10.1.3 KHF_DRBG
10.1.3.1 Discussion

KHF_DRBG (...) specifies multiple uses of hash functions. The same Approved hash
function shall be used throughout. The hash function used shall meet or exceed the
security requirements of the consuming application. Table 1 in Section 10.1.1 specifies
the entropy and seed length requirements that shall be used for each hash function in
order to meet a specified security level.

KHFE_DRBG (...) is specified using two internal functions: KHF (...) and Renew (...).
Both are called during the instantiation, pseudorandom bit generation and reseeding
processes to adjust the state.

10.1.3.2 Interaction with KHF_DRBG
10.1.3.2.1 Instantiating KHF_DRBG {...)
Prior to the first request for pseudorandom bits, the KHF _DRBG (...) shall be

instantiated using the following call:

(status, usage_class) = Instantiate_KHF_DRBG (requested_strength,
prediction_resistance_flag, personalization_string, mode)

as described in Sections 9.6.1 and 10.1.3.3.3.
10.1.3.2.2 Reseeding a KHF_DRBG (...) Instantiation
When a KHF DRBG (...) instantiation requires reseeding, the DRBG shall be reseeded
using the following call:
status = Reseed_KHF_DRBG_Instantiation (usage class, mode)
as described in Sections 9.7.2 and 10.1.3.3.4.

10.1.3.2.3 Generating Pseudorandom Bits Using KHF_DRBG {(...)
An application may request the generation of pseudorandom bits by KHF_DRBG (...)
using the following call:

(status, pseudorandom_bits) = KHF_DRBG (usage class, requested no_of bits,
requested_strength, additional_input, prediction_resistance_requested, mode)

as discussed in Sections 9.8.2 10.1.3.3.5.

10.1.3.2.4 Removing a KHF_DRBG (...) Instantiation
An application may request the removal of a KHF_DRBG (...) instantiation using the
following call:
“status = Uninstantiate. KHF _DRBG (usage_class)
as described in Sections 9.X.X and 10.1.3.3.6.

10.1.3.2.5 Self Testing of the KHF_DRBG {(...) Process

A KHF_DRBG (...) implementation is tested at power-up and on demand using the
following call:

status = Self_Test KHF_DRBG ()
as described in Sections 9.9 and 10.1.3.3.7.

10.1.3.3 Specifications
10.1.3.3.1 General

The instantiation and reseeding of KHF _DRBG (...) consists of obtaining a seed with the
appropriate amount of entropy. The entropy input is used to derive a seed, which is then
used to derive elements of the initial state. The state consists of:

1. The value V, which is updated each time another outlen bits of output are
produced (where outlen is the number of output bits from the underlying hash
function).

2. The values Kpand K, which are updated at least once each time the DRBG
generates pseudorandom bits.

The security strength of the DRBG instantiation.

4. A counter (ctr) that indicates the number of updates of ¥ since new entropy_input
was obtained whose entropy meets or exceeds the entropy requirement for the
security strength.

5. A prediction_resistance_flag that indicates whether or not a prediction resistance
capability is required for the DRBG.

6. (Optional) A transformation of the entropy input using a one-way function for
later comparison with new entropy_input when the DRBG is reseeded or
prediction resistance is requested; this value shall be present if the DRBG will
potentially be reseeded or a prediction resistance capability is required for the

instantiation.
The variables used in the description of KHF_DRBG (...) are:

additional input Optional additional input.

ctr A counter that records the number of times that the
state has been updated since the DRBG instantiation
was seeded, reseeded or prediction resistance was
obtained.

entropy_input The bits containing entropy that are used to determine
the seed_material.

Find_state space (mode) A function that returns a usage_class indicating an

available state space. The mode indicates whether the
request is made during normal operation or during
testing.

Get_entropy (min_entropy, outlen, 2**, mode)

KO, Kl

M

max_no_of states

max_updates

min_entropy

mode

N

old_transformed_entropy input

outlen
Pad 0, Pad_1
Padded K,
Padded V

personalization_string

prediction_resistance_flag

A function that acquires a string of bits from an
entropy input source. min_entropy indicates the
minimum amount of entropy to be provided in the
returned bits; outlen indicates the minimum number
of bits to return; 2°2 indicates the maximum number
of bits that may be returned; mode is used to indicate
whether the bits are to be obtained during normal
operation or during testing. See Section 9.6.2.

Values in the state that are updated when the DRBG
generates pseudorandom bits.

The number of bytes in the hash function input block.

The maximum number of states and instantiations
that an implementation can handle.

The maximum number of state updates allowed for
the DRBG instantiation from one seeding, reseeding
ot prediction resistance operation.

The minimum amount of entropy to be provided in
the entropy_input.

