demand, requests for prediction resistance can be honored,
and when DRBG T reaches the end of its seed period (see Part 3), the DRBG can reseed

itself. If the DRBG claims & bits of security, each new request for output with prediction
resistance can be assumed to provide 4 bits of min-entropy.

An-iternatly-seeded- DRBG-may-use-a-seedfile-as-deseribed-belowbut-does-not-requive
ERes

Note that-in-this section-we-use a DRBG-Mechantsm—nota-BRBG-Adgorithnm—his
means-that the-DRBG-is expected-to-handle-its-evvp-reseedina-predichon-resistance
requests-ete: Two constructions are provided fesinternallyseeded BRBGs, one using

only a live source of entropy input, and the other augmenting the live entropy input
source with the output of a source DRBG.

4.3.2 Construction: DRBG With a Live Entropy Input Source

This construction simphy uses the DRBG mechanisms specified in Part 3-and-isprobably
he siol Y \

18

ADRBG hatuses-onlyv-a-live entropy input souree eonsists ol-one-componeni:
o DRBGMECH A DRBG mechanism-with-a-readib-available-entropy input
sovres:

42 lustantintions Reseeding, nad Generation
Essentially, all requests to the construction amount to requests to the DRBG mechanism
as specified in Part 3.

chef-dinte rncllieSee de DR G -ttt RoHE S personaliZation—siring -
o DRBOMECH bistcsiticitednosicapebsonalisation sirpus

def
birternctbvSecdediD RBG-generatel bitsadditional—input-predichion—resistanee—vequested.
DRBGMECH-generatethitsudditional—inputprediction—resistanes—requested)

et FriterncdbySeededBEIRR Gy eve e dbc it oried gt
DRBGMECH. additional—i

4.3.3 Construction: DRBG With a Live Entropy Input Source and a Source
DRBG

A DRBG T with reliable access to an entropy input source can be augmented with the
output of a source DRBG S. This provides a certain level of insurance against silent
failure of the entropy input source. There are a number of details to [JJJJlf in using the
output of the source DRBG to ensure that the full benefit is received.

4.3.3.1 Components and Requirements
This construction consists of two components and one parameter:
¢ A DRBG mechanism as described in Part 3
e A source DRBG as described in Section 4.2.2.
e length, the number of bits needed to instantiate DRBG T from the source DRBG.
This is typically 3/2 times the security level of the DRBG mechanism.

4.3.3.2 First Instantiation
live entropy input source. The target DRBG is instantiated as discussed in Section 4.3.2,
The instantiation of the source DRBG is discussed in Section 4.2.2.3. Subsequently, the
DRBG construction may be used [l to generate outputs.

4.3.3.3 Subsequent Instantiations of the Target DRBG
Each time after the first that the target DRBG is instantiated, an entropy input is included
from the source DRBG. This is used as part of the personalization string. Immediately

after instantiation, an output from the target DRBG is used to update the internal state of
the source DRBG.

19

Comment [ebb40]: This was my
understanding.

Hef target. DRBG .instantiate(nonce, personalization string):

if personalization string is not present:

personalization_string = “”

S = SEEDFILE. Get(length)

DRBGMECH instantiate(nonce, S+ personalization_string)

SEEDFILE.Save(DRBGMECH generate(length)]
At the end of this process, if the live entropy input source i-the-BRBGMECH is working
properly, both the target DRBG and the source DRBG are [secure” (i.e., xxxx). If the
entropy input source has silently failed, but the source DRBG has been properly
instantiated, then both the target DRBG and the source DRBG as secure.

4.3.3.4 Reseeding the Target DRBG

Each time that the target DRBG is reseeded, the source DRBG contributes information
for the reseeding, and benefits from any entropy provided for reseeding.

Wef ISDSeedfile.reseed(additional_input):
if additional_input is not present:
additional_input = *”
S = SEEDFILE. Get(length)
DRBGMECH. reseed(S+additional _input)
SEEDFILE.Save(DRBGMECH. generafc—:{?ength)){

As before, security of each component cannot be made worse by this operation, but can
be made better.

