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1 Introduction

XO9F1 needs a secure and trusted determinisitic random bit generator
based on a hash function. Our previous candidate had some security
problems. In this paper, I describe two very closely related new
DRBGs, one based on any hash function whose construction includes a
compression function with both message inputs and chaining value
inputs, and the other based on any hash function that can be turned

into a PRF by the use of the HMAC construction. The overall design,
and nearly all of the analysis, is identical between the two.

1.1 The Basic DRBG Algorithm Interface
A DRBG algorithm needs to be able to do two things:

a. Generate outputs that are indistinguishable from ideal random
outputs to someone who doesn't know its DRBG's working state.

b. Update or initialize its working state in a secure way,

potentially in the face of an attacker who is choosing part or all of
the input seed material to try to prevent the DRBG getting to a secure
state.

These are reflected in three public methods that any DRBG algorithm
must support: Generate(bytes,optionallnput), Initialize(seed), and
Reseed(seed).

1.2 Basic Construction

Both DRBGs are constructed in the same way. All security resides in
the Generate() method; the Initialize() and Reseed() methods all that
method.

In both cases, the hash function is used to construct a Pseudo-Random
Function family, or PRF. A PRF is essentially a keyed function for
which, when the key is unknown, each new input yields an output
indistinguishable from an ideally-generated random number; a natural
way to represent this is F_K(X), where K is the key, and X is the
input.

To generate a new random bit string, the generate methods in both
DRBGs do the same basic sequence of things:



a. If there is optional input, use it to derive a new K and X.

b. Generate output by computing:

temp=""
while len(temp)< requested number of bytes:
X =F K(X)

temp = temp || X
c. Derive a new K and X to prevent backtracking attacks.

To reseed and initialize, both DRBGs call the Generate() method with
the seed string as the optional input.

For the rest of this document, N is the hash output size, M is the
compression function message input size, and Q is the compression

function output size. For example, with SHA1, Q=N=160 and M=512, while
with SHA384, N=384, Q=512, and M=1024.

1.3 HMAC DRBG Overview

The HMAC DRBG bases its security on the security properties of both
the HMAC PRF construction, and the properties of the underlying hash
function. Recall that HMAC takes a fixed-length key, typically of N
bits, where N is the number of bits in the hash function's output, and
can handle the same enormous range of data input sizes as the
corresponding hash function.

The HMAC DRBG has two pieces of working state: K and X. Eachis N
bits wide.

The three methods are defined as follows:
def Generate(bytes,userlnput):

# Update the state in a secure way with user input.
if userInput exists:

K = hmac(K,X || 0x00 || userInput)

X = hmac(K,X)

# Generate the bits.

tm — nn

while len(tmp)<bytes:
X = hmac(K,X)
tmp =tmp || X

# Get to a new key and state to prevent backtracking attacks.



if userInput exists:
K = hmac(K,X || 0x01 || userInput)

X = hmac(K,X)

else:
K =hmac(K,X || 0x01)
X =hmac(K,X)

# Finally, return the bits.
return tmp[ :bytes]

# Note: The result from the Generate() call can be saved as a check
# value, to ensure that the DRBG is not set to the same working state
# twice.
def Reseed(seed):

Generate(N,seed)

def Initialize(seed):
X = 0x00 0x00 ... 0x00
K =0x01 0x01 ... 0x01
Reseed(seed)

1.4 KHF _DRBG Overview

The KHF _DRBG also bases its security on both a PRF construction and
the hash function, but does so in a slightly different way. This

trades off a certain elegance of design for a factor of two or so
improvement in performance.

The PRF construction used here is
F K(X)= Compress(K_0,K 1 xor (X||0x00 0x00 ... 0x00))

where K_0 is Q bits (the number of bits in the compression function's
output), and K 1 is M bits wide, the same number of bits as the
compression function's message input block.

The KHF DRBG algorithm's working state includes three variables: K_0,
and X, both of Q bits, and K_1, of M bits. Note that because KHF_DRBG
uses the underlying compression function of the hash, the PRF has a

Q-bit output, even when Q>N. For example, in SHA384, the PRF has a
512-bit output, even though the hash function as a whole has a 384-bit
output.