An indication of whether a process is to be conducted
for normal operations or for testing. mode = 1=
Normal_operation indicates that normal operation is
required; mode = 2 = Fixed_1 indicates that a
predetermined value is to be used during
instantiation, mode = 3 = Fixed 2 indicates that a
predetermined value is to be used during reseeding,
mode = 4 = Failure indicates that a failure indication
is to be returned.

The number of bytes in the hash function output
block.

The transformed_entropy_input from the previous
acquisition of entropy input (e.g., used during
reseeding).

The number of bits in the hash function output block.
Zero padding used by the KHF (...) function,

Ko padded with zeros to create M bytes.

V padded with zeros to create M — 9 bytes.

A string that may be used to personalize a DRBG
instantiation.

Indicates whether or not prediction resistance is to be
provided upon request during an instantiation. 1 =
Allow_prediction_resistance: requests for prediction
resistance will be handled; 0 =

prediction_resistance_requested

pseudorandom_bits

requested_no_of bits

requested_strength

seed_material

state(usage_class)

status

strength

temp

No_prediction_resistance: requests for prediction
resistance will return an error indication.

Indicates whether or not prediction resistance is
required during the actual generation of
pseudorandom bits. 1 =
Provide_prediction_resistance: prediction resistance
required; 0 = No_prediction_resistance: prediction
resistance not required.

The string of pseudorandom_bits that are generated
during a single “call” to the KHF DRBG (...)
process.

The number of pseudorandom bits to be generated.

The security strength to be provided for the
pseudorandom bits to be obtained from the DRBG.

The data used as the seed.

An array of states for different DRBG instantiations.
A state is carried between calls to the DRBG. In the
following specifications, the state for a usage class is
defined as state(usage class) = {V, Ko, K, strength,
ctr, prediction_resistance_flag,
transformed_entropy input}. A particular element of
the state is specified as state(usage_class).element,
e.g., state(usage_class).V.

The status returned from a function call, where status
=*“Success” or an indication of failure. Failure
messages are:

1. Invalid requested strength.

2. Cannot support prediction resistance.
3. No available state space.
4

Failure indication returned by the entropy input
source.

bl

State not available for the indicated usage class.
Entropy_input source failure.

7. KHF_DRBG can no longer be used. Please re-
instantiate or reseed.

8. Too many bits requested.
9. Prediction resistance capability not instantiated.

The security strength provided by the DRBG
instantiation.

A temporary value.

transformed_entropy_input A one-way transformation of the entropy input for
the DRBG.

usage_class The usage class of a DRBG instantiation. Used as a
pointer to an instantiation’s stafe values.

14 A value in the state that is updated whenever
pseudorandom bits are generated.

10.1.3.3.2 Internal Functions

10.1.3.3.2.1 The KHF Function

The KHF (...) function is used as a compression function and to distribute the effect of
the bits in the input values across the entire output string. Let N be the number of bytes of
output from the hash function, and M be the number of bytes of input into the hash
function.

KHF(...):
Input: string (Ko, K;, V).
Output: string V.

Process:
1. Pad_0=0x00 00...00. Comment: M - N bytes of zeros.
2. Pad_1=0x00 00...00. Comment: M - N - 9 bytes of zeros.
3. Padded Ky=Ky | Pad 0. Comment: Since Kj is N bytes in
length, Padded K, is M bytes long.
4. Padded V=1V | Pad 1. Comment: Since V is N bytes in

length, Padded V is M-9 bytes long.
5. temp = Padded V& K.
6. V=Hash (Padded K, || temp).
7. Return (V).
10.1.3.2.2 The Renew Function

The Renew (...) function updates the internal state of the KHF _DRBG (...) using the
seed_material. The seed material can be any input string of 2% bytes or less, including
the Null string. Renew (...) makes extensive use of both the KHF (...) and the hash_df
(...) functions described in Sections 10.2.3.2.1 and 9.6.4.2, respectively. Let N be the
output length of the hash function in bytes, and let A be the input length in bytes.

Renew (...):
Input: string (seed_material, Ko, K, V), integer ctr.
Output: string (Ko, Ki, V), integer ctr.
Process:

1. temp =the Null string.

Comment [ebb1]: [s this correct?

Comment [ebb2]: How about calling this the
Update function, rather than the Renew function?

3
4
5
6.
7
8
9

10.1.3.3.3

While (len (femp) <N+ M - 9) do:
2.1 V=KHF (K, K3, V).
22 temp=temp]| V.

. temp = The rightmost (least significant) N+M-9 bytes of temp.
. temp = temp ® hash_df (seed material, 8 x (N + M - 9)).
. Ko = The rightmost ¥ bytes of temp.

K, = The leftmost M-9 bytes of temp.
V=KHF (Ko, K;, V).

. cr=ctr+1.
. Return (Ko, K3, V, ctr).