4.3.3.5 Generation of Random Bits by the Target DRBG

The generation of random bits by the target DRBG uses the live entropy input source and
output from the source DRBG only when prediction resistance li:i requested (see¢ Part 3),
When the target DRBG requests # bits of output with prediction resistance, the entropy
input shall be the XOR of # bits obtained from the live entropy input source with » bits
obtained from the source DRBG.

5 Constructing an NRBG
5.1 Overview

An NRBG is a mechanism for producing bits with information theoretic security
(equivalently, full entropy). These bits are expected to be indistinguishable from ideal
random bits to any attacker, no matter how computationally powerful. There are three
constructions for NRBGs:
¢ Basic NRBG—An NRBG based solely upon a conditioned entropy source
o Enhanced NRBG: Xor Construction—An NRBG based upon combining the
outputs of a conditioned entropy source with those of any DRBG construction.
(The DRBG could in principle be an externally seeded one, but it’s hard to
imagine this being done in practice.)

20

[Comment [ebb41]: Needs to be fixed.]

Comment [ebb42]: To use the term “secure
state”, we’ll need a definition. Also, “state” as
used in X9.82 refers to an intemnal state.

[Comment [ebb43]: To be fixed.]

Comment [ebb44]: Can output from the
source DRBG be used here?

o Enhanced NRBG: Oversampling Construction—An NRBG based upon using an
internally seeded DRBG construction in a mode which provides information-
theoretic security.

5.2 Constructing a Basic NRBG

5.2.1 General Discussion

The simplest possible NRBG is a basic NRBG; it uses only a conditioned entropy source,
and relies for its security only upon the properties of that source.

Unlike the other constructions for NRBGs, a Basic NRBG can fail in an obvious and
disasterous way if its entropy source misbehaves even in relatively small ways.
Compared with internally seeded DRBGs and enhanced NRBGs, basic NRBGs are more
vulnerable to failure because:

e No entropy source failure could ever make the outputs look obviously bad
because a DRBG that is instantiated from a known value will still produce outputs
that will pass all known statistical tests.

e If the underlying DRBG algorithm of one of these other constructions is
instantiated securely, then the entropy source can immediately cease functioning
without leading to a catastrophic loss of security in any enhanced NRBG design.

In all other construction in part 4, an entropy source that deviates just slightly from
correct behavior leads to a very small security impact; the DRBG algorithms mask any
misbehavior, and the practical impact is a small decrease in the expected work to guess
the DRBG’s working state.

5.2.2 Components
The only component of a basic NRBG is the conditioned entropy source, CES.
5.2.3 Instantiation

No instantiation process is necessary for a basic NRBG, except for whatever process
initializes CES.

5.2.4 Generation

A request for » bits of output from the basic NRBG is fulfilled by a process like the
following:

BasicNRBG.Generate(n):
tmp = i
sum =0

while sum<n:
Note: e = len(s) by definition!
e,s = CES.Get entropy()
tmp =tmp || s

21

sum = sum + e
return leftmost n bits of tmp

5.2.5 Additional Concerns

The fundamental problem with a basic NRBG is that there is no fallback in case of some
undetected failure of the entropy source. At present, basic NRBGs shall not be approved.
In the future, we expect extensive requirements on the underlying conditioned entropy
source, in terms of:

e Strenuous design validation and testing

e Comprehensive continuous testing

o Use of approved cryptographic mechanisms to condition the entropy source, such
as the external conditioning construction specified above.

[[Is there something more to be said here at this point?]]
5.3 Construction: Enhanced NRBG XOR Construction

5.3.1 General Discussion

The XOR construction is an extremely simple way to construct an enhanced NRBG from
two components: a DRBG and a conditioned entropy source. Conceptually, we take a
DRBG mechanism (potentially with its own entropy source, though it might draw on the
conditioned entropy source), and a conditioned entropy source, and XOR their outputs

(outputs)
together to provide information theoretically secure random values. The secutity
argument for this is straightforward: if the conditioned entropy source is functioning
correctly, the outputs of the DRBG are being XORed with full-entropy, truly random bits,
and so the results will also be truly random. On the other hand, if there is some kind of
failure in the conditioned entropy source, the DRBG outputs will mask that failure to any
attacker who cannot do enough work to defeat the DRBG’s security level.