There are two internal functions used in the KHF _DRBG, called _F()
and _Renew().

def F(x):



return Compress(K_0,K 1 xor (X || 0x00 0x00 ... 0x00))

def Renew(seed):
T e "
# Divide the bit counts by 8 to get byte counts.
while len(T)< (Q+M)/8:
X=_FX)
T =T/ _F(hash(X||seed))
K 0=T[:Q/8] # First Q bits goto K_0.
K 1=T[Q/8:M/8] # Next M bits go to K_1.
X=_FX)
return

These are then used as follows:

def Generate(bytes,userInput):
# If we have user input, use it to get a whole new key. This
# provides prediction resistance.
if userInput exists:

_Renew(userInput)

# Generate the output bytes.

temp = ""
while len(temp)<bytes:
X=_FX)

temp = temp || X

# Go to a new key to prevent backtracking attacks.
if userInput exists:

_Renew(userInput)
else:

_Renew("")

return temp|:bytes]

def Reseed(seed):
Generate(Q,seed)

def Initialize(seed):
X = 0x00 0x00 ... 0x00
K 0=0x01 0x01 ... 0x01
K 1=0x02 0x02 ... 0x02
Reseed(seed)

2 Analysis



2.1 Analysis of the Generic Construction

Both of these constructions are built on the same structure: All
security-relevant operations take place in the Generate() functions,
and those functions have the same basic outline:

F_K(X) is assumed to be a PRF. For the HMAC_DRBG, K and X are each N
bits wide. For KHF DRBG, K is Q+M bits wide, and X is Q bits
wide. Generate works as follows for each:

a. If we have user input, use that to derive a new K and X from the
current K and X, and also from the user input. This is done in a way
that will provide prediction resistance if the user input has enough
entropy.

b. Run the PRF in output feedback mode until we've generated enough
output bits. That is: '
tmp — nn
while len(tmp)<bytes:
X=F KX)
tmp = tmp || X

c. Derive a new key and chaining value, from whatever external input
is available, or just from the internal state if no such external
input is available.

2.1.1 The initial use of userInput

If there is optional input from the user or seed data required to

achieve prediction resistance, then the DRBG must immediately generate
anew K and X. In both DRBG:s, this is done in a way that should
guarantec that the resulting K is no easier to guess than the harder

of the previous K or the input.

2.1.1.1 HMAC_DRBG

For HMAC DRBG, this is very simple:
K = HMAC(K,X]|0x00||additionalInput)

2.1.1.1.1 Unknown K, known/chosen input.
We assume that HMAC is a PRF. So, an attacker who cannot guess the

starting K can't distinguish the resulting K from a random N-bit
string, unless he's seen the result of this specific key and input



string being fed into HMAC before. However, this cannot happen:
the only HMAC outputs that are released are derived using only X as
the input; this input string is a different length, and so cannot be

the same as any of those. So, an attacker cannot have seen this
output before, and so can't distinguish it from a random N-bit string.
(This could be formalized.) This is true even if the attacker chooses
the inputs maliciously.

Further, assuming the key never cycles, we derive a new key exactly
once using any key, so there are no opportunities short of key

collisions for an attacker to cause or observe the results of two

different derivations of a new key, from the same starting key. As K

is an N-bit output which is assumed to be indistinguishable from
random, a sequence of 2°{64} of these K values have only a 2*{127-N}
probability of having a collision. Note that even if K repeats,

unless X does, too, an attacker will still never have a pair of

identical inputs to HMAC. If both K and X cycle at the same time,

the DRBG will begin repeating a sequence of previously-generated bits.

2.1.1.1.2 Known K, unknown input

When the key is known, we cannot assume anything about HMAC being a
PRF. Instead, we must consider it as an application of the hash

function. We then must assume that the hash function does a good job

of distilling entropy. In the strongest sense, we need to assume that
computing

hash(K xor opad || hash(K xor ipad || X || 0x00 || seed))

gives us an output that is indistinguishable from a random HMAC key,
when an attacker doesn't know the seed. (This is inevitable, and we
end up making the same assumptions in the hash-based DF, and in most
fielded implementations of DRBGs. However, note that this is much
weaker than the PRF assumptions described before, because the seed is
not under the attacker's control, and because the attacker is assumed

not to get large numbers of queries.)