Instantiation of KHF_DRBG(...)

The following process or its equivalent shall be used to initially instantiate the
KHF_DRBG (...) process. Let Hash (...) be the Approved hash function to be used. Let
outlen be the output length of that hash function in bits, and let N be the output length of the
hash function in bytes. Let M be the input length of the hash function in bytes.

Instantiate. KHF DRBG (...):

Input: integer (requested_strength, prediction_resistance flag,

personalization_string, mode).

Output: string status, integer usage_class.

Process:

1.

If (requested_strength > the maximum security strength that can be provided
by the hash function (see Table 1)), then Return (“Invalid
requested_strength”, 0).

If (prediction_resistance_flag = Allow _prediction_resistance) and prediction
resistance cannot be supported, then Return (“Cannot support prediction
resistance”, 0).

Comment: Find state space.

3. (status, usage class) = Find_state_space (mode).

If (status = “Failure”), then Return (“No available state space”, 0).

Comment: Set the strength to one of
the five security strengths.

If (requested_strength < 80), then strength = 80

Else if (requested_strength < 112), then strength =112
Else (requested_strength < 128), then strength =128
Else (requested_strength < 192), then strength = 192

Else strength = 256.
Comment: Get the entropy_input.
6. min_entropy = max (128, strength).
7. (status, entropy_input) = Get_entropy (min_entropy, outlen, 2%, mode).

8. If (status = “Failure™), then Return (“Failure indication returned by the
entropy source”, 0).

Comment: Perform a one-way
function on the entropy input for
later comparison during reseeding.

9. transformed_entropy_input = Hash (entropy_input).

Comment: Set up the working

values.
10. Ko = 0x00 00...00. Comment; N bytes of zeros.
11. K; = 0x01 01...01. Comment: M - 9 bytes of ones.
12. V=0x02 02...02. Comment: N bytes of twos.
13. seed_material = entropy_input || personalization_string.

14. ctr = 0.
15. (Ko, K\, V, ctr) = Renew (seed_material, Ko, Ky, V, ctr).
Comment: Set up the state.

16. state(usage_class) = {V, Ko, K, strength, ctr, prediction_resistance_flag,
transformed_entropy_input}.

17. Return (“Success”, usage_closs).

If an implementation does not handle all five security strengths, then step 5 must be
modified accordingly.

If no personalization_string will ever be provided, then the personalization_string
parameter in the input may be omitted, and step 13 becomes seed_material =
entropy_input.

If an implementation will never be reseeded using the process specified in Section
10.1.3.3.4, then step 9 may be omitted, as well as the transformed_entropy_input in the
state (see step 16).

If an implementation does not need the prediction_resistance_flag as a calling parameter
(i.e., the KHF_DRBG (....) routine in Section 10.1.2.3.5 either always or never acquires

new entropy in step 7), then the prediction_resistance_flag in the calling parameters and

in the state (see step 16) may be omitted, as well as omitting step 2.

10.1.3.34 Reseeding a KHF_DRBG(...) Instantiation
The following or an equivalent process shall be used to explicitly reseed the

KHF_DRBG (...) process. Let Hash (...) be the Approved hash function to be used; let
outlen be the output length of that hash function in bits, and let N be the output length of the

hash function in bytes. Let M be the input length of the hash function in bytes.
[[Some questions:

Should Reseed)() verify that the entropy source can support an independent reseed? Is that
the same as being able to support prediction resistance? This ought to be part of the
interface with a seed source—the DRBG needs to be able to ask it if it can really provide
prediction resistance, whether it's a seed string or an entropy source or an RBG with or
without an entropy source, etc. We need to think about this and discuss it at the next
meeling.

Should Reseed() allow some application-level input, comparable to the optional input and
personalization string?

Should optional inputs like the personalization string include some way of distinguishing
whether or not they exist? Should that be an explicit flag, or just a NULL sort of indicator?
A Null string works just fine.

In step 1, below, we talk about checking to see if a given usage_class is available. But
where did the application get the usage class? Either there's an additional call like
DRBG _Setup() that returns it, or Instantiate should return the usage class to be used from
now on, right?

-~JMK]]

Reseed KHF DRBG_Instantiation (...):
Input: integer (usage_class, mode).
Output: string status.

Process:

1. If ((usage_class > max_no_of states) or (state (usage class)) = {Null, Null,
Null, 0, 0, 0, Null}), then Return (“State not available for the indicated
usage_class”).

Comment: Get the appropriate state
values for the indicated usage class.

2. V=state(usage class).V, Ko = state(usage class).Ko, K, =
state(usage_class).K,, strength = state(usage_class).strength,
prediction_resistance_flag = state(usage_class).prediction_resistance_flag,
old_transformed entropy input =
state(usage_class).transformed_entropy_input.