5.3.2 Components

The two components are:
e CES, a conditioned entropy source
e D, a DRBG construction which may:
o Use CES or the underlying entropy source of CES as its entropy source.
o Have an independent entropy source
o Be externally seeded, and draw its seed material from CES.
[[I need to expand this to two constructions, so I can show how to safely use an
externally-seeded DRBG construction with this NRBG construction.]]

22

5.3.3 Instantiation

To instantiate the NRBG, the following process is done:

def Xor NRBG.instantiate():
D.Instantiate()

Optionally:
o D can be reseeded one or more times to gain assurance.
e CES can be used to generate an additional inputs for the reseeding call.

5.3.4 Generation

To generate an » bit output, the conditioned entropy source is used to produce n bits, the
DRBG is used to produce # bits, and the two bitstrings are XORed together. The result is
returned. In pseudocode, this is

[[Verify all the pseudocode calling conventions!]]

def Xor NRBG.generate(n):

tmp ="

sum =0

while sum<n:
Note: e = len(s) by definition!
e,s = CES.Get entropy()
tmp =tmp||s
sum = sum + e

tmp = leftmost n bits of tmp

tmp = tmp XOR D.Generate(n)

return tmp

Note: the call to D.Generate() may request prediction resistance, if this is available.
5.3.56 Composite NRBG Access

This NRBG construction can also support a request for DRBG outputs, as might be
needed for higher-volume requests than the conditioned entropy source could fulfull.
This is done by simply asking the component DRBG, D, to fulfill the generate request.

def XorNRBG.CompositeGenerate(n):
return D.Generate(n)

5.4 Construction: Enhanced NRBG Unicity Distance Construction

5.4.1 General Discussion

A second construction for an enhanced NRBG is called the unicity-distance construction.
This does not need a conditioned entropy source, and operates in a somewhat different
way. The NRBG consists of a DRBG mechanism, which contains an available entropy

23

source and supports prediction resistance. Outputs are generated by the DRBG, with at
least twice as much entropy being fed into the DRBG as bits generated by it. Assuming a
minimally good DRBG algorithm, this leads to full-entropy outputs.

[This Figure is not displayed, and needs to be referenced, anyway.]
5.4.2 Components

The NRBG has one component, and a related parameter:
e D, a DRBG mechanism with an internal entropy source and prediction resistance
support.
e kis the security level supported by D

5.4.3 Instantiation

Instantiating the NRBG requires simply instantiating the DRBG:

def UnicityNRBG.Instantiate():
D Instantiate()

5.4.4 Generation

Generating output from the DRBG is based on making many requests for outputs with
prediction resistance, with the knowledge that the DRBG has been reseeded with at least
k bits of additional entropy for each request.

def UnicityNRBG.Generate(n):

tmp ="

sum =0

while sum<n:
s = D.Get_entropy(l/2, prediction_resistance_requested=1)
tmp =tmp || s
sum = sum + k/2

return leftmost n bits of tmp

5.4.5 Composite NRBG Access

Again, the underlying DRBG can be accessed safely, so long as it is accessed with
prediction resistance requested.

def UnicityNRBG.CompositeGenerate(bits):
return D.Generate(n,prediction_resistance requested=1)

6 Using RBGs Together
6.1 Overview

An RBG may be constructed from a number of components, which may themselves be
RBGs, or may be DRBG or NRBG mechanisms. This section discusses how these RBGs

shall be composed-te-accomplish-anumber-of different-goals.

24

Comment [ebb45]: Are there NRBG
mechanisms?

6.2 Construction: Combining RBGs into a Single Cascaded RBG

6.2.1 General Discussion

A cascaded RBG may be constructed using either multiple Approved RBGs, or using one
or more Approved RBGs and one or more unapproved RBGs. Constructing a cascaded
RBG might be done for a number of reasons, including:

e [The desire to use an unapproved DRBG that is believed to be superior in security
over an Approved DRBG; combining the Approved and unapproved DRBGs
would comply with this Standard.

e The desire to combine DRBGs or NRBGs that are driven by different entropy
sources or based on different primitives or design principles for increased
assurance.

e The desire to combine RBGs from different implementers or contained on

different modules in order to obtain increased assurance| (comment [ebbds]: Note the indentaiton.

