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Preface

The Third Advanced Encryption Standard Candidate Conference (AES3) is the last in a
series of three conferences that NIST has organized in its quest to develop the AES.  It
has been a long road, since NIST first announced its intention in January 1997 to develop
a replacement standard for DES.  Now, AES3 presents a wonderful opportunity for the
cryptographic community to gather and discuss Round 2 analysis and other issues that are
critical to the AES development effort.  After Round 2 ends on May 15, 2000, NIST will
begin the process of selecting the algorithm(s) that will be included in a draft AES
Federal Information Processing Standard (FIPS).  Therefore, NIST is holding AES3 to
better understand which of the finalist algorithms - MARS, RC6™, Rijndael, Serpent,
and Twofish - should be selected for the FIPS.

The papers to be presented at AES3 cover a wide range of issues, including cryptanalysis,
implementability in Field Programmable Gate Arrays (FPGAs), hardware simulations,
performance on various platforms, the role of future resiliency, and the possibility of
including single or multiple algorithms in the AES FIPS.

Please see the AES home page at http://www.nist.gov/aes for the remaining papers that
were proposed for AES3.  Those papers - like the ones presented at AES3 - are
considered official Round 2 public comments.

All Round 2 official public comments are due by May 15, 2000, and they should be
submitted to AESRound2@nist.gov.  This also includes any comments that interested
parties may have on the papers presented at both AES3 and FSE 2000 (e.g.,
comments on their validity, and their applicability to and impact on the AES
selection).  NIST is eager to hear responses to these results and research.

The Program Committee members deserve a lot of credit for their hard work in
evaluating papers, preparing for the conference, and chairing the panel presentations:
Miles Smid (CygnaCom Solutions), Morris Dworkin (NIST), Tom Berson (Anagram
Laboratories), Dennis Branstad (consultant, TIS Labs), Craig Clapp (PictureTel), Susan
Langford (Certicom Corp.), Stefan Lucks (Universität Mannheim), Tim Moses (Entrust
Technologies), and David Solo (Citigroup).

http://www.nist.gov/aes/


Special thanks go to the NIST staff who have provided invaluable assistance in
evaluating documents and planning for AES3: Elaine Barker, Larry Bassham, Bill Burr,
Jim Dray, Morris Dworkin, Jim Nechvatal, Ed Roback, and Juan Soto. Much gratitude is
extended to the NIST staff responsible for the logistical side of AES3: Kathy Kilmer,
Lori Phillips, and Vickie Harris.

A special mention of thanks must be made for the cooperation and assistance provided by
Bruce Schneier, chair of the FSE 2000 Program Committee, and Beth Friedman of
Counterpane Labs, for their efforts to coordinate these two conferences.

Finally - and most importantly - NIST greatly appreciates the efforts of all the authors
who submitted papers for AES3.  We have said this before, and we will say it again: the
ultimate success of the AES Development Effort depends heavily on the public
evaluation and analysis performed by the cryptographic community.  Thank you for your
hard work.

Personally, I would like to thank Miles Smid for his tireless leadership role in the AES
development effort over the years, laying the solid foundation needed to support any
future success that may be enjoyed by the AES.

We hope that you benefit a great deal from having joined us in New York City.

Jim Foti
NIST

April 2000



Third Advanced Encryption Standard Candidate Conference:
AES3

Table of Contents

Abstracts of AES-related Papers from the Fast Software Encryption
Workshop (FSE) 2000......................................................................................... 9

Day 1 - Thursday, April 13, 2000

Session 1:  "FPGA Evaluations"
An FPGA Implementation and Performance Evaluation of the
AES Block Cipher Candidate Algorithm Finalists ...................................... 13

A.J. Elbirt, W. Yip, B. Chetwynd, C. Paar

A Comparison of the AES Candidates Amenability to FPGA
Implementation .......................................................................................... 28

Nicholas Weaver, John Wawrzynek

Comparison of the hardware performance of the AES candidates
using reconfigurable hardware.................................................................... 40

Kris Gaj, Pawel Chodowiec

Session 2:  "Platform-Specific Evaluations"
AES Finalists on PA-RISC and IA-64:
Implementations & Performance ................................................................ 57

John Worley, Bill Worley, Tom Christian, Christopher Worley

A comparison of AES candidates on the Alpha 21264 ................................. 75
Richard Weiss, Nathan Binkert

Performance Evaluation of AES Finalists on the High-End
Smart Card................................................................................................. 82

Fumihiko Sano, Masanobu Koike, Shinichi Kawamura,
Masue Shiba

How Well Are High-End DSPs Suited for the AES Algorithms?
AES Algorithms on the TMS320C6x DSP....................................................... 94

Thomas J. Wollinger, Min Wang, Jorge Guajardo, Christof Paar

Fast Implementations of AES Candidates ...................................................106
Kazumaro Aoki, Helger Lipmaa



Session 3:  "Surveys"
A Performance Comparison of the Five AES Finalists ................................123

Bruce Schneier, Doug Whiting

Efficiency Testing of ANSI C Implementations of Round 2
Candidate Algorithms for the Advanced Encryption Standard ...................136

Lawrence E. Bassham III

NIST Performance Analysis of the Final Round Java™
AES Candidates ........................................................................................149

Jim Dray

Performance of the AES Candidate Algorithms in Java...............................161
Andreas Sterbenz, Peter Lipp

Session 4: "Cryptographic Analysis and Properties" (I)
MARS Attacks!  Preliminary Cryptanalysis of Reduced-Round
MARS Variants.........................................................................................169

John Kelsey, Bruce Schneier

Impossible Differential on 8-Round MARS' Core.......................................186
Eli Biham, Vladimir Furman

Preliminary Cryptanalysis of Reduced-Round Serpent................................195
Tadayoshi Kohno, John Kelsey, Bruce Schneier

*****



Day 2 - Friday, April 14, 2000

Session 5: "Cryptographic Analysis and Properties" (II)
Attacking Seven Rounds of Rijndael under 192-bit and
256-bit Keys..............................................................................................215

Stefan Lucks

A collision attack on 7 rounds of Rijndael...................................................230
Henri Gilbert, Marine Minier

Relationships among Differential, Truncated Differential,
Impossible Differential Cryptanalyses against Word-Oriented
Block Ciphers like RIJNDAEL, E2 ...........................................................242

Makoto Sugita, Kazukuni Kobara, Kazuhiro Uehara,
Shuji Kubota, Hideki Imai

Session 6:  "AES Issues" Panel
AES and Future Resiliency:  More Thoughts And Questions ......................257

Don Johnson

The Effects of Multiple Algorithms in the Advanced
Encryption Standard..................................................................................269

Ian Harvey

Session 7:  "ASIC Evaluations / Individual Algorithm Testing"
Hardware Evaluation of the AES Finalists ..................................................279

Tetsuya Ichikawa, Tomomi Kasuya, Mitsuru Matsui

Hardware Performance Simulations of Round 2
Advanced Encryption Standard Algorithms...............................................286

Bryan Weeks, Mark Bean, Tom Rozylowicz, Chris Ficke

High-Speed MARS Hardware.....................................................................305
Akashi Satoh, Nobuyuki Ooba, Kohji Takano, Edward D'Avignon

Speeding up Serpent ...................................................................................317
Dag Arne Osvik





Abstracts of AES-related Papers
from the

Fast Software Encryption Workshop (FSE) 2000

Bruce Schneier
Chair, FSE 2000 Program Committee

The Seventh Fast Software Encryption Workshop (FSE 2000) was held during the three days
immediately before this AES conference.  Seven papers related to the AES finalists were
presented at FSE 2000, and the titles and abstracts for those papers are listed below.

The proceedings for FSE 2000 will be published by Springer-Verlag in their Lecture Notes in
Computer Science series.  Copies of the pre-proceedings are available from the FSE secretariat.

***

Title:  Improved Cryptanalysis of Rijndael
Authors: Niels Ferguson, John Kelsey, Bruce Schneier, Mike Stay, David Wagner, and Doug
Whiting
Abstract: We improve the best attack on 6-round Rijndael from complexity 272 to 242. We also
present the first known attacks on 7- and 8-round Rijndael. Finally, we discuss the key schedule
of Rijndael and describe a related-key technique that can break 9-round Rijndael with 256-bit
keys.

Title:  On the Pseudorandomness of AES Finalists -- RC6, Serpent, MARS and Twofish
Authors: Tetsu Iwata and Kaoru Kurosawa
Abstract: The aim of this paper is to compare the security of AES finalists in an idealized model
like Luby and Rackoff. We mainly prove that a five round idealized RC6 and a three round
idealized Serpent are super-pseudorandom permutations. We then show a comparison about this
kind of pseudorandomness for four AES finalists, RC6, Serpent, MARS and Twofish.

Title: Correlations in RC6
Authors: Lars Knudsen and Willi Meier
Abstract: In this paper the block cipher RC6 is analysed. RC6 is submitted as a candidate for the
Advanced Encryption Standard, and is one of five finalists. It has 128-bit blocks and supports
keys of 128, 192 and 256 bits, and is an iterated 20-round block cipher.  Here it is shown that
versions of RC6 with 128-bit blocks can be distinguished from a random permutation with up to
15 rounds; for some weak keys up to 17 rounds. Moreover, with an increased effort key-recovery
attacks can be mounted on RC6 with up to 15 rounds faster than an exhaustive search for the
key.

http://www.counterpane.com/fse.html


Title: Securing the AES Finalists Against Power Analysis Attacks
Author: Thomas Messerges
Abstract: Techniques to protect software implementations of the AES candidate algorithms
from power analysis attacks are investigated. New countermeasures that employ random masks
are developed and the performance characteristics of these countermeasures are analyzed.
Implementations in a 32-bit, ARM-based smartcard are considered.

Title: Efficient Methods for Generating MARS-like S-boxes
Authors: L. Burnett, G. Carter, E. Dawson, and W. Millan
Abstract: One of the five AES finalists, MARS, makes use of a 9x32 s-box with very specific
combinatorial, differential and linear correlation properties. The s-box used in the cipher was
selected as the best from a large sample of pseudo randomly generated tables, in a process that
took IBM about a week to compute. This paper provides a faster and more effective alternative
generation method using heuristic techniques to produce 9x32 s-boxes with cryptographic
properties that are clearly superior to those of the MARS s-box, and typically take less than two
hours to produce on a single PC.

Title: A Statistical Attack on RC6
Authors: Henri Gilbert, Helena Handschuh, Antoine Joux, and Serge Vaudenay
Abstract: This paper details the attack on RC6 which was announced in a report published in the
proceedings of the second AES candidate conference (March 1999). Based on an observation on
the RC6 statistics, we show how to distinguish RC6 from a random permutation and to recover
the secret extended key for a fair number of rounds.

Title:  Amplified Boomerang Attacks Against Reduced-Round MARS and Serpent
Authors: John Kelsey, Tadayoshi Kohno, and Bruce Schneier
Abstract: We introduce a new kind of attack based on Wagner's boomerang and inside-out
attacks.  We first describe the new attack in terms of the original boomerang attack, and then
demonstrate its use on reduced-round variants of the MARS core and of Serpent.  Our attack
breaks eleven rounds of the Mars core with 265 chosen plaintexts, 269 memory, and 2229 partial
decryptions.  Our attack breaks eight rounds of Serpent with 2114 chosen plaintexts, 2119 memory,
and 2179 partial decryptions.
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Abstract

The technical analysis used in determining which of the Advanced Encryption Standard candidates
will be selected as the Advanced Encryption Algorithm includes e�ciency testing of both hardware and
software implementations of candidate algorithms. Reprogrammable devices such as Field Programmable
Gate Arrays (FPGAs) are highly attractive options for hardware implementations of encryption algo-
rithms as they provide cryptographic algorithm agility, physical security, and potentially much higher
performance than software solutions. This contribution investigates the signi�cance of FPGA implemen-
tations of four of the Advanced Encryption Standard candidate algorithm �nalists. Multiple architectural
implementation options are explored for each algorithm. A strong focus is placed on high throughput
implementations, which are required to support security for current and future high bandwidth appli-
cations. The implementations of each algorithm will be compared in an e�ort to determine the most
suitable candidate for hardware implementation within commercially available FPGAs.

Keywords: cryptography, algorithm-agility, FPGA, block cipher, VHDL

1 Introduction

The National Institute of Standards and Technology (NIST) has initiated a process to develop a Federal Infor-
mation Processing Standard (FIPS) for the Advanced Encryption Standard (AES), specifying an Advanced
Encryption Algorithm to replace the Data Encryption Standard (DES) which expired in 1998 [1]. NIST has
solicited candidate algorithms for inclusion in AES, resulting in �fteen o�cial candidate algorithms of which
�ve have been selected as �nalists. Unlike DES, which was designed speci�cally for hardware implementa-
tions, one of the design criteria for AES candidate algorithms is that they can be e�ciently implemented in
both hardware and software. Thus, NIST has announced that both hardware and software performance mea-
surements will be included in their e�ciency testing. So far, however, virtually all performance comparisons
have been restricted to software implementations on various platforms [2].

The advantages of a software implementation include ease of use, ease of upgrade, portability, and
exibility. However, a software implementation o�ers only limited physical security, especially with respect
to key storage [3] [4]. Conversely, cryptographic algorithms (and their associated keys) that are implemented
in hardware are, by nature, more physically secure as they cannot easily be read or modi�ed by an outside

�This research was supported in part through NSF CAREER award #CCR-9733246.
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attacker [4]. The downside of traditional (ASIC) hardware implementation are the lack of exibility with
respect to algorithm and parameter switch. A promising alternative for implementation block cipher are
recon�gurable hardware devices such as Field Programmable Gate Arrays (FPGAs). FPGAs are hardware
devices whose function is not �xed and which can be programmed in-system. The potential advantages of
encryption algorithms implemented in FPGAs include:

Algorithm Agility This term refers to the switching of cryptographic algorithms during operation. The
majority of modern security protocols, such as SSL or IPsec, allow for multiple encryption algo-
rithms. The encryption algorithm is negotiated on a per-session basis; e.g., IPsec allows among others
DES, 3DES, Blow�sh, CAST, IDEA, RC4 and RC6 as algorithms, and future extensions are possible.
Whereas algorithm agility is costly with traditional hardware, FPGAs can be reprogrammed on-the-y.

Algorithm Upload It is perceivable that �elded devices are upgraded with a new encryption algorithm
which did not exist (or was not standardized!) at design time. In particular, it is very attractive
for numerous security products to be upgraded for use of AES once the selection process is over.
Assuming there is some kind of (temporary) connection to a network such as the Internet, FPGA-
equipped encryption devices can upload the new con�guration code.

Algorithm Modi�cation There are applications which require modi�cation of a standardized algorithm,
e.g., by using proprietary S-boxes or permutations. Such modi�cations are easily made with recon�g-
urable hardware. Similarly, a standardized algorithm can be swapped with a proprietary one. Also,
modes of operation can be easily changed.

Architecture E�ciency In certain cases, a hardware architecture can be much more more e�cient if it is
designed for a speci�c set of parameters; e.g., constant multiplication (of integers or in Galois �elds)
is far more e�cient than general multiplication. With FPGAs it is possible to design and optimize an
architecture for a speci�c parameter set.

Throughput Although typically slower than an ASIC implementations, FPGA implementations have the
potential of running substantially faster then software implementations.

Cost E�ciency The time and costs for developing an FPGA implementation of a given algorithm are
much lower than for an ASIC implementation. (However, for high-volume applications, ASIC solutions
usually become the more cost-e�cient choice.)

Note that algorithm agility remains an open research issue in regards to speed, physical security, and
the cost associated with current high-end FPGA devices. However, we believe that cost is not a long-
term limiting factor, as will be discussed in Section 3.3. For these reasons, this paper describes a thorough
comparison the AES �nalist algorithms RC6, Rijndael, Serpent, and Two�sh with respect to implementation
on state-of-the-art FPGAs. One aspect that seems to be especially relevant is the investigation of achievable
encryption rates for FPGA-based implementations. We demonstrate that FPGA solutions encrypt at rates
in the Gigabit range for all four algorithms investigated, which is at least one order of magnitude faster than
most reported software implementations [5].

What follows is an investigation of the AES �nalists to determine the nature of their underlying com-
ponents. The characterization of the algorithms' components will lead to a discussion of the hardware
architectures best suited for implementation of the AES �nalists. A performance metric to measure the
hardware cost for the throughput achieved by each algorithm's implementations will be developed and a
target FPGA will be chosen so as to yield implementations that are optimized for high-throughput opera-
tion within the commercially available device. Finally, multiple architecture options of the algorithms within
the targeted FPGA will be discussed and the overall performance of the implementations will be evaluated
versus typical software implementations.
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2 Previous Work

As opposed to custom hardware or software implementations, little work exists in the area of block cipher
implementations within existing FPGAs. DES, the most common block cipher implementation targeted to
FPGAs, has been shown to operate at speeds of up to 400 Mbit/s [6]. We believe that this performance can
be greatly enhanced using today's technology. These speeds are signi�cantly faster than the best software
implementations of DES [7] [8] [9], which typically have throughputs below 100 Mbit/s, although a 137
Mbit/s implementation has been reported as well [7]. This performance di�erential is an expected result of
DES having been designed in the 1970s with hardware implementations in mind.

Other block ciphers have been implemented in FPGAs with varying degrees of success. A typical exam-
ple is the IDEA block cipher which has been implemented at speeds ranging from 2.8 Mbit/s [10] to 528
Mbit/s [11]. Note that while the 528 Mbit/s throughput was achieved in a fully pipelined architecture, the
implementation required four Xilinx XC4000 FPGAs.

Some FPGA implementation throughputs for the AES candidates have been shown to be far slower
than their software counterparts. Hardware throughputs of about 12 Mbit/s [12] [13] have been achieved for
CAST-256. However, software implementations have resulted in throughputs of 37.8 Mbit/s for CAST-256 on
a 200 MHz PentiumPro PC [5], a factor of three faster than FPGA implementations. When scaled to a more
current 600 MHz PentiumPro PC, it is expected that the same software implementation would outperform
FPGA implementations by an even larger factor. While an FPGA implementation of RC6 achieved data
rates of 37.8 Mbit/s [13], our �ndings indicate that considerably higher data rates are achievable.

When examining the AES �nalists, it is important to note that they do not necessarily exhibit similar
behavior to DES when comparing hardware and software implementations. One reason for this is that the
AES �nalists have been designed with e�cient software implementations in mind. Additionally, software
implementations may be executed on processors operating at frequencies as high as 800 MHz while typical
implementations that target FPGAs reach a maximum clock frequency of 50 MHz.

3 Methodology

3.1 Design Methodology

There are two basic hardware design methodologies currently available: language based (high level) design
and schematic based (low level) design. Language based design relies upon synthesis tools to implement
the desired hardware. While synthesis tools continue to improve, they rarely achieve the most optimized
implementation in terms of both area and speed when compared to a schematic implementation. As a
result, synthesized designs tend to be (slightly) larger and slower than their schematic based counterparts.
Additionally, implementation results can greatly vary depending on the synthesis tool as well as the design
being synthesized, leading to potentially increased variances in the synthesized results when comparing
synthesis tool outputs. This situation is not entirely di�erent from a software implementation of an algorithm
in a high-level language such as C, which is also dependent on coding style and compiler quality. As shown in
[14], schematic based design methodologies are no longer feasible for supporting the increase in architectural
complexity evidenced by modern FPGAs. As a result, a language based design methodology was chosen as
the implementation form for the AES �nalists with VHDL being the speci�c language chosen.

3.2 Implementations | General Considerations

Each AES �nalist was implemented in VHDL using a bottom-up design and test methodology. The same
hardware interface was used for each of the implementations. In an e�ort to achieve the maximum e�ciency
possible, note that key scheduling and decryption were not implemented for each of the AES �nalists. Because
FPGAs may be recon�gured in-system, the FPGA may be con�gured for key scheduling and then later
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recon�gured for either encryption or decryption. This option is a major advantage of FPGAs implementations
over classical ASIC implementations. Round keys for encryption are loaded from the external key bus and
are stored in internal registers and all keys must be loaded before encryption may begin. Key loading is
disabled until encryption is completed. Each implementation was simulated for functional correctness using
the test vectors provided in the AES submission package [15] [16] [17] [18]. After verifying the functionality of
the implementations, the VHDL code was synthesized, placed and routed, and re-simulated with annotated
timing using the same test vectors, verifying that the implementations were successful.

3.3 Selection of a Target FPGA

When examining the AES �nalists for hardware implementation within an FPGA, a number of key aspects
emerge. First, it is obvious that the implementation will require a large amount of I/O pins to fully support
the 128-bit data stream at high speeds where bus multiplexing is not an option. It is desirable to decouple
the 128-bit input and output data streams to allow for a fully pipelined architecture. Since the round keys
cannot change during the encryption process, they may be loaded via a separate key input bus prior to the
start of encryption. Additionally, to implement a fully pipelined architecture requires 128-bit wide pipeline
stages, resulting in the need for a register-rich architecture to achieve a fast, synchronous implementation.
Moreover, it is desirable to have as many register bits as possible per each of the FPGA's con�gurable units to
allow for a regular layout of design elements as well as to minimize the routing required between con�gurable
units. Finally, it is critical that fast carry-chaining be provided between the FPGA's con�gurable units to
maximize the performance of AES �nalists that utilize arithmetic operations [13] [12].

In addition to architectural requirements, scalability and cost must be considered. We believe that the
chosen FPGA should be the best chip available, capable of providing the largest amount of hardware resources
as well as being highly exible so as to yield optimal performance. Unfortunately, the cost associated with
current high-end FPGAs is relatively high (several hundred US dollars per device). However, it is important
to note that the FPGA market has historically evolved at an extremely rapid pace, with larger and faster
devices being released to industry at a constant rate. This evolution has resulted in FPGA cost-curves that
decrease sharply over relatively short periods of time. Hence, selecting a high-end device provides the closest
model for the typical FPGA that will be available over the expected lifespan of AES.

Based on the aforementioned considerations, the Xilinx Virtex XCV1000BG560-4 FPGA was chosen as
the target device. The XCV1000 has 128K bits of embedded RAM divided among thirty-two RAM blocks
that are separate from the main body of the FPGA. The 560-pin ball grid array package provides 512 usable
I/O pins. The XCV1000 is comprised of a 64 � 96 array of look-up-table based Con�gurable Logic Blocks
(CLBs), each of which acts as a 4-bit element comprised of two 2-bit slices for a total of 12288 CLB slices
[19]. This type of con�guration results in a highly exible architecture that will accommodate the round
functions' use of wide operand functions. Note that the XCV1000 also appears to be a good representative
for a modern FPGA and that devices from other vendors are not fundamentally di�erent. It is thus hoped
that our results carry over, within limits, to other devices.

3.4 Design Tools

FPGA Express by Synopsys, Inc. and Synplify by Synplicity, Inc. were used to synthesize the VHDL imple-
mentations of the AES �nalists. As this study places a strong focus on high throughput implementations,
the synthesis tools were set to optimize for speed. As will be discussed in Section 6, the resultant implemen-
tations exhibit the best possible throughputs with the associated cost being an increase in the area required
in the FPGA for each of the implementations. Similarly, if the synthesis tools were set to optimize for area,
the resultant implementations would exhibit reduced area requirements at the cost of decreased throughput.

XACTstep 2.1i by Xilinx, Inc. was used to place and route the synthesized implementations. For the
sub-pipelined architectures, a 40 MHz timing constraint was used in both the synthesis and place-and-
route processes as it resulted in signi�cantly higher system clock frequencies. However, the 40 MHz timing
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constraint was found to have little a�ect on the other architecture types, resulting in nearly identical system
clock frequencies to those achieved without the timing constraint.

Finally, Speedwave by Viewlogic Systems, Inc. and Active-HDLTM by ALDEC, Inc. were used to perform
behavioral and timing simulations for the implementations of the AES �nalists. The simulations veri�ed
both the functionality and the ability to operate at the designated clock frequencies for the implementations.

4 Architecture Options and the AES Finalists

Before attempting to implement the AES �nalists in hardware, it is important to understand the nature of
each algorithm as well as the hardware architectures most suited for their implementation. What follows
is an investigation into the key components of the AES �nalists. Based on this breakdown, a discussion is
presented on the hardware architectures most suited for implementation of the AES �nalists.

4.1 Core Operations of the AES Finalist Algorithms

Algorithm XOR Mod 232 Mod 232 Fixed Variable Mod 232 GF(28) LUT
Add Subtract Shift Rotate Multiply Multiply

MARS � � � � � � �

RC6 � � � � �

Rijndael � � � �

Serpent � � �

Two�sh � � � � �

Table 1: AES �nalists core operations [20]

Modern FPGAs have a structure comprised of a two-dimensional array of con�gurable function units
interconnected via horizontal and vertical routing channels. Con�gurable function units are typically com-
prised of look-up-tables and ip-ops. Look-up-tables may be con�gured as either combinational logic or
memory elements. Additionally, many modern FPGAs provide variable-size SRAM blocks that may be used
as either memory elements or look-up-tables [21].

In terms of complexity, the operations detailed in Table 1 that require the most hardware resources as well
as computation time are the modulo 232 multiplication and the variable rotation operations [20]. Implement-
ing wide multipliers in hardware is an inherently di�cult task that requires signi�cant hardware resources.
Additionally, algorithms that employ large variable rotations require a moderate amount of multiplexing
hardware if carefully designed (see Section 5.1 for further discussion). S-Boxes may be implemented in either
combinatorial logic or embedded RAM| the advantages of each of these options are discussed in Section 4.2.
Fast operations such as bit-wise XOR, modulo 232 addition and subtraction, and �xed value shifting are con-
structed from simple hardware elements. Additionally, the Galois �eld multiplications required in Rijndael
and Two�sh can also be implemented very e�ciently in hardware as they are multiplications by a constant.
Galois �eld constant multiplication requires far less resources than general multiplications [22].

Based on our evaluation of the AES �nalists, the MARS algorithm appeared to be the most resource
intensive based on its use of large S-Boxes, and modulo 232 multiplication. As a result, it was conjectured
that the MARS algorithm would exhibit lesser performance when compared to the other AES �nalists. Due
to this evaluation and a lack of development resources, the MARS algorithm was omitted from this study.

4.2 Hardware Architectures

The AES �nalists are all comprised of a basic looping structure (some form of either Feistel or substitution-
permutation network) whereby data is iteratively passed through a round function. Based on this looping
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structure, the following architecture options were investigated so as to yield optimized implementations:

� Iterative Looping

� Loop Unrolling

� Partial Pipelining

� Partial Pipelining with Sub-Pipelining

Iterative looping over a cipher's round structure is an e�ective method for minimizing the hardware
required when implementing an iterative architecture. When only one round is implemented, an n-round
cipher must iterate n times to perform an encryption. This approach has a low register-to-register delay but
a requires a large number of clock cycles to perform an encryption. This approach also minimizes in general
the hardware required for round function implementation but can be costly with respect to the hardware
required for round key and S-Box multiplexing. Iterative looping is a subset of loop unrolling in that only
one round is unrolled whereas a loop unrolling architecture allows for the unrolling of multiple rounds, up to
the total number of rounds required by the cipher. As opposed to an iterative looping architecture, a loop
unrolling architecture where all n rounds are unrolled and implemented as a single combinatorial logic block
maximizes the hardware required for round function implementation while the hardware required for round
key and S-Box multiplexing is completely eliminated. However, while this approach minimizes the number
of clock cycles required to perform an encryption, it maximizes the worst case register-to-register delay for
the system, resulting in an extremely slow system clock.

A partially pipelined architecture o�ers the advantage of high throughput rates by increasing the number
of blocks of data that are being simultaneously operated upon. This is achieved by replicating the round
function hardware and registering the intermediate data between rounds. Moreover, in the case of a full-
length pipeline (a speci�c form of a partial pipeline), the system will output a 128-bit block of ciphertext
at each clock cycle once the latency of the pipeline has been met. However, an architecture of this form
requires signi�cantly more hardware resources as compared to a loop unrolling architecture. In a partially
pipelined architecture, each round is implemented as the pipeline's atomic unit and are separated by the
registers that form the actual pipeline. However, many of the AES �nalists cannot be implemented using
a full-length pipeline due to the large size of their associated round function and S-Boxes, both of which
must be replicated n times for an n-round cipher. As such, these algorithms must be implemented as partial
pipelines. Additionally, a pipelined architecture can be fully exploited only in modes of operations which
do not require feedback of the encrypted data, such as Electronic Code-Book or Counter Mode [3, Section
9.9]. When operating in feedback modes such as Ciphertext Feedback Mode, the ciphertext of one block
must be available before the next block can be encrypted. As a result, multiple blocks of plaintext cannot
be encrypted in a pipelined fashion when operating in feedback modes. For the remainder of our discussion,
feedback mode will be abbreviated as FB and non-feedback mode will be abbreviated as NFB.

Sub-pipelining a (partially) pipelined architecture is advantageous when the round function of the
pipelined architecture is complex, resulting in a large delay between pipeline stages. By adding sub-pipeline
stages, the atomic function of each pipeline stage is sub-divided into smaller functional blocks. This results
in a decrease in the pipeline's delay between stages. However, each sub-division of the atomic function
increases the number of clock cycles required to perform an encryption by a factor equal to the number of
sub-divisions. At the same time, the number of blocks of data that may be operated upon in NFB mode
is increased by a factor equal to the number of sub-divisions. Therefore, for this technique to be e�ective,
the worst case delay between stages will be decreased by a factor of m where m is the number of added
sub-divisions. However, if the atomic function of the partially pipelined architecture has a small stage de-
lay, sub-dividing the stage will achieve no signi�cant decrease in the worst case stage delay. In this case,
sub-pipelining would result in no signi�cant increase in the system's clock frequency but would increase the
logic resources and clock cycles required to perform an encryption, resulting in reduced throughput.
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Many FPGAs provide embedded RAM which may be used to replace the round key and S-Box multi-
plexing hardware. By storing the keys within the RAM blocks, the appropriate key may be addressed based
on the current round. However, due to the limited number of RAM blocks, as well as their restricted bit
width, this methodology is not feasible for architectures with many pipeline stages or unrolled loops. Those
architectures require more RAM blocks than are typically available. Additionally, the switching time for the
RAM is more than a factor of three longer than that of a standard CLB slice element, resulting in the RAM
element having a lesser speed-up e�ect on the overall implementation. Therefore, the use of embedded RAM
is not considered for this study to maintain consistency between architectural implementations.

5 Architectural Implementation Analysis

For each of the AES �nalists, the four architecture options described in Section 4.2 were implemented in
VHDL using a bottom-up design and test methodology. The same hardware interface was used for each of the
implementations. Round keys are stored in internal registers and all keys must be loaded before encryption
may begin. Key loading is disabled until encryption is completed. These implementations yielded a great
deal of knowledge in regards to the FPGA suitability of each AES �nalist. What follows is a discussion of
the knowledge gained regarding each algorithm when implemented using the four architecture types.

5.1 Architectural Implementation Analysis | RC6

When implementing the RC6 algorithm, it was �rst determined that the RC6 modulo 232 multiplication was
the dominant element of the round function in terms of required logic resources. Each RC6 round requires
two copies of the modulo 232 multiplier. However, it was found that the RC6 round function does not
require a general modulo 232 multiplier. The RC6 multipliers implement the function A(2A + 1) which may
be implemented as 2A2 + A. Therefore, the multiplication operation was replaced with an array squarer
with summed partial products, requiring fewer hardware resources and resulting in a faster implementation.
The remaining components of the RC6 round function | �xed and variable shifting, bit-wise XOR, and
modulo 232 addition | were found to be simple in structure, resulting in these elements of the round
function requiring few hardware resources. While variable shifting operations have the potential to require
considerable hardware resources, the 5-bit variable shifting required by the RC6 round function required
few hardware resources. Instead of implementing a 32-to-1 multiplexor for each of the thirty-two rotation
output bits (controlled by the �ve shifting bits), a �ve-level multiplexing approach was used. The variable
rotation is broken into �ve stages, each of which is controlled by one of the �ve shifting bits. For each
rotation output bit of a given stage, a 2-to-1 multiplexor controlled by the stage's shifting bit is used. This
implementation requires a total of 160 2-to-1 multiplexors as opposed to the thirty-two 32-to-1 multiplexors
required for a one-stage implementation. However, using 2-to-1 multiplexors to form the �ve-stage barrel-
shifter results in an overall implementation that is smaller and faster when compared to the one-stage
barrel-shifter implementation as described in [18, Section 3.4]. Finally, it was found that the synthesis tools
could not minimize the overall size of a RC6 round su�ciently to allow for a fully unrolled or fully pipelined
implementation of the entire twenty rounds of the algorithm within the target FPGA.

As discussed in Section 4.2, implementing a single round of the RC6 algorithm provides the greatest
area-optimized solution. Further loop unrolling provided only minor throughput increases as the decrease in
the number of cycles per encrypted block was o�set by the rapidly decreasing system clock frequency. 2-stage
partial pipelining was found to yield the highest throughput when operating in FB mode, outperforming the
single round iterative looping implementation by achieving a signi�cantly higher system clock frequency.

When operating in NFB mode, a partially pipelined architecture with two additional sub-pipeline stages
was found to o�er the advantage of extremely high throughput rates once the latency of the pipeline was
met, with the 10-stage partial pipeline implementation displaying the best throughput and results. Based
on the delay analysis of the partial pipeline implementations, it was determined that nearly two thirds of

7



the round function's associated delay was attributed to the modulo 232 multiplier. Therefore, two additional
pipeline sub-stages were implemented so as to subdivide the multiplier into smaller blocks, resulting in a
total of three pipeline stages per round function. As a result, an increase by a factor of more than 2.5 was
seen in the system's clock frequency, resulting in a similar increase in throughput when operating in NFB
mode. Further sub-pipelining was not implemented as this would require sub-dividing the adders used to
sum the partial products (a non-trivial task) to balance the delay between sub-pipeline stages.

5.2 Architectural Implementation Analysis | Rijndael

When implementing the Rijndael algorithm, it was �rst determined that the Rijndael S-Boxes were the
dominant element of the round function in terms of required logic resources. Each Rijndael round requires
sixteen copies of the S-Boxes, each of which is an 8-bit to 8-bit look-up-table, requiring signi�cant hardware
resources. However, the remaining components of the Rijndael round function | byte swapping, constant
Galois �eld multiplication, and key addition | were found to be simple in structure, resulting in these
elements of the round function requiring few hardware resources. Additionally, it was found that the synthesis
tools could not minimize the overall size of a Rijndael round su�ciently to allow for a fully unrolled or fully
pipelined implementation of the entire ten rounds of the algorithm within the target FPGA.

Surprisingly, a one round partially pipelined implementation with one sub-pipeline stage provided the
most area-optimized solution. As compared to a one-stage implementation with no sub-pipelining, the
addition of a sub-pipeline stage a�orded the synthesis tool greater exibility in its optimizations, resulting in
a more area e�cient implementation. While 2-stage loop unrolling was found to yield the highest throughput
when operating in FB mode, the measured throughput was within 10% of the single stage implementation.
Due to the probabilistic nature of the place-and-route algorithms, one can expect a variance in performance
based on di�erences in the starting point of the process. When performing this process multiple times, known
as multi-pass place-and-route, it is likely that the single round implementation would achieve a throughput
similar to that of the 2-stage loop unrolled implementation.

When operating in NFB mode, partial pipelining was found to o�er the advantage of extremely high
throughput rates once the pipeline latency was met, with the 5-stage partial pipeline implementation display-
ing the best throughput results. While Rijndael cannot be implemented using a fully pipelined architecture
due to the large size of the round function, signi�cant throughput increases were seen as compared to the
loop unrolling architecture.