Comment: Get the new
entropy_input.

3. min_entropy = max (128, strength).
4. (status, entropy input) = Get_entropy (min_entropy, outlen, 2°%, mode).

5. If (status = “Failure”), then Return (“Failure indication returned by the
entropy_input source”).

Comment: Compare the old
entropy_input with the new

entropy_input.
6. transformed_entropy input = Hash (entropy_input).

7. If (transformed_entropy_input = old_transformed_entropy_input), then
Return (“Entropy_input source failure”).

Comment: Set up the new working
values.

8. ctr=0.
9. (Ko, K1, V, ctr) = Renew (entropy_input, Ko, Ki, V, ctr).
Comment: Set the state values.

10. state(usage_class) = {V, Ko, K,, strength, ctr, prediction_resistance_flag,
transformed_entropy_input}.

10. Return (“Success”).

10.1.3.3.5 Generating Pseudorandom Bits Using KHF_DRBG (...)

The following process or an equivalent shall be used to generate pseudorandom bits:
KHF_DRBG(..):

Input: integer (usage class, requested_no_of bits, requested_strength,
additional_input, prediction_resistance_requested, mode).

Output: string (status, pseudorandom_bits).
Process:

1. If (usage_class > max_no_of states) or (state (usage_class)) = {Null, Null,
Null, 0, 0, 0, Null}), then Return (“State not available for the indicated
usage_class”, Null).

Comment: Get the appropriate state
values for the indicated usage_class.

2. V=state(usage_class).V, Ko = state(usage_class).Ko, K1 =
state(usage_class).Ky, strength = state(usage_class).strength, ctr =
state(usage_class).ctr, prediction_resistance_flag =
state(usage_class).prediction_resistance_flag, old_transformed_entropy_bits
= state(usage_class).transformed_entropy_bits.

Comment: If ctr > max_updates,
then reseeding could not be done in
step 14 (below) during the previous
call because of no available entropy
source.

3. If (ctr > max_updates), then Return (“KHF_DRBG can no longer be used.
Please re-instantiate or reseed.”, Null).

4. If (requested_strength> strength), then Return (“Invalid
requested_strength”, Null).

5. If (requested no_of bits > 2%%), then Return (“Too many bits requested”,
Nutll).

6. If (prediction_resistance_requested = Provide_prediction_resistance) and
(prediction_resistance_flag = No_prediction_resistance)), then Return
(“Prediction resistance capability not instantiated”, Null).

7. If (prediction_resistance_requested = Provide_prediction_resistance), then
7.1 min_entropy = max (128, strength).

7.2 (status, entropy bits) = Get_entropy (min_entropy, outlen, 2e°,
mode).

7.3 If (status = “Failure”), then Return (“Failure indication returned by
the entropy_input source”, Null).

7.4 transformed entropy input = Hash (entropy_input).

7.5 If (transformed_entropy input = old_transformed_entropy_input),
then Return (“Entropy_input source failure”, Null).

7.6 ctr=0.
Else
7.7 entropy input = Null.
8. seed material = entropy_input || additional_input.

9. If (seed material # Null), then (Ko, K, V, ctr) = Renew (seed_material, Ko,
Ky, V, ctr).

10. temp = Null.
11. While (len (femp) < requested no_of bits) do:
11.1 V=KHF (Ko, K3, V).
11.2 temp =temp || V.
12. pseudorandom_bits = Leftmost (requested_no_of bits) of temp.
13. (Ko, K3, V, ctr) = Renew (seed_material, Ko, Ky, V, cir).
14. If (ctr = max_updates), then
14.1 status = Reseed_KHF_DRBG (usage_class, mode).
14.2 If (status = “Success”), then Return (status, Nuil).
14.3 Go to step 16.

15. state(usage_class) = {V, Ko, K, strength, ctr, prediction_resistance_flag,
transformed_entropy bits).

16. Return (“Success”, pseudorandom_bits).

If an implementation will never provide additional_input, then the additional_input input
parameter may be omitted, and step 8 becomes seed_material = entropy_input.

If an implementation does not need the prediction_resistance_flag, then the

prediction_resistance_flag may be omitted as an input parameter, and step 6 may be
omitted. If prediction resistance is never used, then step 7 becomes entropy_input = Null.

If an implementation does not have a reseeding capability, then step 14 is omitted, and
step 3 takes effect during the next call to the DRBG.

10.1.3.3.6 Removing a KHF_DRBG (...) Instantiation

The following or an equivalent process shall be used to remove a KHF_DRBG (...)
instantiation:

Uninstantiate KHF _DRBG (...):
Input: integer usage_class.
Output: string status.
Process:
1. If (usage_class > max no_of states), then Return (“Invalid usage_class”).
2. state(usage_class) = {Null, Null, Null, 0, 0, 0, Null}.
3. Return (“Success™).