Designing and implementing a cascaded RBG is an excellent way of meeting the
requirements of this Standard for an RBG, while gaining whatever security properties are
desired from some unapproved design in which the designer has enormous confidence.
Existing designs that have been evaluated outside the ANS X9.82 process (e.g., designs
that have been published and subjected to extensive peer review and analysis) and
designs that incorporate DRBGs that are not approved in this Standard, but which are
believed by the designer to be highly secure, are all good candidates for use in a
combined RBG.

A properly constructed cascaded RBG provides assurance that the resulting RBG will be
no weaker than the strongest component RBG, assuming that the entropy input for any
DRBG in the cascaded RBG is independent of the entropy input for any other DRBG in
the RBG. Note, however, that there is no assurance that the cascaded RBG will be
substantially stronger than the strongest component RBG. Each RBG in this construction
is assumed to be self-contained; that is, each RBG is expected to be able to support the
instantiation of the DRBG and the generation of bits from that RBG.

6.2.2 Overview of the XOR Construction for a Cascaded RBG

This construction allows N component RBGs, at least one of which is Approved, to be
combined to make a cascaded RBG that conforms to this Standard.

A special case of this cascaded RBG is discussed in Section 3 as one of the two approved
constructions for enhanced NRBGs.

The security level and properties of the cascaded RBG are determined-asfoHows:
e The cascaded RBG construction shall include at least one component RBG from
this Standard.

25

o The security level of the cascaded RBG is given-a-elaimedseeuritylevel equal to
the highest security level of any Approved RBG from which the cascaded RBG is
composed. Note that if one of its Approved component RBGs is an NRBG, then
the cascaded RBG can support any security level, |including the infinite security
level whenever the NRBG is functioning correctly. In this case, output from the

cascaded RBG may be used in exactly the same way as any Approved NRBG’s
outputs.

e The cascaded RBG is capable of supporting prediction resistance if either:
o One of its Approved component RBGs is an NRBG
o One of its Approved component RBGs with the same security level as the
cascaded RBG supports prediction resistance (i.c., if the cascaded RBG
supports a 256-bit security level, then the cascaded RBG can support
prediction resistance only if one or more of the Approved component
RBGs has a security level of 256 bits).

6.2.3 Preliminaries: Interfacing with Component RBGs

For the pseudocode below, we-adept the following convention is used: If an
implemented component RBG cannot support some parameter (such as additional input
or prediction resistance requested), then that parameter is omitted from the function
call. Thus, if a given RBG, R, does not support the additional input parameter in its
Generate function, the pseudocode of

R.Generate(..., additional inpur)
shall be taken to mean

R.Generate(...), where “...” is used to represent other parameters that are used.

6.2.4 Instantiation of DRBGs in a Cascaded RBG

Each DRBG in a cascaded RBG shall be instantiated prior to using the RBG to generate
bits. Instantiation of the DRBGs can be summarized by the following pseudocode:

Cascaded Instantiate([requested instantiation security strength,
[prediction_resistance flag), [personalization string)):

For each Approved component DRBG, R:
R.Instantiate(requested _security strength, prediction resistance flag,
personalization_string)

For each unapproved component DRBG, R
R.Instantiate(ywhatever input paramelers are required)

The following requirements apply to the instantiation of DRBGs for the XOR
construetionof cascaded RBGs:
e Each component DRBG shall be provided with unique entropy input that is not
related in any way to that provided to the other component DRBGs.
e Source DRBG (instantiations), if used, shall not be shared among component
RBGs.

26

[

Comment [ebb47]: Does this term appear
anywhere else in X9.827

e Each DRBG shall use a distinct personalization string; personalization strings
may be made distinct by the inclusion of a counter or other non-repeating value.

6.2.5 Reseeding of DRBGs in a Cascaded RBG

The component DRBGs within a cascaded RBG may be reseeded independently-at any
time by a consuming application, as follows:

Cuscaded Reseed(additional input):
For each Approved component DRBG R: R Reseed({state handle for R},
additional input)
For each unapproved component DRBG R with a reseed capability: R Reseed)).

The following requirements apply to the cascaded DRBG reseed:
e Each component DRBG that supports a reseed() capability shall be given a reseed
request.
e The entropy input used to reseed one component DRBG shall be independent of
the entropy input used to reseed another component DRBG.
e Each Approved component DRBG that supports a reseed capabiity and accepts
additional input shall use any additional input provided.