The practical requirement is a bit weaker: we need the above hash
function to give us a suitable HMAC key that can't be guessed with
substantially less work than the N-bit security level would imply,
with seed material as input that an attacker doesn't know, and didn't
generate or choose all of.

2.1.1.2 KHF_DRBG

K really consists of Q+M bits. The new K is generated like this:



temp = ""
while len(temp)<(Q+M)/8:
X =F K(X)
temp = temp || hash(X || seed )

K _0 = first N bits of temp
K 1 =next M bits of temp

For concreteness, when the underlying hash function is SHA1, the hash
function is computed five times; when it is SHA256, the hash function
is computed only three times.

We again have to resort to some additional assumptions about the hash
function, though plausible ones:

a. WhenF_K(X) is computed with a known K and unknown X, the result
is as hard to guess as X, and in fact, an attacker who can't guess X
can't distinguish F_K(X) from a random number.

b. When hash(X||seed) is computed for many different unknown X
values, an attacker choosing seed cannot force collisions for members
of the sequence of these values, even when he's able to do 2N work in
choosing his seed.

c. When hash(seed) is computed for an unguessable seed which is not
chosen by attacker, the output is unguessable as well.

In some fundamental sense, these end up being minimal assumptions on
the hash function for securely initializing any DRBG based on them; if
any N bit block of the input is unknown, then the output must also be
unknown. Also, the real requirements are much weaker than those
stated here; the attacker mustn't be able to find an attack based on

any deviation from random behavior he can cause in the keys to the
PRF.

2.1.1.2.1 Unknown K/known or chosen seed

In this case, the attacker knows or chooses the seed, but doesn't know
K. Since he doesn't know the first N bits of each hash input,
assumption (b) says he can't force the hash(X||seed) values to

collide. This means that we get distinct inputs for each call to our
PRF, and so we get new key values indistinguishable from random.
(This can be formalized.)

2.1.1.2.2 Known K/unknown seed



In this case, we must rely on (a) and (c). Specifically, (c) tells us
that when the seed is unknown, the input to F_K() will be unknown.
(a) then tells us that the result will be indistinguishable from a
random number.

2.1.2 Output generation

This is very simple: Let F_K(X) be a PRF, where an attacker gets
A online queries, B work, and C advantage. Now, we have an output
sequence generated as:

X[i] = F_K(X[i-1])

So, an attacker gets X[0,1,2,...,R-1]. Suppose he can distinguish
this sequence from a sequence of random bits. Then one of two things
has happened:

a. X[i]==X][j] for some i<>j.
b. The attacker has an algorithm that distinguishes F K(X) from a
random function with R queries.

The reason we're confident (a) doesn't happen is because the X[i] are
N bits wide, where N>= 160, and these outputs are indistinguishable
from random N-bit blocks. So, the probability that a pair of X[i]
collide is quite low. This is ensured by forbidding more than 2*{32}
output bytes on any one call, which keeps the probability of a
collision down to less than 2" {-96}.

Let A(X[0,1,...,R-1]) be the algorithm to distinguish this sequence of
X values from an ideal random sequence. The attacker simply chooses
his own random value for X[0], and computes X[1,2,...,R-1] by
submitting R-1 queries to F_K(). Once he has the whole sequence, he
calls A() and returns the result. If A() distinguishes the
output-feedback generated sequence from random, then this algorithm
distinguishes F_K(X) from a random function.

What does this mean? If you can distinguish the OFB sequence from
random, then you can violate the PRF assumption. But many ways of
violating the PRF construction won't actually let you distinguish the
OFB sequence from random. (This is why I used an output-feedback
construction here, rather than a counter-mode construction; we aren't
sending a sequence of closely-related inputs into our PRF this way.)

Basically, an attack on the output-feedback construction is going to
have to be based upon either a known-input attack on the PRF, or upon



some special property of iterating the PRF that leads to bad results.

The only piece missing here is the question of whether or not these
two hash constructions give us PRFs. That's covered below.

2.1.3 Regenerating the key again

Above, I discussed why regenerating the key with a seed is
legitimate. How about without one?

2.1.3.1 HMAC_DRBG
For HMAC DRBG, this translates to

K = HMAC(K,X|[0x01)
X = HMAC(K.X)

Again, if HMAC is assumed to be a PRF, and X hasn't cycled, then the
new K will be indistinguishable from an N-bit random string.