10.1.3.3.7 Self Testing of the KHF_DRBG {(...)

[To be added later]
10.1.3.4 Generator Strength and Attributes

10.1.3.5 Reseeding and Optional Input

If an application has a slow source of entropy, such as keystroke timings, it should
accumulate the entropy until it estimates that it has N bits, and then feed all the entropy
into the DRBG as a single optional input. This will permit the DRBG to recover from

any compromise. Comment [ebb3]: This is a general statement
that should be place, say, in Section 9.6.2.

10.1.3 KHF_DRBG

10.1.3.1 Discussion

KHF DRBG (...) specifies multiple uses of a hash function. The same Approved hash
function shall be used throughout. The hash function used shall meet or exceed the
security requirements of the consuming application. Table 1 in Section 10.1.1 specifies
the entropy and seed length requirements that shall be used for each hash function in
order to meet a specified security level.

KHF _DRBG (...) is specified using two internal functions: KHF (...) and Update (...).
Both are called during the instantiation, pseudorandom bit generation and reseeding
processes to adjust the state.

10.1.3.2 Interaction with KHF_DRBG

10.1.3.21 Instantiating KHF_DRBG (...)
Prior to the first request for pseudorandom bits, the KHF DRBG (...) shall be
instantiated using the following call:

status, usage class) = Instantiate KHF DRBG (requested strength,
ge_ _ — q - g
prediction_resistance_flag, personalization_string, mode)

as described in Sections 9.6.1 and 10.1.3.3.3.

10.1.3.2.2 Reseeding a KHF_DRBG (...) Instantiation
When a KHF_DRBG (...) instantiation requires reseeding, the DRBG shall be reseeded
using the following call:
status = Reseed_KHF_DRBG_Instantiation (usage class, mode)
as described in Sections 9.7.2 and 10.1.3.3.4.

10.1.3.2.3 Generating Pseudorandom Bits Using KHF_DRBG (...)
An application may request the generation of pseudorandom bits by KHF DRBG (...)
using the following call:

(status, pseudorandom_bits) = KHF DRBG (usage_class, requested no_of bits,
requested_strength, additional input, prediction_resistance_requested, mode)

as discussed in Sections 9.8.2 10.1:3.3.5.

10.1.3.2.4 Removing a KHF_DRBG (...) Instantiation
An application may request the removal of a KHF DRBG (...) instantiation using the
following call:
status = Uninstantiate KHF DRBG (usage_class)
as described in Sections 9.X.X and 10.1.3.3.6.

10.1.3.2.5 Self Testing of the KHF_DRBG (...) Process

A KHF_DRBG (...) implementation is tested at power-up and on demand using the
following call:

status = Self_Test KHF DRBG ()
as described in Sections 9.9 and 10.1.3.3.7.

10.1.3.3 Specifications

10.1.3.3.1 General

The instantiation and reseeding of KHF DRBG (...) consists of obtaining a seed with the
appropriate amount of entropy. The entropy input is used to derive a seed, which is then
used to derive elements of the initial state. The state consists of:

1. The value 7, which is updated each time another outlen bits of output are
produced (where outlen is the number of output bits from the underlying hash
function). :

2. The values Kjand K, which are updated at least once each time the DRBG
generates pseudorandom bits.

The security strength of the DRBG instantiation.

4. A counter (ctr) that indicates the number of times that pseudorandom bits were
generated since the DRBG instantiation was seeded, reseeded or prediction
resistance was obtained.

5. A prediction_resistance_flag that indicates whether or not a prediction resistance
capability is required for the DRBG.

6. (Optional) A transformation of the entropy_input using a one-way function for
later comparison with new entropy input when the DRBG is reseeded or
prediction resistance is requested; this value shall be present if the DRBG will
potentially be reseeded or a prediction resistance capability is required for the

instantiation.
The variables used in the description of KHF DRBG (...) are:

additional_input Optional additional input.

ctr A counter that records the number of times that
pseudorandom bits were generated since the DRBG
instantiation was seeded, reseeded or prediction
resistance was obtained.

entropy_input The bits containing entropy that are used to determine
the seed material.

Find_state space (mode) A function that returns a usage class indicating an

available state space. The mode indicates whether the
request is made during normal operation or during
testing.

Get_entropy (min_entropy, outlen, 2% mode)

Ko, K;

len(string)
M

max_no_of states

max_updates

min_entropy

mode

N

old transformed_entropy input

outlen

Pad 0, Pad 1
Padded K,
Padded V

personalization_string

prediction_resistance flag

A function that acquires a string of bits from an
entropy input source. min_entropy indicates the
minimum amount of entropy to be provided in the
returned bits; ouflen indicates the minimum number
of bits to return; 2*° indicates the maximum number
of bits that may be returned; mode is used to indicate
whether the bits are to be obtained during normal
operation or during testing. See Section 9.6.2.