Note that a component DRBG may also control its own reseeding (i.e., a DRBG may
reseed itself whenever required).

6.2.6 Generation Of Bits from a Cascaded RBG

The cascaded RBG generate call is as follows:

Cascaded Generate(N,requested security_strength, full entropy,
prediction_resistance requested additional input):

if prediction_resistance_requested and the cascaded RBG cannot support prediction
resistance, raise an error condition and exit.

if full_entropy is requested and the cascaded RBG cannot support full entropy, raise
an error condition and exit.

tmp = N bit block of binary zeros.

IFor each component DRBG, R:
if R is an approved DRBG:

tmp = tmp XOR R.Generate(state_handle, N, requested security strength,
prediction_resistance flag, additional _input,

prediction_resistance_requested), Comment [ebb48]: Need to rewrite this to
else: tmp = tmp XOR R Generate(N) use the full_entropy version, when required.
For each component NRBG: R: tmp = tmp XOR R Generate(N)
return tmp

The following requirements apply to the combined RBG generate function:

27

o The additional input shall be provided to all DRBGs that support additional
input.
o The prediction resistance request shall be provided to all DRBGs that support

rrediction resistance.

e No intermediate values for tmp or outputs of individual RBGs used to generate
the output from the cascaded RBG shall be released.

6.3 Obtaining Entropy from an RBG

Consider a source RBG § with a reliable entropy source. A DRBG (a target DRBG 1)
can request outputs from S with either full entropy or prediction resistance-fo-2et-access
tothe-underlying-entropy-source. The source RBG may be either an Approved DRBG
with a reliable entropy input source or an Approved NRBG.

6.3.1 Construction: Obtaining Entropy from an NRBG

When # bits of entropy are required from an NRBG S, the calling DRBG (T) can simply
request # bits of output from the NRBG. These output bits may be treated exactly like
the output from a conditioned entropy source. Thus, in pseudocode, a call like:

e,s = EntropySource.Get entropy()
to a conditioned entropy source could be rewritten as:

e=k
s = NRBG.Generate(k)

where £ is the amount of entropy that is requested..

6.3.2 Construction: A DRBG Obtains Entropy Input from a DRBG with a
Reliable Entropy Source

When # bits of entropy are required from a DRBG (the source DRBG .S) that provides &
bits of security, and that DRBG has a reliable entropy source, the calling DRBG (T)
accumulates the » bits from the source DRBG S using as many calls as are needed. The
source DRBG is given a request to generate a maximum of k bits with prediction
resistance in each call, and the result is assumed to have a min-entropy equal to the
number of bits obtained in the call. Each output may be treated as if it is the output from
an Approved entropy source.

Pseudocode like the following would be used to get # bits of entropy from an Approved
entropy source:

sum =0
tmp = the null string
while sum<n:
e,s = EntropySource.Get_entropy()

28

Comment [ebb49]: This would not be a
direct access, since the outputs from the
entropy source would be transformed in some
way by S

tmp =tmp|| s
sum = sum + e
return the leftmost n bits of sum

This could be rewritten as follows using any source DRBG with prediction resistance and
a k-bit security level:

sum =0

tmp = the null string

k = security level

while sum<n:

tmp = tmp || DRBG.Generate(state_handle, k, k, prediction_resistance_requested,
[additional _input])

sum = sum + k

return the lefimost n bits of sum

6.4 [Construction: Using a DRBG to Provide Entropy Input to Other DRBGs|_ .

A DRBG may obtain its entropy input from another properly instantiated Approved
DRBG. Note that this construction is very similar to the previous construction; the
difference is that this construction uses an Approved DRBG to provide unmp\« inputs
without-the assumption-tHit-the-entropy-input-has-am-independent emmpy

[The figure can’t be seen. Also, need a reference to it.]

The target DRBG T may obtain its entropy input for instantiation and reseeding from the
source DRBG S using the Get_entropy input call in the instantiate and reseed functions
(see Part 3). The Get_entropy_input call of Part 3 results in the following invocation:

Source.Generate(state_handle, thisf+k/2,
requested_security strength,prediction_resistance - request, additional _input),

where £ is the security level. Note that (k+k/2) provides a (k/2)-bit random nonce (see
Part 3).