Sub-pipelining of the partially pipelined architectures was implemented by inserting a pipeline sub-stage
within the Rijndael round function. Based on the delay analysis of the partial pipeline implementations,
it was determined that nearly half of the round function's associated delay was attributed to the S-Box
substitutions. Therefore, the additional pipeline sub-stage was implemented so as to separate the S-Boxes
from the rest of the round function. As a result, an increase by a factor of nearly 2 was seen in the system's
clock frequency, resulting in a similar increase in throughput when operating in NFB mode. Further sub-
pipelining was not implemented as this would require sub-dividing the S-Boxes (a non-trivial task) to balance
the delay between sub-pipeline stages.

5.3 Architectural Implementation Analysis | Serpent

When implementing the Serpent algorithm, it was �rst determined that since the Serpent S-Boxes are
relatively small (4-bit to 4-bit), it is possible to implement them using combinational logic as opposed to
memory elements. Additionally, the S-Boxes map extremely well to the Xilinx CLB slice, which is comprised
of 4-bit look-up-tables, allowing one S-Box to be implemented in a total of two CLB slices, yielding a compact
implementation which minimizes routing between CLB slices. Finally, the components of the Serpent round
function | key masking, S-Box substitution, and linear transformation | were found to be simple in
structure, resulting in the round function requiring few hardware resources.
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Implementing a single round of the Serpent algorithm provides the greatest area-optimized solution.
However, a signi�cant performance improvement was achieved by performing 8-round loop unrolling, remov-
ing the need for S-Box multiplexing hardware as one copy of each possible S-Box grouping is now included
within one of the eight rounds. This amount of loop unrolling achieved a signi�cant performance increase
with little increase in hardware resources due to the compact nature of the Serpent round function. As ex-
pected, unrolling thirty-two rounds of the Serpent algorithm resulted in a lesser performance when compared
to the eight round implementation. Implementing the thirty-two rounds of the algorithm in combinatorial
logic severely hampered the overall clock frequency of the system, overriding the performance increase caused
by the removal of the multiplexing hardware required to switch between keys.

When operating in NFB mode, a full-length pipelined architecture was found to o�er the advantage of
extremely high throughput rates once the latency of the pipeline was met, outperforming smaller partially
pipelined implementations. In the fully pipelined architecture, all of the elements of a given round function
are implemented as combinatorial logic. Other AES �nalists cannot be implemented using a fully pipelined
architecture due to the larger round functions. However, due to the small size of the Serpent S-Boxes (4-bit
look-up-tables), the cost of S-Box replication is minimal in terms of the required hardware.

Finally, sub-pipelining of the partially pipelined architectures was determined to yield no throughput
increase. Because the round function components are all simple in structure, there is little performance to
be gained by subdividing them with registers in an attempt to reduce the delay between stages. As a result,
the increase in the system's clock frequency would not outweigh the increase in the number of clock cycles
required to perform an encryption, resulting in a performance degradation.

5.4 Architectural Implementation Analysis | Two�sh

When implementing the Two�sh algorithm, it was �rst determined that the synthesis tools were unable
to minimize the Two�sh S-Boxes to the extent of other AES �nalist algorithms due to the S-Boxes being
key-dependent. Therefore, the overall size of a Two�sh round was too large to allow for a fully unrolled
or fully pipelined implementation of the algorithm within the target FPGA. Moreover, the key-dependent
S-Boxes were found to require nearly half of the delay associated with the Two�sh round function.

As expected, implementing a single round of the Two�sh algorithm provides the greatest area-optimized
solution in terms of total CLB slices required for the implementation. Additional loop unrolling provided
minor throughput increases as the decrease in the number of cycles per encrypted block was o�set by the
rapidly decreasing system clock frequency. However, single stage partial pipelining with one sub-pipeline
stage was found to yield the best throughput and when operating in feedback mode. With a small increases
in the required hardware resources, the sub-pipelined architecture was able to reach a signi�cantly faster
system clock frequency as compared to the loop unrolling and partial pipeline implementations.

When operating in NFB mode, a partially pipelined architecture was found to o�er the advantage of
extremely high throughput rates once the latency of the pipeline was met, with the 8-stage partial pipeline
implementation displaying the best throughput results. While Two�sh cannot be implemented using a fully
pipelined architecture due to the large size of the round function, signi�cant throughput increases were seen
as compared to the loop unrolling architecture.

Finally, sub-pipelining of the partially pipelined architectures was implemented by inserting a pipeline
sub-stage within the Two�sh round function. Based on the delay analysis of the partial pipeline implemen-
tations, it was determined that nearly half of the round function's associated delay was attributed to the
S-Box substitutions. Therefore, the additional pipeline sub-stage was implemented so as to separate the
S-Boxes from the rest of the round function. As a result, an increase by a factor of nearly 2 was seen in
the system's clock frequency, resulting in a similar increase in throughput when operating in NFB mode.
Further sub-pipelining was not implemented as this would require sub-dividing the S-Boxes (a non-trivial
task) to balance the delay between sub-pipeline stages.
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6 Performance Evaluation

Tables 2 and 3 detail the throughput measurements for the implementations of the three architecture types
for each of the AES �nalists for both NFB and FB mode. The architecture types | loop unrolling (LU),
full or partial pipelining (PP), and partial pipelining with sub-pipelining (SP) | are listed along with the
number of stages and (if necessary) sub-pipeline stages in the associated implementation; e.g., LU-4 implies
a loop unrolling architecture with four rounds, while SP-2-1 implies a partially pipelined architecture with
two stages and one sub-pipeline stage per pipeline stage. As a result, the SP-2-1 architecture implements
two rounds of the given cipher with a total of two stages per round. Throughput is calculated as:

Throughput := (128 Bits * Clock Frequency)=(Cycles Per Encrypted Block)

Note that the implementation of a one stage partial pipeline architecture, an iterative looping architecture,
and a one round loop unrolled architecture are all equivalent and are therefore not listed separately. Also
note that the computed throughput for implementations that employ any form of hardware pipelining (as
discussed in Section 4) are made assuming that the pipeline latency has been met.

The number of CLBs required as well as the maximum operating frequency for each implementation
was obtained from the Xilinx report �les. Note that the Xilinx tools assume the absolute worst possible
operating conditions | highest possible operating temperature, lowest possible supply voltage, and worst-
case fabrication tolerance for the speed grade of the FPGA [23]. As a result, it is common for actual
implementations to achieve slightly better performance results than those speci�ed in the Xilinx report �les.

While this study focuses on high throughput implementations, the hardware resources required to achieve
this throughput is also a critical parameter. No established metric exists to measure the hardware resource
costs associated with the measured throughput of an FPGA implementation. Two area measurements of
FPGA utilization are readily apparent | logic gates and CLB slices. It is important to note that the logic
gate count does not yield a true measure of actual FPGA utilization. Hardware resources within CLB slices
may not be fully utilized by the place-and-route software so as to relieve routing congestion. This results in
an increase in the number of CLB slices without a corresponding increase in logic gates. To achieve a more
accurate measure of chip utilization, CLB slice count was chosen as the most reliable area measurement.
Therefore, to measure the hardware resource cost associated with an implementation's resultant throughput,
the Throughput Per Slice (TPS) metric is used. We de�ned TPS as:

TPS := (Encryption Rate)=(# CLB Slices Used)

Therefore, the optimal implementation will display the highest throughput and have the largest TPS. Note
that the TPS metric behaves inversely to the classical time-area (TA) product.

When comparing implementations using the TPS and throughput metrics, it is required that the archi-
tectures are implemented on the same FPGA. Di�erent FPGAs within the same family yield di�erent timing
results as a function of available logic and routing resources, both of which change based on the die size
of the FPGA. Additionally, it is impossible to legitimately compare FPGAs from separate families as each
family of FPGAs has a unique architecture which greatly a�ects the measured throughput and TPS. Finally,
it is critical to note that throughput (and therefore TPS) may not scale linearly based on the number of
rounds implemented for the three architecture types detailed in Section 4.1. As a result, it is imperative that
multiple implementations be examined for each architecture type, varying the round count to determine the
optimal number of rounds per implementation.
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Clock Frequency Cycles per Throughput
Algorithm Architecture Slices (MHz) Block (Mbit/s)

RC6 LU-1 2638 13.8 20 88.5
RC6 LU-2 3069 7.3 10 94.0
RC6 LU-4 4070 3.7 5 94.8
RC6 LU-5 4476 2.9 4 92.2
RC6 LU-10 6406 1.5 2 97.4
RC6 PP-2 3189 19.8 10 253.0
RC6 PP-4 4411 12.3 5 315.5
RC6 PP-5 4848 12.1 4 386.7
RC6 PP-10 7412 13.3 2 848.1
RC6 SP-1-1 2967 26.2 20 167.6
RC6 SP-2-1 3709 26.4 10 337.8
RC6 SP-4-1 5229 24.6 5 629.8
RC6 SP-5-1 5842 25.8 4 825.2
RC6 SP-10-1 8999 26.6 2 1704.6
RC6 SP-1-2 3134 39.1 20 250.0
RC6 SP-2-2 4062 38.9 10 497.4
RC6 SP-4-2 5908 31.3 5 802.3
RC6 SP-5-2 6415 33.3 4 1067.0
RC6 SP-10-2 10856 37.5 2 2397.9

Rijndael LU-1 3528 25.3 11 294.2
Rijndael LU-2 5302 14.1 6 300.1
Rijndael LU-5 10286 5.6 3 237.4
Rijndael PP-2 5281 23.5 5.5 545.9
Rijndael PP-5 10533 20.0 2.2 1165.8
Rijndael SP-1-1 3061 40.4 10.5 491.9
Rijndael SP-2-1 4871 38.9 5.25 949.1
Rijndael SP-5-1 10992 31.8 2.1 1937.9

Serpent LU-1 5511 15.5 32 61.9
Serpent LU-8 7964 13.9 4 444.2
Serpent LU-32 8103 2.4 1 312.3
Serpent PP-8 6849 30.4 4 971.8
Serpent PP-32 9004 38.0 1 4860.2

Two�sh LU-1 2666 13.0 16 104.2
Two�sh LU-2 3392 7.1 8 113.6
Two�sh LU-4 4665 3.3 4 106.8
Two�sh LU-8 6990 1.7 2 108.1
Two�sh PP-2 3519 11.9 8 190.4
Two�sh PP-4 5044 11.5 4 369.3
Two�sh PP-8 7817 10.8 2 689.5
Two�sh SP-1-1 3053 29.9 16 239.2
Two�sh SP-2-1 3869 28.6 8 457.1
Two�sh SP-4-1 5870 27.3 4 872.3
Two�sh SP-8-1 9345 24.8 2 1585.3

Table 2: AES �nalist performance evaluation | non-feedback mode
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Clock Frequency Cycles per Throughput
Algorithm Architecture Slices (MHz) Block (Mbit/s)

RC6 LU-1 2638 13.8 20 88.5
RC6 LU-2 3069 7.3 10 94.0
RC6 LU-4 4070 3.7 5 94.8
RC6 LU-5 4476 2.9 4 92.2
RC6 LU-10 6406 1.5 2 97.4
RC6 PP-2 3189 19.8 20 126.5
RC6 PP-4 4411 12.3 20 78.9
RC6 PP-5 4848 12.1 20 77.3
RC6 PP-10 7412 13.3 20 84.8
RC6 SP-1-1 2967 26.2 40 83.8
RC6 SP-2-1 3709 26.4 40 84.5
RC6 SP-4-1 5229 24.6 40 78.7
RC6 SP-5-1 5842 25.8 40 82.5
RC6 SP-10-1 8999 26.6 40 85.2
RC6 SP-1-2 3134 39.1 60 83.3
RC6 SP-2-2 4062 38.9 60 82.9
RC6 SP-4-2 5908 31.3 60 66.9
RC6 SP-5-2 6415 33.3 60 71.1
RC6 SP-10-2 10856 37.5 60 79.9

Rijndael LU-1 3528 25.3 11 294.2
Rijndael LU-2 5302 14.1 6 300.1
Rijndael LU-5 10286 5.6 3 237.4
Rijndael PP-2 5281 23.5 11 273.0
Rijndael PP-5 10533 20.0 11 233.2
Rijndael SP-1-1 3061 40.4 21 246.0
Rijndael SP-2-1 4871 38.9 21 237.3
Rijndael SP-5-1 10992 31.8 21 193.8

Serpent LU-1 5511 15.5 32 61.9
Serpent LU-8 7964 13.9 4 444.2
Serpent LU-32 8103 2.4 1 312.3
Serpent PP-8 6849 30.4 32 121.5
Serpent PP-32 9004 38.0 32 151.9

Two�sh LU-1 2666 13.0 16 104.2
Two�sh LU-2 3392 7.1 8 113.6
Two�sh LU-4 4665 3.3 4 106.8
Two�sh LU-8 6990 1.7 2 108.1
Two�sh PP-2 3519 11.9 16 95.2
Two�sh PP-4 5044 11.5 16 92.3
Two�sh PP-8 7817 10.8 16 86.2
Two�sh SP-1-1 3053 29.9 32 119.6
Two�sh SP-2-1 3869 28.6 32 114.3
Two�sh SP-4-1 5870 27.3 32 109.0
Two�sh SP-8-1 9345 24.8 32 99.1

Table 3: AES �nalist performance evaluation | feedback mode
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Alg. Arch. Throughput (Gbit/s) Slices TPS
RC6 SP-10-2 2.40 10856 220881

Rijndael SP-5-1 1.94 10992 176297
Serpent PP-32 4.86 9004 539778
Two�sh SP-8-1 1.59 9345 169639

Table 4: AES �nalist performance evaluation | non-feedback mode speed-optimized implementations
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Figure 1: Best throughput | non-feedback mode

Alg. Arch. Throughput (Mbit/s) Slices TPS
RC6 PP-2 126.5 3189 39662

Rijndael LU-2 300.1 5302 56605
Serpent LU-8 444.2 7964 55771
Two�sh SP-1-1 119.6 3053 39169

Table 5: AES �nalist performance evaluation | feedback mode speed-optimized implementations
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Figure 2: Best throughput | feedback mode

Tables 4 and 5 detail the optimal implementations of the AES �nalists in both FB and NFB modes.
Additionally, TPS is also shown for each of the implementations. It is critical to note that for the purposes
of this study, the optimal implementation for an AES �nalist is de�ned to yield the highest throughput. As
previously discussed, the synthesis tools were set to optimize for speed to guarantee that the highest throughputs
would be achieved for each implementation. However, should an optimal implementation be de�ned based on
either TPS or area, the implementation results shown in Tables 2 and 3 (and, as a result, those shown in
tables 4 and 5 as well) are no longer representative of the best possible implementations for the architectures
studied. To achieve a true representation that de�nes optimality based on either TPS or area, synthesis must
be performed with the tools set to optimize for area. While an area-e�ciency analysis of the AES �nalists
warrants investigation, it is beyond the scope of this study.

Based on the data shown in Tables 4 and 5, the Serpent algorithm clearly outperforms the other AES
�nalists in both modes of operation. As compared to its nearest competitor, Serpent exhibits a throughput
increase of a factor 2.2 in NFB mode and a factor 1.5 in FB mode. Interestingly, RC6, Rijndael, and Two�sh
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all exhibit similar performance results in NFB mode. However, Rijndael exhibits signi�cantly improved
performance in FB mode as compared to RC6 and Two�sh, although it is still 50% slower than Serpent.

One of the main �ndings of our investigation, namely that Serpent appears to be especially well suited
for an FPGA implementation from a performance perspective, seems especially interesting considering that
Serpent is clearly not the fastest algorithm with respect to most software comparisons [5]. Another major
result of our study is that all four algorithms considered easily achieve Gigabit encryption rates with standard
commercially available FPGAs. The algorithms are at least one order of magnitude faster than the best
reported software realizations. These speed-ups are essentially achieved by parallelization (pipelining and
sub-pipelining) of the loop structure and by wide operand processing (e.g., processing of 128 bits in once
clock cycle), both of which are not feasible on current processors. We would like to stress that the pipelined
architectures cannot be used to their maximum ability for modes of operation which require feedback (CFB,
OFB, etc.) However we believe that for many applications which require high encryption rates, non-feedback
modes (or modi�ed feedback modes such as interleaved CFB [3, Section 9.12]) will be the modes of choice.
Note that the Counter Mode grew out of the need for high speed encryption of ATM networks which required
parallelization of the encryption algorithm.

7 Conclusions

The importance of the Advanced Encryption Standard and the signi�cance of high throughput implemen-
tations of the AES �nalists has been examined. A design methodology was established which in turn led to
the architectural requirements for a target FPGA. The core operations of the AES �nalists were identi�ed
and multiple architecture options were discussed. The implementation of each architecture option for each
of the AES �nalists was analyzed to determine their suitability for hardware implementation. Based on the
implementation results, the best speed-optimized implementations were identi�ed for each AES �nalist in
both non-feedback and feedback modes. Upon comparison, it was determined that the Serpent algorithm
yielded the best performance in both modes, where best performance was de�ned strictly as the highest
throughput. The Serpent algorithm outperforms its nearest competitor by a factor of 2.2 in non-feedback
mode and by a factor of 1.5 in feedback mode.
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Abstract
The results of implementations of all five AES finalists using Xilinx Field Programmable Gate Arrays are presented and analyzed.
Performance of four alternative hardware architectures is discussed and compared. The AES candidates are divided into three classes
depending on their hardware performance characteristics. Recommendation regarding the optimum choice of the algorithms for AES is
provided.

1. Introduction

Hardware implementations of cryptography will thrive in the new century because of the growing
requirements for high-speed, high-volume secure communications combined with physical security. In the
presence of no major breakthroughs in cryptanalysis of the AES candidates, and relatively inconclusive results
of their software performance evaluation [NBD+99, SKW+99], the comparison of the hardware performance of
the AES algorithms may provide a major indicator for a final decision regarding the new standard.

Very few results regarding hardware implementations of the AES candidates have been published so far.
Original documentation provided by designers of the submitted algorithms contains typically only rough
estimates of the hardware performance [BCD+98, RRS+98, SKW+98]. Additionally, these estimates are very
difficult to compare among each other because of large differences in assumptions regarding the technology, and
because of different architecture choices. The results of actual implementations of individual algorithms,
published recently by independent researchers [EP99, RH99], provide only a very fragmentary knowledge, not
suitable for reliable comparison.

This situation will be certainly remedied by the publication of the NSA findings regarding hardware
performance of the AES candidates. Nevertheless, the NSA evaluation plan [NSA98] targets only
implementations using semi-custom Application Specific Integrated Circuits (ASICs), providing no data
regarding other technologies. In this article, we focus on comparing AES candidates using an alternative
hardware technology based on Field Programmable Gate Arrays (FPGAs). This technology, referred to as
reconfigurable hardware, offers many advantages for future vendors and users of cryptographic equipment. It
assures a short time to the market, high flexibility (including a capability for frequent modifications of
hardware), low development costs, and low cost of the final product - the result of the algorithm agility -
capability to use the same integrated circuit with time sharing for the execution of various secret-key and public-
key algorithms. Our comparison supplements the NSA effort by covering the second primary way of
implementing cryptographic algorithms in hardware.

2. Reconfigurable hardware

2.1 Operation and internal structure of an FPGA device

Field Programmable Gate Array (FPGA) is an integrated circuit that can be bought off the shelf and
reconfigured by designers themselves. With each reconfiguration, which takes only a fraction of a second, an
integrated circuit can perform a completely different function. FPGA consists of thousands of universal building
blocks, known as Configurable Logic Blocks (CLBs), connected using programmable interconnects, as shown in
Fig. 1a. Reconfiguration is able to change a function of each CLB and connections among them, leading to a
functionally new digital circuit.

From several FPGA families available on the market, we have chosen for implementing AES candidates
two families from Xilinx, Inc.: high performance Virtex family, and a low-cost XC4000 family. Each family
consists of several FPGA devices, manufactured in the same technology, covering certain range of maximum
circuit sizes.
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Fig. 1 FPGA device. a) General structure and main components. b) Internal structure of a CLB configured in the logic
mode. c) Internal structure of a CLB configured in the memory mode.

A simplified internal structure of a CLB in the XC4000 family, and a CLB slice (1/2 of a CLB) in the Virtex
family  is shown in Figs. 1bc. In the logic mode (Fig. 1b), each of these elementary units contains a small block
of combinational logic, implemented using programmable look-up tables, and two one-bit registers. In the
memory mode, combinational logic is replaced by two small memories. A CLB in the XC4000 family of FPGA
devices and a CLB slice in Virtex are functionally almost identical. Therefore, we will use a number of these
elementary units, necessary to build a given circuit, as a measure of the circuit area and cost.

2.2 Advantages of using reconfigurable hardware for comparison of the AES candidates

For implementing cryptography in hardware, FPGAs provide the only major alternative to custom and semi-
custom Application Specific Integrated Circuits (ASICs), integrated circuits that must be designed all the way
from the behavioral description to the physical layout, and sent for an expensive and time-consuming
fabrication. The comparison of the AES candidates based on FPGA devices has the following advantages over
the comparison based on ASICs:
• Shorter design cycle leading to fully functioning device prototypes.
• Lower cost of the computer-aided design tools, verification, and testing.
• Potential for fast, low-cost multiple reprogramming and experimental testing of a large number of various

architectures and revised versions of the same architecture.
• Higher accuracy of comparison: in the absence of the physical design and fabrication, ASIC designs are

compared based on inaccurate pre-layout simulations [NSA98]; FPGA designs are compared based on very
accurate post-layout simulations and experimental testing.

3. Alternative architectures

3.1 Basic organization of a block cipher implementation

The basic organization of the hardware implementation of a symmetric block cipher is shown in Fig. 2. All
five AES candidates investigated in this paper can be implemented using this organization. The organization
includes the following units:
a. Encryption/decryption unit, used to encipher and decipher input blocks of data.
b. Key scheduling unit, used to compute a set of internal cipher keys based on a single external key.
c. Memory of internal keys, used to store internal keys computed by the key scheduling unit, or loaded to the

integrated circuit through the input interface.
d. Input interface, used to load blocks of input data and internal keys to the circuit, and to store input blocks

awaiting encryption/decryption.
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Fig. 2 Block diagram of the hardware implementation of a symmetric-block cipher.

e. Output interface, used to temporarily store output from the encryption/decryption unit and send it to the
external memory.

f. Control unit, used to generate control signals for all other units.

3.2 Feedback vs. non-feedback operating modes

Today's symmetric block ciphers are used in several operating modes. From the point of view of hardware
implementations, these modes can be divided into two major categories:
a. Non-feedback modes, such as Electronic Code Book mode (ECB), and counter mode.
b. Feedback modes, such as Cipher Block Chaining mode (CBC), Cipher Feedback Mode (CFB), and Output

Feedback Mode (OFB).
In the non-feedback modes, encryption of each subsequent block of data can be performed independently from
processing other blocks. In particular, all blocks can be encrypted in parallel. In the feedback modes, it is not
possible to start encrypting the next block of data until encryption of the previous block is completed. As a
result, all blocks must be encrypted sequentially, with no capability for parallel processing.

According to current security standards, the encryption of data is performed primarily using feedback
modes, such as CBC and CFB. Non-feedback modes, such as ECB, are used primarily to encrypt session keys
during key distribution. As a result, using current standards does not permit to fully utilize the performance
advantage of the hardware implementations of secret key cryptosystems, based on parallel processing of
multiple blocks of data.

3.3 Alternative architectures for the encryption/decryption unit

a. Basic architecture
The basic hardware architecture used to implement an encryption unit of a typical secret-key cipher is

shown in Fig. 3a. One round of the cipher is implemented as a combinational logic, and supplemented with a
single register and a multiplexer. In the first clock cycle, input block of data is fed to the circuit through the
multiplexer, and stored in the register. In each subsequent clock cycle, one round of the cipher is evaluated, the
result is fed back to the circuit through the multiplexer, and stored in the register. The number of clock cycles
necessary to encrypt a single block of data is equal to the number of cipher rounds, #rounds.

We define the speed of the cipher implementation as the number of bits of data encrypted in a unit of time.
Speed calculated this way is often referred to as the circuit throughput. The speed of the basic architecture,
speedba,  is given by

speedba = 128/ #rounds ⋅ clock_period .                          (1)
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Fig. 3 Four alternative architectures for implementation of an encryption/decryption unit of a block cipher: a) basic
architecture, b) architecture with the k-round loop unrolling, c) architecture with the k-stage inner-round pipelining, d)
architecture with the k-stage outer-round pipelining.

The basic architecture combines a good speed with the relatively modest area requirements. However there exist
several alternative architectures that permit to improve either one or both of these performance measures.

b. Loop unrolling
Architecture with loop unrolling is shown in Fig. 3b. The only difference compared to the basic architecture

is that the combinational part of the circuit implements k rounds of the cipher, instead of a single round. The
maximum value of k is equal to the number of cipher rounds. The number of clock cycles necessary to encrypt a
single block of data decreases by a factor of k. At the same time the minimum clock period increases by a factor
slightly smaller than k, leading to an overall relatively small increase in the cipher speed, given by

speedlu/speedba = (1 + τ)/(1+τ/k),                                                          (2)
where τ is the ratio of the sum of the multiplexer delay, the register delay and the register setup time to the delay
of a single cipher round. This increase in speed is obtained at the cost of the circuit area. Because the
combinational part of the circuit constitutes the majority of the circuit area, the total area of the
encryption/decryption unit increases almost proportionally to the number of unrolled rounds, k. Additionally, the
number of internal keys used in a single clock cycle increases by a factor of k, which in FPGA implementations
typically implies the almost proportional growth in the number of CLBs used to store internal keys.

In summary, loop unrolling enables increasing the circuit speed in both feedback and non-feedback
operating modes. Nevertheless this increase is relatively small, and incurs a large area penalty.

c. Inner-round pipelining
Pipelining is a general method of increasing the amount of data processed by a digital circuit in a unit of

time. The idea is to introduce evenly spaced extra registers in the middle of the combinational circuit, in such a
way that several blocks of data can be processed by the circuit at the same time. Parts of the combinational logic
divided by adjacent registers are called pipeline stages (see Fig. 3c). In each clock cycle the partially processed
data block moves to the next pipeline stage. Its place is taken by the subsequent data block. This way, a
pipelined circuit can encrypt simultaneously as many blocks of data, as the number of pipeline stages it contains.



5

Fig. 4 Operation of the architecture with 4-stage inner-round pipelining for an N-round cipher.

Fig. 5 Timing of input and output blocks in a) basic architecture, b) architecture with a 4-stage inner-round pipelining.

The flow of data through the pipeline during encryption is shown in Fig. 4. The number of pipeline stages in
this example is four. During the first four clock cycles four subsequent blocks of data enter the pipeline. In the
subsequent clock cycles, these blocks circulate in the pipeline. Each four clock cycles correspond to a single
cipher round. In the cycle number 4⋅#rounds+1, the first block, B1, leaves the pipeline, and the fifth block, B5,
is introduced to the empty pipeline stage. In the following three clock cycles, blocks B2, B3, and B4, leave the
pipeline, substituted by blocks B6, B7, and B8. The timing diagram of the input and output of the circuit is
shown in Fig. 5b. Speed of the circuit, expressed as the number of bits processed by the circuit in a unit of time
is given by

 speed = 128/ #rounds ⋅ reduced_clock_period                                                  (3)
where reduced_clock_period is a minimum clock period after pipelining.

The dependence between the cipher speed-up resulting from the inner-round pipelining and the number of
evenly spaced pipeline stages is shown in Fig. 6. There exists a maximum number of pipeline stages that still
improves the circuit throughput. Adding additional registers will not affect the throughput. The maximum
number of pipeline stages is determined by the delay of the largest indivisible combinational portion of the
circuit. For majority of ciphers it is difficult to divide the cipher round into combinational stages with equal
delays (especially, when the circuit is described in a high-level hardware description language, such as VHDL),
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Fig. 6 Speed of the architecture with          Fig. 7 Resource sharing of an S-box. a) basic operation of
k-round inner-round pipelining as a function two parallel S-boxes, b) operation with resource sharing.
of the number of evenly spaced pipeline
stages.

which further limits the circuit speed-up. Area of the circuit with inner-round pipelining increases only by a
small percentage (area of a single 128-bit register) with each additional pipeline stage. This is especially true for
FPGA circuits, in which CLBs used to implement combinational logic often contain registers not utilized in the
non-pipelined implementation.

d. Outer-round pipelining
Outer-round pipelining is created by loop unrolling followed by introducing extra registers between parts of

the combinational logic corresponding to each cipher round, as shown in Fig. 3d. The number of unrolled loops
k is typically a divisor of the total number of cipher rounds, #rounds.

Area of the encryption unit with outer-round pipelining is directly proportional to the number of pipeline
stages k. In the non-feedback cipher modes, such as ECB, the speed (throughput) of the cipher increases
proportionally to the number of pipeline stages, k. Therefore, the outer-round pipelining enables to directly trade
circuit speed with circuit area. In the feedback cipher modes, the speed of the cipher remains independent of the
number of outer pipeline stages, and therefore, this kind of pipelining is not recommended for these modes.

e. Resource sharing
For some ciphers, it is possible to further decrease circuit area by time sharing of certain resources (e.g.,

function h in Twofish, 4x4 S-boxes in Serpent, 8x32 S-boxes S0, S1 in the mixing transformation of Mars,
multiplication units in RC6). This is accomplished by using the same functional unit to process two (or more)
parts of the data block in different clock cycles, as shown in Fig. 7b. In Fig. 7a, two parts of the data block, D0
and D1, are processed in parallel, using two independent S-boxes. In Fig. 7b, a single S-box is used to process
two parts of the data block sequentially, during two subsequent clock cycles.

The use of resource sharing in real life implementations is expected to be limited, because
•  Gain in the circuit area is always smaller than the loss in the circuit speed.
• The amount of area used by a basic implementation of a symmetric cipher is typically already quite small.

3.4. Choice of the figure of merit

The choice of a single figure of merit is difficult, because the optimization criteria may vary depending on
the application. In our comparison, we took into account three basic figures of merit: maximum speed
(throughput), minimum area, and the maximum speed/area ratio.

Optimization for maximum speed will be done in applications where communication requirements force the
use of a very high speed encryption, and/or the cost of the cryptographic hardware constitutes only a small
portion of the entire system. Examples of such applications include ATM and ISDN switches, Virtual Private
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Fig. 8 Hardware performance of various alternative architectures in a) non-feedback cipher modes, such as ECB and
counter mode, b) feedback cipher modes, such as CBC, CFB, and OFB.

Network routers and firewalls, WWW and database servers. In such applications, it may be  justified to trade the
cost of the cryptographic hardware (proportional to the circuit area) for greater speed.

In the second class of applications, the designer's goal is to obtain the maximum speed, assuming a given
limit on the circuit area (cost). In such situations, the more appropriate figure of merit is the speed/area ratio.
This figure of merit is particularly appropriate for non-feedback cipher modes, which enable one to directly
trade circuit area for speed by using the outer-round pipelining, as shown in Fig. 8a. The examples of cost
critical applications of cryptography include pagers, digital video recorders, and PCMCIA cards.

Applications that require optimization for minimum area include smart cards, embedded systems, and
cellular phones. As the basic architecture may be still too big for such applications, they may enforce resource
sharing. Taking into account the size and power limitations, these applications will be typically implemented
using custom ASICs, not FPGAs.

3.5 Comparison of various architectures

Dependencies between the speed and the area of the encryption/decryption unit of a block cipher, for
architectures discussed in section 3.3, are shown in Fig. 8.

a. Non-feedback modes
For non-feedback modes, the best speed/area  ratio can be obtained by using inner-round pipelining with the

maximum number of pipeline stages that still increases circuit clock frequency, as shown in Fig. 8a. The largest
possible speed can be obtained by combining inner-round pipelining with outer-round pipelining. The only limit
on the circuit speed is imposed in this case by the maximum circuit area (cost) and/or the maximum number of
the outer-round pipeline stages (equal to the number of the cipher rounds). The smallest possible area can be
obtained using the basic architecture with resource sharing.

b. Feedback-modes
For feedback modes, the basic architecture offers the best value of the ratio speed/area, as shown in Fig. 8b.

Larger speed can only be obtained using loop unrolling, at the cost of a very significant increase in the circuit
area (cost). Smaller area can only be obtained using resource sharing, at the cost of the significant reduction in
the circuit speed.

Outer-round pipelining is inefficient in these modes, as it does not increase circuit speed, and significantly
increases circuit area. Inner-round pipelining decreases speed, and increases circuit area. As a result, neither
type of pipelining should be used in these operating modes.
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 4. Assumptions

4.1 Primary assumptions

The following tentative assumptions have been made in order to simplify the task of comparing AES
candidates:
a. Key size 128 bits.
Our implementations are intended to support only one key size, 128 bits. Other key sizes required by AES (192
and 256 bits), or supported by a particular algorithm will be added in the future.
b. No key scheduling unit.
Our implementations do not support the on-chip generation of internal keys from a single external key. Instead,
our implementations include a memory of internal keys loaded with the keys generated externally, and the
circuitry necessary to distribute these keys from the memory to the encryption/decryption unit.
c.  Block size 128 bits.
Only one input/output block size, 128 bits, has been considered, even if the given AES candidate supports other
block sizes.
d. Basic architecture
The encryption part of all AES candidates has been implemented using basic architecture shown in Fig. 3a.  This
architecture has been chosen for the following reasons:
* As shown in Fig. 8b, the basic architecture assures the maximum speed/area ratio for feedback operating
modes (CBC, CFB), now commonly used for bulk data encryption. It also guarantees near optimum speed, and
near optimum area for these operating modes.
* The basic architecture is relatively easy to implement in a similar way for all AES candidates, which supports
fair comparison. For architectures with inner-round pipelining, it is relatively difficult to determine and
implement the maximum number of pipeline stages that still increases circuit speed and speed/area ratio.
* The implementations of the basic architecture exemplify larger differences among five AES algorithms
compared to the architectures with inner-round pipelining. Inner-round pipelining permits decreasing the
differences in speed among various ciphers because ciphers with longer critical path (lower speed) may be sped
up by a larger factor by introducing proportionally more pipeline stages.
* Based on the performance measures for basic architecture, it is possible to derive analytically approximate
formulas for parameters of more complex architectures, including architectures with outer-round pipelining
(near proportional scaling of both area and speed), loop-unrolling (see formula (2)), and inner-round pipelining
(see formula (3) and Fig. 6). Nevertheless, these formulas should be treated only as a first approximation, and
the more detailed comparison requires the actual implementation of all ciphers using alternative architectures.
Only such implementations may take into account the exact structure of all ciphers, limitations imposed by the
FPGA architecture and the design entry method (e.g., VHDL description), and the optimization capabilities of
the FPGA computer-aided design tools.
e. Resource sharing between the encryption and decryption part

In order to minimize circuit area, it was assumed that the encryption and decryption parts share as many
resources as possible by the given cipher type. The effort was made to maximally decrease the effect of resource
sharing on the speed of encryption and decryption.

4.2 Deviations from the basic architecture

Three ciphers, Twofish, RC6, and Rijndael, have been implemented using exactly the basic architecture
shown in Fig. 3a. This was possible because all rounds of these ciphers perform exactly the same operation. For
the remaining two ciphers, Serpent and Mars, this condition is not fulfilled, and as a result, small deviations
from the basic architecture appeared to be necessary.

Serpent consists of 8 different rounds repeated 4 times. Therefore, it is advantageous to treat 8 official
cipher rounds as a single implementation round, and assume that the cipher has 4 rounds. This way, 8 official
cipher rounds are implemented in the basic architecture as a combinational logic. This implementation
guarantees the maximum speed/area ratio typical for the basic architecture.
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In Mars, there exist four different kinds of rounds, each repeated
8 times: forward mixing, forward keyed transformation, backwards
keyed transformation, and backwards mixing. It is possible to
implement forward and backwards mixing using the same functional
unit; the same holds for the forward and backwards keyed
transformation. The structure of the mixing transformation and the
keyed transformation are significantly different, and as a result they
must be implemented using separate units, as shown in Fig. 9. Both
of these units have an internal structure that corresponds to the basic
architecture (multiplexer + register + combinational logic).
Additionally, both units share the look-up table implementing two

Fig. 9 Deviation from the basic architecture       8x32 S-boxes.
in Mars.