Values in the state that are updated when the DRBG
generates pseudorandom bits.

A function returning the number of bits in a string.
The number of bytes in the hash function input block.

The maximum number of states and instantiations
that an implementation can handle.

The maximum number of state updates allowed for
the DRBG instantiation from one seeding, reseeding
or prediction resistance operation.

The minimum amount of entropy to be provided in
the entropy_input.

An indication of whether a process is to be conducted
for normal operations or for testing. mode = 1 =
Normal_operation indicates that normal operation is
required; mode = 2 = Fixed 1 indicates that a
predetermined value is to be used during
instantiation, mode = 3 = Fixed 2 indicates that a
predetermined value is to be used during reseeding,
mode = 4 = Failure indicates that a failure indication
is to be returned. Note that the mode = 2 fixed values
shall be different than the mode = 3 fixed values.

The number of bytes in the hash function output
block.

The transformed_entropy_input from the previous
acquisition of entropy_input (e.g., used during
reseeding).

The number of bits in the hash function output block.
Zero padding used by the KHF (...) function.

K, padded with zeros to create M bytes.

V padded with zeros to create M — 9 bytes.

A string that may be used to personalize a DRBG
instantiation.

Indicates whether or not prediction resistance is to be

prediction_resistance_requested

pseudorandom_bits

requested_no_of bits

requested_strength

seed_material

state(usage_class)

status

provided upon request during an instantiation. 1 =
Allow prediction_resistance: requests for prediction
resistance will be handled; 0 =
No_prediction_resistance: requests for prediction
resistance will return an error indication.

Indicates whether or not prediction resistance is
required during the actual generation of
pseudorandom bits. 1 =

Provide prediction_resistance: prediction resistance
required; 0 = No_prediction_resistance: prediction
resistance not required.

The string of pseudorandom_bits that are generated
during a single “call” to the KHF_DRBG (...)
process.

The number of pseudorandom bits to be generated.

The security strength to be provided for the
pseudorandom bits to be obtained from the DRBG.

The data used as the seed.

An array of states for different DRBG instantiations.
A state is carried between calls to the DRBG. In the
following specifications, the state for a usage class is
defined as state(usage_class) = {V, Ko, K, strength,
ctr, prediction_resistance_flag,
transformed_entropy input}. A particular element of
the state is specified as state(usage_class).element;
e.g., state(usage class).V.

The status returned from a function call, where status
= “Success” or an indication of failure. Failure
messages are:

1. Invalid requested_strength.
Cannot support prediction resistance.

2
3. personalization_string too long.
4. No available state space.

5

Failure indication returned by the entropy input
source.

o

State not available for the indicated usage_class.
Entropy_input source failure.

HMAC _DRBG can no longer be used. Please re-
instantiate or reseed.

9. additional_input too long

10. Too many bits requested.

11. Prediction resistance capability not instantiated.

strength The security strength provided by the DRBG
instantiation.

temp A temporary value.

transformed_entropy input A one-way transformation of the entropy input for
the DRBG.

usage class The usage class of a DRBG instantiation. Used as a

pointer to an instantiation’s state values.

vV A value in the state that is updated whenever
pseudorandom bits are generated.

10.1.3.3.2 Internal Functions

10.1.3.3.2.1 The KHF Function

The KHF (...) function is used as a compression function and to distribute the effect of
the bits in the input values across the entire output string. Let N be the number of bytes of
output from the hash function, and M be the number of bytes of the hash function input
block.

KHEF(...):
Input: string (Ko, K3, V).
Output: string V.

Process:
1. Pad 0=0x00 00...00. Comment: M - N bytes of zeros.
2. Pad 1=0x00 00...00. Comment: M - N - 9 bytes of zeros.
3. Padded Ky=Ky| Pad 0. Comment: Since K is N bytes in
length, Padded K, is M bytes long.
4. Padded V="V Pad 1. Comment: Since V'is N bytes in

length, Padded V is M-9 bytes long.
5. temp = Padded V ® K.
6. V=Hash (Padded K || temp).
7. Return (V).
10.1.3.3.2.2 The Update Function

The Update (...) function updates the internal state of the KHF DRBG (...) using the
seed material. The seed_material can be any input string of 2% bits or less, including
the Null string. Update (..) makes extensive use of both the KHF (...) and the hash_df
(...) functions described in Sections 10.1.3.3.2.1 and 9.6.4.2, respectively. Let N be the
output length of the hash function in bytes, and let M be the hash function input block
size in bytes.

Update (...):
Input: string (seed material, Ko, Ky, V).