The following requirements apply to instantiating a target DRBG from a source DRBG:
e The target DRBG’s security level shall be less than or equal to the source

DRBG’s security level.
The target DRBG shall not support prediction resistance or full entropy.
In order to obtain entropy input for a target DRBG with a security level of £ bits,
the source DRBG shall generate an output of at least k+4/2 bits. This output
shall be used only for instantiating the target DRBG, and shall be discarded
immediately afterward.

Fhe-constructionfora-seedtile-from-a-persistent DRBG-deseribed-below-is-a-special

29

~| Comment [ebb50]: If the Target DRBG

obtains its entropy from an NRBG, the call is
different. May need to handle this separately.
Note that this section is essentially the same as
Section 4.2.2.

{ Comment [ebb51]: Don't understand this.

Comment [ebb52]: Thois seems to be
assuming that the nonce is a random number.

6.4.1 Construction: Providing Entropy Inputfor Many DRBGs from One
Properly Instantiated DRBG

The source DRBG may be used to provide entropy input for many target DRBGs (i.e.,
different DRBG instantiations), each of which may support different applications.
Different instantiations may be used to compartmentalize the applications of the DRBGs,
so that cryptanalysis of one DRBG instantiation does not compromise other parts of
applications.

Additional requirements are:

e The source DRBG mechanism-shall be instantiated with all available entropy,
including nonce and personalization string and/er-neneel [comment [ebb53]: This needs clarification.]

e The entropy input for each target DRBG shall be obtained from a distinct
generate request for at least k£+%/2 bits of output from the source DRBG, where &
is the intended security level of the target DRBG.

o [The most exposed target DRBG should be the last to be instantiated, while the
target DRBG whose outputs are considered the most critical to guard should be
instantiated ﬁrsti”“” e : l Comment [ebb54]: This needs more]

information.

For example. i a sequienive of ten BRBO-nstattiations i reguired—the eitropy-put-tor
each world-be obtamed from the source DRBOG-S astoHows:

Appendices

Appendix A Security Considerations

7.1.1 Oversampling and Conditioning

Appendix B Example Source Code for Some Constructions in Python

[[This is untested, I used it to clarify my thinking on various constructions]]
THtHH

Python implementation of constructions section.

#

This code is a contribution of the federal government

and is not subject to copyright.

#

John Kelsey, NIST, October 2005

#

Note: This is untested demonstration code. Don't use

it in a production environment without testing. (We'd love a debugged

30

version ourselves!)
it

R

Entropy Source Section: Three Constructions
#

a. EntropySourceAccumulator

#b. EntropySourceConditioner

¢. EntropySourceBuffer

FHE

i
This is the abstract base class for an entropy source. Assumptions:
#
a. A real entropy source object must respond to get_entropy() with
an integer,string pair, where the integer tells us the entropy estimate
and the string carries the entropy. We get no promises whatsoever from
the entropy source about the distribution in that string, unless the
entropy source is conditioned, which we can tell by calling the conditioned()
method.
#
#b. We assume that this won't always return 0 as an entropy estimate.
If it does, we will get stuck in an infinite loop in various places.
Hitit
class EntropySource(object):
Abstract base class
def init (self):
pass
def get_entropy(self):
Always return estimate,sample
estimate is an integer
sample is a string
pass
Return True or 1 for conditioned entropy sources only!
def conditioned(self):
pass

HiHH

Implementation-specific utility routine!

HtHHH

def xorString(s1,s2):
x1 = [chr(ord(s1[i])"ord(s2[i])) for i in range(len(s1))]
return "".join(xl)

def ExternalEntropyAccumulator(EntropySource):