2.1.3.2 KHF_DRBG
For KHF DRBG, this translates to

T=""
while len(T)<(N+M)/8:
X=F K(X)
T =T |F_K(hash(X))
KO0 = leftmost N bits
K1 = next M bits

IfF_Kis a PRF, then so long as the X don't repeat, all these new key
bits are indistinguishable from random. As discussed above, the X
won't repeat in practice. (If they do, then there is almost certainly

a major problem with the PRF assumption.) And if X doesn't repeat,
then there is a negligible probability that hash(X) will repeat.

2.1.3.3 General Concerns
2.1.3.3.1 Will K Cycle?

For HMAC DRBG, K is only N bits wide, so this could happen in
principle. For 2/{64} Generate requests, we will have a 2"{-33}
probability of having a collision in K for two of the keys used in the
Generate routines with SHA 1, which is our worst case. However, so
long as the X values don't also cycle, this will not lead to any



distinguishable change in the DRBG's output.
For KHF, K is so large that cycling isn't a problem.
2.1.3.3.2 Backtracking

Renewing K after each output sequene is generated prevents
backtracking attacks. An attacker with a previously-used key and the
first N bit block of an output sequence can predict the rest of the

output flawlessly. To prevent this, the key is updated in a random

way at the end of each Generate() calculation. The randomness of

these outputs are based on the same PRF assumptions as the randomness
of the Generate() outputs.

2.1.3.3.3 Entropy Loss

For the HMAC DRBG, K and X each have at least 160 bits. Consider a
usage pattern as follows:

27432} Generate requests, each for 2°{32} outputs. (This is a little
more than would be allowed, but it lets us set a clean upper bound.)
This means that during each Generate() operation, we cycle X =F_K(X)
2/°{32} times, which will leave X in a set of about 2*{129} possible
values. (The specific set will be dependent on K.) So, after a
Generate() operation, we are in one of about 2°{289} states. We then
generate a new K, using the 289 bits, possibly with no additional
entropy coming in; assuming that the PRF works as expected, this
should have 160 bits of entropy, but the total will still have only

289 bits; given K, there are only 2°{129} states X could be in. We
iterate this again, and I think this time we are more stable--we
basically go to 2°{128} states or so that X could be in. (Am I
missing something; this *seems* right.)

I think after 27{32} such requests, we will have dropped down to
something like 2°{257} possible (K,X) states. I don't sce how this
can cause any problems for the security of the DRBG, but I'd really
like someone else to look over my numbers, here!

For the KHF DRBG, the total state is always at least 676 bits, and I
am very confident we won't spiral down to a too-small number of states.

2.1.3.3.4 Precomputation Attacks
A basic attack on any DRBG involves precomputing as many states as you

can afford, and then waiting to see if the DRBG happens to land in one
of them. For the SHA1 DRBG with seedlen=160, this allows an attacker



to compute 2°{128} states, observe 2{33} outputs, and recover the DRBG
internal state with reasonably high probability.

For both these DRBGs, the keys make that class of attack impossible.
Specifically, the DRBGs claim an N-bit security level, but have at
least 2N bits of state. Even an attacker who can precompute 2N
states has a negligible chance of seeing an output corresponding to
one of those states, for either DRBG.

2.1.4 Reseed and Initialize

Both of these routines, for both DRBGs, transparently depend on the
Generate() functions. In both cases, we generate a 20-byte output,
which can be stored for comparison with later initializations or
reseedings.

2.2 Is HMAC a PRF?

HMAC is widely assumed to be a PRF. Attacking it in the model of an
attacker with huge numbers of F_K() queries to distinguish it from
random appears very difficult, but this doesn't prove that it is a

PRF. (This is the sort of assumption that can never be more than an
assumption, unless someone develops an attack, and shows that it was a
mistaken assumption.)

The structure of HMAC as used in output generation is like this:
F_K(X) = Compress(K0, Compress(K1, X||padding))

Now, the output we see is the result of this outer Compress()

function. And that function always starts with the same chaining

value (for the same key), and gets a random-looking N-bit input in its
message input block. Note that many of those input bits are fixed
padding bits; for SHA1, that means that 352/512 message input bits are
fixed and known to the attacker. However, this doesn't seem to lead

to any attack. In an adaptive chosen input attack, the goal would be

to find some property of these outputs from the outer Compress()
function that deviated from random. I don't see any useful way to
proceed in attacking this as a PRF.