Output: string (Ko, K3, V).

Process:
1. temp = the Null string.
2. While ((8 xlen (temp)) <N + M - 9) do:
2.1 V=KHF (K, Kj, V).
22 temp=temp| V.
3. temp = The rightmost (least significant) N+M-9 bytes of temp.
4. temp = temp @ hash_df (seed material, § x (N+ M -9)).
5. Ky = The rightmost N bytes of temp.
6. K) = The leftmost M-9 bytes of temp.
7. V=KHF (Ko, K1, V).
8. Return (Ko, Ki, V).
10.1.3.3.3 Instantiation of KHF_DRBG(...)

The following process or its equivalent shall be used to initially instantiate the

KHF DRBG (...) process. Let Hash (...) be the Approved hash function to be used. Let
outlen be the output length of that hash function in bits, and let N be the output length of the
hash function in bytes. Let M be the hash function input block size in bytes.

Instantiate KHF DRBG (...):

Input: integer (requested_strength, prediction_resistance flag,

personalization_string, mode).

Output: string status, integer usage_class.

Process:

1.

If (requested_strength > the maximum security strength that can be provided
by the hash function (see Table 1)), then Return (“Invalid
requested_strength’, 0).

If (prediction_resistance_flag = Allow_prediction_resistance) and prediction
resistance cannot be supported, then Return (“Cannot support prediction
resistance”, 0).

If (len(personal ization_string)>235), then Return(“personalization_string too
long.”) -

Comment: Find state space.

(status, usage class) = Find_state_space (mode).

5. If (status = “Failure”), then Return (“No available state space”, 0).

Comment: Set the strength to one of
the five security strengths.

If (requested strength < 80), then strength = 80

Else if (requested strength < 112), then strength =112
Else (requested strength < 128), then strength = 128
Else (requested strength < 192), then strength = 192
Else strength = 256.
Comment: Get the entropy_input.
7. min_entropy = max (128, strength).
8. (status, entropy input) = Get_entropy (min_entropy, outlen, 2%, mode).

9. If (status = “Failure”), then Return (“Failure indication returned by the
entropy source”, 0).

Comment: Perform a one-way
function on the entropy input for
later comparison during reseeding.

10. transformed_entropy input = Hash (entropy input).

Comment: Set up the working

values.
11. Kp = 0x00 00...00. Comment: N bytes of zeroes.
12. K1 =0x01 01...01. Comment: M - 9 bytes of ones.
13. V'=0x02 02...02. Comment: N bytes of twos.
14. seed_material = entropy_input || personalization_string.

15. ctr =0.
16. (Ko, K1, V) = Update (seed_material, Ko, K1, V).
Comment: Set up the state.

17. state (usage_class) = {V, Ko, K, strength, ctr, prediction_resistance_flag,
transformed_entropy input}.

18. Return (“Success”, usage class).

If an implementation does not handle all five security strengths, then step 6 must be
modified accordingly.

If no personalization_string will ever be provided, then the personalization_string
parameter in the input may be omitted, and step 13 becomes seed_material =
entropy input.

If an implementation will never be reseeded using the process specified in Section
10.1.3.3.4, then step 10 may be omitted, as well as the transformed_entropy_input in the
state (see step 17).

If an implementation does not need the prediction_resistance_flag as a calling parameter
(i.e., the KHF DRBG (....) routine in Section 10.1.3.3.5 either always or never acquires
new entropy in step 7), then the prediction resistance_flag in the calling parameters and
in the state (see step 17) may be omitted, as well as omitting step 2.

10.1.3.3.4 Reseeding a KHF_DRBG(...) Instantiation

The following or an equivalent process shall be used to explicitly reseed the

KHF DRBG (...) process. Let Hash (...) be the Approved hash function to be used; let
outlen be the output length of that hash function in bits, and let N be the output length of the
hash function in bytes. Let M be the hash function input block size in bytes.

Reseed KHF DRBG_Instantiation (...):
Input: integer mode (usage_class.,).
Output: string status.

Process:

1. If ((usage class > max_no_of states) or (state(usage_class) = {Null, Null,
Null, 0, 0, 0, Null}), then Return (“State not available for the indicated
usage_class™).

Comment: Get the appropriate state
values for the indicated usage_class.

2. V=state(usage_ class).V, Ky = state(usage_class).Ko, K1 =
state(usage class).K,, strength = state(usage_class).strength,
prediction_resistance_flag = state(usage_class).prediction_resistance_flag,
old transformed_entropy_input =
state(usage class).transformed_entropy_input.

Comment: Get the new
entropy_input.

3. min_entropy = max (128, strength).
4. (status, entropy input) = Get_entropy (min_entropy, outlen, 2%, mode).