5. Results

5.1 Results for the Virtex family

The results of implementing AES candidates, according to the assumptions summarized in section 4, using
the largest currently available Xilinx Virtex device, XCV1000BG560-6, are summarized in Fig. 10. For
comparison, the results of implementing the current NIST standard, Triple DES, are also provided  It should be
stressed that all results come either from simulation or from reports generated by Xilinx tools, and have not as
yet been confirmed experimentally. The details of all implementations, including the detailed block diagrams,
and the description of simulation and test experiments will be provided in the technical report available at the
AES conference [CG00]. Part of this report, describing Twofish, is already available on the web [CG99].

Implementations of all ciphers take from 9% (for Twofish) to 38% (for Serpent) of the total number of
12288 CLB slices available in the Virtex device used in our designs. It means that less expensive Virtex devices
could be used for all implementations. Additionally, the key scheduling unit can be easily implemented within
the same device as the encryption/decryption unit.

5.2 Results for the XC4000 family

For the low-cost, medium-size family of Xilinx FPGA devices, XC4000, only two ciphers, Twofish and
RC6, were able to fit within the largest device from this family. The relative performance of these ciphers is
similar to the relative performance in Virtex implementations. It is interesting to notice that for the two different
FPGA devices from this family, the smaller one guarantees the higher speed.

Speed [Mbit/s] Area [CLBs] Speed/Area [kbit/s⋅⋅CLB]Cipher
4028/4036 4085 4028/4036 4085 4028/4036 4085

Twofish 90.9 89.2 907 907 100.2 98.3
RC6 45.9 43.1 1222 1222 37.6 35.3

Table I. Results of implementing Twofish and RC6 using the largest available FPGA device from the XC4000XL family,
XC4085XL, and the largest device fitting the implementation of the respective cipher, i.e., XC4028XL for Twofish, and
XC4036XL for RC6.

5.3 Resource sharing between encryption and decryption

The amount of resource sharing between encryption and decryption is considerably different for various
AES candidates, depending on the type of the cipher. Resource sharing is close to 100% for Feistel ciphers and
modified Feistel ciphers, and close to zero for S-P networks. The level of resource sharing can be described by
the amount and type of the extra logic that must be added to the circuit implementing encryption, so that the
modified circuit can perform both encryption and decryption, as shown in Table II.
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Fig. 10 Results of implementing AES candidates using Xilinx Virtex FPGA devices.
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Fig. 11 Combinational part of a single round of RC6 implemented using basic architecture. Shaded components had to be
added to the encryption unit, so it could perform decryption. The thick line shows the critical path in the circuit. Unit F
performs operation (2(X2 mod 232 )+ X) mod 232 <<< 5. An arrow around a line means inverting the order of bits.

The relative size of the extra circuitry is the smallest for Mars and Twofish (less than 10%), and about 20%
for  RC6 (see Fig. 11). For Serpent and Rijndael, encryption and decryption are performed by two independent
units of equal size. For Rijndael, these two units share 16 look-up tables implementing inversions in the Galois
Field GF(28). These look-up tables take about 45% of the area used for encryption. Thus, the extra decryption
circuitry takes for Serpent 100%, and for Rijndael about 55% of the area required for encryption itself.

Cipher Extra logic Extra logic area /encryption logic area
Twofish 2 32-bit XOR2, 2 32-bit MUX2 6%
Mars 2 SUB32, 3 32-bit MUX2 3%
RC6 2 SUB32, 2 32-bit XOR2, 8 32-bit MUX2 (see Fig. 11) 20%
Rijndael Decryption independent of encryption, except 16 S-boxes 8x8 55%
Serpent Decryption independent of encryption 100%

Table II. Extra logic that must be added to the circuit implementing encryption, so that the modified circuit can perform
both encryption and decryption. Notation: XOR2 - 2-input XOR, MUX2 - 2-input multiplexer, SUB32 - 32-bit subtractor.

5.4 Critical path

The critical paths of all five AES candidates are characterized in Table III. As an example, the critical path
of RC6 (without init MUX) is shown in Fig. 11.

Based on the characteristics of the critical path, the AES candidates can be divided into two main categories.
Ciphers from the first category, RC6 and Mars, include in the critical path one complex arithmetic operation,
such as modular multiplication or modular squaring, which determines the minimum clock period of these
ciphers. The second category includes Rijndael, Twofish, and Serpent. In these ciphers, the critical path includes
one or several S-boxes, and several multiple-input XORs. The minimum clock period is the sum of the access
time to memories used to implement S-boxes, and delays introduced by multiple-input XORs and other simple
auxiliary operations. The critical path of Twofish contains additionally two 32-bit additions.

The effect of resource sharing between encryption and decryption on the critical path is the strongest for
RC6 (three encryption/decryption multiplexers in the critical path), very small for Rijndael, Twofish and Mars
(one encryption/decryption multiplexer in the critical path), and negligible for Serpent. In Mars, additional delay
(2 multiplexers) is caused by sharing resources between the forward and backwards keyed transformations.
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Cipher Minimum
clock

period - Virtex
[ns]

Minimum
clock period -
XC4000 [ns]

Number
of rounds

Components in the critical path
(path flow / list of operations)

E/D MUX → S-box →  affine transformation →
MixColumn → init MUX

Rijndael 38.6 - 10

S-box 8x8, XOR6, XOR5, XOR4, XOR2, 2 MUX2
S-box → MDS → PHT → key addition → xor → E/D
MUX → init MUX

Twofish 45.1 88.0 16

6  S-box 4x4, 2 ADD32, 9 XOR2, XOR4, XOR5, 2
MUX2
8 x {key mixing → S-box → linear transformation) →
init MUX

Serpent 94.3 - 4

8 S-box 4x4, 8 XOR2, 8 XOR7, MUX2
E/D MUX → squaring → addition → xor → E/D
MUX → variable rotation → addition → E/D MUX →
init MUX

RC6 61.6 139.5 20

SQR32, 2 ADD32, ROT32, XOR2, 4 MUX2
2 mode MUXes → E/D MUX → multiplication →
XOR → init MUX

Mars 100.6 - 32

MUL32, XOR2, 4 MUX2

Table III. Critical paths in the implementation of the basic architecture for all AES candidates. Notation:
E/D MUX - encryption/decryption multiplexer, i.e., multiplexer used to change the data flow between encryption and
decryption;  mode MUX - multiplexer used to change the data flow depending on the mode of transformation (e.g., forward
and backwards transformation in Mars); init MUX - multiplexer used to select between loading a new block of data and
feeding back data from the end of the cipher round (the only multiplexer shown in Fig. 3a); XORn - n-input XOR, MUX2 -
2-input multiplexer, ADD32 - 32-bit adder, MUL32 - 32-bit multiplier mod 232, SQR32 - 32-bit squaring mod 232, ROT32 -
variable rotation of a 32-bit word.

5.5 Area critical components

The components contributing most to the circuit area, for each AES candidate, are shown in Table IV. The
ciphers fall clearly into two groups: Twofish and RC6 have the area approximately three to four times smaller
than the area of the remaining three candidates, Mars, Rijndael, and Serpent. The relatively small area of
Twofish and RC6 comes from the fact that both ciphers are of the Feistel type. The relatively large size of
Serpent and Rijndael comes from the fact that both ciphers are S-P networks, and the amount of resource
sharing between encryption and decryption is limited (no resource sharing for Serpent, about 45% resource
sharing for Rijndael). Additional factor contributing to the large size of Serpent is the use of eight different types
of S-boxes in eight subsequent cipher rounds.

Cipher # of CLB slices
- Virtex

# of CLBs -
XC4000

Area critical components

Twofish 1076 907 96 S-box 4x4 (6 kbit), 18 32-bit XOR2, 24 MUL GF(28)
RC6 1139 1222 2 SQR32, 12 32-bit MUX2, 2 ROT32
Serpent 4438 - 512 S-box 4x4 (32 kbit), 2048 XORn (linear transformation,

n=2..7)
Mars 2737 - 4 S-box 8x32 (32 kbit), MUL32, 22 32-bit MUX2
Rijndael 2902 - 16 S-box 8x8 (32 kbit), 24 MUL GF(28), 256 XOR5 (affine and

inverse affine transformation)

Table IV. Cipher components contributing most to the circuit area. Notation: MUL GF(28) - multiplication in the
Galois Field GF(28), XORn - n-input XOR, MUX2 - 2-input multiplexer, MUL32 - 32-bit multiplier mod 232, SQR32 - 32-
bit squaring mod 232, ROT32 - variable rotation of a 32-bit word.
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The relatively large size of Mars is the result of the design decisions, such as
a. using two different kinds of rounds (mixing vs. keyed transformation). For the basic non-pipelined

architecture, only one type of round is active at a time.
b. using 4 large S-boxes 8x32 in a single round of the mixing transformation. Sharing two of these S-boxes

during mixing transformation is possible only at the cost of doubling the number of clock cycles required for
this transformation. (Our implementation still shares two S-boxes between the mixing transformation and
the keyed transformation.)

c. using area-consuming 32x32 bit modular multiplication.
The area of Mars, Serpent, and Rijndael is dominated by S-boxes. Even though the number and size of these

S-boxes is very different for each cipher, the total number of bits in memories implementing S-boxes, 32 kbits,
is identical for all three ciphers. This may explain the relatively similar size of all three implementations
expressed in number of CLBs.

5.6 Potential for inner-round pipelinig

Inner round pipelining can be most effectively applied to the ciphers with the following features:
a. the cipher round is composed of a large number of layers, with all layers performing simple operations with

comparable delays;
b.  the cipher round does not contain large hard-to-divide functional units.
Additionally, for FPGA implementations, it is advantageous if the implementation of the basic architecture
contains large number of CLBs with unused flip-flops (one bit registers).

The above conditions are the best fulfilled by Serpent. It is straightforward to introduce 8 internal pipeline
stages to the implementation round of Serpent (one implementation round = 8 regular cipher rounds), one after
each regular cipher round. Implementing pipeline stages  inside of the regular cipher round is possible in theory,
but may be difficult in practice because of the clock frequency limitations imposed by the control unit.

The second cipher best suited for inner-round pipelining is Twofish. According to Table III, the critical path
of Twofish contains a large number of simple operations with comparable delays, including a 4x4 S-box read-
out, XOR operations, and additions. The most complex of these operations is a 32-bit addition. It is likely that
this operation may need to be implemented using multilevel carry-lookahead architecture to take the full
advantage of the inner-round pipelining in Twofish. Additionally, the FPGA implementation of basic
architecture of Twofish contains a relatively small number of unused flip-flops, which will cause that the circuit
area will increase by a larger percentage than for Serpent with the same number of inner-round pipeline stages.

Rijndeal is relatively easy to pipeline, but its critical path contains only 7 elementary operations.
Additionally, the most time-consuming of these operations, the 8x8 S-box read-out, is hard to divide into extra
pipeline stages. RC6 can be efficiently pipelined at the cost of increase in the circuit area resulting from using
fast architectures for addition and multiplication (e.g., carry lookahead and carry save). Mars is the most
difficult to pipeline because of the
a.  irregular structure  with different operations in various paths;
b.  two types of rounds (mixing and keyed transformation) both using large S boxes;
c.  need for the complex fast architectures for the pipelined multiplication and addition.

5.7 Potential for loop unrolling

The largest gain from loop unrolling can be achieved by ciphers with the following properties:
* small area used by the combinational part of a single round, which permits fitting a large amount of rounds in
the largest available FPGA device;
* small delay of a single round compared to the sum of delays eliminated by loop unrolling, including the round
multiplexer delay, the register delay, and the register setup time (as shown in formula (2)).
* potential for optimizations at the boundary between the last and the first operation of the cipher round.

Assuming the use of the largest available Virtex chip, RC6 and Twofish have the highest potential for loop
unrolling. The largest Virtex chip can easily fit ten RC6 rounds and eight Twofish rounds. Mars can be
implemented with four rounds unrolled; Rijndael and Serpent with only two rounds unrolled.
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5.8 Potential for outer-round pipelining and mixed outer-inner-round pipelining

The largest gain from outer-round pipelining can be achieved by ciphers with the smallest area. The largest
number of pipelined rounds fitting within the largest available Virtex chip is the same as in the architecture with
loop unrolling. As a result, Twofish and RC6 can benefit most from the outer-round pipelined architecture. The
throughput of both these ciphers exceeds 1 Gbit/s for the architectures with the maximum number of outer-
round pipeline stages. Additional speed-up can be obtained by combining outer and inner round pipelining,
leading to the mulitigigabit-per-second performance. For Serpent, the most straightforward form of mixed
pipelining, with 16 regular cipher rounds unrolled and a register after each regular cipher round (1/8 of the
implementation round), would result in an even higher performance. Mars can benefit substantially from both
forms of pipelining; Rijndael primarily from the inner-round pipelining.

6. Design procedure and tools

The design flow and tools used in our group for implementation of algorithms in FPGA devices are shown
in Fig. 12. All five AES ciphers were first described in VHDL, and their description verified using the
functional simulator from Aldec, Inc. Test vectors  and intermediate results from the reference software

implementations were used  for debugging and verification
of VHDL codes. The revised VHDL code became an input
to Xilinx tools performing the automated logic synthesis,
mapping, placing, and routing. These tools generated
reports describing the area and speed of implementations,
a netlist used for timing simulations, and a bitstream to be
used to program an actual FPGA device. A final step is to
verify the design experimentally, using physical FPGA
devices. We plan to perform these experiments using a PCI
FPGA board from Virtual Computer Corporation [VCC].
The most complex PCI board currently available from
VCC is based on the XC4062XL FPGA device. This
device is able to fit full implementations of Twofish and
RC6, and an encryption portion of Serpent. All details of

Fig. 12 Design flow for implementing AES        our implementations  and  experiments  will  be  described
candidates  using Xilinx FPGA devices.        in the technical report [CG00].

7. Need for interleaved operating modes

The full potential of hardware implementations of symmetric block ciphers can only be utilized in cipher
modes that support efficient use of pipelining, as shown in Fig. 8. To date, the ECB mode is the only operating
mode standardized by NIST that supports efficient pipelining. However, ECB is not regarded secure for
transmissions of large volumes of data, and most standard protocols recommend using CBC or CFB modes
instead. Therefore, we propose to speed-up the standardization effort, and include in the AES standard
interleaved modes of operation, such as the interleaved CBC mode defined by:

Ci = AES(Mi ⊕ IVi) for i=1 to N, and Ci = AES(Mi ⊕ Ci-N) for i>N .                             (4)
The standard should support arbitrary values of the interleaving factor N, smaller than a certain maximum.

8. Conclusions

The results and analyses presented in this paper show that the differences in hardware performance of the
AES candidates are bigger and more significant than the corresponding differences in software performance. No
correlation between software and hardware performance was found. On the contrary, Serpent, believed to be the
slowest candidate in software, appeared to be the fastest of the five AES candidates in hardware. We believe that
the large differences among parameters of all five AES algorithms in hardware resulted primarily from internal
structure of these algorithms, and were not significantly affected by our implementation decisions. On the other
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hand, we could not completely eliminate or predict the influence of the FPGA design tools and the VHDL
design entry method on the results of the comparison. Assessed exclusively from the hardware performance
point of view, the five AES finalists fall into the three distinct classes with different performance characteristics.

The first class includes Twofish and RC6. Both ciphers guarantee compact low-cost implementations with
medium speed compared to other candidates. In particular, because of the area constraints, Twofish and RC6 are
the only ciphers that can be implemented using low cost FPGA devices from the Xilinx XC4000 family. Both
ciphers can be substantially sped-up by outer-round pipelining (for non-feedback modes (ECB, counter mode)),
and - to the lesser extent - by loop-unrolling (for cipher feedback modes (CBC, CFB)). Among the two, Twofish
is in some respects superior to RC6. It is about 70% faster and is more suitable for inner-round pipelining. Both
ciphers use comparable area, and as a result their potential for loop unrolling and outer-round pipelining is
similar.

The second class includes Serpent and Rijndael. Both ciphers guarantee very high speed at the cost of the
relatively large area compared to the ciphers from the first class. The primary way of speeding up these ciphers
for non-feedback cipher modes (ECB and counter mode) is inner-round pipelining. Both ciphers have a similar
speed in the basic architecture. Rijndael can be implemented using about 35% less area. The more regular
architecture of Serpent makes it significantly more suitable for a multi-stage inner-round pipelining.

The third class is composed of Mars itself. This cipher shows the worst hardware characteristics of all five
candidates. It is over twice as slow than the next slowest candidate (RC6), and over 8 times slower than the
fastest AES cipher (Serpent). It also takes over twice the area used by ciphers from the first group, Twofish and
RC6. Further optimizations of the Mars implementation are certainly possible, but would require the higher
development effort than that devoted to other AES candidates.

It is interesting to notice that although four out of five candidates outperform Triple DES in terms of speed,
only Twofish has a comparable performance in terms of the speed/area ratio. Three other candidates, Rijndael,
RC6, and Serpent, have a similar, and much lower than triple DES, value of this performance parameter.

Out of all five candidates, Twofish seems to be the most suitable for applications where the primary
requirement is the limited cost or area of the cryptographic hardware. Serpent and Rijndael both offer superior
performance for applications where the speed itself is a criterion of primary concern.
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Overview
The Advanced Encryption Standard selection process has, for the first time, included software execution speed as a relevant

criterion for the choice of the next standard. The initial submissions included keying, encryption, and decryption execution times, in
clock cycles, for Intel Pentium, Pentium II, and Pentium Pro microprocessors. While Pentium execution speeds are important, by no
means do they completely characterize software performance, particularly that of existing RISC microprocessors and the new IA-64
microprocessor family.

In order to enable a more complete characterization of software performance, our group, working from HP Labs, decided in January
1999, to study and publish the performance of likely AES finalists for PA-RISC and IA-64 microprocessors. We initially selected RC6,
Rijndael, Serpent, and Twofish. Our preliminary results were informally presented at the 1999 Rome Conference. Following the selection
of the five finalists, we included work on MARS. This paper discusses the issues, implementations, and results of our work for each of
the five AES finalists.

Details of specific engineering tradeoffs for Itanium and McKinley chips remain proprietary. We therefore are not at liberty to
disclose complete source codes and performance details from which such information can be deduced. What we have chosen to present
are actual simulation cycle counts for a snapshot of the evolving McKinley design. These are not cycle counts for an actual product. We
offer them as well-substantiated, conservative indicators of the performance of the future family of IA-64 processors. Itanium will be
somewhat slower; future implementations will be faster. We believe these results do provide a reasonable basis for software performance
judgments about the AES finalists.  A summary table appears at the end of the paper.

In addition to processor cycle count, we also present PA-RISC and IA-64 code sizes, register usage, and instruction-level
parallelism. Finally, we describe the programming approaches we employed for effective use of both architectures. We would be happy
to share full details with the finalists' authors under non-disclosure terms.

Methodology
We focused on hand-optimized assembly language implementations of the algorithms for 128-bit keys and 128-bit blocks, using

compiled codes as sanity checkers. We agree with Bruce Schneier that AES codes will be implemented in this manner in actual systems;
this also leads to the clearest comparisons between instruction set architectures. Codes for this study were optimized for performance, not
code size or table size.

For PA-RISC we measured execution speeds on a PA-8500. We timed executions using the PA-RISC 64-bit interval timer, which
counts actual clock cycles. To eliminate cache and system effects, we ran tens of millions of executions, varying keys and data blocks on
a lightly loaded system, and profiled those runs with minimum cycle counts. We observed that runs often would differ by only a few
cycles, and that the cycle counts formed Gaussian distributions. It was further observed that the input value (input key for keying, data
block for encryption/decryption) noticeably affected performance for algorithms that used table look-ups. Thus, while the PA-RISC times
are best observed times, we also show the distribution's average and maximum values.

Lacking IA-64 hardware, we employed three different types of simulators. Initial debugging used a fairly fast and purely functional
instruction set simulator. The second type was considerably slower, but simulated parallel execution, latencies, and memory hierarchy
behavior. This was used for additional code validation and preliminary execution cycle counts.

These simulators, while useful, did not guarantee absolute fidelity to the chip designs. Therefore, final timings used fully simulated
RTL designs of the Merced (now Itanium) and McKinley chips. This approach was extremely slow, and our results often varied from day
to day, as engineers improved their designs. We constructed special tools that automatically prepared test inputs and displayed the cycle-
by-cycle behavior of the microprocessor pipeline. The memory hierarchy was initialized for each run, and the timing could be computed
by subtracting cycle numbers from the pipeline output.

Notation
A <<< n Left rotation by n bits
A >>> n Right rotation by n bits
A ⊕ B Bit-wise Exclusive-OR
A +.× B Matrix multiplication
[b0, b1, ..., bn] Column vector, LSB first

PA-RISC Facts
PA-RISC first shipped in 1986 and is the processor for Hewlett-Packard's RISC workstation and server products. Architecture

features include 64-bit virtual addressing, 32 general-purpose registers, and 32 floating point registers. Current processors implement the
64-bit Version 2.0 of the PA-RISC architecture.

                                                                
1 John S. Worley jworley@fc.hp.com William S. Worley, Jr. worley@hpl.hp.com
Tom W. Christian twc@fc.hp.com Christopher S. Worley cworley@fc.hp.com
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This study utilized the PA-8200 and PA-8500 microprocessor chips. Both of these chips are out-of-order superscalar designs,
capable of executing two memory operations and two integer or floating point instructions per cycle. Only one store instruction can
complete per cycle.  Careful software scheduling is required to realize the full parallelism.

IA-64 Overview
This section provides a very brief overview of the IA-64, highlighting features in the discussions that follow. Readers familiar with

the architecture can skip this section.

Parallelism and Functional Units
The majority of processor architectures specify sequential instruction execution. Microarchitectures then employ superscalar logic to

issue multiple instructions in parallel whenever possible. In contrast, the IA-64 architecture puts all the parallelism cards on the table.
There are four types of functional units: M (memory), I (integer), F (floating point), and B (branch); each IA-64 implementation has two
or more of each of these units. IA-64 hardware detects when program parallelism exceeds the capabilities of the implementation, but
responsibility for organizing instructions to execute in parallel is wholly with the programmer or compiler.

Instructions, Bundles, and Issue Groups
There is a corresponding instruction class for each functional unit type, although a specific instruction may not be able to execute on

all units of that type in a given implementation. In addition, there is an A (ALU) instruction class that can execute on both I and M units.
A instructions include most integer arithmetic and logical operations, so that otherwise idle memory units can be used for parallel
computation.

Three instructions are grouped into a bundle, where all instructions in the bundle may be eligible to be issued in parallel to
functional units specified by the bundle type. Sequential bundles that can issue in parallel form an issue group. One characteristic of an
IA-64 implementation is the maximum number of bundles that can issue together. For example, a processor that can issue at most two
bundles in one cycle is referred to as a “two-banger.”2

Registers and the Register Stack
IA-64 provides 128 64-bit integer registers. The low 32 registers (r0 - r31) are common for all code. For function arguments and

local values, each procedure can allocate up to 96 additional registers in a register stack frame. Saving and restoring registers in the
register stack is handled by an independent hardware thread, so that no registers need to be saved and restored explicitly.

In addition to the integer registers, IA-64 provides 128 extended precision (64-bit mantissa, 17-bit exponent) floating point
registers, 64 1-bit predicate registers (see below), and eight branch registers for indirect branches.

Predication
A powerful feature of IA-64 is instruction predication. Every instruction, except for certain branch and control instructions, is

predicated, i.e., its execution is enabled or disabled by one of the 64 predicate bits. One predicate, p0, is hardwired to ‘1’ for instructions
that execute unconditionally or cannot be predicated. Predicates are set or cleared by compare instructions and certain floating-point
instructions. Also, the 64 predicates can be read or set in parallel using special instructions. Predication allows, for example, one of two
instructions to execute based on a comparison condition, or for instructions to be enabled during the first pass of a loop and disabled for
all subsequent iterations.

Counted Loops
IA-64 provides hardware support for counted loops. The special registers ar.lc (loop counter) and ar.ec (epilogue counter)

control when the branch instructions br.ctop and br.cexit are taken. For example, if ar.lc is set to 9 and ar.ec is set to 0, a
counted loop will execute 10 times if the loop ends with br.ctop, 9 times if the loop begins with br.cexit. The hardware is
designed to predict perfectly when a branch will be taken or fall through, so that counted loops can execute with no branch penalties.

Rotating Registers
When a subroutine allocates a register stack frame, some or all of the local registers, starting from r32, can be set to rotate. Each

time a counted loop branch is taken, the rotating registers are circularly renamed such that the next iteration of the loop can operate on
different data without changing the register name. For example, if there are eight registers designated as rotating, the renaming is as
follows:

r32 → r33 → r34 → r35 → r36 → r37 → r38 → r39 → r32

Fixed portions of the floating point and predicate registers also rotate. The high 96 floating point registers (f32 through f127)
rotate. The high 48 predicate registers (p16 to p63) also rotate, but with a slight difference. While the loop counter ar.lc is non-zero,
a ‘1’ value is shifted into p16; if ar.lc is zero and the epilogue counter ar.ec > 1, a ‘0’ value is shifted in instead.

Programming Issues
There are three operations commonly used in cryptographic algorithms that are not fully realized in the integer hardware on PA-

RISC and IA-64: fixed 32-bit rotations, variable 32-bit rotations, and 32x32→32 unsigned integer multiplies.

                                                                
2 This term comes from the slang term for a two-cylinder engine. While three-banger or more implementations are foreseeable, it

seems unlikely that IA-64 will ever give rise to, say, a V12.
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PA-RISC
On PA-RISC, fixed rotations can be executed in one cycle using the shift right pair word (shrpw) instruction. This instruction

concatenates the low 31 and 32 bits from left and right source registers, respectively, shifts right the specified distance, and leaves the
high 32 bits undefined. If the two source registers are the same, the low bits are concatenated with the high bits, exactly as would occur
in a rotation. Thus, fixed rotations on PA-RISC can be defined as follows:

ROTR .macro src, dst, count
shrpw src, src, count, dst
.endm

ROTL .macro src, dst, count
shrpw src, src, 32 - count, dst
.endm

Variable rotations use the same strategy, except that an extra cycle is required to move the shift distance into the SAR (shift amount
register). For a right rotation, the actual shift distance is used. For a left rotation, the 5-bit complement of the distance is used and the
value is pair-shifted right one before the variable shift. The left shift also executes in two cycles since the mtsarcm (move to SAR
complement)  and the first shrpw can issue in the same cycle on the PA-8000 family.

Integer multiplication on PA-RISC requires using the unsigned integer multiply in the floating point unit. Since the only path for
moving data between the integer and floating point units is memory, the multiplicands must be stored, loaded into the FPU, multiplied,
stored again, and reloaded into the integer unit. This adds latencies on both sides of the multiply, in addition to the multiply time itself.

IA-64
Although the IA-64 architecture has a shift right register pair instruction, it only operates on full 64-bit registers. This can still be

used to implement 32-bit fixed rotations in two cycles as follows:
dep.z TMP = src, 32, 32
shrp dst = src, TMP, count + 32

for right rotations, and
dep.z TMP = src, 32, 32
shrp dst = src, TMP, 64 - count

for left rotations.
The dep.z instruction puts the low 32 bits of the source register in the high half of a temporary register, clearing the low half. The

pair-shift concatenates the low bits with the high bits and shifts far enough to put the proper set of bits in the low half of the destination.
Like the PA-RISC instruction, the destination’s high half is not cleared. None of the AES finalists require these bits to be cleared;
however, the zxt4 instruction can be used if necessary.

On IA-64, variable rotates are implemented much as in the C language: shift left j, shift right (32 - j), OR or ADD the results
together. This involves four operations and a minimum of three cycles. The variable shifts are executed on the multimedia units (MMUs).

Like PA-RISC, the IA-64 primary integer multiply is implemented on the floating point unit and involves latency cycles to move
back and forth. However, 16x16 MMU multiplies and parallel adds can be used to compute and sum the partial products instead. This is
effective when only the low 32 bits of the result are of interest. In particular, the parallel 16-bit unsigned multiply and shift instruction
(pmpyshr.u) can be used to complete a 32x32→32 multiply.

If we consider multiplicands derived from A as four 16-bit elements, A2 can be computed with two multiplies and two adds as
follows:

0 0 AHI ALO *>>0 0 0 ALO ALO = 0 0 AHIALO<15..0> ALO
2<15..0>

+

0 0 ALO 0 *>>16 0 0 ALO ALO = 0 0 ALO
2<31..16> 0

+

0 0 AHIALO<15..0> 0

One of the operands is just the argument, A. The other two arguments are generated by the 16-bit mux MMU instructions; the
additional addend is derived from the first product using the 16-bit mix instruction. The general 32x32→32 requires three multiplies and
two additions. If we consider multiplicands derived from A and B as four 16-bit elements, the operations are:

0 0 AHI ALO *>>0 0 0 BLO BLO = 0 0 AHIBLO<15..0> ALOBLO<15..0>

+

0 0 ALO 0 *>>0 0 0 BHI BLO = 0 0 ALOBHI<15..0> 0

+

0 0 ALO 0 *>>16 0 0 BLO BLO = 0 0 ALOBLO<31..16> 0

Two of the operands are just the arguments, A and B. The other two arguments are generated by the 16-bit mix and mux MMU
instructions.
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It has been noted that with better hardware support for 32-bit rotations and 32x32→32 multiplication, all the AES finalists will
outperform Pentium on IA-64. In the performance analysis for each algorithm, we have estimated performance for a hypothetical IA-64
implementation, called IA-64++, with the following enhancements:

•  A single-cycle shift right pair word instruction, as in PA-RISC
•  Single-cycle, 32-bit, left and right variable rotate instructions
•  A two-cycle 32x32→32 unsigned multiply

Mars
The Mars encryption scheme (IBM team) uses a mix of approaches: substitution boxes, Feistel networks, multiplication, and fixed

and variable rotates. The single substitution box, S[], is fixed, and is employed both as a 512 word array (9-bit index), and as low
(S0[]) and high (S1[]) 256 word arrays (8-bit index). The principal challenges for PA-RISC and IA-64 implementations are the
32x32→32 multiply and variable rotates.

Keying3

Mars keying initializes the first N elements of a fifteen-element array, T[], to the input key k[], where N is the size of the key in
32-bit words. The key is then padded to 15 words by setting T[N]←N and zeroing the remainder of the array. Instead of generating the
entire expanded key directly, Mars generates ¼ of the array, or 10 words, each time, repeating the process four times to develop the entire
key array, K[]. There are three steps in each iteration: linear transform, stirring, and storing. The linear transform applies the formula:

T[i] = T[i] ⊕ ((T[i-7 mod 15] ⊕ T[i-2 mod 15]) <<< 3) ⊕ (4i + R)

to each element of the array, where R is the iteration count (0..3). Stirring uses the following formula:
T[i] = (T[i] + S[T[i-1 mod 15] & 0x1ff]]) <<< 9

applied to each word, repeated four times. Finally, 10 words from the intermediate array are stored in the expanded key array as
follows:

K[10×R + i] = T[4i mod 15]

which effectively stores words 0, 4, 8, 12, 1, 5, 9, 13, 2, and 6, in that order, from the temporary array. After all the expanded key
words are generated, those used in multiplication (K[5], K[7], …, K[35]) are modified if they are weak, i.e., contain long runs of 1’s
or 0’s. The algorithm for identifying weak key words comes from the Mars implementation by Brian Gladman.

PA-RISC
The PA-RISC implementation keeps T[] in registers. The linear transform, the inner stirring loop, and key stores are straight-lined.

In the fix-up phase, the two-ALU PA-RISC has sufficient execution bandwidth to compute the fix-up mask in parallel with looking for
long runs of 1’s or 0’s. If there are no such runs, the remainder of the fix-up is skipped. Using the authors' estimates that statistically 1
out of 41 keys are weak, the extra computation is skipped 97.6% of the time, a performance win even with a branch penalty.

IA-64
The IA-64 Mars keying implementation uses software pipelining to increase keying speed. The routine allocates a 16-register stack

frame, all of which are rotating. The register usage is as follows (indices are modulo 15):
r32 r33 r34 r35 r36 r37 r38 r39 r40 r41 r42 r43 r44 r45 r45 r47

Ti-1 Ti-2 Ti-3 Ti-4 Ti-5 Ti-6 Ti-7 Ti-8 Ti-9 Ti-10 Ti-11 Ti-12 Ti-13 Ti-14 Ti Tx

By assigning Tx ← Ti at the end of the loop, this organization implements a 15-register rotation. The linear transform XORs Ti-2
(r33) and Ti-7 (r38), rotates the result, the XORs with Ti and the iteration constant (4i + R). This would normally require four cycles;
however, the transform can be reorganized into a two-stage, two-cycle pipeline. The first stage computes Ti-2 ⊕  Ti-7 and extracts the high
three bits of the result; the second phase computes Ti ⊕  (4i + R) and completes the rotation, then XORs the final result. The loop uses
rotating predicates to disable the second phase on the first iteration, while the last execution of the second phase is handled after the loop
so that the values return to their initial positions when the loop is complete.

Pipelining the inner stirring loop is limited by the use of T[i-1 mod 15] in computing T[i]; however, the high-order nine bits
extracted for rotation can be used to start the S-Box look-up for the next iteration. This allows a two-stage, four-cycle pipeline, which
executes 33% faster than the 6-cycle, non-pipelined equivalent.

Like PA-RISC, the fix-up mask can be computed in parallel with looking for runs of 1’s and 0’s. Unlike PA-RISC, branches include
‘hints’, so that the branch penalty is only incurred for weak keys, or 2.4% of the time.

Encryption
Mars encryption consists of four phases, each repeated eight times: forward mix, forward keyed transform, backward keyed

transform, and backward mix. The forward and backward mixing uses table look-ups, fixed rotation, XORs, and addition and subtraction
in a rotating pattern, e.g., fmix(A, B, C, D), fmix(B, C, D, A), etc. There are asymmetric additions in steps 1, 2, 4, and 5 of
the forward mix, with corresponding subtractions in steps 2, 3, 5 and 6 of the backward mix.

                                                                
3 This is the ‘tweaked’ version of the Mars keying. The implementation of the initialization, mixing, and stirring phases of the

original scheme is discussed in Appendix B. The key fix-up is identical for both schemes.
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The core of the keyed transforms is the E function, which takes one data word and uses table look-up, multiplication, variable
rotation, additions and XORs to generate three data words (L, M and R) to add or XOR with the other three data words as follows:

Forward Mode Backward Mode
D[1] += L D[1] ^= R
D[2] += M D[2] += M
D[3] ^= R D[3] += L

On PA-RISC, the mixing phases are coded as straight-line operations. Even with the four table look-ups per step, there is enough
memory bandwidth to load the 16 multiplicative keys into the floating-point unit at the same time. The real bottleneck is the integer
multiply in the E function: the data word must be rotated, stored, loaded into the floating point unit, multiplied, stored again and reloaded
into an integer register. Although an addition and table look-up can be evaluated in parallel, these do not fully amortize the performance
cost of the multiply.

On IA-64, both forward and backward mixing can be coded as a single loop: the asymmetric operations are controlled by loading a
specific bit pattern in the rotating predicates, enabling the appropriate operation at the proper step. Because of perfect branch prediction
with counted loops, this approach executes in the same cycle count as straight-line code.

On IA-64, MMU multiplies are used to compute the E function multiplication. Once the multiplication is complete, the remainder of
the E function can be evaluated. Like the mixing phases, a predetermined bit pattern loaded in the rotating predicates controls whether
the forward or backward mode operations are enabled at each step.