31

def make next nonce(self):
self.C +=1
return "%08x"%self.C

def init (self,entropy source,df,entropy,short,long):
self.source = entropy_source
self.df = df
self.k = entropy
self.short = short
self.long = long
selfC=0

if long<2*entropy: raise ValueError,"Can't condense that far down!"
def internally seeded(self): return 1

def get_entropy(self):

counter =0
while counter<k:

e is entropy estimate for this string, x is the string.
e,x = self.source.get_entropy()
nonce = self._ make next nonce()
accumulator = xorString(accumulator,df(n,nonce+x))
counter = counter + €

return k,accumulator

class ExternalEntropyConditioner(ExternalEntropy Accumulator):
def init (self,entropy source,df,entropy):
self.source = entropy_source
self.df = df
self.entropy= entropy
if entropy%8<>0: raise ValueError,"Not implemented!"
if entropy<64: raise ValueError,"Output too small to get good statistics!"
selfC=0

def get_entropy(self):

counter =0
while counter<self.entropy*2:

e is entropy estimate for this string, x is the string.
e,x = self.source.get_entropy()
nonce = self._make next nonce()
accumulator = xorString(accumulator,df(n,nonce+x))
counter = counter + ¢

32

return k,accumulator[:self.entropy*8§]
class InsufficientEntropy(Exception): pass

class ExternalBuffering(EntropySource):
def init_ (self,source,queue):
self.queue = queue
self.source = source
self.sum =0

def collect(self):
e,s = self.source.get _entropy()
self.queue.put((e,s))
self.sum = self.sum + s

def get(self,n):
if self.sum<n:
raise Exception(InsufficientEntropy)
else:
tmp 1 1"
count = 0
while count<n:
e,s = self.queue.get()
count = count -+ e
tmp =tmp + s
return tmp

HHHH

DRBG SECTION

Four constructions

a. Internally Seeded DRBG -- basically the DRBG Mechanism Elaine has

specified.

#b. Seedfile -- A DRBG used as an entropy store.

¢. One-Stage Externally Seeded DRBG -- A DRBG that only gets instantiated
once, and is reseeded only when there's entropy available.

d. Two-Stage Externally Seeded DRBG.

fraceets

This is the abstract base class for a DRBG algorithm.

Assumptions:

a. The DRBG algorithm object knows how to instantiate, generate, and
reseed according to the interface here.

b. The DRBG algorithm knows its own reseed requirements. When the
DRBG algorithm needs to be reseeded in order to continue, we raise
a special-purpose exception, ReseedRequired.

¢. I have not even considered fractional byte requests here. I assume that

o H

33

whatever conventions exist for handling these, they'll be handled

by the real DRBG_Algorithm implementation.

d. The DRBG algorithm is responsible for failing when it is called in the
wrong order: it raises the NotReady exception.

it

class ReseedRequired(Exception): pass

class NotReady(Exception): pass

class DRBG_Algorithm(object):

Abstract base class

def _init_ (self):
self.security level = None
self.short = None
self.long = None
self.ready =0
pass

def instantiate(self,seed_material):
self.ready = 1

def generate(self,bits,additional input=None):
if not self.ready: raise NotReady
def reseed(self,seed _material,additional input=None):
if not self.ready: raise NotReady
def uninstantiate(self):
self.ready = 0
def security level(self): return self.security level
def parameters(self): return (self.security level*3/2,2**32)

HitHH

The internally seeded DRBG is self-contained; once it's instantiated,
you don't really have to mess with it much. If you demand prediction
resistance and it doesn't support it, it will fail with a NotSupported

exception.

HHHHE

class NotSupported(Exception): pass

class Internally Seeded DRBG(object):
def make seed(self,entropy,short,long):

tmp =""

sum =0

while sum<target:
e,s = self.entropy_source.get_entropy()
tmp =tmp +s
sum = sum + e

34

if len(tmp)*8>long or len(tmp)<short:
tmp = self.df(long,tmp)

return tmp

def init (self,entropy_source,drbg_algorithm,df,
nonce=None,personalization_string=None,
pres_supported=1):
self.entropy_source = entropy_source
self.drbg = drbg_algorithm
self.df = df
self.pres_supported = pres_supported

##H#HH# Instantiate the DRBG:

Get parameters from the DRBG algorithm object
self.short,self.long = self.drbg.parameters()
self.k = self.drbg.security level()

Decide if we need extra entropy to cover nonce.
if nonce=—None:

nonce =""

target = self.k*3/2
else:

target = self k

tmp = self. make seed(target,self.short,self.long)
self.drbg.instantiate(tmp)

def generate(self,bits,additional input=None,pres_req=0):

if pres req==1:
if self.pres_supported:
self.reseed(additional input)
else: raise NotSupported

try:

tmp = self.drbg.generate(bits,additional input)
return tmp

except ReseedRequired:
self.reseed(additional input)
tmp = self.drbg.generate(bits,additional_input)
return tmp

def reseed(self,additional_input):