5. If (status = “Failure”), then Return (“Failure indication returned by the
entropy input source”).

Comment: Compare the old
entropy_input with the new
entropy_inpul.

6. transformed_entropy input = Hash (entropy_inpur).

7. If (transformed_entropy_input = old_transformed_entropy_input), then
Return (“Entropy_input source failure”™).

Comment: Set up the new working
values.

8. ctr=0.
9. (Ko, K1, V)= Update (entropy_input, Ko, K1, V).
Comment: Set the state values.

10. state(usage_class) = {V, Ky, Ky, strength, ctr, prediction_resistance_flag,
transformed_entropy input}.

10. Return (“Success”).

10.1.3.3.5

Generating Pseudorandom Bits Using KHF_DRBG (...)

The following process or an equivalent shall be used to generate pseudorandom bits:
KHF DRBG(...):

Input: integer (usage class, requested_no_of bits, requested_strength,

additional _input, prediction_resistance_requested, mode).

Output: string (status, pseudorandom_Dbits).

Process:

1.

If ((usage_class > max_no_of states) or (state(usage_class) = {Null, Null,
Null, 0, 0, 0, Null}), then Return (“State not available for the indicated
usage class”, Null).

Comment: Get the appropriate sfafe
values for the indicated usage class.

V = state(usage_class).V, Ky = state(usage_class).Ko, K1 =
state(usage_class).Ky, strength = state(usage_class).strength, ctr =
state(usage_class).ctr, prediction_resistance_flag =
state(usage_class).prediction_resistance_flag, old_transformed_entropy bits
= state(usage_class).transformed_entropy_bits.

Comment: If ctr > max_updates,
then reseeding could not be done in
step 14 (below) during the previous
call because of no available entropy
source.

. If (requested_strength > strength), then Return (“Invalid

requested_strength”, Null).

If (requested no_of bits > 2%), then Return (“Too many bits requested”,
Null).

Sr If(len(additionaljnput)>235), then Return(“additional_input too long.”)

If (prediction_resistance_requested = Provide_prediction_resistance) and
(prediction_resistance_flag = No_prediction_resistance)), then Return
(“Prediction resistance capability not instantiated”, Null).

If (prediction_resistance_requested = Provide. prediction_resistance), then
7.1 min_entropy = max (128, strength).

7.2 (status, entropy_bits) = Get_entropy (min_entropy, outlen, pish
mode).

7.3 If (status = “Failure”), then Return (“Failure indication returned by
the entropy input source”, Null).

7.4 transformed_entropy input = Hash (entropy_input).

7.5 If (transformed_entropy_input = old_transformed_entropy_input),
then Return (“Entropy_input source failure”, Null).

7.6 ctr=0.
Else
7.7 entropy input = Null.
8. seed material = entropy_input || additional_input.

9. If (seed_material = Null), then (Ko, K1, V) = Update (seed _material, Ko, K;,
V).

10. If (ctr = max_updates), then
10.1 status = Reseed KHF _DRBG (usage_class, mode).
10.2 If (status # “Success™), then Return (stafus, Null).
11. temp = Null.
12. While (len (temp) < requested_no_of bits) do:
12.1 V=KHF (Ko, K3, V).
12.2 temp =temp || V.
13. pseudorandom_bits = Leftmost (requested_no_of bits) of temp.
14. (Ky, K1, V) = Update (seed_material, Ko, Ky, V).
15.ctr=ctr + 1

16. state(usage_class) = {V, Ko, Ki, strength, ctr, prediction_resistance_flag,
transformed_entropy bits).

17. Return (“Success”, pseudorandom_bits).

If an implementation will never provide additional_input, then the additional_input input
parameter may be omitted, and step 8 becomes seed_material = entropy_input.

If an implementation does not need the prediction_resistance_flag, then the
prediction_resistance_flag may be omitted as an input parameter, and step 6 may be
omitted. If prediction resistance is never used, then step 7 becomes entropy_input = Null.

If an implementation does not have a reseeding capability, then step 10 shall be replaced
by the following:

If (ctr > max_updates), then Return (“HMAC_DRBG can no longer be used. Please
re-instantiate or reseed”, Null).

10.1.3.3.6 Removing a KHF_DRBG (...) Instantiation

The following or an equivalent process shall be used to remove a KHF_DRBG (...)
instantiation:

Uninstantiate KHF DRBG (...):
Input: integer usage_class.

Output: string status.

Process:
1. If (usage_class > max_no_of states), then Return (“Invalid usage_class™).
2. state(usage_class) = {Null, Null, Null, 0, 0, 0, Null}.
3. Return (“Success™).

10.1.3.3.7 Self Testing of the KHF_DRBG (...)

[To be added later]
10.1.3.4 Generator Strength and Attributes

10.1.3.5 Reseeding and Optional Input