2.3Is My F_K(X) a PRF?
My PREF is based on a single Compress() call:

F_K(X) = Compress(K0,K1 xor (X || 0x000000...00))



This has the advantage that every single input bit for the compression
function is unknown. It has the disadvantage that the attacker knows
the actual XOR differences of the message inputs, and that only N bits
in the message input to the compression function vary from function
call to function call.

2.4 Summary: Do We Have a PRF and Do We Care?

If there is a way to distinguish the compression function from a PRF
based on having a large number of known message input bits, then HMAC
will be in trouble. If there is a way to distinguish it from a PRF

based on having a large number of fixed message input bits, and a

small N-bit XOR difference in the message input be the only thing that
varies from call to call, then KHF is in trouble.

In reality, both these scenarios seem unlikely.

A real-world attack on these DRBGs will not just need to violate the
PRF and other assumptions on these F_K() constructions, it will need
to distinguish relatively short runs of output generated in output
feedback mode from random in some useful way. Generate() limits its
calls to 2°{32} bytes of output.

To relate this to existing schemes, note that the SHA1 DRBG uses the
SHAT1 compression function with the chaining input fixed and known to
everyone, and the message input potentially held constant in all but
160 bits. Those 160 bits vary in a way that's perfectly understood by
the attacker who sees the outputs from the SHA1 DRBG. This looks
very similar to the situation in the KHF DRBG, except the attacker
here knows no input bits to the compression function. Intuitively,
differential-type attacks are something any hash function designer
must consider (to ensure there are no nonzero input differences that
lead to zero output differences with high probability). Attacks based
on knowing input differences seem unlikely to get very far, especially
when none of the raw input bits at all are known.

My original design didn't include any key material in the message

input block of the compression function. That seemed too risky to me

(you get to bypass a good fraction of the actual work done by all the

SHA hashes). Known message bits mixed with unknown ones seems much
harder to attack in the SHA-type hashes, though with the RIPE-MD

family of hashes, specific known message bits mean specific known

words fed into the steps of the compression function; this seems like

a much bigger opening for an attack.

3 Selecting a DRBG



Based on my analysis, I believe both of these DRGBs meet their
security targets. However, I'm the designer; that should be taken
with a large grain of salt until other people have done some
independent analysis.

Should we make both approved DRBGs? I think so, because it allows
people to trade off between something with a good pedigree (HMAC), and
something that's twice as fast, but new.

3.1 Why I Like HMAC DRBG
HMAC_DRBG has four big advantages:

a. Itis a very elegant and simple design. It's easy to see that all

the security resides in HMAC, which itself is a pretty
easy-to-understand design. The only cryptographic function we ever
call is HMAC.

b. The security assumptions for generating new key material from
seeds and such are much more straightforward than in the KHF_DRBG.

c. Using HMAC needs no explanation; the public crypto community is
(in my opinion) a little *too* trusting of HMAC. But it will

certainly not be hard to justify. Nobody will scratch their head and

say "Why the heck did they use *that* oddball construction?" when we
propose something with HMAC as the PRF.

d. It can be coded up from standard HMAC or SHA libraries with a
minimum of effort, and is built on top of components that have already
been validated.

3.2 Why I Like KHF DRBG
There are three advantages I can see to KHF_DRBG over HMAC DRBG:

a. It's twice as fast. KHF DRBG produces output bits as fast as a
hash-based scheme reasonably can--one compression function generates N
bits of output. HMAC_DRBG uses two compression fuction computations
per N-bit output, and it's honestly hard to see that this makes a lot

of sense. (I think I could come up with better uses of two compress()

calls per output.)

b. Tt uses every bit of the compression function input. HMAC_DRBG's
outputs are generated by a compression function computation where half
or more of the message input block is known to the attacker.



c. It retains more state than HMAC DRBG. HMAC DRBG keeps N bits of
secret state, and N bits of known variable state. KHF DRBG keeps Q+M
bits of secret state, and Q bits of known variable state.

Comments?

--John Kelsey, NIST, January 2004