Performance

Cycles Pentium PA-RISC IA-64 IA-64++

Min Average Max

Keying 2128 1797 1804.65 1879 1408 1408

Keying (Original) 3894 1969 1975.89 2060 1903 1313

Encryption 320 540 563.01 584 511 255

Decryption 374 538 552.37 566 527 271

On PA-RISC, Mars keying executes in 1797 cycles, compared to the best-reported Pentium results of 2128, a 15.6% performance
advantage. Encryption and decryption, however, run slower due to the multiplication overhead: 68.8% slower for encryption (540 vs.
320) and 43.9% slower for decryption (538 vs. 374).

On IA-64, keying completes in 1408 cycles, a 33.8% performance gain. Encryption and decryption, with the extra cycles required
for multiplication and variable rotation, are slower than Pentium: 59.7% slower for encryption (511 vs. 320) and 40.9% slower for
decryption (527 vs. 374). Keying on IA-64++ is the same 1408 because the software pipelines hide the extra cycles needed for rotation.
Encryption improves to 255 cycles (20.3% faster than Pentium), and decryption also improves to 271 cycles (27.5% faster).

RC6
The principal programming challenge when implementing RC6 (Rivest, Robshaw, Sidney, Yin) on PA-RISC and IA-64 is the lack

of the fast 32x32→32 multiply and variable rotate primitive the algorithm requires for performance. On the positive side, IA-64’s
rotating integer registers and instruction predication simplify data management and allow for a very compact code size.

Keying
RC6 keying starts with the input key, L[].The key array, S[], is initialized using the two magic numbers P32 = 0xB7E15163 and

Q32 = 0x9E3779B9, as follows:
S[0] = P32
S[1] = P32 + Q32
S[2] = P32 + 2 * Q32
S[3] = P32 + 3 * Q32

. . .

The keying algorithm then performs three mixing passes over the two arrays:
A = S[i] = (S[i] + A + B) <<< 3
B = L[j] = (L[j] + A + B) <<< (A + B)
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where A and B are initially zero, and i and j count circularly through the key and input key arrays, respectively. If the first pass
through the key array is handled separately, it is possible to combine the key array initialization with the first mixing phase. The first mix
can also be partially hard coded, since A = B = 0, and S[0] = P32. Since, after the first loop pass, B is just the previous, modified input
key word, the variable B is replaced with LPREV(k), the user input key L[(k-1) mod 4]. The first pass is coded as follows:

keyVal = P32;
A = T = ROTL(P32, 3);
for (k = 1; k < NKEYS; ++k) {

LPREV(k) = ROTL(LPREV(k) + T, T);
keyVal += Q32;
S[k - 1] = A;
A = ROTL(keyVal + A + LPREV(k), 3);
T = LPREV(k) + A;

}
S[NKEYS - 1] = A;

This organization saves one full load and store of the key array and does not require computing the modulus 2*r + 4, where r is
the number of encryption rounds. The last two passes are identical, with a similar structure to the first pass, but do not, of course, re-
initialize the key array.

For PA-RISC, each instance of the loop can be unrolled four ways, with the input key words reordered circularly each time - this
eliminates loading and storing the keys, and the modulus computation on the input key index.

The IA-64 architecture suggests a different strategy for implementation. The large register file allows the entire key array to be kept
in registers; the rotating integer registers naturally mimic the way data flows through the computation, such that no indexing or modulo
operations are required. The keying routine allocates a 56-register stack frame, all of which are rotating. The rotating registers are
allocated as follows:

r32-r33 r34 r35 r36 r37 r38 r39 r40 r41 r42-r82 r83 r84-r87

Unused LX Ln Ln+1 Ln+2 Ln+3 SX SActive SPrev Key Array SNext Unused

where <Ln … Ln+3> are initialized from the user input key. In order to circulate the keys and key array separately, LX ← Ln+3 and SX
← SNext before the registers are rotated. Each time through the loop, the code operates on Ln, SActive, and SPrev. Rewriting the mixing loop
in these terms:

for (k = 1; k < NKEYS; ++k) {
Ln = ROTL(Ln + T, T);
A = ROTL(SActive + SPrev + Ln, 3);
T = Ln + A;
SActive = A;
LX = Ln+3;
SX = SNext;

}

Predicated instructions enable key array initialization during the first mixing pass and storing the final key words during the final
pass, all within the same code loop and without branching. There are enough unused instruction slots to compute the two qualifying
predicates with no additional cycles. The keying routine is thus coded in a single loop:

for (k = 1; k < 3 * NKEYS; ++k) {
Ln = ROTL(Ln + T, T); if (firstMix) SActive = SPrev + Q32;
firstMix = k < NKEYS-1; lastMix = k >= 2 * NKEYS;
SPrev = A; if (lastMix) *S++ = A;
A = ROTL(SActive + A + Ln, 3);
T = Ln + A;
LX = Ln+3;
SX = SNext;

}
*S = A;

This coding is extremely compact: the entire routine consists of 39 instructions in 16 IA-64 bundles; the core loop is 20 instructions.

Encryption
The RC6 definition is compact and elegant, but the algorithm relies on a fast 32x32→32 multiply and variable rotate for

performance. To multiply on PA-RISC, the two data words must be stored, loaded into the floating point unit, multiplied, stored again
and reloaded into integer registers. The inner loop is unrolled to rotate the data words.

On IA-64, MMU multiplies are used to compute A2. Once the full multiplication is complete, the shladd instruction computes
the final product 2A2 + A ≡ A*(2A + 1). Using rotating registers for the data words, RC6 encryption can be coded in a single loop.
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Performance

Cycles Pentium PA-RISC IA-64 IA-64++

Min Average Max

Keying 1632 1077 1077 1077 1581 1057

Encryption 243 580 590.76 597 490 150

Decryption 226 493 496.37 499 490 130

On PA-RISC, RC6 keying executes in 1077 cycles, compared to the best-reported Pentium results of 1632, a 34% performance
advantage. Encryption and decryption, however, run slower due to the multiplication overhead: 138% slower for encryption (580 vs.
243) and 118% slower for decryption (493 vs. 226).

On IA-64, keying completes in 1581 cycles, a 3.1% performance gain. Encryption and decryption, with the extra cycles required for
multiplication and variable rotation, are slower than Pentium: 101.7% slower for encryption (490 vs. 243) and 116.8% slower for
decryption (490 vs. 226). For IA-64++, keying is estimated to run in 1057 cycles, 54% faster than Pentium, encryption in 150 cycles
(38.3% faster), and decryption in 130 cycles (42.5% faster)

Rijndael
The principles for a fast Rijndael (Daemen, Rijmen) implementation are largely explained in the algorithm specification. A short

comment in section 5.2.2 summarizes the general approach:
“In the table-lookup implementation, all table lookups can in principle be done in parallel. The EXORs can be done
in parallel for the most part also.”

This turns out to be an understatement. In other AES candidates, parallelism must be squeezed from the specification, while
Rijndael’s parallelism cup runneth over. Even the keying phase has considerable parallelism, as will be shown.

Realizing this parallelism requires five 4K tables, as discussed below, although only two tables are used for any one operation. Each
4K table is made up of 4 256x4 byte tables, where each 1K table is rotated one byte position from the previous. The tables and the
operations they’re used in are:

S-Box Keying, Encryption
Implements byte substitution only

I-Box Decryption
Implements inverse byte substitution only

Column Mix Encryption
Main substitution box - combines the byte substitution and column mix operations

Inverse Mix Decryption
Inverse substitution box - combines the byte substitution and inverse column mix operations

Key Mix Keying
Column mix box for computing the inverse key table

These tables are all derived from the basic GF(28) mathematics outlined in the specification. A simple C program is used to generate
all tables and print them as C array declarations to compile and link with the algorithm codes. While 20K bytes of tables may be not
optimal for some target implementations, large memory, large cache machines like PA-RISC and IA-64 gain substantial performance
with what is negligible extra data. Rijndael outperforms all other AES submissions in keying, encryption, and decryption. In particular,
Rijndael keying is a full order of magnitude faster than most other algorithms.

Keying
Rijndael key expansion looks largely serial. There are four look-ups every fourth key word, but little else to suggest parallelism. The

discussion in section 5.3.3, however, shows that decryption can be more efficiently implemented if an “inverse” key table is used. If the
basic key generation loop is unrolled four times, we can combine the inverse key computation with the key generation:

A = SubByte(RotByte(D)) ^ Rcon[i];
B = B ^ A;
C = C ^ B;
D = D ^ C;
IA = InvMixColumn(A);
IB = InvMixColumn(B);
IC = InvMixColumn(C);
ID = InvMixColumn(D);

Clearly, the InvMixColumn operation, which is four byte-indexed lookups into four 256-entry tables and three XORs, can begin
as soon as the key word is ready. Thus, both the forward and inverse key tables can be computed in the same time as computing the
inverse table. As a minor space optimization, the last forward key and first inverse key, which are identical, are stored only once in a
combined key table.

Both the PA-RISC and IA-64 implementations are straightforward: as soon as the forward key is available, start the look-ups for the
inverse key. Two look-ups are performed on the key word A, but only one set of byte extractions is needed, saving four operations per
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round. PA-RISC has 28 registers available to a subroutine: all of these are needed to hold the intermediate results. The large register file
on IA-64 provides enough temporary registers to perform the computation with maximum concurrency. Rijndael keying improves greatly
when everything can be kept in registers.

On PA-RISC, a load address can be the sum of a base register and a scaled offset register; thus, table look-up requires two
instructions. IA-64, however, only takes a load address from a register without offset. Therefore, a table look-up must explicitly scale the
index and add it to the desired table address: this is accomplished with the shladd instruction. The sequence of extract, scale and add,
load is pipelined, so that the entire look-up sequence only requires one extra cycle over the equivalent PA-RISC sequence. The greater
parallelism in IA-64 allows the forward key computation and XOR trees to overlap the look-ups, giving it an overall performance
advantage.

Encryption
Rijndael encryption, while defined as several, separate steps, can be collapsed into a single set of table look-ups by (1) computing

the look-up tables to combine the byte substitution and column mix operations, and (2) selecting the index bytes from the data block to
reflect the row rotation in each round. Decryption is identical except for the look-up table and the order of byte selection. It is not
surprising, then, that encryption and decryption are very similar to keying, except that only 16 look-ups are done per round instead of the
20 performed for each keying round.

Performance

Cycles Pentium PA-RISC IA-64 IA-64++

Min Average Max

Keying 1338 239 249.25 261 148 148

Forward Keying 217 85 92.18 101 104 104

Encryption 284 168 175.5 193 124 124

Decryption 283 168 175.88 192 125 125

On PA-RISC, Rijndael full keying executes in 239 cycles, compared to the best-reported Pentium results of 1338, a 5.6:1
performance advantage. Encryption and decryption are faster: 40.9% faster for encryption (168 vs. 284) and 40.6% faster for decryption
(168 vs. 283). On IA-64, keying completes in 148 cycles, a 9:1 performance improvement over Pentium. Encryption and decryption are
also faster: 56.3% faster for encryption (124 vs. 284) and 55.8% faster for decryption (125 vs. 283).

The parallelism of Rijndael saturates a two-banger IA-64. To explore the limits of Rijndael’s parallelism, a code schedule was
developed for a hypothetical, four-banger implementation. With this 12-way parallel IA-64, the inner loop of Rijndael encryption can be
executed in 7 cycles, which suggests a total encryption time of 74 cycles per 128-bit data block. This is only one cycle short of the
theoretical limit of 6 cycles per round for an arbitrarily wide IA-64 implementation, which would perform 16 extracts, 20 address
computations, 20 loads, then three levels of XORs.

Serpent
The heart of the Serpent algorithm (Anderson, Biham, Knudsen) is the set of Boolean equations implementing the “bit-slice”

substitution boxes. One set of equations was submitted with the AES proposal; Brian Gladman and Sam Simpson used a recursive
expression search program to develop an alternative set of equations that improved performance on the Pentium-II platform. Dr.
Gladman, however, cautions on his Serpent web page4:

“On any particular machine it will be desirable to experiment with the order of terms (where there is quite a lot of
flexibility) and with the reuse of the temporary variables used during function evaluation.”

Taking this advice to heart, the two sets of equations, along with an earlier version of Gladman’s equations, and a set of equations
optimized for Pentium submitted to the authors by Dag Arne Osvik5, were analyzed according to the following metrics:

Ops Count of Boolean operations required to compute the substitution or reverse substitution function. The
equation parser looks for occurrences of A & ~B to take advantage of the and-complement
instruction in both the PA-RISC and IA-64 instruction sets.

Cycles Number of steps required to complete the computation on a highly parallel machine, such as IA-64,
and a two-ALU operation superscalar machine, such as PA-RISC.

Width For IA-64, the largest number of operations executed concurrently.
Temps Number of temporary values. In order to reduce the number of temporaries, a simple register analysis

was performed that first re-used the output terms as intermediate results, then assigned temporaries as
needed by the computation.

The results of this analysis for IA-64, summarized in Table 1 below, are interesting: even though the Gladman equations
consistently have fewer operations than the others, only 4 of the 16 sets compute faster. When the equations are analyzed for two-ALU
                                                                

4 The expression search program, Boolean equations and reference implementations are available at
http://www.btinternet/~brian.gladman/cryptography_technology/Serpent

5 Dag Arne Osvik osvik@ii.uib.no
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operation on PA-RISC, the results (Table 2) favor Gladman’s equations, but four of Osvik’s equations compute faster. A follow-up
submission from Mr. Osvik for S-Box 3 resulted in a spectacular, 4-cycle, solution for IA-64, even though it has the highest operation
count of any equation.

The conclusion here is that there is no optimal set of bit-slice equations for all Serpent implementations: the capability and
constraints of the target machine must be carefully considered. The authors invite others to submit their own equations for analysis, and
offer the analysis tools used here to the Serpent team for their own use.

Keying
Serpent keying starts with the input key, padded to 256 bits, and generates 132 4-byte values with the recurrence:

Wi = (Wi-8 ⊕ Wi-5 ⊕ Wi-3 ⊕ Wi-1 ⊕ Φ ⊕ i) <<< 11
where W-8 = input key word 0, W-7 = input key word 1, etc., and Φ is 0x9e3779b9, derived from the Golden ratio. The resulting

values, [W0 … W131], are then processed in groups of four, <Wn, Wn+1, Wn+2, Wn+3>, applying the Serpent forward substitution boxes in
the order S3, S2, S1, S0, S7, …, S4, S3. This generates the 33 128-bit keys required for encryption.

Inspecting the recurrence, there is an active state of eight words and that Wi replaces Wi-8 at each step. If we label the initial key
words W-8 = A, W-7 = B, … W-1 = H, we can rewrite the recurrence as the following pattern:

A’ = (A ⊕ D ⊕ F ⊕ H ⊕ Φ ⊕ 0) <<< 11
B’ = (B ⊕ E ⊕ G ⊕ A’ ⊕ Φ ⊕ 1) <<< 11
C’ = (C ⊕ F ⊕ H ⊕ B’ ⊕ Φ ⊕ 2) <<< 11
D’ = (D ⊕ G ⊕ A’ ⊕ C’ ⊕ Φ ⊕ 3) <<< 11
E’ = (E ⊕ H ⊕ B’ ⊕ D’ ⊕ Φ ⊕ 5) <<< 11
F’ = (F ⊕ A’ ⊕ C’ ⊕ E’ ⊕ Φ ⊕ 6) <<< 11
G’ = (G ⊕ B’ ⊕ D’ ⊕ F’ ⊕ Φ ⊕ 7) <<< 11
H’ = (H ⊕ C’ ⊕ E’ ⊕ G’ ⊕ Φ ⊕ 8) <<< 11

. . .
A’ = (A ⊕ D ⊕ F ⊕ H ⊕ Φ ⊕ 128) <<< 11
B’ = (B ⊕ E ⊕ G ⊕ A’ ⊕ Φ ⊕ 129) <<< 11
C’ = (C ⊕ F ⊕ H ⊕ B’ ⊕ Φ ⊕ 130) <<< 11
D’ = (D ⊕ G ⊕ A’ ⊕ C’ ⊕ Φ ⊕ 131) <<< 11

This formulation has some limited parallelism in the XOR trees. Eventually, the equations will serialize on the 11-bit rotation, but
the overall sequence can be organized on a parallel machine to minimize the performance effect. Intermediate loads and stores can be
eliminated by overlapping the S-box lookup for <Wn, Wn+1, Wn+2, Wn+3> with the computation of <Wn+4, Wn+5, Wn+6, Wn+7>. Because
different S-boxes are used at each step, the highest performance for Serpent keying is realized by a straight-line implementation.

On PA-RISC, limited to two-way integer instruction parallelism, each set of four recurrence computations saturates the processor
for 11 cycles (22 operations). The 11-bit rotation is implemented with a single instruction (shrpw); common subexpressions (e.g., F ⊕
H) remove two of the 24 operations (five XORs and one rotate per step, times four steps). Since PA-RISC does not have an immediate
XOR operation, the (Φ ⊕ i) term is computed by adding the low 11 bits of the value (constant for each step) to the high 21 bits
(constant for all steps); thus, the computation still occurs in one cycle. To avoid errors, the 11-bit values are generated by a simple
program.

IA-64 rotation requires two instructions (deposit and shift register pair). This increases the cycle count for computing four steps
from 11 on PA-RISC to 14. However, the machine’s greater parallelism can be employed to overlap S-Box and recurrence logic as
follows:

Recurrence(W0, W1, W2, W3)
Recurrence(W4, W5, W6, W7) Sbox3(W0, W1, W2, W3)
Recurrence(W8, W9, W10, W11) Sbox2(W4, W5, W6, W7)
Recurrence(W12, W13, W14, W15) Sbox1(W8, W9, W10, W11)

. . . . . .
Recurrence(W124, W125, W126, W127) Sbox5(W120, W121, W122, W123)
Recurrence(W128, W129, W130, W131) Sbox4(W124, W125, W126, W127)

Sbox3(W128, W129, W130, W131)

Each step in this parallel evaluation, including storing the key words, executes in the 14 cycles needed for the recurrence alone,
yielding a substantial speed-up for Serpent keying.

Encryption
Serpent encryption and decryption use 32 rounds of key exclusive OR’s, substitution box logic and linear transforms. The S-box

issues are almost identical to those for keying, as discussed above. The linear transform, which accelerates the avalanche effect, limits the
potential for overlap with the S-box computations. Depending on the S-box equations used, at most one or two cycles can be removed
per S-box; the current implementation overlaps one cycle for six of the eight S-box equations.
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The forward linear transform, diagrammed in Figure 1, consists of 16 operations (six fixed rotations, two rotations, eight exclusive-
OR’s). Ideally, this sequence can be executed in seven cycles on a parallel machine:

X0 = X0 <<< 13 X2 = X2 <<< 3
X1 = X1 ⊕ X0 X3 = X3 ⊕ X2 T1 = X0 << 3
X1 = X1 ⊕ X2 X3 = X3 ⊕ T1
X1 = X1 <<< 1 X3 = X3 <<< 7
X0 = X0 ⊕ X3 X2 = X2 ⊕ X3 T2 = X1 << 7
X0 = X0 ⊕ X1 X2 = X2 ⊕ T2
X0 = X0 <<< 5 X2 = X2 <<< 22

The inverse linear transform, diagrammed in Figure 2, also has 16 operations; however, it can be computed in five cycles:
X0 = X0 >>> 5 X2 = X2 >>> 22 T1 = X1 ⊕ X3 T2 = X3 >>> 7
X0 = X0 ⊕ T1 X2 = X2 ⊕ X3 T3 = X1 << 7 X1 = X1 >>> 1
X1 = X1 ⊕ X0 X2 = X2 ⊕ T3 T4 = X0 << 3
X1 = X1 ⊕ X2 X3 = X3 ⊕ X2 X0 = X0 >>> 13
X3 = X3 ⊕ T4 X2 = X2 >>> 3

On PA-RISC, the single-cycle fixed rotation allows both transforms to execute in eight cycles, optimal for the two-way superscalar
machine. The two-cycle rotation on IA-64 increases the operation count to 22, and the dependencies are such that the best
implementation for the transforms requires 12 cycles. Loading and XORing the key material in parallel with the transforms can reclaim
some performance; however, the linear transformation accounts for over 50% of the encryption and decryption cycles.

As with keying, the best performance is achieved with straight-line code. The program source for both PA-RISC and IA-64 make
heavy use of macros and bear strong resemblance to the algorithm specification. An extension of the software tools used to analyze
Serpent equations actually produces the raw instruction stream for each equation, in either machine language format, which is then easily
integrated into the source program through the macro definitions.

Performance

Cycles Pentium PA-RISC IA-64 IA-64++

Min Average Max

Keying 1292 668 668.79 669 475 380

Encryption 900 580 580 580 565 468

Decryption 885 585 586.62 587 631 407

On PA-RISC, Serpent keying executes in 668 cycles, compared to the best-reported Pentium results of 1292, almost a 2:1
performance advantage. Encryption and decryption also run substantially faster: a 35.6% advantage for encryption (580 vs. 900) and a
33.9% advantage for decryption (585 vs. 885).

On IA-64, the extra parallelism pays off handsomely in keying, where the routine completes in 475 cycles, a 2.7:1 performance gain
over Pentium. Encryption and decryption, with the extra cycles required to complete the linear transform, are better than Pentium,
although not as overwhelmingly: 37.2% for encryption (565 vs. 900), 28.7% for decryption (631 vs. 885). For IA-64++, keying is
estimated to run in 380 cycles, 3.4 times faster than Pentium, encryption in 468 cycles (48.0% faster), and decryption in 407 cycles  (54%
faster).

>>> 5 >>> 22

<< 3

>>> 1

<< 7

>>> 3

>>>7

>>> 13

Figure 2 – Serpent Inverse Transform

<<< 13 <<< 3

<< 3

<<< 1

<< 7

<<< 22

<<< 7

<<< 5

Figure 1 – Serpent Linear Transform
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AES Submission Gladman (Best) Osvik

Ops Cycles Width Tmps Ops Cycles Width Tmps Ops Cycles Width Tmps
S Box 0 18 9 6 4 15 6 4 3 17 6 4 5
S Box 1 18 9 5 3 14 8 3 2 17 7 3 3
S Box 2 16 9 3 4 16 8 3 3 14 7 3 5
S Box 3 18 7 5 4 16 8 5 3 21 4 6 6
S Box 4 19 7 4 5 15 8 3 3 19 9 3 3
S Box 5 17 8 3 4 16 7 4 3 18 7 3 3
S Box 6 19 6 7 4 17 6 5 4 17 9 3 3
S Box 7 19 8 4 3 17 11 3 3 19 8 4 5

I Box 0 19 8 5 4 15 10 2 2 18 8 3 4
I Box 1 18 9 3 3 17 7 5 2 18 11 3 3
I Box 2 18 7 5 4 16 8 4 3 18 7 3 3
I Box 3 17 7 4 3 17 9 4 4 17 8 3 3
I Box 4 17 7 4 4 17 6 5 5 19 11 3 3
I Box 5 17 7 5 4 16 7 4 3 18 10 2 3
I Box 6 19 6 4 4 17 8 4 2 16 8 3 3
I Box 7 18 9 4 2 17 9 3 2 18 8 4 4

Table 1 - Serpent IA-64 Metrics

AES Submission Gladman (Best) Osvik

Ops Cycles Tmps Ops Cycles Tmps Ops Cycles Tmps

S Box 0 18 11 3 15 8 2 17 9 2
S Box 1 18 11 3 14 8 2 17 9 3
S Box 2 16 11 4 16 9 3 14 8 3
S Box 3 18 9 4 16 9 3 17 9 3
S Box 4 19 10 6 15 8 3 19 10 1
S Box 5 17 9 4 16 9 3 18 9 1
S Box 6 19 10 4 15 9 3 17 10 2
S Box 7 19 10 3 17 12 5 19 10 2

I Box 0 19 10 4 15 10 2 18 11 2
I Box 1 18 10 3 17 9 3 18 11 2
I Box 2 18 10 3 16 9 2 18 10 2
I Box 3 17 9 3 17 9 4 17 9 1
I Box 4 17 9 5 17 9 4 19 11 2
I Box 5 17 9 4 16 8 4 18 10 2
I Box 6 19 10 5 17 9 3 16 8 2
I Box 7 18 9 3 17 10 2 18 9 2

Table 2 - Serpent PA-RISC Metrics
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Twofish
The Twofish block cipher employs a “Feistel-like structure with additional whitening of the input and output.”6 The 128-bit

plaintext block is split into four 32-bit words.  In the input whitening step each 32-bit word is XORed with a different 32-bit input-
whitening key.  This is followed by 16 rounds in which the left two words are transformed by the F-function.  The leftmost word
produced by the F-function is XORed with the third word, and the result is rotated to the right by one bit.  The rightmost word produced
by the F-function is XORed with the fourth word, which previously had been rotated to the left by one bit.  For all but the 16th round, the
left and right pairs of words then are swapped for the next round.  Each of the final four words is XORed with a different 32-bit output-
whitening key.

Within the F-function, the first input word is transformed by the g-function.   The second input word first is rotated to the left by
eight bits, and then transformed by the g-function.  The two g-function outputs then are mixed into two new words by a Pseudo-
Hadamard Transform (PHT).  After mixing, a different round key is added to each of the two new words, producing the two output words
of the F-function.

The g-function may be implemented in a variety of ways, depending upon one's choice of keying strategy.  Twofish defines five
different keying strategies: Compiled, Full, Partial, Minimum, and Zero.  These choices enable a wide range of time/memory trade-offs
for a Twofish implementation.

For RISC and EPIC microprocessors, the choice of Full keying is the most natural.  Full keying requires 4096+128+32 = 4256 bytes
of table for the four key-dependent S-boxes, 32 round keys, and eight whitening keys.  This table size poses no problem for a modern
computer platform.  Compiled keying is able to reduce the Twofish Pentium-Pro encryption time from 315 cycles to 258 cycles, but it
necessitates a separate copy of the encryption and decryption codes for each different key.  For superscalar RISC and EPIC
microprocessors, Compiled keying is unlikely to result in a performance gain.  Given sufficiently many general registers, key loading
always can be overlapped and executed in parallel.

The heart of the Twofish g-function is defined as:
1. Partition the 32-bit input word into four 8-bit bytes.
2. Use the value of each of the four bytes to index and fetch a new byte value from a corresponding, 256 byte, key-

dependent S-box.
3. Matrix multiply the MDS matrix, a predefined, maximal distance separation byte matrix by the vector of the four

bytes fetched from the S-boxes.  Scalar multiply of bytes in GF(28) is represented as GF(2)[x] modulo v(x), where
v(x) is the primitive polynomial x8+x6+x5+x3+1.  Scalar addition of bytes in GF(28) is XOR.

For Full keying, each of the four S-boxes contains 256 32-bit words, rather than 256 8-bit bytes.  Each 32-bit word of S-box32[i] is
the four-byte vector computed by matrix multiplication of the MDS matrix by the four-byte vector whose sole non-zero component is the
byte S-box8[i].  If we denote matrix multiplication by +.×, and the bytes of a column vector, least significant byte first, as [B0:B3] or [B0,
B1, B2, B3] the 32-bit S-boxes are:

S-box032[i] = MDS +.× [S-box08[i], 0, 0, 0]
S-box132[i] = MDS +.× [0, S-box18[i], 0, 0]
S-box232[i] = MDS +.× [0, 0, S-box28[i], 0]
S-box332[i] = MDS +.× [0, 0, 0, S-box38[i]]

In this manner, all GF(28) byte multiplications of the g-function MDS matrix multiply are pre-computed, and saved in the 32-bit
S-boxes.  With these S-boxes, all that is required for a g-function MDS matrix multiplication is to fetch a 32-bit word from each of the
four S-boxes and XOR the words together.  Therefore, the Full keying computation of the g-function consists of extracting four 8-bit
bytes from the input word, using each extracted byte to index and fetch a 32-bit word from a corresponding S-box, and XORing the four
fetched words.  The rotation by eight bits of the right input word to the F-function actually requires no explicit computation.  It is
accomplished simply by the order in which 8-bit bytes are extracted from the input word. Similarly, no computation is required for word
swapping between rounds.

Keying
Full keying for a Twofish 128-bit user-supplied key proceeds in three phases.  In each phase the approach taken utilizes modestly

sized tables to accelerate the performance.  The user-supplied key is taken as four 32-bit words, in little-endian byte order.  These words
are called M0, M1, M2, and M3.  Their byte contents, respectively are: [m0:m3], [m4:m7], [m8:m11], and [m12:m15], where mi is the i'th
byte of the user-supplied key.

In the first phase of keying, two four-byte vectors denoted S0 and S1 are derived from the user-supplied key.  These vectors are
utilized in the computation of the S-boxes.  S0 and S1 each are computed by a matrix multiplication of the RS matrix by an eight-byte
vector of user-supplied key bytes.  The 4×8 RS matrix is derived from a Reed-Solomon code, and is specified by the Twofish definition.
Specifically:

S0 = [RS] +.× [m0:m7] S1= [RS] +.× [m8:m15]

For the RS matrix multiplication, scalar multiply of bytes in GF(28) is represented as GF(2)[x] modulo w(x), where w(x) is the
primitive polynomial x8+x6+x3+x2+1.  Scalar addition of bytes in GF(28) is XOR.  The actual computation of these two matrix
multiplications is accomplished by simulating the LFSRs for the RS code.  Doug Whiting programmed this in the following manner in
the original Twofish submission.

                                                                
6 Schneier, Kelsey, Whiting, Wagner, Hall, Ferguson, The Twofish Encryption Algorithm, John Wiley & Sons, 1999.
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#define RS_GF_FDBK 0x14D /* field generator */
#define RS_rem(x) \
{ BYTE b = x >> 24; \

DWORD g2 = ((b << 1) ^ ((b & 0x80) ? RS_GF_FDBK : 0 )) & 0xFF; \
DWORD g3 = ((b >> 1) & 0x7F) ^ ((b & 1) ? RS_GF_FDBK>>1 : 0) ^ g2; \

x = (x << 8) ^ (g3 << 24) ^ (g2 << 16) ^ (g3 << 8) ^ b;
}

S0 and S1 then can be calculated by the following triply-nested loop, where M[i] denotes Mi  and S[i] denotes Si:
for( i = 0; i < 2; ++i ) {

for( j = 0, r=0; j < 2; ++j ) {
r ^= (j) ? M[i*2] : M[i*2+1];
for( k = 0; k < 4; ++k ) {

RS_rem( r );
}
S[i] = r;

}
}

The calculation of S0 and S1 can be accelerated by using a pre-computing a table of 32-bit words, RStbl[256], where
RStbl[i] = RS_prem(i).  RS_prem(x) is identical to RS_rem(x) but without the (x << 8) term in the final assignment
statement.  Each cycle of the LFSRs then may be simulated simply by:

unsigned int x;
#define RS_rem(x) x = (x << 8) ^ RStbl[x >> 24];

The triply-nested loop to compute S0 and S1 is completely unrolled.  Housekeeping instructions may be executed in parallel with this
computation.

The second phase of keying is to compute the four key-dependent S-boxes.  Four pre-computed, 256 entry, 32-bit word auxiliary
tables are utilized to accelerate this computation.  These tables, denoted MD0, MD1, MD2, and MD3, are similar to the Full key S-boxes.
Two additional 256 entry, 8-bit tables are required for the S-box computation.  These are the tables containing the basic q0 and q1 byte
permutations defined in the Twofish specification.   These tables are denoted q0 and q1.  Each auxiliary table entry combines the final
q0 or q1 byte permutation of the S-box computation, and the MDS matrix multiplication.  Specifically :

MD0[i] = MDS +.× [q1[i], 0, 0, 0]
MD1[i] = MDS +.× [0, q0[i], 0, 0]
MD2[i] = MDS +.× [0, 0, q1[i], 0]
MD3[i] = MDS +.× [0, 0, 0, q0[i]]

This is the same matrix multiplication used in the g-function.  Each Full key S-box contains exactly the same 32-bit words as the
corresponding auxiliary table, but permuted according to the user-supplied key.  If we designate the bytes of the words S0 and S1 as
S0(3:0) and S1(3:0), byte zero being least significant, the Full key S-box computation loop is:

for( i = 0; i < 256; ++i ) {
S-box032[i] = MD0[ q0[ q0[i]^S0(0) ] ^ S1(0) ];
S-box132[1] = MD1[ q0[ q1[i]^S0(1) ] ^ S1(1) ];
S-box232[i] = MD2[ q1[ q0[i]^S0(2) ] ^ S1(2) ];
S-box332[i] = MD3[ q1[ q1[i]^S0(3) ] ^ S1(3) ];

}

This computation further can be accelerated by yet another, 256-entry, auxiliary 32-bit word table.  This table is called q0q1q0q1.
The i'th entry of this table consists of [ q0[i], q1[i], q0[i], q1[i] ].  The word q0q1q0q1[i] can be fetched by a single
instruction, and can be XORed with S0.  This computes the inner XOR of all four assignment statements in parallel.  Each byte of this
intermediate result then is used to fetch a byte from q0 or q1.  Following one more XOR with the corresponding byte of S1, the S-box32
entry is obtained by indexing and fetching the 32-bit word from the proper MD table.  This word is stored into the proper 32-bit S-box.

The code to perform this computation is organized as a 256-pass loop for both PA-RISC and IA-64.  The S0 and S1 words already
reside in general registers.  For each loop iteration, the required operations are one indexed load for the q0q1q0q1 table entry, a word
XOR with S0, four byte extracts7, four indexed byte loads from the q0 and q1 tables, four XORs with S1 bytes, four indexed word loads
from the MD tables, four indexed word stores to the S-boxes, and a loop closing instruction.  For IA-64, eight additional instructions are
required for computing table addresses.  IA-64 post address modification is used for indexing the q0q1q0q1 table and the S-boxes.

The total number of 256-entry tables used to accelerate the computation of S0, S1, and the key-dependent S-boxes is eight,
occupying 6656 bytes.  These table sizes are quite acceptable for a modern RISC or EPIC platform.  No IA-64 bank optimization was
done for these tables8.  No additional tables are required for the third phase of keying.

1. q0 256 bytes
2. q1 256 bytes
3. q0q1q0q1 1024 bytes
4. MD0, …, MD3 1024 bytes each, 4096 bytes total
5. RStbl 1024 bytes

                                                                
7 The four S1 byte extracts are done outside the loop.
8 Described in the next section.
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The third and final phase of keying is the computation of the 40 whitening and round keys.  This code is similar to the computation
of the S-boxes.  It is organized as a 20-iteration loop, in which two keys are computed per iteration.  Unlike the S-box computation, each
key requires a full MDS matrix multiply.  Further, a final PHT transform is applied to each pair of keys.  The Twofish definition
systematically uses the same MDS matrix multiply and PHT operations in the keying algorithms and in the encryption and decryption
algorithms.

The same table techniques used above are used to accelerate computation of the whitening and round keys.  The initial eight of the
40 keys are taken as the input and output whitening keys.  The final 32 keys are taken as the round keys.  Using the previously defined
notations, and K to denote the newly computed keys, the computation for the 40 whitening and round keys is:

for( i = 0; i < 40; i += 2 ) {
T0 = MD0[ q0[ q0[i]^M2(0) ] ^ M0(0) ];
T0 ^= MD1[ q0[ q1[i]^M2(1) ] ^ M0(1) ];
T0 ^= MD2[ q1[ q0[i]^M2(2) ] ^ M0(2) ];
T0 ^= MD3[ q1[ q1[i]^M2(3) ] ^ M0(3) ];
T1 = MD0[ q0[ q0[i+1]^M3(0) ] ^ M1(0) ];
T1 ^= MD1[ q0[ q1[i+1]^M3(1) ] ^ M1(1) ];
T1 ^= MD2[ q1[ q0[i+1]^M3(2) ] ^ M1(2) ];
T1 ^= MD3[ q1[ q1[i+1]^M3(3) ] ^ M1(3) ];
T1 = (T1 <<< 8);
T0 += T1;
T1 += T0;
T1 = (T1 <<< 9);
K[i] = T0;
K[i+1] = T1;

}

The code to perform this computation is organized as a 20-pass loop for both PA-RISC and IA-64.  Note that the Mi words are used
in even-subscript and odd-subscript pairs.  Also note that the Mi words are used in an order reversed from the order of the Si words in the
S-box computation.  The M0, M1, M2, and M3 words already reside in general registers.  For each loop iteration, the required operations
are two indexed loads for the q0q1q0q1 table entries, two word XORs with M2 and M3, eight byte extracts9, eight indexed byte loads
from the q0 and q1 tables, eight XORs with M0 and M2 bytes, eight indexed word loads from the MD tables, six XORs to complete the
MDS matrix multiplies, two rotates, one add and one shift-and-add for the PHT, two indexed word stores to the key array, and a loop
closing instruction.  For IA-64, sixteen additional instructions are required for computing table addresses. IA-64 post address
modification is used for indexing the q0q1q0q1 table and the key array.