35

tmp = self._make_seed(self k,self.short,self.long)
self.drbg.reseed(tmp,additional input)

def security_level(self): return self.drbg.security_level

This is a very different kind of object. The internally seeded DRBG takes
care of everything internally; this one must pass all exceptions for reseed
required back out to the caller, must require an input parameter for its
seed material when an instantiation or reseed is required, etc.
class ExternallySeededDRBG(object):
def _init (self,drbg algorithm,seed_material):
self.drbg = drbg_algorithm
self.drbg.instantiate(seed_material)
def generate(self,n,additional_input=None):
self.drbg.generate(n,additional _input)
def reseed(self,seed _material,additional input=None):
self.drbg.reseed(seed material,additional input)
def security level(self): return self.drbg.security_level

Hititit
The seedfile supports a very simple interface; its goal is to be a
persistent store of entropy for a DRBG which is actually used.
T
class Seedfile(object):
def init (self,drbg algorithm):
self.drbg = drbg_algorithm
self.instantiated = 0
def instantiate(self,seed_material):
self.drbg.instantiate(seed_material)
def save(self,data):
self.drbg.generate(8,data)
def get(self,n,additional input=None):
return self.drbg.generate(n,additional input)

class TwoStageExternallySeededDRBG(ExternallySeededDRBG):
def _init_ (self,seedfile,drbg algorithm,seed_material):
self.seedfile = seedfile
self.current = drbg_algorithm
self.length,x = drbg_algorithm.parameters()
if seedfile.security level()<drbg_algorithm.security_level:
raise ValueError,"Seedfile can't support claimed secuirty level!”

self.seedfile.instantiate(seed material)
self.ready =0

36

def instantiate(self,additional_input=None):
seed = self.seedfile.get(self.length,additional input)
self.drbg.instantiate(seed)
selfiready = 1

def generate(self,bits,additional input=None,pred req=0):
if not self.ready: raise NotReady
if pred_req: raise NotSupported
return self.drbg.generate(bits,additional input)

def save(self,additional _input=None):
if additional input<>None: self.seedfile.save(additional input)
if self.ready: self.seedfile.save(self.drbg.generate(self.length))

def reseed(self,seed material):
if not self.ready: raise NotReady
self.drbg.reseed(seed _material)
self.save()

def uninstantiate(self):
self.ready =0
A real implementation would zeroize DRBG!

HiHHE

NRBG Section

#

Two Constructions:
#a. XorNRBG

#b. UnicityNRBG
HiHHHE

class NRBG(object):
def generate(self,n):
pass
def composite generate(self,n):
pass

No mechanism to guarantee frequent reseeds here; we need to make
clear that it's acceptable for the DRBG mechanism to reseed as often
as it likes, so long as entropy is available!
class XorNRBG(object):
def _init_ (self,drbg mechanism,CES):
if not CES.conditioned(): raise ValueError,"Need conditioned entropy source!"
self.CES = CES
self.drbgmech = drbg_mechanism
def generate(self,n):

37

if n%8<c0: raise ValueError, "Fractional bytes not implemented!"
tmp — tmn
count =0
while count<n:
¢,s = self.CES.get_entropy()
tmp =tmp +s
count = count + ¢
tmp = tmp[:n*8§]
tmp = xorString(tmp,self.drbgmech.generate(n))
return tmp
def composite generate(self,n):
return self.drbgmech.generate(n)

This construction is trivial once we have an internally seeded DRBG

mechanism to play with....

class UnicityNRBG(object):

def _init (self,drbg_mechanism):
if not self.drbgmech.internally seeded():
raise ValueError,"Need internally seeded DRBG for this construction!”

self.drbgmech = drbg_mechanism
self.increment = self.drbgmech.security_level/2

def generate(self,n):
tmp = "
count =0

while len(tmp)<n:
x = self.drbgmech.generate(n,pres_req=1)
tmp = tmp + x[:self.increment*8]
count = count + self.increment
return tmp[:n*8§]
def composite generate(self,n):
return self.drbgmech.generate(n,pres_req=1)

(-]

38