Encryption
For PA-RISC the encryption and decryption functions are organized as straight-line code.  Each is provided two pointer arguments,

the first to the 16-byte cleartext block or ciphertext block, the second to the concatenation of the round keys, whitening keys, and four
Full key S-boxes.  Input blocks are whitened 64-bits at a time. Housekeeping instructions are overlapped with the first and last rounds.

Each PA-RISC round, including the one-bit circular shifts, executes in about a dozen cycles.  PA-RISC includes an instruction that
can extract any contiguous 8-bit field from a word in one cycle.  The extracted byte can be used directly as an index for a 32-bit word
load instruction.  Further, the PA-RISC shift-and-add instruction permits the PHT to be done in two instructions during the same cycle.
Thus, each round needs 32 instructions: eight extract instructions (extrw,u), eight instructions to load from S-boxes (ldw,s), two
instructions to load round keys (ldw), two one-bit circular shift instructions (shrpw), eight XOR instructions (xor), three add
instructions (add,l), and one shift-and-add instruction (shladd,l).  The instruction schedule is nearly optimal, but the final right
rotate by one bit adds one cycle to the round.

For IA-64 the encryption and decryption functions are organized in exactly the same way.  In each round, an additional instruction
is required to compute an S-box address from each extracted byte. Although this requires eight additional instructions, there also is an
added benefit.  Microprocessor caches often are organized as independent 8-byte banks.  An optimal memory strategy, therefore, shuffles
the four S-boxes, so that each S-box is entirely contained in a single cache bank.  This results in a 16-byte stride between successive
S-box words.  The IA-64 shift-and-add instructions, used to compute S-box addresses, therefore, use a shift value of four.  This assures
the absence of cache bank conflicts when executing two S-box loads during the same cycle.

A second technique employed for IA-64 is computational height reduction, a practice common for parallel instruction issue
machines.  Additional instructions are executed, but the entire computation completes in fewer cycles.

In Twofish, the rightmost bit of the first F-function output becomes the high order bit of a byte to be extracted in the next round.
For PA-RISC, the fact that the extract instruction demands a contiguous bit field requires that the one-bit right rotate be done after
computation of the first F-function output and prior to the extract for the next round.  For IA-64, parallelism and predicates offer a better
solution.

The first F-function output is computed as three XORs, two adds, and a final XOR.  Although these operations do not commute or
freely associate, they in fact do so for the rightmost bit, which actually is the result of six XORs.  By computing the rightmost bit of the
last XOR sooner (round-key XOR third-block-word), one redundantly can compute the rightmost bit of the first F-function output one
cycle earlier. This permits the rightmost bit also to be tested without adding a cycle to the round.  The result of the test is written to a
predicate.  This predicate then is used to set a temporary S-box pointer either to the beginning, or to the halfway point, of the
corresponding S-box at the start of the next round.  Only the seven leftmost bits of the unrotated first F-function output are extracted in

                                                                
9 The eight M0 and M1 byte extracts are done outside the loop.
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the next round.  They then are used as an index relative to the temporary pointer.  The full first F-function output word can be rotated
later.

It also turns out that, with proper table alignment, height reduction can be used to compute two S-box addresses one cycle earlier in
the next round.  The enabling fact here is that offsets into S-boxes consist of 12 bits, of which the right four are zero.  For a 4096-byte
aligned and shuffled table, an XOR can be used for the address calculation.  The terms for two such XORs redundantly can be computed
in the previous round.  This can be seen from the following equations for one pair of encryption terms (note: [7:0] denotes the rightmost
8 bits of a word):

Let: PHT1be the second PHT output for the current Round.
RK1 be the second Key word for the current Round.
BW3 be the fourth Block word for the current Round.
Fin1 be the second input word to the next Round.
PSB1 be the pointer to S-box 1.
pSBE be the pointer to the S-box 1 entry for Fin1[7:0].10

Fin1 = (PHT1+RK1) ⊕ BW3

pSBE = pSB1 + 16*( Fin1 )[7:0]
= pSB1 + 16*( (PHT1+RK1) ⊕ BW3 )[7:0]
= pSB1 + ( 16*(PHT1+RK1)[7:0] ⊕ 16*BW3[7:0] )
= pSB1 ⊕ ( 16*(PHT1+RK1)[7:0] ⊕ 16*BW3[7:0] ) 11

= (pSB1 ⊕ 16*BW3[7:0]) ⊕ (16*(PHT1+RK1)[7:0])

Performance

Cycles Pentium PA-RISC IA-64 IA-64++

Min Average Max

Keying 8414 2846 2901.79 2964 2445 2445

Encryption 315 205 217.45 233 182 182

Decryption 311 200 210.29 224 182 182

On PA-RISC, Twofish keying executes in 2846 cycles, compared to the best-reported Pentium results of 8414, a 2.96:1 performance
advantage. Encryption and decryption also run faster: a 36% advantage for encryption (205 vs. 315) and a 35.7% advantage for
decryption (200 vs. 311).

On IA-64, Twofish executes even faster. Twofish keying executes in 2445 cycles, compared to the best-reported Pentium results of
8414, a 3.44:1 performance advantage. Encryption and decryption also run faster: a 42.2% advantage for encryption (182 vs. 315) and a
41.5% advantage for decryption (182 vs. 311).

                                                                
10 S-box 1 is used for the rightmost bits because of the logical (Fin1 <<< 8).
11 Addition is equivalent to exclusive-or because of the S-box table alignment.
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Conclusions
All the algorithms have reasonable implementations on PA-RISC and IA-64; all make good use of the architectures. It is clear that

the underlying computer architecture has a direct and significant effect on the optimal implementation for each candidate. The large
register files in PA-RISC and IA-64 enable complete state to be kept without using memory, influencing the structure of Rijndael,
Twofish, and keying codes. The choice of equations for Serpent is a direct result of the available execution width and ALU operations.
Sometimes, effects are expressible only at the assembly level, such as the software pipelines in the Mars keying or the MMU
multiplication in RC6 encryption. In other cases, algorithm structures to exploit the underlying architecture are best expressed in high
level source, such as the restructuring of the RC6 keying algorithm.

Our second conclusion is that algorithm performance cannot be measured by a single number. A complete performance
characterization must filter out large system effects such as caching, memory latencies, interrupts, paging, process swaps, and I/O
activity, but should draw attention to fine-grain system effects such as cache interference and execution latencies. When timing keying
for random input key values, the results will exhibit a performance distribution rather than a single number.

Another consideration is parallelism. Future CPU’s will be increasingly, and we believe explicitly, parallel; algorithms that can
exploit parallelism will see continuing performance improvement over the life of the new AES algorithm. It should be observed that as
better Serpent equations are developed, Serpent will further improve both its performance and parallelism. A final factor in evaluating
software is memory usage; none of the finalists use tables uncomfortably large for modern server and desktop systems.

Using these criteria, and assuming that the IA-64++ additions will/will-not be made, the results of this study rank the AES finalists
as follows:

Performance Memory Parallelism
Rijndael RC6 Rijndael

RC6/Twofish Serpent Twofish

Twofish/RC6 Mars Serpent

Mars Twofish Mars

Serpent Rijndael RC6
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Appendix A:
Summary of Best Performance

Candidate Encryption Decryption Keying

Clocks Ops IPC Regs Bytes Clocks Ops IPC Regs Bytes Clocks Ops IPC Regs Bytes
Mars
   Pentium 320 374 3894
        New Keying 2128
   PA-RISC 540 631 1.17 12(18) 2588 538 632 1.17 12(18) 2592 1969 2908 1.48 20 2584

New Keying 538 631 1.17 12(18) 2588 537 632 1.17 12(18) 2592 1797 1805 1.00 20 1984
   IA-64 511 1013 1.98 18//8 784 527 1013 1.92 18//8 784 1903 3332 1.75 14//48 1344

New Keying 1408 3132 2.22 12//16 976
   IA-64++ 255 271 1313
        New Keying 1408
   Table Sizes 2048 2208 2208
   Alg Parallelism 2.0 2.0 3.0
RC6
   Pentium 243 226 1632
   PA-RISC 580 577 0.99 12(4) 2308 493 558 1.13 12(4) 2232 1077 1519 1.41 12 760
   IA-64 490 826 1.69 4/27/8 480 490 826 1.69 4/27/8 528 1581 2629 1.66 8//56 256
   IA-64++ 150 130 1057
   Table Sizes 0 176 176
   Alg Parallelism 2.0 2.0 2.0
Rijndael
   Pentium 284 283 1338
   PA-RISC 168 537 3.20 24 2160 168 539 3.21 24 2160 239 686 2.87 28 2800

Fwd Keying 85 228 2.68 19 1504
   IA-64 125 704 5.63 20/12 3808 126 706 5.60 20/12 3824 148 822 5.55 24/21 4480

Fwd Keying 104 282 2.71 19 1504
   IA-64++ same same same
   Table Sizes 8192 8368 8368
   Alg Parallelism 10.0 10.0 10.0
Serpent
   Pentium 900 885 1301
   PA-RISC 580 1273 2.19 17 5100 585 1309 2.24 17 5240 668 1409 2.11 19 5640
   IA-64 565 1517 2.61 24 8480 631 1546 2.45 24 8848 475 1527 3.21 22/4 8368
   IA-64++ 468 407 380
   Table Sizes 0 528 528
   Alg Parallelism 3.0 3.0 4.0
Twofish
   Pentium 315 311 8414
   PA-RISC 205 548 2.67 20 2192 200 548 2.74 20 2192 2846 8904 3.13 30 1324
   IA-64 182 927 5.09 23 5184 182 915 5.03 23 4960 2445 9561 3.91 26/21 1600
   IA-64++ same same same
   Table Sizes 6656 4256 4256
   Alg Parallelism 6.0 6.0 4.0

Notes: -- IA64++ is a hypothetical IA-64 implementation – refer to the text for details. It does not represent any current
or planned IA-64 implementation.

-- Twofish times for Full keying are from: The Twofish Encryption Algorithm, John Wiley & Sons, 1999.
-- Pentium, Alpha clocks are lowest reported clocks from the NIST Round 1 Report, August 1999.
-- Regs = GRs, or statics/stacked, or statics//rotating, or statics/stacked/rotating, or GRs(FRs) registers.
-- Bytes are object code sizes. Table Sizes are total tables for keying, key table plus look-up tables for

encryption and decryption.
-- Alg Parallelism is an estimated integral upper bound for software parallelism.
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Appendix B: Mars Keying
Original Implementation

The original Mars keying initializes the first seven elements of an array, T[-7..39], to the first seven entries of the Mars S-box,
then sets the rest of the array as follows:

T[i] = ((T[i-7] ⊕ T[i-2]) <<< 3) ⊕ k[i mod N] ⊕ i i = 1 ... 38
T[39] = N

where k is the input key and N is the size, in words, of the input key. This recurrence has an active state of seven words, A, B, …, G,
such that the expansion can be rewritten:

T[0] = A = ((A ⊕ F) <<< 3) ⊕ k[0] ⊕ 0
T[1] = B = ((B ⊕ G) <<< 3) ⊕ k[1] ⊕ 1
T[2] = C = ((C ⊕ A) <<< 3) ⊕ k[2] ⊕ 2
T[3] = D = ((D ⊕ B) <<< 3) ⊕ k[3] ⊕ 3
T[4] = E = ((E ⊕ C) <<< 3) ⊕ k[0] ⊕ 4

. . .
T[38] = D = ((D ⊕ B) <<< 3) ⊕ k[2] ⊕ 38
T[39] = N

where A is initialized to S[0], B to S[1], and so forth. When key expansion is complete, the data words are then “stirred” seven
times as follows:

T[i] = (T[i] + S[T[i-1] & 0x1ff]]) <<< 9 i = 1 ... 39
T[0] = (T[0] + S[T[39] & 0x1ff]]) <<< 9

It is possible to overlap the first stirring with the key expansion: after the first eight expansion steps, T[1] is no longer involved in
the expansion recurrence and can therefore be stirred. This requires adding one extra word to the expansion state so that both T[i] and
T[i-1] are available for stirring. After the stirring, the keys are reordered, mapping T[i] → K[7i mod 40]

PA-RISC
The PA-RISC implementation uses straight-line coding for the expansion/stir phase, rotating the key words each step. The

remaining six stirring passes are executed in a loop as per the specification. The reordering, however, is again straight-line code. If
reordering is considered as replacement rather than a permuted copy, the replacements form chains, that is:

T[1] → T[7] → T[9] → T[23] → T[1]

There are 8 chains of four, 3 chains of two, and two chains of one (T[0]→T[0] and T[20]→T[20]). Since PA-RISC can issue
two memory operations per cycle but can retire only one store per cycle, the optimal ordering loads from one chain, then interleaves the
stores with the loads from the next chain. The expected performance is 40 cycles, which is the number of times a multiple cycle loop
would have to run to perform the same task. It also eliminates the need for a temporary key array: the target key array can be used for all
intermediate values.

IA-64
The IA-64 Mars keying implementation takes advantage of the large register files, rotating registers, and rotating predicates. The

routine allocates a 48-register stack frame, all of which are rotating. The initial register usage is as follows:
r32-r34 r35 r36 r37 r38 r39 r40 r41 r42 r43 r44 r45 r46 r47 r48 r49 r50-r79

Unused kX k3 k2 k1 k0 Ti Ti-1 Ti-2 Ti-3 Ti-4 Ti-5 Ti-6 Ti-7 A B T[10..39]

The first nine computations simply initialize Ti and rotate registers to the right. After that, the registers A and B contain the first two
values for stirring. Unlike PA-RISC, this phase of the computation is enabled by the rotating predicates, where a ‘1’ is shifted in each
time through the main body of the loop. To circulate the key words, k0 → kX at the end of the loop. When the initialization phase of the
loop is finished, the loop switches to the epilogue phase, which now shifts a ‘0’ into the rotating predicates, which disables the
initialization instructions. Thus, the entire expansion/mix phase executes in one loop that runs 48 times, 6 cycles per loop.

When the first phase is finished, the intermediate key values are in the rotating registers, with r39 = T[0], r38 = T[1], …, r32
= T[7], r79 = T[8], …, r48 = T[39]. This allows the stirring phases to compute on the rotating register file. Since the registers
rotate 39 places during the stirring loop, the registers used in each phase are:

Pass T[i] T[i-1] T[0](Final)
2 r39 r38 r78
3 r78 r77 r69
4 r69 r68 r60
5 r60 r59 r51
6 r51 r50 r42
7 r42 r41 r33

The reorder is efficiently handled in a two cycle loop. In the first cycle, the key word is stored, the data pointer incremented seven
words, and a look-ahead target index counter is tested for overflow and incremented. In the second cycle, the index and data pointers are
adjusted if the index had overflowed in the previous cycle.
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ABSTRACT
We compare the five candidates for the Advanced Encryption Standard based on
their performance on the Alpha 21264, a 64-bit superscalar processor.  There are
several new features of the 21264 that have a significant impact on
encryption/decryption speed. The main ones are greater potential for
instruction-level parallelism (ILP) and larger level 1 cache.  The ILP comes
from the fact that the 21264 can issue four integer instructions per cycle.  We
envision that for high-performance servers, there will be multiple streams of
data for encryption or decryption.  The type of parallelism that we consider in
this paper is the encryption of multiple, independent blocks interleaved in the
same code loop running on the same processor.  This benefits some algorithms
more than others.  Rijndael and Twofish turn out to be the fastest for a single
block at a time, but RC6 is potentially the fastest when processing two blocks
at a time.  The reason for this is that out-of-order execution together with an
issue width of four can be used to hide the latency of integer multiplies.

Introduction
The new AES algorithms will be used on a wide range of CPU's.  The Alpha
21264 is a good representative of a 64-bit RISC architecture.  Its features
include a 64K two-way set associative level-1 cache, the capability to
issue 4 integer instructions each cycle, and out-of-order execution.  Since
the Alpha is most likely to be used in servers, it will probably be used
for encrypting or decrypting multiple streams of data simultaneously.  This can
be done on multiple processors, but it is also relevant to look at the
efficiency of processing more than one block simultaneously on each processor,
thus increasing the throughput of the system.  In the remainder of this paper,
we will use the term multiple stream or multistream to refer to more than one
block on the same processor.  Most of the studies so far have looked at single
stream performance, where latency is the dominant factor.  In order to get
optimal multistream performance, it will be necessary to harness the full
bandwidth of the processor. The five candidate AES algorithms have different
computational requirements, and therefore have different behavior with respect
to multistream than single stream.

We illustrate the multiple stream scenario with an example, so that there is no
ambiguity.  Consider the following assembly language fragment from a loop for an



imaginary processor that can issue two instructions per cycle, at most one of
which can be a multiply:

loop:
1. Load S[0]         # load key
2. T = Mull A*A

3. Load S[1]         # load key
4. U = Mull B*B

5. C = Shift_right  T
6. D = Shift_left   T

7. E = Shift_right  U
8. F = Shift_left   U

9. C = C Or D
10. E = E Or F

11. B = C Add S[0]
12. A = E Add S[1]

13. Br loop

The processor will execute two instructions per cycle except for the branch.  If
the latency of each instruction were one cycle, then the whole code would take
seven cycles.  However, if the latency of a multiply is seven cycles and at most
one can be issued in a given cycle, then there is a five cycle stall after the
fourth instruction.  Therefore, the execution time increases to 12.  Now
consider what we can do for two independent blocks of data:

loop:
Load S1[0]         # load key1
T1 = Mull A1*A1

Load S1[1]         # load key1
U1 = Mull B1*B1

C2 = Shift_right  T2
D2 = Shift_left   T2

E2 = Shift_right  U2
F2 = Shift_left   U2

C2 = C2 Or D2
E2 = E2 Or F2

B2 = C2 Add S2[0]
A2 = E2 Add S2[1]

Load S2[0]         # load key2
T2 = Mull A2*A2

Load S2[1]         # load key2
U2 = Mull B2*B2

C1 = Shift_right  T1



D1 = Shift_left   T1

E1 = Shift_right  U1
F1 = Shift_left   U1

C1 = C1 Or D1
E1 = E1 Or F1

B1 = C1 Add S1[0]
A1 = E1 Add S1[1]

Br loop

The combined loop can process two blocks in only 13 cycles.  The processing of
the two blocks can be overlapped in such a way that while the shift operations
for one block are waiting for the multiplies to complete, operations on the
other block can proceed.  For the 21264, the latency for a multiply is actually
seven, and the latency of a load is three or more, depending on whether or not
the value is in the D-cache.  The 21264 can issue up to four integer
instructions in one cycle, at most two of which can be loads.  The out-of-order
processing capability is not actually used if the compiler schedules the
instructions to take into account the latency.  It should be noted that future
generations of Alpha processors will have simultaneous multithreading (SMT),
which will eliminate the necessity of the programmer/compiler merging two
streams of data in one instruction stream.

The key to taking advantage of the full issue width of the Alpha is recognizing
when a program has a low number of instructions per cycle (ipc).  In the above
example, this was caused by the long latency of the multiplies, but there may be
other cases where this happens.  For example, in the implementation of Serpent
that we used, there were long chains of dependent logical operations, which
resulted in an ipc of slightly less than two.  Thus, Serpent can achieve a
speedup of almost two by processing two streams.  RC6 is similar to the example
above in that the multiplies introduce latency, which reduces the ipc to a level
for which processing two streams works well.  On the other hand, Rijndael,
Twofish and Mars do not lend themselves to this approach.  They can be coded
efficiently for single stream so that the table lookups can be overlapped with
the other computation and the ipc is well over two.  It should be noted that an
ipc of greater than two does not preclude multistream processing, but the gains
are likely to be small.  Also, it is important to use an optimized version of
the code, otherwise a low ipc will only reflect the inefficiency of the
implementation rather than the potential for multistream parallelism.  For this
reason, we examine assembly language implementations in addition to the C
versions.

One of the architectural features that is missing from Alpha is the 32-bit
rotate.  This requires several instructions to emulate.  A fixed rotation
requires two shifts an “and” and an “or”.  These can be executed in two parallel
chains and in the absence of other parallelism they have an ipc of two.

The next section presents an analysis of each algorithm in terms of ipc for a C
implementation and for an assembly code implementation.

Analysis of Algorithms
Our goal is to get a quick estimate of the performance for multistream data. We
do this by checking the timings for the Gladman C implementations of the five
candidate algorithms for single stream data and estimating the ipc. Then in some



cases, we also look at assembly language implementations to see if the ipc could
be increased.  While a high ipc will rule out a gain from multistream, a low ipc
does not guarantee one.  A range of techniques was used from a complete
implementation in assembly language in the case of Rijndael, to coding a single
round in assembly language for Rc6 and Twofish, to a data dependency anlysis for
Mars and Serpent.  The data dependency analysis together with instruction
latency was used to estimate optimal times for the last two algorithms.  In the
one case where we did an assembly language implementation, the time for this was
compared with our estimate.  Finally, we estimated the gains for multiple stream
implementations.

Mars
The Mars algorithm has three phases: simple arithmetic and logical operations,
table lookup and rotations.  The table lookup, which is mixed with some fixed
rotations has a four-fold parallelism.  This seems to be the reason for a high
ipc, and therefore little gain from multistream.  Since the Alpha does not have
a 32-bit rotate, this increases the number of instructions.  For this reason,
it is both one of the fastest algorithms on a Pentium Pro but one of the slowest
on the 21264.

RC6
RC6 turns out to be a lot more efficient on the Alpha 21264 than expected
from observing the number of cycles for a single block of data. For single
stream performance, each round when coded in assembly language, takes 18 cycles
and there are 20 rounds.  If we allow 20 cycles for setup, this gives a total of
380 cycles per block.  This is amazingly close to the current reported figure of
382 cycles per block for the optimized C version.  A single round of encryption
for two independent blocks of data simultaneously was also coded in assembly
language for an estimated 21 cycles, which is less than 11 cycles/block. For 20
rounds, this would be 210 cycles/block plus the time for setup and storing
results.  This is as fast as Rijndael, and is potentially more consistent since
it uses multiplication, which have a fixed latency, and does not depend on table
lookups which could suffer occasional cache misses.  In addition, if the
algorithm were used with a word size of 64, this could potentially double the
throughput, since the 64-bit versions of the operations multiply, xor, add and
rotate are as fast or faster than the 32-bit versions on Alpha processors.

Rijndael
The simplicity of the Rijndael algorithm makes it easy to analyze.  We were able
to produce an efficient implementation in assembly code together with timing
results.  The major computational cost for this algorithm is accessing the look-
up tables.  This can be done in three instructions: extract byte, add to base
address, and load the value. For Alpha, this is relatively fast, since the
tables fit in the level-one cache.  Ideally, one round of Rijndael could be done
in 18 cycles: however, in practice, this requires tuning the code to eliminate
I-cache misses, D-cache misses, etc.  What we observed was that the code took
246 cycles/block when executed repeatedly.  This is about 23 cycles per round.
This was the fastest algorithm we have observed for 128-bit key length. However,
since the number of rounds for Rijndael depends on the key length, this is not
the fastest for all applications.

We expect the Rijndael algorithm to scale well with future processors since
the makeup of the code is such that one quarter of the instructions are loads.
The Alpha 21264 can issue four integer instructions per cycle, and there is a
four-fold parallelism from the four S-boxes.  However, this gives it a high ipc
and means that there is little gain from multistreaming.  A single round of



Rijndael takes 18 cycles.  The setup and exit code adds another 30 cycles to the
total to give approximately 210 cycles per block.

Serpent
Based on the C-code from Brian Gladman, this algorithm is the slowest.  However,
it speeds up very well with multistreaming.  The S-boxes are implemented by
sequences of bit-parallel logical operations.  Due to data dependencies in this
code, the ipc is slightly less than two.  The technique for estimating the two
stream performance was to modify the C code.  Each round is composed of three
macros: an “xor” with the key, an S-box computation, and a linear transform.
The processing of the two streams was interleaved by repeating each macro for
the first stream with the identical macro for the second stream.  The compiler
was able further mix the instructions to eliminate stalls.  Nevertheless,
Serpent remains one of the slower algorithms because of the large number of
rounds and the large number of instructions per round.  It should be noted that
most of the operations in Serpent operate on bits in parallel.  It should be
possible to process two blocks of 32-bit words by using the full 64-bit data
path.  Namely, one block would use the upper 32 bits, and the other block would
use the lower bits.  There would be an extra “and” for the rotates as well as
packing the two words together, but the speedup could be close to 2x.

Twofish
Based on an assembly language coding of a single round, twofish performs
approximately as well as Rijndael on both the 21164 and the 21264 for 128-bit
key length.  Since Twofish does not require more rounds for larger key lengths,
its relative performance would be better for longer keys. It can potentially do
eight S-box lookups in parallel for each round.  This gives it a high ipc and
small gain for multistreaming.

Timing Results

Table 1 shows the results from optimized C-code for the Alpha 21164 and 21264
processing one block at a time.  The 21164 can issue two integer instructions
per cycle and the 21264 can issue four.  The results are similar to those
published by Granboulan [Gran]. Our timings were all obtained by running each of
the algorithms for key setup, encryption and decryption on a single stream of
data, one block at a time.  The C-versions of these algorithms are the ones
published by Gladman [Glad1].  We ported them to Alpha by using the native cycle
count register and modifying the declarations to eliminate alignment errors in
the code.  The basic idea is to time the execution of the encryption
(decryption) code running once, then time it running twice.  The minimum times
over a large number of iterations are subtracted to measure the time to execute
the code without the startup costs.  In addition, the encryption (decryption)
code is run once at the beginning to warm up the caches.

In order to relate our assembly code estimates to the C implementations, we
linked our assembly version of Rijndael to the Gladman harness and observed an
encryption time of 280 cycles/block.  The assembly code when executed for a
large number of iterations took a minimum of 246 cycles/block.  This suggests
that the C++ overhead for calling some of the C or assembly functions could be
significant.

In Table 2, we have estimated timing results for assembly language
implementations for some of the algorithms for single stream.  Table 3 shows the
estimated timing for assembly code for processing multiple streams.



EV56 (21164) Mars RC6 Rijndael Serpent Twofish
Ours 701c 571c 439c 984c 442c
Granboulan
website

507c 559c 490c 998c 490c

EV6 (21264) Mars RC6 Rijndael Serpent Twofish
Ours 515c 428c 293c 854c 316c
Granboulan
website

450c 382c 285c 855c 315c

Table 1.  Timing comparison in cycles/block for C code.

EV6 (21264) Mars RC6 Rijndael Serpent Twofish
Assembly code 375c 360c 210c 570c 255c

Table 2. Estimated timing for assembly code in cycles/block.

EV6 (21264) Mars RC6 Rijndael Serpent Twofish
Assembly code 375c 210c 210c 506c 255c

Table 3.  Estimated time for assembly code encrypting two blocks
simultaneously.  Times are in cycles/block.

Conclusions

RC6 has the most potential for parallelism when multiple streams are processed
on the same processor simultaneously in a single thread.  One reason for this is
that it relies heavily on multiplication, which itself has a large degree of
parallelism for the Alpha processors.  32-bit multiplies are inherently parallel
because they operate on four bytes at the same time. Using 64-bit multiplication
would afford even more parallelism.  The 21264 can issue one multiply every
cycle.  The latency of seven cycles does not limit bandwidth for this algorithm
in multistream mode.  An S-box lookup requires three instructions, and only
operates on one byte at a time.  Note that while RC6 has variable 32-bit
rotations, one of the intermediate results from the fixed rotation by 5 is re-
used in the variable rotation.

Serpent also has a large gain from multistream processing because of the long
dependent chains of instructions and low ipc.  However, because of the large
number of rounds and instructions per round, it still is slow.

Following RC6 are Twofish and Rijndael, which both use 8-bit table lookups and
linear transforms.  Twofish has an advantage for longer keys, but Rijndael seems
the fastest for 128-bit keys.  Based on an assembly language implementation of



Rijndael, there can be a significant difference between the estimated
performance and what can be readily achieved/observed by counting cycles outside
of the algorithm function call.  Comparing code execution with timing
estimations can have a significant amount of error.

Since our estimates for the Alpha 21264 are based on instruction level
parallelism for processing multiple streams, similar behavior should be
observable for Itanium and other VLIW machines.
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Abstract. This paper reports the performance of the AES finalists,
MARS, RC6, Rijndael, Serpent, and Twofish, on the high-end smart
card that has a Z80 core with Toshiba’s arithmetic coprocessor.

1 Introduction

During the first round of AES candidate assessment, some reported the perfor-
mance evaluation of the algorithms on low-end smart cards. Their reports are
important for understanding performance of each AES candidates in memory
and computing resource-restricted environments. However, there are, so called
high-end smart cards, which are equipped with a specific hardware for acceler-
ating cryptographic processing. In general these cards are less restricted in their
resource than low-end smart cards. So, it is important for better understanding
of the AES candidates to evaluate the performance on high-end smart cards.
NIST as well expressed their interests in such evaluation in [11]. This paper de-
scribes our experience in implementing five AES finalists, and summarizes the
performances on our high-end smart card available from Toshiba[17].

The high-end smart card is substantially different from low-end one in that its
core is equipped with a crypto coprocessor. It may usually correct to say that the
amount of memory for a high-end card is larger than that of low-end one. In some
cases, however, venders supply cards with large memory amount suitable for
their specific purposes regardless of the core. Therefore, we distinguish between
high-end and low-end cards based on the type of core.

At first, we present the architectures of the core on our smart card that in-
cludes a CPU and a coprocessor architecture. Next, we describe coding rules for
our implementation and then, present experiences of five AES finalists accompa-
nied by results of 64-bit ciphers such that DES[10] and MISTY1[9] on our smart
card for reference purpose. Finally, we summarize advantages and disadvantages
for each implementation.



2 Platform

High-end smart cards available now are usually equipped with 8/16-bit micropro-
cessor and a crypto coprocessor, or accelerator for cryptographic operations[7].
To evaluate the AES finalists’ performance on high-end smart cards, we choose
Toshiba’s T6N55 chip shown in table 1. The chip is equipped with Z80 micro-
processor and a coprocessor. The coprocessor is under the control of Z80 and
it carries out arithmetic/logical operations when Z80 asks to do so. The copro-
cessor is originally designed to accelerate the large integer arithmetics. As will
described shortly, it is also suitable to accelerate some operations required to
implement AES finalists.

Table 1. Features of Toshiba’s T6N55 chip

CPU Z80
ROM 48KB
RAM 1KB
EEPROM 8KB
Max. of Modulus 2,048-bit
Internal Clock Frequency 5MHz

2.1 Z80 Architecture

The Z80 is a famous 8-bit architectured microprocessor developed by ZiLOG[15].
It has an 8-bit accumulator and a flag register, six 8-bit general-purpose registers,
two 16-bit index registers, a stack pointer (SP), and a program counter (PC).
An accumulator A and a flag register F can be paired and dealt with as if it
is a 16-bit register AF. Similarly, 8-bit registers can be paired with particular
registers as BC, DE, and HL. Z80 incorporates dual register banks. Each register
bank has each register sets such as an accumulator, a flag register, and six 8-bit
registers. Note that one can use only one side of the banks at a time. If one want
to use registers belonging to the other side of the bank, he should change the
contexts with an EXX operation.

The instruction set includes the following classes:

– Load 8-bit values to registers or an accumulator.
– Load 16-bit values to registers.
– Arithmetic or logical instructions for the accumulator with registers.
– A single bit shift or rotate instructions.
– Compare, block transfer, and search instructions.
– Branch instructions.
– Subroutine calls and returns from them.
– I/O instructions.



– Checking or setting a single bit in registers.

There are some particular instructions for extended registers or control instruc-
tions of processor. Z80 can execute addition, subtraction, AND, OR, exclusive
or (XOR), and single-bit rotation and shift. It does not have instructions for
multiplication and division.

On using the ordinary Z80 core, we should take some features of its archi-
tecture into account. It needs four clocks even for the basic instructions, such as
a no operation ( NOP ) or a load instructions between registers ( LD r, r’ ). The
next fastest instructions, such as for loading a value to a register ( LD r, n ) con-
sume seven clocks. Operations for 16-bit register sets are more time consuming.
Although we try to use faster operations, the average number of clocks needed
for an instruction is about six.

2.2 Crypto Coprocessor

The coprocessor is developed mainly to accelerate the processing of the public
key cryptosystem. It has 512-byte RAM area (we call it the ‘CRAM’ area).
That area is segregated into two 256-byte RAM areas. The coprocessor can
execute various operations between the 256-byte RAM areas or on the 512-byte
RAM. Each maximum size of arithmetical operations supported by the crypto
coprocessor is shown in table 2.

It can execute the following classes of calculations:

– Addition, subtraction, multiplication, division, and logical operations.
– Modular multiplication.
– Modular exponentiation.
– Montgomery multiplication.
– Extended Euclidean algorithm.
– Memory transfer in CRAM area.

Here, the logical operations mean AND, OR, and exclusive OR(XOR). The mem-
ory transfer is used to transfer data on CRAM area efficiently. So, the feature is
similar to the direct memory access (DMA). The most time consuming opera-
tion is a modular exponentiation with a large exponent. Other operations, when
used in implementing AES finalists, are very fast and finish within a time for
the minimum execution time of a Z80 instruction.

The coprocessor executes logical operations between operands located on
each CRAM areas. Before executing these operations, Z80 have to put several
bytes of control words on the CRAM area in addition to the operands. Since Z80
does not perform so fast to the data on memory, using coprocessor operations
are efficient for large data, but not so much for small data.

3 Implementations

3.1 Coding Rules

When we implement the AES finalist, we apply the following rules for the coding.



Table 2. Features of Toshiba’s Crypto Coprocessor

Instruction Max. of Operands (bits)

Addition 2,048
Subtraction 2,048
Multiplication 1,024
Division 2,048
Modular Multiplication 1,024
Exponentiation 1,024

– Program codes are located on the ROM area, and we do not change the code
at any time.

– We can use all registers, i.e., registers on both sides of the banks.
– The codes run in constant time not depend on the data to avoid timing

analysis.
– We can use memory on the CRAM area if necessary.
– We write codes that generate the extension keys with on-the-fly, if possible.

A time constancy of a code is an imprecise term. We try to give more precise
idea behind the third rule. If we have only to realize the time-constancy, we may
choose an easy way to stretch the execution time by merely adding NOPs at
the end of the code. But what we really have to do is to avoid timing analysis.
So, we have to pay more attention not to leak meaningful information. If we
can successfully apply the third rule, we can prevent simple power analysis as
well as timing attack. The third rule is not sufficient, though it seems necessary,
to prevent the differential power analysis. We don’t discuss on the differential
power analysis in this paper any further.

It is interesting that we may neglect the differences between rounds, for
example the key expansion of DES need 2-bit rotations in some rounds. They
may leak some information, but it seems useless for analysis.

In this section, we report the performance of AES finalists in alphabetic
order. For comparison purpose, results for 64-bit block ciphers, such as DES,
triple DES, and MISTY1, will be shown, as well. We describe the speed of each
algorithm with clocks and RAM requirement: In each table, ‘Int.’ means that
size of required CRAM for coprocessor’s operations, and ‘Ext.’ means other work
area. Note that 5,000 clocks at 5MHz correspond to 1 millisecond. For example,
DES needs about 25,000 clocks, and thus it works in 5ms.

The code of DES does not necessarily obey the coding rules above since
some permutations for DES are realized by hard wired logic. The triple DES
is a two-keyed one, but it executes the key schedule three times with on-the-
fly. Therefore, three-keyed triple DES will have the same performance result.
MISTY means the MISTY1 algorithm[9] with eight rounds.

To apply our results easily for other processors that have similar features,
we try to reduce the memory usage on the CRAM area. But, in this paper, we
see that the memory usage is of little importance, since the platform chosen has
sufficient memory for these implementations.



3.2 MARS

It is the most difficult task for us to implement MARS on smart cards or other
limited resources. MARS has a complex high level structure such as eight rounds
of unkeyed forward mixing, eight rounds of keyed forward transformation, eight
rounds of keyed backward transformation, and eight rounds of unkeyed backward
mixing. Each of the eight rounds consists of so called type-3 Feistel network. In
a type-3 Feistel network, input data is segregated into four words. One of them
is taken as a pseudo-random function’s input and the output is used to modify
three other data words. Since MARS has a block length of 128 bits, each word
has 32 bit length.

There are three disadvantages of MARS when implemented on a smart card.
The first is that it needs 2KB table for S-boxes, but it is not serious. The second is
the weakness check of extended key on the key schedule. The last is the rotations
with variable shift amount. We discuss the last two disadvantages here.

It is necessary for MARS to implement complicated “weak” measures on the
key schedule[3]. The weak keys for MARS are different from those of DES. In
the case of DES, you may disregard the problem of weak key because it only
increases some potential threats caused by the weak key properties. However,
in the case of MARS, since the weak key check procedure is a part of the algo-
rithm specification, you have to check the weak on the key schedule certainly.
Otherwise, you may see a terrible result, such as differences in cipher text, al-
though it encrypts the same plain text with common key. As mentioned above,
the function of checking the weak on the key schedule is primarily needed.

Although implementing weak key check is necessary, it is also true that this
introduces another problem for smart card implementation. If we check the weak
and regenerate extension keys, there is a risk of applying timing attack. The
regeneration of extension keys causes difference in processing time and leaks
some information on the key. Further study of coding is necessary to avoid this
problem.

To save our time, our implementation just omits the weak key check. There-
fore, it is not complete. Our implementation is not so slow because of customiza-
tion for 256-bit key and omitting to check ‘weak’ on the key schedule. The codes
for check ‘weak’ on the key schedule will increase the requirement of ROM and
processing time.

The rotations depend on a key data or an internal data are crucial for Z80
or other 8-bit processors since we need to write codes that run in constant
time, or else an attacker can get some information about the key. Fortunately,
our coprocessor can operate modular multiplications over any modulus. We use
them for rotations. Modular multiplications on our smart card are very fast, and
finish within a single instruction of Z80. It means that we can operate modular
multiplications and data dependent rotations in a constant time and avoid timing
attack.

It seems that MARS is a prudent algorithm against cryptanalysis. But it
causes some difficulties in implementing on smart cards or similar resource-
restricted environments.



Table 3. MARS

RAM (bytes)
Total Int Ext

ROM (bytes) Time (clock)

Encrypt 60 36 24 3,977 45,588

Schedule 512 512 0 1,491 21,742

Total 512 512 24 5,468 67,330

3.3 RC6

RC6 has various parameters and is defined as RC6-w/r/b where w means the
word length, r means the number of rounds, and b means the length of key with
bytes. We write the code with the recommended parameters for AES such as
RC6-32/20/32.

RC6 has a simple structure, but the round function includes various oper-
ations such as, addition, subtraction, multiplication, and rotations depending
on a variable data. Most part of RC6 constructed by arithmetical operation.
Therefore, we operate almost all operations on the coprocessor. Furthermore,
since the coprocessor can operate up to 1,024 bits for operand, we can execute
the pair of rotations with constant shift amount in parallel. An n-bit rotations
to two data is written as follows: We duplicate each of data and put them on
corresponding CRAM area, then multiply them with 2n. As a result, we can
improve the performance and reduce the size of code.

The coprocessor can execute RC6 data encryption efficiently. RC6 has a
simple key schedule but need much iterations and does not suitable with on-the-
fly. The key schedule takes four times as long execution time as encryption.

There is an idea to improve the key schedule processing time. A precomputed
table improves the speed, but increase the size of code. It omits the computation
of 43 initial values (S[i]) with 32-bit word. The modified code copies S[i]s from
precomputed ROM table to RAM area instead of computing S[i]s with constant
values. It shall reduce about 4,000 clocks. It needs some extra code or table for
precomputed table, thus the size of code increases about 150 bytes.

On the smart cards, RC6 has a moderate encryption speed among the final-
ists, but its key schedule is slower than Rijindael or Twofish. Note that it has
been reported that on the 32-bit processor, RC6’s performance is faster than
Rijndael and Twofish[5].

Table 4. RC6

RAM (bytes)
Total Int Ext

ROM (bytes) Time (clock)

Encrypt 124 124 0 489 34,736

Schedule 90 90 0 571 138,851

Total 156 156 0 1,060 173,587



3.4 Rijndael

256-bit key is the fastest for on-the-fly key generation, since we can translate
the internal key every two rounds. 128-bit key is a little slower than 256-bit key,
since we need to make extension keys every round. In the case of 192-bit key,
since the key length is not the multiple of the block length, it is not so easy to
implement on-the-fly key generation.

The xtime is an important subroutine for time constancy. It needs modulus
operation with the primitive polynomial. Here is an example of straightforward
implementation of the xtime(a) algorithm where the original value is stored in
A register.

RLA
JR NC, SKIP
AND PRI ; PRI means the primitive polynomial.

SKIP:
... ; end.

This is a very dangerous code. Since ‘AND PRI’ operation is operated only
when the carry is ‘1’, an attacker can know whether the value excesses 28 or not
in this code. We must avoid such an implementation. Therefore, we use some
techniques to avoid differences of processing time and thus prevent cryptanalysis
using timing attack. Here is an example of xtime(a) operation with constant
time, where a is stored in A register.

RLA
LD B, A
SBC A, A
AND PRI

XOR B

RLA is a instruction of 1-bit leftward rotation for A register. If RLA is carried
out, MSB of A register is set to the carry flag. ‘SBC A, A’ is an instruction which
substract a value in A register and a carry from A register. It means that if the
carry flag is ‘1’ then A register has a value 0xff, otherwise A register has a value
0x00. Next we operate AND instruction with PRI for A register. Then we get
PRI or a value 0x00 in A register, and we can operate whether ‘XOR PRI’ or
‘NOP’ with the same instructions and processing time.

The transformation MixColumn is implemented in an efficient way shown in
section 5.1 in [4]. We implement the AddRoundKey and data transfers with the
coprocessor. Other transformations in Rijndael are not so heavy even for only
the Z80 core. Rijndael is the most efficient algorithm on the finalists on our
smart card.



A disadvantage of Rijndael is that it needs another code for decryption be-
cause of the asymmetry of encryption and decryption. If you need both encryp-
tion and decryption algorithms, it takes twice ROM area for code since most
part of it cannot be shared.

Table 5. Rijndael

RAM (bytes)
Total Int Ext

ROM (bytes) Time (clocks)

Encrypt 34 32 2 700 25,494

Schedule 32 32 0 280 10,318

Total 66 64 2 980 35,812

3.5 Serpent

There is two kinds of implementation of Serpent: ordinary implementation and
bitsliced implementation. Here is the result of an ordinary implementation of
Serpent. It is not a bitsliced implementation. It needs a 2,048-byte ROM table
on the ordinary implementation.

Serpent has various rotational operations. As is described in MARS imple-
mentation, modular multiplication with coprocessor can be used if they improve
the performance. Most of the rotations are, however, more efficient with the Z80
operations than with the coprocessor. 1-bit leftward or rightward rotations can
be implemented with the Z80 operations, and shifts with multiplies of 8-bit are
reorder of bytes. We use the coprocessor operations only for 11-bit rotations,
XOR, and memory transfer. Due to the architecture of our coprocessor, it is not
suitable to efficiently implement three-operand operation used in Serpent.

In [2], Serpent can be implemented using under 80 bytes of RAM with on-
the-fly. Our implementation needs twice more RAM, because we write it with
coprocessor’s operation XOR between halves of CRAM with different offsets.

It has more rounds than other finalists do, so its performance is not so good
as Rijndael or Twofish.

The bitsliced implementation will reduce the size of code and required RAM
with a little degradation in speed. In memory-restricted environment, bitsliced
implementation may be better than the ordinary coding. In this paper, we at-
tach importance to the speed. So, we choose the ordinary implementation for
performance comparison.

3.6 Twofish

In the case that the length of key is less than 256-bit, we need to pad out the
original key until it becomes 256-bit. We implement Twofish with 128-bit key to



Table 6. Serpent

RAM (bytes)
Total Int Ext

ROM (bytes) Time (clock)

Encrypt 68 68 0 3,524 71,924

Schedule 96 96 0 413 147,972

Total 164 164 0 3,937 219,896

take the processing time for padding into account. It includes code for padding,
and it is a little slower than 256-bit key.

There are two models for implementing Twofish, such as Feistel model and
non Feistel model[14]. We implement it with non Feistel model. We assume that it
is faster than Feistel. We use coprocessor’s operations for additions with subkeys,
XOR, and memory transfers on CRAM area, but rotations are implemented with
Z80’s rotations.

The performance of Twofish depends on the size of precomputed tables’ [14].
We consider that the case of using some tables amounted to 1,536 bytes. This
code is compact for processing the key schedule with precomputed tables. It
seems be compatible with 2200 bytes for code and table size model in [14]. The
size of precomputed tables is belongs to encryption code in table 7.

Twofish is as fast as DES on throughput. It does not have any exceptional
advantages, but we have nothing to complain about the performance.

Table 7. Twofish

RAM (bytes)
Total Int Ext

ROM (bytes) Time (clock)

Encrypt 34 32 2 2,493 31,877

Schedule 56 32 24 315 28,512

Total 90 64 26 2,808 60,389

4 Summary

We summarize the performance and the required resources on our implemen-
tations in table 8. The RAM includes required byte in the RAM area and the
CRAM area. Note that when using a coprocessor, the required amount of RAM
increase, because of the alignment rules for CRAM area.

Some finalists are designed to have heavy key schedules. They are intended
to prevent exhaustive search attacks, but resulting in speed reduction on smart
cards. We consider that Rijndael is excellent on all aspects. RC6 is as good as
Rijndael on the code point of view, but the key schedule consumes more time.



Twofish needs much ROM memory than RC6 and Rijndael because of the
table. It is faster than Triple DES and equal to DES on the throughput. It
will have good performance on any smart cards. MARS has disadvantages of
its code size caused by four of eight round iterations and a 2,048-byte table.
The speed is equal to Twofish’s one. We consider MARS has some difficulties
to check ‘weak’ on the key schedule and regenerate. Serpent has disadvantages
of its performance caused by the iterations of rounds and the difficulty of key
schedule. The bitsliced implementation will improve the requirement of ROM or
RAM, but slower than others.

We tried to write all program codes to consume as little RAM area as possible.
On the other hand, if we may regard the RAM area, especially CRAM area, as
a kind of free work space, it will be unfair to compare finalists how little work
area they consume. Nevertheless, notice that MARS consumes all the CRAM
area, whereas others consume at most half of the area.

Table 8. Comparison of AES finalists and the algorithms

RAM ROM Time (clock)
Cipher

(bytes) (bytes) Encrypt Schedule Encrypt + Schedule

MARS 572 5 5,468 45,588 4 21,742 2 67,330 3 �
RC6 156 3 1,060 2 34,736 3 138,851 4 173,587 4
Rijndael 66 1 980 1 25,494 1 10,318 1 35,812 1 only encryption
Serpent 164 4 3,937 4 71,924 5 147,972 5 219,896 5
Twofish 90 2 2,808 3 31,877 2 28,512 3 60,389 2

DES 17 772 25,398
Triple DES 17 849 72,341
MISTY 44 1,598 25,486

�: omit to check “weak” in the key schedule.

5 Conclusion

We have implemented AES finalists on a high-end smart card that is equipped
with a crypto-coprocessor. The resulting code has higher performance than that
on a low-end smart cards, since multiplication and rotation are efficiently imple-
mented using the coprocessor’s commands. Coprocessor’s RAM are also useful
for work memory, as well.

Regarding speed, Rijndael is the best one and is as fast as our DES imple-
mentation. It is twice faster than DES on the throughput. RC6 is suitable for
our smart card same as on the 8051[6, 8], but not to be compared with Rijndael
or Twofish because of the key schedule.

For smart card implementation, it is necessary to perform key schedule at
least for every processing block, in order to save memory areas to store extended



key. For the same reason, it is desirable for key schedule to be suitable for on-
the-fly key generation. As a result, design concept for key schedule affects the
performance very much, and those algorithms that have heavy key schedule are
not advantageous for smart card implementation.

Finally, we report the performance of E2[12] that is a candidate on the first
round in the appendix.
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A E2

E2 is not selected as a finalist for the second round review. But it has a good
performance, especially encryption speed without key schedule. The serious dis-
advantages of E2 are that it has time consuming key schedule and can’t execute
it with on-the-fly. Fortunately, since the RAM usage fits on the half of CRAM
area, we select a way to extend all round keys on the half of them, at first. In this
case, E2 is efficient for encryption just like the report in [6]. The round function
is designed as suitable for byte oriented operations. It is good for the Z80 archi-
tecture. It is, however, difficult for Z80 to execute multiplication on the IT and
division on the FT. We use the coprocessor’s commands for these operations.
Those commands include XOR, memory transfer, multiplication, and inverse.

Table 9. E2

RAM (byte)
Total Int Ext

ROM (byte) clock

enc 26 24 2 1,519 17,018

key 548 512 36 296 79,358

Total 548 512 36 1,815 96,376
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1 Introduction

The National Institute of Standards and Technology (NIST) has initiated a process to develop a

Federal Information Processing Standard (FIPS) for the Advanced Encryption Standard (AES),

specifying an encryption algorithm to replace the Data Encryption Standard (DES) which expired

in 1998 [14]. NIST has solicited candidate algorithms for inclusion in AES, resulting in fifteen

official candidate algorithms of which five have been selected as finalists. Unlike DES, which was

designed specifically for hardware implementation, one of the design criteria for the AES candidate

algorithms is that they can be efficiently implemented in both hardware and software. Thus, NIST

has announced that both hardware and software performance measurements will be included in their

efficiency testing. Several earlier DSP’s contributions looked into the software implementation of

the AES algorithms on various platforms [1]. However, there was only one publication dealing with

the implementation of the candidate algorithms on a Digital Signal Processor (DSP) [9].

Digital Signal Processors are a distinct family of micro processors. In comparison to the more

common general purpose processors such as those offered by, e.g., Intel and Motorola, DSPs allow

for fast arithmetic, special instructions for signal processing applications, real-time capabilities, rel-

atively lower power, and relatively lower price (obviously, those statements tend to over-generalize

and should not be taken too literally). The main application areas of DSPs are embedded systems,

such as wireless devices, cable and Digital Subscribe Line (DSL) modems, various consumer elec-

tronic devices, etc. With the predicted increase of embedded applications and pervasive computing,

it is not unreasonable to expect that DSPs and DSP-like processors will become more common-

place. At the same time, it seems likely that many future embedded applications will need some

form of encryption capability, for instance, for assuring privacy over wireless channels.

The questions that we try to address in this contribution are: How well are high-end DSPs

suited for the implementation of the AES finalists? Can modern DSPs compete with general

purpose computers in terms of speed?

In this paper, we focus on the implementation of the five AES finalists on a Texas Instruments

TMS320C6000 DSP platform. In particular, the implementations are on a 200 MHz ’C62x/’C64x

which performs up to 1600/8800 million instructions per second (MIPS) and provides thirty-

two/sixty-four 32-bit registers and eight independent functional units.

2 Previous Work: Cryptography on DSPs

The field of implementing cryptographic algorithms on special platforms is very active. However,

the research done on implementation of cryptographic schemes on a DSP is limited. There are

a few papers that deal with public-key cryptography. There is one previous paper about the

implementation of the AES candidates on a DSP. The papers [3, 7, 10] deal primarily with the

implementation of public key algorithms on DSP processors. The main conclusion of these papers

is that DSPs are a good choice for these algorithms due to the integer arithmetic capabilities of

DSPs.
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Reference [7] also describes the implementation of DES on a Motorola DSP 56000. It was found

that the algorithm encrypts at roughly the same speed as a contemporary PC (20 MHz Intel 80386).

Karol Gorski [9] commented on the set of the AES Round 1 candidate algorithms, based on

the timings obtained on the TI TMS320C541 DSP. Reference [9] used the C implementation by

Brian Gladman, compiled with full compiler level optimizations. The resulting low speeds of the

algorithms were due to the ’C54x 16 bit operations which are not ideal for most of the AES

candidates. There was also no effort made to optimize the algorithms beyond those optimizations

automatically performed by the C compiler.

3 Methodology

3.1 The Implementation of the Five AES Finalists

We implemented Mars, RC6, Rijndael, Serpent and Twofish on a TMS320C6201 DSP. RC6 was also

implemented on the C64x DSP. As the basis of the implementations we used either the reference or

optimized C code provided by the algorithm’s authors, or the C code written by Brian Gladman [8].

It is important to point out the way we chose to code each algorithm, because they all offer

several implementation options. In [6], the authors of Rijndael proposed a way of combining the

different steps of the round transformation into a single set of table lookups. Each table has

256 4-byte word entries. Similarly, our Twofish implementation uses the ”Full Keying” option as

described in the specification [13]. Inother words we used 4 KByte tables which combine both the S-

box lookups and the multiplication by the column of the MDS matrix. RC6 is a fully parameterized

encryption algorithm [11]. The version of RC6 that we implemented is RC6-32/20/16. Mars was

coded in the original version as stated in the algorithm specifications in [4], with 8, 16, and 8

rounds of “forward mixing”, “main keyed transformation”, and “backwards mixing”, respectively.

Finally, in [2] the authors described an efficient way to implement Serpent. Thus, we implemented

the S-boxes as a sequence of logical operations which were applied to the four 32-bit input blocks.

3.2 Tools and Optimization Effort

The source code was first compiled using the standard Texas Instruments C compiler (versions 3.0

and 4.0 alpha), utilizing the highest level of optimizations (level 3) available. For further information

about the levels of optimization performed by the compiling tools, see [15, page 3–2 and 3–3].

After the implementation of the C code version, we optimized the encryption and decryption

functions of the algorithms so that the compiler could further optimize it. In order to do so, we took

advantage of the 32-bit data bus which is capable of loading 32-bit words at a time. We performed

math operations with Intrinsic Functions to speed up the C code. Intrinsic Functions are similar

to an additional mathematical Run-Time Support (RTS) library. They allow the C code to access

hardware capabilities of the ’C6x devices while still following ANSI C coding practices. We also

tried to use as many of the functional units in parallel as possible, e.g., by replacing constant

3



multiplication by shifts, by unrolling loops, or by preserving loops.

We further rewrote the encryption and decryption function for most algorithms in linear as-

sembly to achieve performance improvements. Linear assembly is assembly code that has not been

register-allocated and is unscheduled. The assembly optimizer assigns registers and uses loop op-

timization to turn linear assembly into highly parallel assembly. However, we did not program in

pure assembly which is a very challenging and time consuming task on a complex processor such

as the ’C6201, with eight independent functional units.

3.3 Parallel Processing: Single-Block Mode vs. Multi-Block Mode

In addition to the optimizations described above, we implemented a second version of code in

which data blocks can be processed in parallel. With parallel processing, the encryption and the

decryption functions can operate on more than one block at a time using the same key. This allows

better utilization of the DSP’s functional units which leads to better performance.

With parallel processing, however, the speedups may only be exploited in modes of operations

which do not require feedback of the encrypted data, such as Electronic Code-Book (ECB) or

Counter Mode. When operating in feedback modes such as Ciphertext Feedback mode, the cipher-

text of one block must be available before the next block can be encrypted. For the remainder

of our discussion, single-block mode will denote feedback modes and multi-block mode will denote

non-feedback modes.

3.4 The TMS320C62x Digital Signal Processor

We chose the TMS320C6201 fixed point digital signal processor out of the TMS320C62x family. In

this subsection we introduce the key architectural features of the DSP which are relevant for our

implementation.

The ’C6201 performs up to 1600 million instructions per second (MIPS) at a clock rate of 200

MHz. These processors have thirty-two 32-bit registers and eight independent functional units.

As shown in Figure 1, the ’C62x has four pairs of functional units. The architecture of the DSP

has effectively been divided in two identical halves. Each half is composed of four independent

functional units (.S, .M, .L, and .D) and a bank of sixteen 32-bit registers. The processor also

allows limited communication between the two halves.

The multiplier unit is indicated by .M and accepts two 16-bit words as an input and outputs a

32-bit result. In addition to the two multipliers, the processor provides six arithmetic logic units

(ALUs). The .L unit, that has the ability to perform 32/40-bit arithmetic operations, comparisons,

normalization count for 32/40-bits, and 32-bit logical operations. With the .D unit we can add 32-

bit words, subtract, do linear and circular address calculation, and write to and load from memory.

The .S unit provides the functionality for 32-bit arithmetic operations, 32/40-bit shifts, 32-bit bit-

field operations, 32-bit logical operations, branching, constant generation, and register transfers

to/from the control register file [16].
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Figure 1: TMS32062x Functional Units [16]

The ’C6201 includes a bank of on-chip memory and a set of peripherals. Program memory

consists of a 64K-byte block that is configurable as cache or memory-mapped program space. A

64K-byte block of RAM is used for data memory. The peripheral set includes two serial ports, two

timers, a host port interface, and an external memory interface.

The ’C6000 development environment includes: a C Compiler, an Assembly Optimizer to sim-

plify programming and scheduling, and the Code Composer StudioTM, which is a MS Windows

debugger interface for visibility into source execution. All of the ’C6000 devices are based on the

same CPU core featuring VelociTITM, a highly parallel architecture that provides software-based

flexibility and good code performance for multi-channel and multi-function applications.

4 Results

4.1 Results on the TMS320C6201 DSP

All the figures presented in this section refer to a 128-bit block encryption or decryption with a

key of 128 bits. The algorithms are timed with the Code Composer Simulator, which is part of

the Code Composer StudioTM for the TMS320C6201 DSP. Code Composer Simulator uses the

simulated on-chip analysis of a DSP to gather profiling data.

The reported results in Table 1 refer to either a C or a Linear Assembly implementation. In

the cases where we had the possibility to choose between two implementations we referenced the

fastest results found by us. All the timings shown are obtained from a C implementation using the

compiler version 4.0 alpha unless otherwise indicated.
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To convert cycle counts into encryption or decryption rates expressed in bits per second, we

divided 128 ∗ 200 ∗ 106 by the cycle count. For example, the encryption speed of Twofish in multi-

block mode is computed as: 128 ∗ 200 ∗ 106/184 = 139.1 Mbit/sec.

The order of the algorithms is based on the mean speed of encryption and decryption in multi-

block mode. The mean speed can simply be calculated by adding the speed of the encryption and

decryption functions and then dividing the sum by two. For instance, the mean speed in multi-block

mode for RC6 equals (128.0 + 116.4)/2 = 122.2 Mbit/sec.

DSP DSP Pentium-Pro

multi-block mode single-block mode DSP multi-block

@ 200MHz @ 200MHz @ 200MHz mode/Pentium

cycles Mbit/sec cycles Mbit/sec Mbit/sec

Twofish encryption 184 139.1 308 83.1 95.0 [17] 1.5

decryption 172 148.8 290 88.3 95.0 [17] 1.6

RC6 encryption 200 † 128.0 292 87.7 97.8 [12] 1.3

decryption 220 † 116.4 281 91.1 112.8 [8] 1.03

Rijndael encryption 228 ‡ 112.3 228 ‡ 112.3 70.5 [8] 1.6

decryption 269 ‡ 95.2 269 ‡ 95.2 70.5 [8] 1.4

Mars encryption 285 89.8 406 63.1 69.4 [8] 1.3

decryption 280 91.4 400 64.0 68.1 [8] 1.3

Serpent encryption 772 33.2 871 ∗ 29.4 26.8 [8] 1.2

decryption 917∗ 27.9 917 ∗ 27.9 28.2 [8] 1.0

Table 1: Performance results of the AES candidates on the TMS320C6201

Here are comments about the results in Table 1:

• The highest level of optimizations were used for all algorithms, with the exception of Serpent

decryption. The loop in Serpent is too complex and too long so the optimizer was only

able to schedule the code in a lower level. Hence, the performance figures for decryption are

slightly worse than the numbers for encryption. In addition, the throughput of the decryption

function is the same for single-block and multi-block modes.

• The linear assembly code of Rijndael can be optimized by the tools very efficiently. In this

case we could not gain a performance advantage by parallel processing, which results in the

same speed for single-block and multi-block modes.

• In all cases, except for RC6 encryption, we encrypted and decrypted two blocks at a time

in multi-block mode. We were able to process three blocks at a time in parallel for RC6

∗C implementation using compiler version 3.0
†Linear assembly implementation using compiler version 3.0
‡Linear assembly implementation using compiler version 4.0 alpha
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encryption. Hence, we could use a large number of functional units in parallel and could

reach a high throughput. For some of the other algorithms we tried to use three blocks in

parallel as well. However, the optimizer was not able to create efficient loops due to the

number of instructions.

4.1.1 Results in Multi-Block Mode

In Table 1 we compare the throughput speeds of the TMS320C6201 and a 200MHz Pentium Pro. In

order to allow for an easy comparison we added the rightmost column to the table, where we divided

the highest speed in multi-block mode on the DSP with the performance numbers on the Pentium.

In this way we normalized our numbers by the speed achieved on the Pentium Pro platform. If

the ratio is larger than one, the implementation of the algorithm on the DSP is faster than the one

on the Pentium. One can see that in all cases but one we could achieve higher throughput on the

DSP than the best known results on a Pentium Pro II with the same clock rate. Only for Serpent

decryption were the Pentium and the DSP speeds almost identical.

We can also see from the performance ratio in the rightmost column how well the algorithm

structure is suited for the DSP. Rijndael encryption and Twofish decryption gain the most when

implemented on the DSP compared to the implementation on a Pentium. In both cases the quotient

of the throughputs is approximately 1.5, which means that the speed of the particular function on

the DSP is roughly 50% faster than the same function on the Pentium.

In addition to our above analysis, we ranked the AES finalists based on their performance

on the ’C6000 DSP family. This ranking compares the mean speed of the algorithms in multi-

block mode. Twofish with a mean speed of 144.0 Mbit/sec and RC6 with 122.2 Mbit/sec are the

fastest algorithms. These two algorithms are followed by Rijndael with a mean throughput of 103.8

Mbit/sec and Mars with 90.3 Mbit/sec. Serpent with 30.6 Mbit/sec is poor in terms of throughput

on the DSP.

4.1.2 Results in Single-Block Mode

The results stated above refer only to the cases in which we used multi-block mode. If we look at the

single-block mode case, Rijndael encryption and decryption as well as Serpent encryption perform

better on the DSP than on a Pentium. Rijndael encryption with 112.3 Mbit/sec is almost 60%

faster than the corresponding Pentium implementation and Rijndael decryption at 95.2 Mbit/sec

is almost 40% faster. Judged by their speed performance on the C62x, Serpent decryption, Mars

encryption and decryption, and Twofish decryption are slightly worse than on a general-purpose

computer. The remaining functions, Twofish encryption and RC6 encryption and decryption, are

much slower than the corresponding Pentium functions.

If we had ranked the algorithms based on their mean speed in single-block mode, Rijndael with

103.8 Mbit/sec would be the fastest, followed by RC6 with 89.4 Mbit/sec, and Twofish with

85.7 Mbit/sec. Mars with 63.6 Mbit/sec and Serpent with 28.7 Mbit/sec are not as good in

single-block mode.
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We would like to point out that all of our “best” results were achieved using the methodology

described above, and that other coding styles, such as pure assembly, might be able to achieve

higher throughputs.

4.1.3 Comparison of the Results with the Critical Path of the Algorithms

Craig S.K. Clapp analyzes the critical path of Crypton, E2, and the five AES finalists. In his

analysis, [5] only counts instructions and cycles associated with the transformation of a plaintext

block into a ciphertext block in ECB mode. In other words, instructions associated with loading

of plaintext, storing of ciphertext, and loop overhead are ignored. Clapp concludes that based on

the length of its critical path, Rijndael stands well ahead of the pack with 71 cycles/block. Twofish

(162 cycles/block), RC6 (encryption with 181 cycles/block and decryption with 161 cycles/block),

and Mars (214 cycles/block) form the second tier. Finally, Serpent’s critical path is a factor of two

longer than the next nearest candidate (encryption with ≤ 526 cycles/block and decryption with

≤ 436 cycles/block).

The results that we achieved in single-block mode are in agreement with those obtained by

analyzing the critical path. Rijndael is in both cases by far the fastest algorithm. The throughput

of RC6 is slightly better than the throughput of Twofish on the DSP, even though the critical

path of Twofish is a little shorter than the one from RC6. Mars is ranked in both, the DSP speed

analysis and the critical path analysis of [5], the same. Serpent results trail the nearest candidate

in both analyses by more than a factor of two. It is important to point out that while the critical

path for decryption is shorter than that for encryption in Serpent, decryption is actually slower

than encryption in the DSP implementation.

The discrepancies are due to our use of automatic optimization. The optimizer tries to create

the best machine code possible. Nevertheless, the optimizer might not be able to reach the cycle

count of the critical path for some algorithms. We might be able to overcome these differences by

rewriting the functions in full assembly. We were not able to do this because of time constraints.

4.1.4 Memory Usage

Embedded system applications have often memory constrains. Hence this subsection looks at the

memory requirements of our implementation. The ’C6201 has three 16 Mbyte regions of external

memory. These regions can support synchronous or asynchronous 32-bit access. There is also

one 4 Mbyte region of asynchronous external memory which is typically used to store the boot

information. The ’C6201 contains one megabit of internal RAM which is split between program

and data memory. All this internal memory is zero wait-state. Table 2 summarizes the memory

usage of the algorithms in our implementation.

As it can be seen from Table 2, the memory usage of the algorithms varies almost by an order

of magnitude. RC6 uses the least program memory and Serpent the most. In some cases, e.g. for

Serpent, the algorithms require a large amount of program memory, because we optimized them for

speed. Hence we calculated the look-up tables on the “fly” with boolean-algebra and this increases
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Memory Usage Memory Usage

multi-block mode single-block mode

Data ROM Program Data ROM Program

/Bytes /Bytes /Bytes /Bytes

Mars 3072 3072

encryption 3280 2428

decryption 2956 2372

RC6 0 0

encryption 608 576

decryption 672 576

Rijndael 16384 16384

encryption 2360 1180

decryption 2960 1480

Serpent 0 0

encryption 5844 3568

decryption 6016 5104

Twofish 168 168

encryption 1416 700

decryption 1420 708

Table 2: Memory Usage on the TMS320C6201

the program code. The data ROM represents constant arrays, which in our cases correspond to

the look-up tables. RC6, for example, uses no tables, hence the data ROM is zero.

4.2 Results on the TMS320C64x

The TMS320C64x clock can be scaled to up to 1.1 GHz and can perform up to 8800 MIPS. The

C64x has extended parallelism support with quad 8-bit and dual 16-bit operations. Also, the sixty-

four 32-bit registers and 8 functional units lead to better performance. We also took advantage

in our implementation of the better data access and the extended instruction set of the C64x (for

example, rotation, Galois field multiplication, etc.).

We chose RC6 to be implemented on the C64x. The results that we present in this section are

based on a C implementation and are compiled with compiler version 4.0 beta.

The results in Table 3 for RC6 achieved with the ’C64x in multi- and single-block mode are

better than the results we got from the ’C6201. RC6 encryption in multi-block mode is almost 70%

faster than on a general-purpose machine.

At this point it is important to remark that the optimizer tools are quite advanced for the ’C62x,

but are still in a very early stage for the ’C64x. That means if we only perform C code optimizations,
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we will not get good performance numbers on the ’C64x. We expect an improvement when we

rewrite the functions in linear assembly. We did a detailed analysis for hand coded assembly RC6

and we estimated a performance of 229 cycles/block (for each encryption- and decryption-function)

in single-block mode.

DSP DSP Pentium-Pro

multi-block mode single-block mode DSP multi-block

@ 200MHz @ 200MHz @ 200MHz mode/Pentium

cycles Mbit/sec cycles Mbit/sec Mbit/sec

RC6 encryption 155 165.2 277 92.4 97.8 [12] 1.7

decryption 154 166.2 278 92.1 112.8 [8] 1.5

Table 3: Performance results of two AES candidates on the TMS320C64x

5 Conclusions

“How well are high-end DSPs suited for the AES algorithms?” was the main question that we

asked ourselves as a motivation to write this paper. We noticed that in almost all cases the AES

finalists’ encryption and decryption functions reach higher speeds on the ’C6000 DSPs than the best

known Pentium Pro II implementations, at identical clock rates. It was observed that some of our

implementations on the ’C6201 were over 50% faster than the best known performance numbers on

the Pentium platform. In addition, our implementation of RC6 on the ’C64x reached speeds which

were almost 70% faster than those of the Pentium. RC6 on the ’C64x encrypts with a throughput

of 165.2 Mbit/sec and decrypts with a speed of 166.2 Mbit/sec. Twofish with an encryption speed

of 139.1 Mbit/sec and decryption of 148.8 Mbit/sec was by far the fastest throughput that we

obtained on the ’C6201. Hence, we can conclude from our results, that state-of-the-art DSPs are

well suited for the architecture of the AES finalists.
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Abstract. Of the five AES finalists four—MARS, RC6, Rijndael, Twofish—
have not only (expected) good security but also exceptional performance on the
PC platforms, especially on those featuring the Pentium Pro, the NIST AES
analysis platform. In the current paper we present new performance numbers
of the mentioned four ciphers resulting from our carefully optimized assembly-
language implementations on the Pentium II, the successor of the Pentium Pro.
All our implementations follow well-defined API and timing conventions and
sensible guidelines, like no using of self-modifying code and key-specific static
data — i.e., tricks that speed up the implementation but at the same time restrict
the field of application. Our implementations are up to26% percent faster than
previous implementations. Our work also shows how a simple change (inclu-
sion of the MMX technology) in the analysis platform can influence the relative
encryption speed of different ciphers. To enable everyone to compare their imple-
mentations to ours, we also fully specify our procedures used to obtain the speed
numbers.

1 Introduction

For more than20 years, DES [FIP77] has been a widely employed cryptographic stan-
dard. While the best cryptanalytic attacks against DES (differential and linear cryptanal-
ysis) are still highly impractical, during the last years DES has became obsolete for its
too short key and block sizes, not withstanding the current advances in computing tech-
nology. Motivated by this, NIST initiated a new effort to replace DES as a standard.21
algorithms were submitted and15 algorithms were accepted as AES (Advanced Encryp-
tion Standard) candidates, of which5 candidates—MARS [BCD+98], RC6 [RRSY98],
Rijndael [DR98], Serpent [ABK98], Twofish [SKW+99b]—were chosen to the second
round.

However, the AES process was started not only due to the theoretical reasons: there
are a few well-known constructions, including 3DES, that seem to have very good secu-
rity margins. Unfortunately, 3DES, based on the hardware-oriented DES, is unsatisfy-
ingly slow on the modern32- and64-bit computer architectures: modern block ciphers
are up to10 times faster than 3DES. Regardless of these ciphers having unproven (even
by time) security properties, they are widely used in the industry by pragmatic reasons:
hardware applications like1 GBits/s Ethernet or on-the-fly encryption of160 MByte/s



SCSI hard disks are requesting for faster ciphers. Clearly, the situation of having a
(moderately) secure and (moderately) fastde jurestandard DES, a (probably) secure
and (clearly) slowde factostandard 3DES and some fast but with unknown security
marginde factostandards is not acceptable: there should be a single standard that is
both secure and fast. This is one of the reasons why, when inviting the public to pro-
pose candidates for the AES, NIST explicitly stated that the new standard should be
both “more secure and faster” than 3DES.

While security of the candidates cannot be exactly quantified by the currently known
methods, it seems to be easier to measure their speed. However, there is still a lot of
ambiguity in answering the question what AES candidate is the fastest. Several pa-
pers (including [Lip99,SKW+99a]) have compared AES candidates speed, but since
the implementations quoted in them are often incomparable (or based on pure estima-
tions), one cannot make direct conclusions about the efficiency of the ciphers based
on the published papers. Incomparability stems from the different implementation as-
sumptions, API’s, hardware (e.g., processors) and software (e.g., compilers) used by
implementers. Even more, some of the timings presented in previous papers correspond
to “show-case” (as opposed to practically applicable) implementations, some exam-
ples of those being the fastest implementation of Twofish [SKW+99b] that uses self-
modifying code and Brian Gladman’s implementations of AES candidates [Gla99] that
use a number of key-specific static variables instead of allocating a register to address
them, therefore effectively freeing some registers for other uses. Especially in the case
of the Pentium family, where the number of available registers is very restricted, such
implementations may result in a huge speed up. However, both types of implementation
tricks restrict the application area of the implementation.

In the current paper we try to give a satisfactory answer to the question “what cipher
is the fastest on the Pentium II” by carefully optimizing the4 fastest AES candidates—
MARS, RC6, Rijndael and Twofish—in Pentium II assembly, using for all implementa-
tions exactly the same, reasonable in practice, API and speed measurement conditions
for all the ciphers. Due to this, our results are much fairer than most of the previously
known ones: our implementations can be seen as black boxes applicable in almost any
possible application of block ciphers on an environment featuring Pentium II. Addi-
tionally, careful optimization process resulted in implementations that are clearly faster
than the previously known implementations. (Except for Twofish, which has still a faster
“show-case” implementation.)

We start the paper by describing our platform of choice (Section 2), implementation
philosophy and API (Section 3). Section 4 briefly surveys our results, and Section 5
gives more details on the problems encountered when implementing the ciphers. More
information about the Pentium II is given in the Appendices.

2 Choice of the Platform

Our first principal choice was the decision what processor to use. By purely pragmatic
reasons we decided that the implementation environment equips an Intel Pentium family
CPU: while this family is not the most modern processor family available, it is the most
widespread one at the moment of writing this paper and most probably also during the
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next few years. Therefore, since in the foreseeable future most of the software-based
commercial security applications run on the Pentium family (as recognized also by the
AES finalists designers), this family has the most direct impact on the choice of a cipher
by security consumers.

At second, from the Pentium family we decided to choose the Pentium II processor.
At first, it is a more advanced processor than Pentium Pro, the NIST AES analysis
platform: the Pentium II provides (twice) larger register space due to the added MMX
technology, and many new MMX-specific commands. Compared to the Pentium Pro,
the Pentium II is also easier to obtain at the current stage, since Pentium Pro has been
out of the manufacturing for a while. On the other hand, the Pentium II was preferred
by the authors to the Pentium III since the latter is somewhat too new and controversial
due to the privacy issues.

Another reason to choose Pentium II was that as the successor of the NIST AES
analysis platform, implementing the AES candidates on the Pentium II could provide
some insights on how generally suitable are the candidates, some of which were specif-
ically optimized for the Pentium Pro, on future processors having features unpredicted
by algorithm designers. While this is not as crucial as withstanding the “future attacks”,
it still gives some ideas about the possible longevity of the cipher. (We clearly would
not want the AES in20 years to have the role the 3DES has today!)

As shown in [Lip98], the MMX technology can seriously speed up IDEA ([LM90],
[LMM94]), one of the believably most secure block ciphers with 64-bit block size. As
stated in [Lip98], this can be done since IDEA has its key attributes similar to those
of multimedia applications, for which the MMX technology was originally created. An
open question posed in [Lip98] was how much would the MMX technology help imple-
menting other ciphers, including the AES candidates. In the following we will partially
answer to that question, showing that also some ciphers using only “simple” operations
can greatly benefit from the added MMX technology. A short overview of Pentium II
that is necessary for implementers and for cryptographers who design ciphers optimized
for this platform is given in Appendix A. We refer for Intel manuals for a more complete
overview.

3 Implementation Considerations

Several papers (including, in particular, [Lip99,SKW+99a]) have compared AES can-
didates speed, but since the implementations quoted in them are often incomparable (or
based on pure estimations), one cannot make direct conclusions about the efficiency of
these algorithms based on the published papers. Incomparability stems from the differ-
ent implementation assumptions, API’s, hardware (processors) and software (compil-
ers) platforms used by implementers. Even more, some of the numbers there correspond
to the “show-case” (as opposed to practically applicable) implementations; including
the bizarre case that one candidate was claimed to be the fastest on its inventors laptop
under some suitable conditions.

As another example of the unsuitability of some “show-case” implementations, the
fastest implementation of Twofish [SKW+99b] uses self-modifying code and therefore
cannot be used in a number of applications, while Brian Gladman’s implementations of

3



AES candidates [Gla99] use a number of key-specific static variables instead of allo-
cating a register to address them, therefore effectively freeing some registers for other
uses. Especially in the case of the Pentium family, where the number of available reg-
isters is very restricted, such implementations may result in a huge speed up. On the
other hand, Gladman’s implementations cannot be used several applications, including
multithreaded programs and SMP (symmetric multi-processing) systems.

Most of the security customers need however speed numbers applicable in whatever
product they use in whatever environment in runs (for example, in a Linux kernel-
supported IPSEC implementation, secure login or multithreaded access to encrypted
storage arrays). For users it is necessary to know in what environment the measured
speed numbers were obtained, to be able to calculate the possible efficiency of the
ciphers in their own environments. Additionally, full specification is important for other
implementers to be able to compare their implementations with ours. Hence, apart from
providing “clean” implementations under some reasonable public assumptions, we shall
also next fully specify these assumptions:

– We do not use self-modifying code (“code compilation” [SKW+99b]) since it
makes the implementation inapplicable in a number of situations, e.g., in operation-
system kernel and ROM-based applications.

– We additionally decided not to use key-specific static areas since then the imple-
mentation could not be used, e.g., in SMP-capable systems and multithreaded pro-
grams.

– We decided to maximally use the MMX technology since it should not be forbidden
in any reasonable modern environment. (While using self-modifying code and key-
specific static areas is generally considered to be a bad programming practice.)

– We decided to use exactly the same API (specified later in Section 3.1) in all our
implementations.

– A number of well-understood assumptions that 1) improve the speed and can be
easily followed by implementers or 2) are essential to even be able to measure the
speed:
• All codes and data are correctly aligned.
• Input and output texts and codes are preloaded to L1 cache in the possible

extent to reduce the number of cache misses.
• Simplicity of code: we tried to reduce time spent during writing and optimiz-

ing the code. In particular, all our implementations use highly optimized but
round-number independent round macros. (Hence, our results could be slightly
bettered if every round would optimized separately to avoid, e.g., delays in
fetching stage.)

3.1 API

Since a different API can be influence the speed of an implementation severely, we also
decided to fully specify the API used by us to make for the other implementers easier
to compare their implementations to the ours. We felt that this is necessary, since AES
candidate implementations reported in [Lip99] vary greatly in their API’s.
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void xxKS(char *master, uint32 bitLen, char *eKey);
void xxEnc(char *inBlk, uint32 lenBlk, char *eKey,

char *outBlk);
void xxDec(char *inBlk, uint32 lenBlk, char *eKey,

char *outBlk);

where

xx is algorithm name (e.g.,Rijndael ).
xxKS is key scheduling subroutine.
xxEnc is encryption subroutine that encryptslenBlk blocks of plaintext starting from the

addressinBlk to the ciphertext locationoutBlk , by using extended keyeKey , in ECB
block cipher mode.

xxDec is decryption subroutine with the same input conventions asxxEnc .
uint32 is the type of32-bit unsigned integers (in the case of Pentium II, equal tounsigned

long in the case of most compilers).
master is pointer to the master key bits.
bitLen is the bit length of a master key.
eKey is pointer to subkeys and other initialization data, used later by encryption and decryption.
inBlk is pointer to input texts to be encrypted in the case ofxxEnc and to be decrypted in the

case ofxxDec .
outBlk is pointer to the corresponding output texts.
lenBlk is number of blocks to be encrypted or decrypted.

Fig. 1.Specification of our API.

Note that our API, depicted in Figure 1, is essentially equivalent to the API’s used
in most of the commercial applications, specifying only those inputs and outputs to the
algorithms that are really needed by the algorithms. (Names of the subroutines and their
parameters of course do not affect the speed, of course.) Our API was fixed for the key
length of128-bits due to the feeling that at the time when greater key sizes become
necessary, our implementation platform would already be a history.

Here, the key schedule and decryption subroutines are specified only for complete-
ness. Since in the current paper we are not interested in the optimization of these sub-
routines, we almost do not mention decryption and key schedules hereafter.

3.2 How to Measure a Number of Cycles

Different time measurement methods may change the speed numbers quite dramati-
cally. As in the case of the API’s, we decided to use one, sensible published andfully
specifiedconvention (specified in Figure 2) for all the implementations. (Note that this
wrapping corresponds almost exactly to the method specified in [Fog00], to which the
reader is referred for a throughout explanation of the method.) The inputs and key of
the cipher are generated randomly before the measurement begins, to prevent “opti-
mization” for specific class of keys. The input variablelenBlk was chosen to be equal
to 8000 so that the input and output texts would not fit in the L1 cache. Also,time is
a work area of typeuint32 , used in later calculations.
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movd mm0, dword ptr [time]; /* warm cache and set MMX state*/
xor eax, eax;
cpuid; /* serialize instructions*/
rdtsc; /* read time-stamp counter*/
mov dword ptr [time], eax; /* save counter*/
xor eax, eax;
cpuid; /* serialize instructions*/
/* xxEnc() or xxDec() */
xor eax, eax;
cpuid; /* serialize instructions*/
rdtsc; /* read time-stamp counter*/
sub dword ptr [time], eax; /* compute the difference*/
emms; /* empty MMX state */

Note thattime is a4 bytes work area.

Fig. 2.Time measurement code

/* push all used registers*/
cmp dword ptr [lenBlk], 0;
jz L1;
align 16;

L0:
dec dword ptr [lenBlk];
jnz L0;

L1:
/* pop these registers once more*/

Fig. 3.Null function

Note that this method has some overhead, due to both high latency of therdtsc
instructions and also the overhead caused by looping instructions likejnz which are
not formally part of the cipher itself. (Looping instructions can be seen as a part of
the block cipher mode, however.) We measure this overhead by using the null function
shown in Fig. 3 obtaining a valuenulltime , and then we subtract it from the value of
time obtained by measuring the speeds of different encryption/decryption procedures.
Finally, this result is divided by the number of blocks encrypted. Intuitively, by using
this method we obtain the number of cycles corresponding to unrolled implementation
of the block cipher, or to the implementation where we only care about the time en-
crypting one block takes without adding any extra overhead. (Note that the subtracted
overhead number was equal to≈ 6 in the casen = 8000. One could easily add this
number to those presented later to get the number of cycleswith overhead.)

Chosen time measurement method is also reasonable in practice: when the value
of lenBlk was chosen to be different, for most of the implementations (including
the implementation of null cipher), the execution times increased by almost the same
constant. Hence, the null cipher proved experimentally to be well-defined.
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Cipher Mbits/s on a 450
MHz Pentium II

Cycles per
block

Best previous resultSpeedup

Null cipher — 6 — —
RC6 258 Mbits/s 223 243 [Riv98] 8%
Rijndael 243 Mbits/s 237 320 [DR98] 26%
Twofish 204 Mbits/s 282 315 [SKW+99b] 11%
MARS 188 Mbits/s 306 390 [BCD+98] 22%

Table 1.Performance in clock cycles per block of output of four AES finalists. (Only encryption
considered)

Finally, we did a loop of500 times over the described measurements and then chose
the smallest number for every cipher, since that corresponds most likely to the case
where most of the data and code are in L1 cache and the branch prediction works suc-
cessfully: i.e., to the bulk encryption speed of the cipher itself.

4 Implementation Results

From the five AES finalists, one (Serpent) is regarded as a very conservative design
but at the same time also being clearly slower than the other AES finalists. Rest of the
finalists have comparable timings on most of the modern computer platforms, where
one of the ciphers is the fastest in one platform, and another one in another platform.
Since also on the Pentium II processor, Serpent seems to be very slow by the published
data, we decided postpone its implementation to the future and concentrate on the fast
ciphers.

Timings, obtained by measuring the speed of implementations by following pre-
viously specified procedures are summarized in Table 11. The numbers in the middle
columns show how many cycles it takes to encrypt one128-bit block by using the cho-
sen cipher with a128-bit key. These results indicate that the chosen four AES finalists
are extremely fast. For comparison, the standard hash algorithm SHA-1hashesa 512-
bit block in 837 cycles (i.e.,13.1 cycles per byte) and DES and 3DES encrypt a64-bit
block respectively in340 and928 cycles (resp.,42.5 and116 cycles per byte) [PRB98],
while RC6 and Rijndael respectively encrypt a128-bit block in 223 and 237 cycles
(resp.,13.9 and14.8 cycles per byte). However, note that the cited timings in [PRB98]
were obtained on a plain Pentium and therefore could most probably be improved on
the Pentium II.

Our results seem to indicate, that the speed difference between different ciphers is
less than expected: as before, RC6 is still the fastest cipher on the Pentium II, but the
difference between it and Rijndael has decreased seriously. Hence we hesitate to say
that RC6 is the fastest cipher. However, based on the cited results, we can classify the
ciphers to two groups: blastingly fast ciphers RC6 and Rijndael and somewhat slower,
but still very fast ciphers Twofish and MARS.

1 We also started to code the decryption routines, finishing RC6 decryption (209 cycles per
block) and Twofish decryption (276 cycles per block).
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However, one has to keep in mind that RC6 and MARS have design features that
make them specifically efficient on the Pentium Pro (and its successors), while their
performance seriously degrades on other processors [Lip99,SKW+99a]. This is due to
the use of complex instructions (32-bit multiplication and data-dependent rotation) that
are cheap on the P6 family (Pentium Pro, Pentium II, Celeron, Xeon and Pentium III)
but very expensive on most of the other platforms. Interestingly, also the next generation
Pentium processor (code-named “Willamette”, [Int00]) has latency10 multiplication
and latency2 or 4 shifts, as compared to latency4 multiplication and latency1 shifts on
the P6 family [Int00, Section 4.1.3]. Hence, RC6 and MARS would considerably slow
down on the Willamette, the next generation Pentium family processor. On the other
hand, Rijndael and Twofish are based on simple operations, and run equally well on
all platforms. The speed ratio between Rijndael and Twofish seems be remainalmost
the same on the other platforms [Lip99] (namely, Rijndael being5 . . . 25% faster than
Twofish).

Note that the speed up percents in Table 1 correspond to the achieved speed ups
compared to the fastest “clean” implementations (i.e., those not using key-specific static
data or self-modifying code). However, these percents do not always mean that our
implementation techniques were exactly as much better. For example, the best previous
implementation of Rijndael was done for the plain Pentium, but not for the Pentium Pro:
a factor that may have negatively affected its performance. The best previous “clean”
implementation of MARS was written in C, and therefore had also a relatively slow
performance. However, our own C implementation of MARS is clearly faster than the
one given in Table 1. In the case of Rijndael, most of the acceleration Rijndael is due
to the efficient use MMX technology. In general, speed up comes mainly from better
optimization (elaborated tradeoff between processor operating stages) and full usage of
the Pentium II possibilities (i.e., the MMX technology).

To further clarify how does the Pentium II architecture impact the speed, Table 2
shows the detailed information of our implementations in encryption mode in the micro-
operation level. Usage of the table is simple. For example, in the intersection point of
“@round” row and “port01” column in TwofishEnc table one would find19. That
means that there are19 µoperations in the round function ofTwofishEnc which will
be executed on port0 or port1.

Interestingly, our implementations of MARS, Rijndael and Twofish all require ap-
proximately the same number ofµoperations, while RC6 is about two times “better”
in this category. On the other hand, RC6 is also the worst cipher to parallelize: while
in Rijndael, more than2.5 µoperations are executed per a cycle, RC6 can only mildly
use the super-scalar parallelism of Pentium II. More cipher-specific comments will be
given in the next.

5 Cipher-Specific Comments

5.1 MARS

In the case of MARS [BCD+98], the speed difference between a carefully optimized
C implementation (using a recent snapshot of thegcc compiler) and an optimized as-
sembly language implementation is only about11% on the Pentium II. The speedup
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port 0 port 1 port 01port 2 port 3 port 4 total

MARS encryption (1.87 µops/cycle)
prewhitening 5 8 13
forward mixing 16 77 32 125
@core (×16) 6 9 3 18
backward mixing 16 85 32 125
postwhitening 1 8 4 4 4 21
total 128 1 319 124 4 4 572

RC6 encryption (1.47 µops/cycle)
prewhitening 2 7 9
@round (×20) 8 5 2 15
postwhitening 1 4 5 5 5 20
total 160 1 106 52 5 5 329

Rijndael encryption (2.54 µops/cycle)
whitening 1 8 6 15
@round (×9) 4 1 34 19 58
last round 4 3 31 20 3 3 64
total 40 13 345 197 3 3 601

Twofish encryption (2.11 µops/cycle)
prewhitening 5 8 13
first round 5 19 10 34
@round (×15) 6 19 10 35
postwhitening 2 1 8 4 4 4 23
total 97 1 317 172 4 4 595

Table 2.Number ofµoperations in our implementations

comes mainly from a slightly more efficient allocation of the integer registers and some
(minimal) usage of the MMX instructions in the assembly implementation. However,
the MMX technology is only moderately useful for MARS, since the complex instruc-
tions performed in MARS (i.e., 32-bit multiplication, data-dependent rotation and S-
box lookups) are not available for the MMX registers. Additionally, due to the high
data-dependency there is very limited freedom in meaningfully rescheduling the in-
structions in MARS, which also means that one cannot avoid all the delays on all the
processor operating stages.

Another drawback is that during MARS encryption, some execution ports are con-
siderably more overloaded than others. Namely, more than78% ofµoperations go either
to port0 or 1. The most overloaded is port0, since128 µoperations go only to this port
— including16 multiplications and extensively used rotations.

5.2 RC6

From implementers point of view, problems arising when optimizing an RC6 imple-
mentation are similar to those arising when coding MARS in many aspects: both ci-
phers rely on the same complex instructions, have long critical paths and overloaded
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port 0. However, since RC6 uses multiplications even more extensively, it is even less
parallelizable. Table 2 shows that our implementation includes160 port 0 µoperations,
which includes40 multiplications with latency4.

RC6 is a very Pentium II-friendly cipher, and it is very easy to code it even in the
assembly language. It can also be very efficiently implemented in C: the speed differ-
ence between a C implementation and an assembly implementation is about18%. (The
difference is bigger than in the case of MARS sincegcc , the test compiler, performs
very poorly in translating the quadratic formulas of typex · (2x+ 1) to the Pentium II
assembly language.) It is straightforward to obtain an optimized assembly language
implementation from the C implementation: one does not have many possibilities to
reschedule the code.

5.3 Rijndael

As opposed to MARS and RC6, Rijndael [DR98] is not C-friendly (at least notgcc -
friendly) in the sense that assembly implementation is about44% slower thangcc -
implementation of the same cipher. It is however mainly due to the inefficiency of the
gcc compiler: our implementation of Rijndael makes very heavy use of the MMX
technology, but also of 8-bit instructions provided by Pentium family. However,gcc
cannot efficiently use either of these.

Rijndael can effectively use the MMX since Rijndael is based only on most simple
imaginable operations (load , xor ), all of which are supported by the MMX technol-
ogy. Additionally, since Rijndael has large internal parallelism (at least four-times, but
partially up to16-times parallelism!), there is a large number of possibilities to resched-
ule its code. Our implementation was obtained by doing so in a way that all the delays
in the different stages of the Pentium II operation would be minimized. The final result
is very impressive for the Pentium II: it executes2.54 µoperations per a cycle.

Not the last factor that makes Rijndael suitable for the Pentium II is the fact that
almost exactly one third of theµoperations in our implementation of Rijndael go to
port 2, while the remaining2/3 of µoperations go to ports0 and1. Due to this and
parallelism we get that during the Rijndael encryption3 µoperations could be executed
in parallel almost all the time. However, this (not to mention other aspects like decoding
and fetching delays) also makes20 cycles per round a lower bound for Rijndael and
shows that our result may be very close to the optimal one. To facilitate more efficient
implementations, the Pentium II should feature three ALUs, two concurrent memory
access ports and also more decoders and retirement units: features that are not cipher-
specific and would improve the speed of most of the applications.

Finally, we measured the timings ofr-round Rijndael for variabler without any
additional fine-tuning: those implementations are unoptimized since they use the same
round macros as the10-round Rijndael without any additional effort to optimize them
to reduce, say, fetching delays. In particular it turned out that8-round Rijndael (essen-
tially equivalent to the cipher Square [DKR97] from the implementers point of view)
encrypts a block in193 cycles.192-bit Rijndael (12 rounds) took286 cycles, and256-
bit Rijndael (14 rounds)—333 cycles. Note that since12-round Rijndael is very similar
to Crypton [Lim98],286 cycles is also a (hopefully) close approximation for the speed
of latter.
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5.4 Twofish

Twofish is designed to be well-suited on multiple platforms, including also the Pen-
tium II. From the implementers point of view it resembles Rijndael in many aspects, by
using only simple instructions but also some large-scale components of the latter (e.g.,
MDS, to provide diffusion). Due to the use of low-level instructions, Twofish is also
relatively slow in C compared to the assembly (the difference is about37%).

Main difference for implementers between Rijndael and Twofish is the inclusion
of the Pseudo-Hadamard Transformation that somehow complicates Rijndael’s clear
structure and makes it less parallelizable: while the number ofµoperations in our im-
plementation of Twofish is less than in our implementation of Rijndael, it turned out
to be very difficult to use the MMX technology to optimize Twofish. Hence, Twofish
is only moderately parallelizable, although the parallelism of our implementation (2.11
µoperations per cycle) is relatively good.

6 Conclusion and Work in Progress

We achieved the fastest implementations of four of the AES finalists on the Pentium II
processor, obtaining speedup8% . . . 26% compared to the previously known implemen-
tations. Since all implementations were coded by using the same sensible assumptions,
they provide a more adequate efficiency comparison of the AES finalists than the pre-
vious papers. We demonstrated that MMX can be quite efficiently used to speedup
Rijndael, but is only moderately useful for other ciphers. (However, our implemen-
tations depend on the availability of MMX technology to a lesser or greater extent
and in general do not run on the Pentium Pro.) We provided full specification on our
time-measurement conditions to simplify for the future implementers to compare their
implementations to ours.

Our implementations are not the final: we continue optimizing them. Up-to-date
results will be available at the AES efficiency table [Lip99].
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A Pentium II for Cipher Designers and Implementers

A.1 MMX Technology

The Pentium II has8 integer (including stack pointer) and8 new MMX registers; the
latter were not present in the Pentium Pro. While there is a great number of opera-
tions available on the integer registers, MMX registers are much more “RISCy”: only a
few instructions affect them, including move, Boolean operations,16-bit arithmetic and
shifts. Available set of instructions does not include several operations used in the mod-
ern block cipher design, including rotation and32-bit multiplication. On the other hand,
the MMX technology provides64-bit versions of Boolean operations and data moves
(i.e., the simplest possible operations), and also parallel4-way addition and multiplica-
tion of 16-bit data.16-bit multiplication is currently used in a very few ciphers, but as
shown in [Lip98], ciphers that base their security on extensive use of16-bit multiplica-
tion can be speed up considerably if using the MMX technology.

Despite of MMX’s attractiveness, at the current state of the affairs many C compilers
(for example,gcc , the standard compiler for Linux machines) do not yet produce MMX
code. Hence, for the Pentium II the assembly implementations are potentially more
efficient than C-language implementations. Partially by this reason, many designers
and implementers of AES candidates seem not to know about MMX at all.

A.2 Processor stages.

The Pentium II processor (as other processors in the P6 family) operates in several
stages. At first the instructions are fetched from the main memory and then broken
down (decoded) intoµoperations (simple instructions consist of only oneµoperation,
while complex instruction have moreµoperations). Thereafter, theµoperations go via
a short queue to the register allocation table that allows register renaming. After that,
instructions go to reorder buffer that enables out-of-order execution. There it stays un-
til the operands it needs are available. Ready-for-executionµoperations are sent to the
execution units, and thereafter retired [Int99,Fog00]. During the optimization one has
to count on all different stages of processor operation to find a good tradeoff between
the delays introduced in them. The technicalities presented hereafter could be most in-
teresting for the implementers, but also for the cipher designers who want to create
ciphers optimized for the Pentium II. The most important lesson from the next is that
fixing any processor stages (e.g., decoding), suitable reordering of the instructions can
considerably reduce the delays at this stage. However, the same reordering usually intro-
duces additional delays in some other stages and therefore, code reordering is always
a complicated tradeoff. To achieve really fast implementations, a cipher should have
great internal parallelism that provides many different instruction reordering possibil-
ities, from what the best could be found after possibly exhaustive search. Of course,
one could design a cipher that would have only one possible order of instructions, op-
timized specifically for Pentium II. However, such cipher could slow down severely
if even slightest modifications would be introduced to the processor. Moreover, paral-
lelism is necessary anyways, since already in the near future a processor could have
dozens simultaneously working executing units.
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Note that our survey is far from being complete, we refer an interested reader to
[Int99,Fog00]. However, during finishing our implementations we found that also the
official Pentium family optimization manual published by Intel [Int99] is far from being
complete. We encountered many problems that could not have been foreseen by using
only the official manuals. Often more accurate (although also not complete) information
about the Pentium II was found in [Fog00]. In several places of our implementations
we performed partial exhaustive search to optimally schedule the instructions. A lot of
experience and luck is necessary in optimizing for Pentium II if one desires to avoid
exhaustive search himself.

In-Order Decoding. Up to 3 instructions can be decoded toµoperations at time, but
only the first decoder can handle instructions with more than oneµoperation. It is rec-
ommended to order the instructions in the4-1-1 sequence, which means that only ev-
ery third instruction could combine in itself of more than oneµoperation [Int99]. By
this reason, algorithms using only “simple operations” can be potentially implemented
faster than those consisting of “complex instructions”. However, in some circuimstances
it would also beneficial to have at least some complex instructions. Namely, if the code
is properly scheduled in a way that exactly (almost) every third instruction has more
than oneµoperation, the decoder will feed the out-of-order execution pool with pace
more than3 µoperations per cycle. Now, if in some later stage less than3 µoperations
per cycle are fed to the execution unit (say due to the delays in fetching), this unit will
not idle waiting for the next instructions from the decoder.

Instruction In-Order Fetching. The Pentium II has16-byte internalifetch bufferswith
the peculiarity that a new buffer is forced to start at beginning of an instruction. The first
instruction of the ifetch buffer will be always decoded by decoder0, even if the previous
instruction was decoded by the same decoder and hence, other decoders would stay
idle. Hence, code reordering and possible use of semantically identical instructions (in
general, but not always,shorter instructions: for example,mov eax,[ebx+0] with
mov eax,[ebx] ) with different length could reduce the number of delays introduced
in this stage.

Register In-Order Renaming. Pentium II has40 hardware registers. The software
registers are renamed to hardware registers after a write to (or read from) the software
register. After a register has not been used for a while, it automatically retires and the
next time the same register is used, a new renaming is performed. It is important to know
that only two register renamings can be done during one machine cycle. In particular
this means that generally it is beneficial to gather all instructions operating on some
fixed data chunk together (i.e., to reorder the code in a suitable way). However, it is
extremely difficult to detect and remove delays introduced by this stage, and therefore
this stage may really becomethebottleneck in optimization: subtle modification of code
may introduce long delays in this stage. We refer to [Fog00] for more information.

Out-of-Order Execution. Pentium II has5 execution ports (port 0, port 1, . . . , port
4) that can execute instructions out-of-order. Every port has some specific meaning.
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Ports0 and1 are ALUs (they can perform arithmetic on operands in registers), port2
performs memory loads. Every memory write counts as twoµoperations, one in port
3 (address calculation) and another one in port4 (memory write). Up to3 ports can
execute an instruction in parallel. There are a number of arithmetic instructions that
can only run in port0 (most importantly, multiplication, rotation and integer register
shifts — instructions that are widely used by some AES finalists), while some other
instructions (most importantly, MMX register shifts) can only run in port1. To obtain
a throughput near to3 µoperations per cycle, the instructions should be distributed so
that no more than2/3 of them are arithmetic, no more than1/3 are memory loads and
no more than1/3 are memory writes: a condition that is very difficult to fulfill in a
practical application.

In-Order Retirement After execution,µoperations will retire in-order. During retire-
ment, hardware registers will be written back to software registers and theµoperations
leave the instruction pool. Since this is done in-order, several delays can occur, e.g., if
speculative out-of-order execution of some earlier long latency instruction is not fin-
ished at the moment of retirement.
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Efficiency Testing of ANSI C Implementations of
Round 2 Candidate Algorithms for the

Advanced Encryption Standard

Lawrence E. Bassham III

Computer Security Division
Information Technology Laboratory

National Institute of Standards and Technology

1. Introduction

The evaluation criteria for the Advanced Encryption Standard (AES) Round2 candidate
algorithms, as specified in the “Request for Comments” [1], includes computational efficiency,
among other criteria.  Specifically, the “Call For AES Candidate Algorithms” [2] required both
Reference ANSI1 C code and Optimized ANSI C code, as well as Java2 code.  Additionally, a
“reference” hardware and software platform was specified for testing.  NIST performed testing
on this reference platform, as well as several others.  Candidate algorithms were tested for
computational efficiency using the Optimized ANSI C source code provided by the submitters.

This paper describes the testing methodology used in ANSI C efficiency testing, along with
observations regarding the resulting measurements.  The results of the measurements are
included followed by conclusions regarding which algorithms have the most consistent
performance across different platforms.  Some knowledge regarding compilation and processor
architectures is useful in understanding how the data was derived.  However, the raw data in the
document may be useful without necessarily understanding the derivation.

The testing described in this paper is similar to that done in Round 1.  The testing has obviously
been restricted to the five Round 2 candidates.  Additionally, Timing Tests for the Pentium based
platforms has been omitted in favor of Cycle Count testing (see Section 3).

2. Scope

Performance measurements were taken on multiple platforms.  These measurements were
analyzed to determine the general rankings of the candidate algorithms with respect to one
another.  NIST is not interested in the absolute value of the performance measurement, but in the
relative value of one algorithm’s speed when compared with the rest.  From an efficiency point
of view, NIST does not intend to rank one algorithm as “better” because it is relatively faster
                                                          
1 ANSI – American National Standards Institute
2 Certain commercial products are identified in this paper.  In no case does such identification imply
recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that
material identified is necessarily the best for the purpose.



than another algorithm by 0.5%.  However, if one algorithm was faster than another algorithm by
50%, then that would be considered a significant difference.  NIST is interested in finding the
consistent “top performers” on the test platforms by analyzing the performance data for the
algorithms and observing natural breaks.

3. Methodology

In the “Call for AES Candidate Algorithms” [2], NIST cited a specific hardware and software
platform as the “NIST Analysis Platform” (referred to in this document as the “reference
platform”) for testing candidate algorithms.  This platform consists of an IBM-compatible PC
with an Intel Pentium Pro Processor, 200 MHz-clock speed, 64MB RAM, running
Microsoft Windows 95, and the ANSI C compiler in the Borland C++ Development Suite
5.0.  Performance measurements were taken on this platform and a large number of additional
hardware and software platform combinations.  The platforms tested are detailed in Table 1.

Performance measurements were conducted in two different ways.  The first performance test
method determines the amount of time required to perform cryptographic operations (e.g., how
many bits of data can be encrypted in a second, or how many keys can be setup in a second).
This type of test is referred to as a “Timing Test” in this document.  The second performance
testing method counts the number of clock cycles required to perform cryptographic operations
(e.g., how many cycles are consumed in encrypting a block of data, or how many cycles are
consumed in setting up a key).  This type of test is referred to as a “Cycle Count Test” in this
document.  The Timing Tests utilized the clock() timing mechanism in the ANSI C library to
calculate the processor time consumed in the execution of the API call and underlying
cryptographic operation under test (i.e., makeKey(), blockEncrypt(), and
blockDecrypt()).  The time consumed to perform a particular operation was then used to
calculate the bits/second or keys/second speed measure.  The Cycle Count Tests counted the

Table 1: System Platforms (Hardware/Software) and
Compilers Used in Efficiency Testing

Processor/Hardware Operating System Compiler
Borland C++ 5.01 (cycles)Windows95
Visual C++ 6.0 (cycles)

200MHz Pentium Pro Processor,
64MB RAM

Linux GCC 2.8.1 (timing)
Borland C++ 5.01 (cycles)450MHz Pentium II Processor, 128

MB RAM
Windows98 4.10.1998

Visual C 6.0 (cycles)
Borland C++ 5.01 (cycles)600MHz Pentium III Processor, 128

MB RAM
Windows98 4.10.1998

Visual C 6.0 (cycles)
GCC 2.8.1Sun: 300MHz UltraSPARC-II w/

2MB Cache, 128 MB RAM
Solaris 2.7 (a 64 bit
operating system) Sun Workshop Compiler C 4.2

GCC 2.8.1Sun: 2*360MHz UltraSPARC-II w/
4MB Cache, 256 MB RAM

Solaris 2.7
Sun Workshop Compiler C 4.2
GCC 2.8.1Silicon Graphics: 2*300MHz

R12000 w/ 4MB Cache, 512 MB
RAM

IRIX64 6.5.4 (a 64 bit
operating system) MIPSpro C Compiler 7.30



actual clock cycles consumed in performing the operation under test (for more information on
counting clock cycles see [3]).  Because cycle counting utilizes assembly language code in the
testing program, interrupts could be turned off during testing3.  This results in a very accurate
measure of the performance of the API calls and the underlying cryptographic operations.
Additionally, cycle counting eliminates the variability of the processor speed.  The same number
of clock cycles are required to perform an operation on a 300 MHz Pentium II processor as on a
450 MHz Pentium II processor; there are simply more clock cycles in a second on a 450 MHz-
based system.  Cycle counting could only be performed on the Intel processor based systems.
This is the only processor used by NIST during Round 2 testing that provides access to a true
cycle counting mechanism.

3.1 Cycle Counting Program

For each key size required by [2] (128 bits, 192 bits, and 256 bits) four values are calculated:
• The number of cycles needed to setup a key for encryption;
• The number of cycles needed to encrypt block(s) of data;
• The number of cycles needed to setup a key for decryption; and,
• The number of cycles needed to decrypt block(s) of data.

These values were measured by placing the CPUID and RDTSC assembly language instructions
around the NIST API.  These instructions were called twice before the cryptographic operation
to “flush” the instruction cache (see [3, §3.1]).  Additionally, the CLI and STI instructions were
used to disable interrupts before testing and enable after testing.  This eliminates extraneous
interrupts that would skew results. The test program generates 1000 sets of cycle count
information as described above for each key size. The values in each category are then sorted,
and the median value is determined.  A standard deviation is calculated for each test category.

Finally, the average of all values that fall within three standard deviations of the median is
determined.  This value is the reported average time to perform the specific operation (encrypt,
decrypt, or key setup) for a particular key size.  Values in this test program are calculated around
                                                          
3 Interrupts occur, for example, when the operating system needs to perform some action unrelated to the process
that is running.  If an interrupt were to occur during cycle count testing, the time spent performing the operating
system activity would be included in the time spent on the cryptographic operation.  This would lead to inflated and
erroneous values for the cycles necessary to perform the cryptographic operation.

makeKey();
cipherInit();
for (r=0; r<1000; r++) {

cli; /* Clear Interrupt Flag  */
cpuid; /* Clears instruction cache  */
rdtsc; /* Read Time Stamp Counter  */
save counter;
blockEncrypt(); /*  Perform operation being timed  */
cpuid;
rdtsc; /* Read Time Stamp Counter  */
subtract counter;
save counter
sti; /* Set Interrupt Flag  */
}

Fig. 1



the NIST API calls.  Results for the Cycle Counting Program can be found in Section 5.1.
Pseudo code for the generation of cycle counting information for the blockEncrypt()
operation is included in Figure 1.

The Cycle Counting Program was run several times with different lengths of data for encryption
and decryption to determine if size had any effect on the blockEncrypt() and
blockDecrypt() speeds.

3.2 Timing Program

For each key size required by [2] (128 bits, 192 bits, and 256 bits) four values are calculated:
• The time to setup 10,000 keys for encryption;
• The time to encrypt 8192 blocks of data (8192 blocks*128 bits/block=1048576

bits=1Mbit);
• The time to setup 10,000 keys for decryption; and,
• The time to decrypt 8192 blocks of data (8192 blocks*128 bits/block=1048576

bits=1Mbit).

Analysis of this data was performed in the same way as the cycle count program listed above in
Section 3.1 (calculation of standard deviation, median, etc.)  Results for the Timing Program can
be found in Section 5.2.  Pseudo code for the generation of timing information for the
blockEncrypt() operation is included in Figure 2.

3.2 Compiler Options

PC

On the three PCs used during testing, all algorithms were compiled using the same compiler
options. Those options and their effect are:

• Borland:
Ø -Oi Expand common intrinsic functions
Ø –6 Generate Pentium Pro instructions
Ø –v Source level debugging (does not effect speed)
Ø –A Use only ANSI keywords
Ø –a4 Align on 4 bytes
Ø –O2 Generate fastest possible code

makeKey();
cipherInit();
for(r=0; r<1000; r++){

(Start Timer)
blockEncrypt(8192 blocks);
(Stop Timer)
}

Fig. 2: Pseudo code for Time Testing for blockEncrypt()



• Visual C:
Ø /G6 Pentium Pro instructions
Ø /Ox Best optimization for speed

• Linux/GCC:
Ø -O3 Best optimization for speed

The Borland programs were compiled on the 200 MHz Pentium Pro Reference machine.  The
Visual C and DJGPP programs were compiled on the 450 MHz Pentium II machine.  The Linux
operating system was installed on a Jaz drive attached to the 200 MHz Pentium Pro Reference
machine.  Compilations for GCC under Linux were performed on this machine.

Sun

All algorithms were compiled using the same compiler options.  Those options and their effect
are:

• GCC: -O3 Best optimization for speed
• Workshop: -xO5 Best optimization for speed

The compilations for the Sun systems were performed on the 300 MHz UltraSPARC II system.

SGI

All algorithms were compiled using the same compiler option.  That option and its result is:
• GCC: -O3 Best optimization for speed
• MIPSpro: -O3 Best optimization for speed

The Twofish algorithm compiles on the SGI using the MIPSpro compiler, but results in a Bus
Error and a core dump when the blockEncrypt() and blockDecrypt() functions are
invoked.  This appears to be a problem with how the compiler is handling byte alignment in the
optimized code.

4. Observations

Some of the algorithms use flags to determine which compiler is used.  By checking which
compiler is used, an algorithm may substitute commands that direct the compiler to insert code to
make use of instructions available on the CPU.  The most common example of this is the use of
the ROTL and ROTR instructions to perform left and right logical rotations, respectively.  Using
the machine instruction to perform these rotations results in code which is two cycles faster than
performing the equivalent sequence of using a pair of shifts and an OR operation.  This can
provide a performance enhancement on various compilers that other algorithms do not enjoy
because they do not perform this type of compiler dependent compilation.  The Borland compiler
does not make use of the machine instructions of ROTL and ROTR.  The Visual C compiler can
make use of the machine instructions by using the routines _rotl() and _rotr() to perform
the rotation.



The blockEncrypt() and blockDecrypt() times improved as the numbers of blocks
passed to the algorithm at the same time increased, because the API overhead is averaged over
more blocks, and more data is available in the cache.  The larger amounts of data are still
encrypted and decrypted in ECB mode; however, in operational use, Cipher-Block Chaining
(CBC) mode would likely be used.  Efficiency testing was not performed in CBC mode because
this would add another layer of data processing that has no real impact on the performance of the
algorithm, i.e., pre- and post-processing the data before calling the algorithms’ internal ciphering
routines.  In addition, there may be performance characteristics from one algorithm to another,
based on whether data is treated as two 64-bit blocks or four 32-bit blocks, but this effect
depends on the processor characteristics.

5. Results

5.1 Cycle Count Tables

The values4 in Ekey, Dkey, Enc, and Dec are all in clock cycles.  These values refer to:

• Ekey - The number of cycles needed to setup a 128-bit key for encryption;
• Dkey - The number of cycles needed to setup a 128-bit key for decryption;
• Enc - The number of cycles per block needed to encrypt n blocks of data; and,
• Dec - The number of cycles per block needed to decrypt n blocks of data.

Note: the data encrypted and decrypted in the cycle count measurements was random (as
opposed to using all zero data blocks).

Cycles – Borland C++ 5.01 – 200 MHz Pentium Pro, 64MB RAM, Windows95

1 block 16 blocks 128 blocks 1024 blocks 32768blocks
Ekey Dkey Enc Dec Enc Dec Enc Dec Enc Dec Enc Dec

MARS-128 6815 6814 1097 1049 944 921 937 913 938 914 957 933
MARS-192 7001 7001 1094 1059 947 921 938 913 937 918 956 935
MARS-256 7222 7222 1081 1058 944 926 938 913 939 914 958 932
RC6-128 5171 5170 950 911 630 576 610 556 614 558 629 582
RC6-192 5254 5265 950 914 636 578 609 555 614 558 629 582
RC6-256 5330 5331 949 914 630 576 610 556 614 558 629 582
RIJNDAEL-128 2208 2870 826 836 690 690 685 686 682 681 704 714
RIJNDAEL-192 2972 3786 958 961 823 815 815 808 820 811 850 835
RIJNDAEL-256 3691 4684 1106 1137 982 996 939 946 939 947 961 968
SERPENT-128 12324 12291 3569 3273 3429 3158 3422 3155 3422 3163 3436 3178
SERPENT-192 14389 14398 3574 3301 3429 3159 3420 3147 3424 3165 3438 3176
SERPENT-256 16639 16644 3570 3214 3429 3074 3420 3064 3425 3163 3438 3175
TWOFISH-128 13544 13372 1052 1009 725 681 706 660 708 662 727 687
TWOFISH-192 15707 15544 1052 993 722 675 706 660 708 663 728 686
TWOFISH-256 21344 21181 1049 996 723 679 704 660 708 661 729 682

                                                          
4 The relative uncertainty for values in all tables is ≤ 1%.



Cycles – Visual C 6.0 – 200 MHz Pentium Pro, 64MB RAM, Windows95

1 block 16 blocks 128 blocks 1024 blocks 32768blocks
Ekey Dkey Enc Dec Enc Dec Enc Dec Enc Dec Enc Dec

MARS-128 4964 4964 837 754 687 598 681 593 684 595 718 629
MARS-192 4996 4996 821 737 686 601 680 593 683 596 719 629
MARS-256 5185 5185 823 743 689 601 680 593 682 595 720 629
RC6-128 2293 2294 640 627 351 351 340 332 343 334 382 355
RC6-192 2401 2402 640 627 352 351 340 332 343 334 382 355
RC6-256 2512 2513 642 629 352 351 343 332 343 334 382 355
RIJNDAEL-128 1278 1764 1277 1308 1138 1133 1125 1136 1134 1135 1149 1124
RIJNDAEL-192 2002 2566 1512 1574 1368 1362 1358 1365 1361 1372 1388 1365
RIJNDAEL-256 2591 3257 1732 1798 1604 1596 1591 1599 1596 1601 1614 1588
SERPENT-128 7092 7104 1439 1293 1298 1135 1286 1129 1285 1128 1326 1165
SERPENT-192 9048 9035 1455 1294 1295 1135 1285 1126 1285 1126 1326 1168
SERPENT-256 10861 10850 1454 1275 1292 1135 1285 1127 1286 1128 1326 1166
TWOFISH-128 9950 9790 1264 1024 965 725 947 707 950 711 967 740
TWOFISH-192 13298 13136 1265 1020 966 728 947 707 949 721 965 753
TWOFISH-256 18555 18394 1278 1016 965 726 947 707 950 710 966 743

Cycles – Borland C++ 5.01 – 450 MHz Pentium II, 128MB RAM, Windows98

1 block 16 blocks 128 blocks 1024 blocks 32768blocks
Ekey Dkey Enc Dec Enc Dec Enc Dec Enc Dec Enc Dec

MARS-128 6837 6837 1105 1082 947 924 939 913 941 920 986 963
MARS-192 7040 7038 1105 1092 949 919 939 913 937 921 985 961
MARS-256 7249 7249 1105 1082 949 922 936 914 941 921 992 966
RC6-128 5186 5183 984 944 631 578 610 556 617 560 651 598
RC6-192 5279 5279 984 943 631 577 609 555 617 560 651 598
RC6-256 5363 5364 984 944 631 578 609 555 617 560 651 598
RIJNDAEL-128 2254 2912 845 844 689 699 681 692 696 697 777 783
RIJNDAEL-192 2994 3778 983 993 818 814 811 807 826 820 892 896
RIJNDAEL-256 3722 4668 1099 1125 948 958 938 948 954 952 1021 1027
SERPENT-128 11767 11671 3108 2702 2855 2496 2842 2480 2847 2488 2868 2523
SERPENT-192 13872 13852 3108 2705 2856 2478 2842 2465 2847 2467 2868 2505
SERPENT-256 16073 15978 3108 2710 2857 2500 2842 2488 2847 2500 2868 2528
TWOFISH-128 12907 12816 1063 1034 726 677 702 657 708 662 755 708
TWOFISH-192 15311 15219 1061 1031 726 680 704 658 706 665 753 712
TWOFISH-256 20706 20645 1061 1018 727 679 703 657 708 663 754 713



Cycles – Visual C 6.0  - 450 MHz Pentium II, 128MB RAM, Windows98

1 block 16 blocks 128 blocks 1024 blocks 32768blocks
Ekey Dkey Enc Dec Enc Dec Enc Dec Enc Dec Enc Dec

MARS-128 4937 4938 825 734 669 582 658 571 669 583 715 628
MARS-192 4999 4999 825 734 669 578 658 572 667 582 716 629
MARS-256 5175 5175 825 734 668 582 658 572 667 583 716 628
RC6-128 2283 2284 638 622 339 327 321 310 330 320 379 354
RC6-192 2408 2409 638 622 339 327 321 310 330 320 379 354
RC6-256 2519 2520 638 622 339 327 321 310 330 320 379 354
RIJNDAEL-128 1292 1722 987 987 810 801 808 789 826 796 894 866
RIJNDAEL-192 2014 2553 1152 1135 987 969 983 957 1005 972 1079 1039
RIJNDAEL-256 2594 3241 1329 1311 1161 1135 1158 1124 1173 1132 1238 1202
SERPENT-128 6947 6935 1423 1262 1273 1116 1263 1107 1281 1122 1320 1162
SERPENT-192 8857 8857 1423 1280 1274 1117 1263 1107 1281 1122 1320 1162
SERPENT-256 10666 10683 1423 1256 1274 1117 1263 1108 1281 1122 1320 1162
TWOFISH-128 9266 9249 1126 952 802 636 782 615 800 628 831 669
TWOFISH-192 12707 12627 1130 952 802 634 782 616 795 622 832 673
TWOFISH-256 17942 17863 1126 955 802 635 782 616 795 622 832 672

Cycles – Borland C++ 5.01 – 600 MHz Pentium III, 128MB RAM, Windows98

1 block 16 blocks 128 blocks 1024 blocks 32768blocks
Ekey Dkey Enc Dec Enc Dec Enc Dec Enc Dec Enc Dec

MARS-128 6833 6833 1143 1120 951 924 938 913 947 921 976 959
MARS-192 7017 7017 1171 1131 951 926 938 914 940 917 980 959
MARS-256 7245 7245 1143 1120 950 927 939 913 943 918 978 959
RC6-128 5189 5186 1022 982 633 580 610 555 620 567 642 637
RC6-192 5272 5271 1022 982 633 580 610 556 620 567 642 637
RC6-256 5362 5363 1026 982 633 580 609 556 620 567 642 637
RIJNDAEL-128 2213 2862 908 890 692 694 681 681 700 687 757 747
RIJNDAEL-192 2981 3776 1031 1047 820 809 809 799 818 813 883 873
RIJNDAEL-256 3727 4672 1152 1140 959 950 935 937 947 944 1002 996
SERPENT-128 11850 11849 3161 2743 2859 2497 2842 2490 2855 2468 2870 2516
SERPENT-192 13937 13916 3164 2739 2861 2484 2841 2467 2856 2495 2870 2536
SERPENT-256 16133 16114 3165 2737 2859 2500 2841 2485 2849 2483 2869 2536
TWOFISH-128 12938 12861 1085 1057 724 682 704 658 712 667 763 718
TWOFISH-192 15347 15298 1085 1078 727 680 704 659 713 668 764 716
TWOFISH-256 20760 20689 1085 1053 729 681 704 658 718 664 764 713



Cycles – Visual C 6.0  - 600 MHz Pentium III, 128MB RAM, Windows98

1 block 16 blocks 128 blocks 1024 blocks 32768blocks
Ekey Dkey Enc Dec Enc Dec Enc Dec Enc Dec Enc Dec

MARS-128 4934 4936 860 769 668 581 656 569 683 585 708 617
MARS-192 4997 4997 860 769 668 578 656 569 682 585 709 618
MARS-256 5171 5171 860 769 669 581 656 569 682 586 709 617
RC6-128 2278 2279 672 657 339 327 318 307 325 318 366 346
RC6-192 2403 2404 672 657 339 327 319 307 325 318 366 346
RC6-256 2514 2515 672 657 339 327 319 307 325 318 366 346
RIJNDAEL-128 1289 1724 1007 1006 811 802 805 784 824 794 880 848
RIJNDAEL-192 2000 2553 1188 1169 987 966 981 955 1003 971 1069 1023
RIJNDAEL-256 2591 3255 1365 1347 1160 1138 1155 1121 1171 1131 1227 1187
SERPENT-128 6944 6933 1458 1315 1273 1113 1261 1104 1281 1120 1309 1150
SERPENT-192 8853 8853 1459 1297 1273 1116 1260 1102 1281 1123 1309 1151
SERPENT-256 10668 10668 1459 1315 1273 1115 1262 1103 1281 1120 1309 1150
TWOFISH-128 9263 9241 1161 987 802 635 780 613 797 625 828 664
TWOFISH-192 12722 12632 1165 987 802 633 779 613 791 619 828 666
TWOFISH-256 17954 17876 1161 990 802 635 780 613 792 622 828 665

5.2 Timing Tables

Values in the tables are as follow:

• Ekey (time to make a key for encryption) is in Keys/sec;
• Encrypt (time to encrypt) is in Kbits/sec;
• Dkey (time to make a key for decryption) are in Keys/sec; and,
• Decrypt (time to decrypt) is in Kbits/sec.



GCC 2.8.1 - 200 MHz Pentium Pro, 64MB RAM, Linux

Ekey Encrypt Dkey Decrypt

Mars-128 46729.0 39035.8 46511.6 37135.9
Mars-192 44444.4 39035.8 44642.9 37135.9
Mars-256 42918.5 38855.1 43103.4 37135.9
RC6-128 59523.8 37300.9 58823.5 52454.4
RC6-192 57142.9 37300.9 57803.5 52454.4
RC6-256 56818.2 37300.9 57142.9 52454.4
Rijndael-128 128205.1 42602.6 106383.0 41754.7
Rijndael-192 88495.6 36175.4 74074.1 35562.3
Rijndael-256 74074.1 31551.5 62500.0 30969.4
Serpent-128 16891.9 13052.4 16920.5 16328.2
Serpent-192 13123.4 13052.4 13140.6 16328.2
Serpent-256 10559.7 13052.4 10582.0 16328.2
Twofish-128 14471.8 20671.7 14450.9 22261.8
Twofish-192 11086.5 20671.7 11025.4 22261.8
Twofish-256 8305.6 20671.7 8291.9 22261.8

SGI 300 MHz R12000 w/4MB Cache, 512 MB RAM

GCC 2.8.1 MIPSpro C Compiler Version 7.30
Ekey Encrypt Dkey Decrypt Ekey Encrypt Dkey Decrypt

Mars-128 60975.6 63581.1 60975.6 66608.8 78125.0 67683.1 78125.0 71124.6
Mars-192 59171.6 63581.1 59523.8 67141.6 76923.1 67683.1 76923.1 70526.9
Mars-256 57803.5 63581.1 57803.5 66608.8 75188.0 67683.1 75188.0 70526.9
RC6-128 147058.8 86522.7 147058.8 98737.7 166666.7 80699.1 166666.7 87424.0
RC6-192 142857.1 86522.7 142857.1 98737.7 161290.3 80699.1 161290.3 87424.0
RC6-256 138888.9 86522.7 138888.9 98737.7 156250.0 80699.1 156250.0 87424.0
Rijndael-128 212766.0 58282.7 161290.3 58282.7 212766.0 74271.7 153846.2 79930.5
Rijndael-192 163934.4 49080.1 125000.0 49368.8 142857.1 63103.0 109890.1 68233.4
Rijndael-256 142857.1 42387.4 108695.7 42819.9 121951.2 54498.1 93457.9 58690.2
Serpent-128 47393.4 42174.4 47393.4 46113.8 57471.3 42819.9 57471.3 45612.5
Serpent-192 37878.8 41963.5 38022.8 46113.8 44247.8 42602.6 44247.8 45612.5
Serpent-256 31250.0 41963.5 31250.0 46113.8 35461.0 42602.6 35461.0 45612.5
Twofish-128 31055.9 59947.9 31055.9 63581.1 41493.8 N/A 41841.0 N/A
Twofish-192 23255.8 60379.2 23310.0 64066.4 32786.9 N/A 33112.6 N/A
Twofish-256 16420.4 59947.9 16447.4 63581.1 22321.4 N/A 22522.5 N/A



Sun 300 MHz UltraSPARC-II w/ 2MB Cache, 128 MB RAM

GCC 2.95 Sun Workshop Compiler 4.2
Ekey Encrypt Dkey Decrypt Ekey Encrypt Dkey Decrypt

Mars-128 48780.5 29867.3 48543.7 29242.9 52356.0 30081.4 53475.9 29973.9
Mars-192 47393.4 29867.3 46948.4 29141.3 52356.0 30081.4 52083.3 30081.4
Mars-256 46082.9 29867.3 45662.1 29242.9 51020.4 29973.9 51282.1 30081.4
RC6-128 111111.1 20981.8 113636.4 20981.8 111111.1 20470.0 24390.2 20420.2
RC6-192 108695.7 20981.8 108695.7 20981.8 101010.1 20520.1 24449.9 20470.0
RC6-256 105263.2 20981.8 106383.0 20981.8 24390.2 20520.1 98039.2 20470.0
Rijndael-128 172413.8 45612.5 131578.9 38498.6 166666.7 49368.8 117647.1 50864.9
Rijndael-192 140845.1 37805.0 106383.0 32033.2 128205.1 41963.5 85470.1 43261.4
Rijndael-256 117647.1 33042.1 90090.1 27517.1 108695.7 36490.0 73529.4 37467.4
Serpent-128 30120.5 34537.9 30120.5 34969.6 33783.8 32156.0 33898.3 32912.6
Serpent-192 25000.0 34255.9 25000.0 34969.6 27173.9 32033.2 27248.0 32912.6
Serpent-256 21008.4 33841.5 21052.6 34824.5 22421.5 32156.0 22421.5 33042.1
Twofish-128 22321.4 36972.3 22321.4 36020.2 21739.1 41963.5 21739.1 7851.0
Twofish-192 16366.6 36972.3 16366.6 36020.2 16447.4 41754.7 16420.4 7880.5
Twofish-256 11547.3 37300.9 11560.7 36020.2 12285.0 42174.4 12300.1 7865.7

Sun 2*360 MHz UltraSPARC-II w/ 4MB Cache, 256 MB RAM

GCC 2.95 Sun Workshop Compiler 4.2
Ekey Encrypt Dkey Decrypt Ekey Encrypt Dkey Decrypt

Mars-128 59523.8 36332.1 59523.8 35562.3 65359.5 36649.4 65359.5 36810.1
Mars-192 57803.5 36175.4 57803.5 35412.3 64102.6 36649.4 64102.6 36810.1
Mars-256 56179.8 36175.4 56179.8 35562.3 62500.0 36649.4 62500.0 36810.1
RC6-128 138888.9 26227.2 138888.9 26227.2 142857.1 25587.5 142857.1 25587.5
RC6-192 133333.3 26227.2 135135.1 26227.2 136986.3 25587.5 138888.9 25587.5
RC6-256 129870.1 26227.2 129870.1 26227.2 131578.9 24978.3 131578.9 24978.3
Rijndael-128 217391.3 55215.2 161290.3 47958.3 200000.0 59522.7 142857.1 61260.6
Rijndael-192 172413.8 46886.6 129870.1 39965.3 158730.2 50864.9 107526.9 52454.4
Rijndael-256 142857.1 40940.0 109890.1 34396.3 133333.3 44405.8 88495.6 45612.5
Serpent-128 36101.1 41963.5 36231.9 42819.9 42372.9 39035.8 42372.9 39965.3
Serpent-192 30303.0 41963.5 30303.0 42819.9 34013.6 39035.8 34013.6 39965.3
Serpent-256 25641.0 41963.5 25641.0 42819.9 28328.6 39035.8 28328.6 39965.3
Twofish-128 27322.4 45122.1 27248.0 43039.5 26738.0 53118.4 26738.0 51489.0
Twofish-192 20080.3 44880.8 20080.3 43039.5 20120.7 53456.7 20120.7 51489.0
Twofish-256 14184.4 44880.8 14164.3 43261.4 15015.0 53456.7 15037.6 51806.8



6. Conclusions

6.1 PC

Due to the testing mechanisms used in obtaining data, the most reliable and accurate values
obtained for performance measurement of the candidate algorithms are the cycle counting
measurements on the PC.  Additionally, cycle count values for encryption and decryption were
obtained for various data block lengths.  These values provide interesting results.  For the most
part, once the data length was greater than one block (128 bits), the encryption and decryption
speeds were consistent within each algorithm.  For this reason, NIST focused on the message
block length of 128 blocks (2046 bytes), which is a typical size for an electronic mail message.
The fastest algorithm for key setup on the PC platform is Rijndael for all compiler and PC
hardware/software configurations, followed closely by RC6 and then Mars.  Serpent and Twofish
are considerably slower than the other algorithms for key setup time.  Encryption speed had more
variability across compiler and hardware/software platforms.  RC6 tends to fall near the top of
PC encryption speed followed by Mars, Twofish, and Rijndael.  Serpent is consistently at the
bottom of the list for encryption speed.

Brian Gladman [4] has performed similar efficiency experiments, the results of which are
available on a web page he maintains.  The tests that Gladman conducted used code that he
developed independently from the submitters’ code.  Gladman’s results are similar to those listed
above.  Gladman’s results for key setup time have the algorithms in basically the same order.
The exception being the fact that Serpent’s key setup time was greatly improved and ahead of
Mars.  Again, for encryption speed, Gladman’s results coincide with the ordering of the
algorithms listed above.

6.2 Sun

The UltraSPARC CPU found in the Sun systems on which testing was performed did not allow
access to a cycle count mechanism.  Performance numbers on these systems are based on the
Timing Test Program.  Two different compilers were used on the Sun.  The data from both these
compilers yielded similar results.  The fastest algorithms with respect to encryption speed are
Rijndael and Twofish, followed by Serpent and Mars, and finally by RC6.  However, with
respect to key setup Rijndael and RC6 are the fastest followed by Mars which is separated by a
wide margin.  Serpent and Twofish are last after another wide margin.

Helger Lipmaa reports very similar results on an UltraSPARC-II platform [5].  Lipmaa’s table
only reports encryption speed. The most noticeable difference is that on his table, the value for
the encryption speed of RC6 is closer to those for Mars and Serpent.

6.3 SGI

The SGI system provides another 64-bit processor running the same version of the GCC
compiler used for the Sun testing described in Section 6.2.  Additionally, the MIPSpro compiler
provided another configuration for comparison.  The results for these compilers place RC6 as the
fastest algorithm for encryption by a wide margin, followed by Mars, Twofish, Rijndael and



Serpent.  For key setup, RC6 and Rijndael are the fastest, followed by Mars, Serpent, and
Twofish, which are separated by a wide margin.

6.4 Overall Performance

The consistent top performers across all platforms with respect to key setup are Rijndael and
RC6.  Serpent and Twofish are usually significantly poorer performers; however, Gladman
reports a much better value for Serpent key setup, placing Serpent ahead of Mars.  Encryption
speed values tend to vary much more depending on the platform being analyzed.  Rijndael, Mars,
and Twofish have the most even encryption performance across platforms – not always the
fastest, but never near the bottom of the pack.  RC6, on the other hand, was the slowest on the
Sun systems but the fastest on the SGI and very nearly the fastest on the PC.  Serpent is typically
the slowest or towards the bottom of the list on encryption speed across platforms.
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1. Introduction

NIST solicited candidate algorithms for the Advanced Encryption Standard (AES) in a
Federal Register Announcement dated September 12, 1997[1].  Fifteen of the
submissions were deemed “complete and proper” as defined in the Announcement, and
entered the first round of the AES selection process in August 1998.  Since that time,
NIST has been working with a worldwide community of cryptographers to evaluate the
submissions according to the criteria established in[1].  Five candidates were
subsequently chosen to enter the final round of the selection process:  MARS, RC6,
Rijndael, Serpent, and Twofish.

A previous NIST publication entitled “Report on the NIST Java™ AES Candidate
Algorithm Analysis”[2] documents the first round analysis performed by NIST, using the
Java Development Kit (JDK) Version 1.1.6.  Only IBM has submitted official
modifications to their candidate (MARS) prior to the final round.  Results of the first
round analysis using the JDK1.1.6 are therefore still valid for the other four candidates.
The revised version of MARS was tested under both JDK1.1.6 and JDK1.3, to ensure an
accurate comparison of the modified algorithm’s performance in both environments.
Performance data for 128, 192, and 256-bit keysizes are also included in the second
round analysis.

The JDK itself has gone through two major revisions since the first round.  This paper
documents additional performance data for the five AES finalists obtained under JDK1.3,
and should be used in combination with the first round NIST Java AES analysis to obtain
a complete picture of the characteristics of the finalists in different Java environments.
Some background information from the first round analysis is repeated herein for
convenience. Comments should be addressed to the author at the email address above.
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2. Java Platform

AES candidate algorithm submitters were required to provide optimized implementations
of their algorithms in Java and the C language.  The rationale for this was to provide
more information than could be obtained by testing implementations in a single language,
and to take advantage of the hardware independence of the Java virtual machine.

The Java virtual machine presents a uniform abstraction of the underlying hardware
platform to a Java application or applet.  A Java programmer compiles source code into
byte code files, which are then interpreted by the Java virtual machine at runtime (byte
code files are also known as class files).  In theory, a Java byte code file can be
interpreted on any hardware platform running the Java virtual machine without
recompilation.  Since the virtual machine isolates the Java programmer from the
underlying hardware, Java programmers cannot write machine-specific code to take
advantage of the unique features of a particular platform.  Machine-specific code allows
for optimization on a given computing platform, but also eliminates the code portability
that is a cornerstone of the Java philosophy.

The Java environment has two characteristics that facilitate the AES evaluation process.
First, candidate algorithms written in Java can be easily moved from one platform to
another to compare performance on different processors at different system clock speeds.
Second, submitters cannot write machine-specific code and so all implementations are on
a level playing field.

Java does not provide the level of performance that can be attained in some other
languages (C or assembler, for example).  However, many applications do not require
high-speed encryption of large amounts of data, and cryptoalgorithms implemented in
Java are easier to integrate into Java applications.  Other languages and hardware
implementations will be used for applications where absolute performance is an issue, but
there will also be a broad range of applications where the ease of implementing,
integrating, and maintaining Java AES code outweighs the performance issue.

3. Evaluation Criteria

The NIST Java AES evaluation process is designed to directly address the criteria
published in the Federal Register Announcement[1], Section 4.  The goal is to provide
objective results that can be clearly quantified for use in the selection process.  Sections
of the Announcement that describe selection critera relevant to the Java AES analysis are
repeated here for convenience:

COST

ii. Computational Efficiency:  “…Computational efficiency essentially refers
to the speed of the algorithm.  NIST’s analysis of computational efficiency
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will be made using each submission’s mathematically optimized
implementations on the platform specified under Round 1 Technical
Evaluation below.”

iii. Memory Requirements:  “Memory requirements will include such factors
as gate counts for hardware implementations, and code size and RAM
requirements for software implementations.”

ALGORITHM AND IMPLEMENTATION CHARACTERISTICS

i. Flexibility:

b. “The algorithm can be implemented securely and efficiently in a wide
variety of platforms and applications (e.g. 8-bit processors, ATM
networks, voice & satellite communications, HDTV, B-ISDN, etc.).”

ii. Simplicity:  “A candidate algorithm shall be judged according to relative
simplicity of design.”

Additionally, in Section 6.B (Round I Technical Evaluation):

iii. Efficiency testing:  “Using the submitted mathematically optimized
implementations, NIST intends to perform various computational
efficiency tests for the 128-128 key-block combination, including the
calculation of the time required to perform:

o  Algorithm setup,
o  Key setup,
o  Key change, and
o  Encryption and decryption.

NIST may perform efficiency testing on other platforms.”

In condensed form, the published NIST criteria require testing of speed for a set of
cryptographic operations, code size and RAM requirements, flexibility, and simplicity of
design.  Since the candidates have been implemented in Java, flexibility is a given for the
reasons discussed in the previous section.  The Java AES candidates will run on any
device containing a Java virtual machine and adequate memory, although performance
will obviously vary depending on the processing power of the underlying hardware.

4. Test Procedures

4.1 Overview
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The test results presented here were obtained from the NIST-specified hardware platform
and the most recent version of the Java environment available at the time of this writing
(JDK1.3, beta release).  Results for other hardware/Java virtual machine combinations
will be made available on the AES home page at http://www.nist.gov/aes, and in papers
submitted to NIST by other organizations[3,4,5].  Detailed test results are presented in
tabular form in Appendices A and B, and chart form in Appendix C.  All NIST testing
was performed through the Applications Programming Interface (API) specified in the
NIST/Cryptix Java AES Toolkit.  Links to the Toolkit and the Java AES API
specification can be found at http://csrc.nist.gov/encryption/aes/earlyaes.htm.

The Java compiler provided with JDK1.3 accepts a command line code optimization
switch (-O).  However, the JDK1.3 documentation[6] states that this switch “does
nothing in the current implementation”.  Presumably the compiler accepts the
optimization switch for reasons of backward compatibility.

4.2 Procedures

Candidate algorithms were compiled from source files provided by submitters using the
JDK1.3 compiler.  The resulting bytecode files were packaged into a standard Java
ARchive (JAR) file named AESCLASSES.jar.

A Java application was developed to allow testing of any candidate/ keysize/operation
combination. The test application instantiates the desired candidate from
AESCLASSES.jar, and uses the Java reflection API to invoke the Basic API methods.

500,000 cycles of each candidate/keysize/crypto operation were executed, and the total
time was recorded for each combination.  Start and stop times were obtained through
calls to the System.time.millis() method provided in the Java core library, immediately
before and after starting the loop that executed the crypto operations.  Charts 1, 2, and 3
present performance data for key setup, encrypt, and decrypt operations, respectively.
Data points are included for 128, 192, and 256-bit key sizes.  For the majority of
candidates, encryption and decryption speed is approximately equal for all three key
sizes.  Rijndael is a minor exception: encryption speed decreases by approximately three
percent for each stepwise increase in key size.

5. Results

In comparison to the JDK1.1.6 performance data presented in NIST’s previous paper[2],
the results obtained with JDK1.3 show a striking increase in execution speed for all
candidates.  On average, the five candidates perform 128-bit key setup operations eleven
times faster.  The average speed for encrypt and decrypt operations has increased by a
factor of five.  The same hardware platform and program code (except for MARS) were
used for both first round and final round testing, so the overall increase in performance
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can be attributed to differences in the Java environment.  In particular, JIT (Just-In-Time)
compilation was not used during the first round performance analysis due to a bug in the
JDK1.1.6 JIT implementation that caused problems with certain candidates.  Usage of the
JIT compiler under JDK1.1.6 increases performance by a factor of ten for most Java
programs.

Performance data for the new version of MARS under JDK1.1.6 are presented separately
in Appendix A.  The test setup for the MARS/JDK1.1.6 analysis was exactly the same as
for the other algorithms during the first round, and is described in[2].

In addition to the overall performance increase of the finalists under JDK1.3, there were
some changes in the relative ordering of candidates.  Most of these changes in order were
due to relatively small performance differences, as shown in Appendices B and C.  The
results for 128-bit keysize operations are summarized below, with candidates ordered
from fastest to slowest:

128-bit Key Setup:

JDK1.1.6: Rijndael, RC6, MARS, Twofish, Serpent

JDK1.3: RC6, MARS, Rijndael, Serpent, Twofish

128-bit Encrypt:

JDK1.1.6: RC6, Rijndael, MARS, Serpent, Twofish

JDK1.3: Rijndael, RC6, MARS, Serpent, Twofish

128-bit Decrypt Operations:

JDK1.1.6: RC6, Rijndael, MARS, Serpent, Twofish

JDK1.3: Rijndael, RC6, MARS, Twofish, Serpent

“Sun”, “Sun Microsystems”, “Solaris”, and “Java” are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries. All SPARC trademarks are used under license
and are trademarks or registered trademarks of SPARC International, Inc. in the United States and other
countries.
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APPENDIX A:  JDK1.1.6 DATA FOR MARS

Key Size Key Setup Encrypt Decrypt
128 bits 165 462 444
192 bits 244 466 444
256 bits 324 465 445

Table data are presented in kilobits per second.
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 APPENDIX B:  RAW DATA TABLES

Algorithm setKey128 setKey192 setKey256
RC6 2233 3335 4444
MARS 2110 3131 4131
Rijndael 1191 1574 1733
Serpent 487 734 979
Twofish 286 327 361

Algorithm Encrypt128 Encrypt192 Encrypt256

Rijndael 4855 4664 4481
RC6 4698 4740 4733
MARS 3738 3707 3733
Serpent 1843 1855 1861
Twofish 1749 1749 1744

Algorithm Decrypt128 Decrypt192 Decrypt256
Rijndael 4819 4624 4444
RC6 4733 4698 4740
MARS 3965 3965 3936
Serpent 1873 1897 1896
Twofish 1781 1775 1781

Table data are presented in kilobits per second.
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APPENDIX B: PERFORMANCE DATA CHARTS
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Chart 1:  Key Setup
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Chart 2:  Encrypt
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Chart 2.3:  Decrypt
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Abstract
We analyze the five remaining AES candidate al-

gorithms MARS, RC6, Rijndael, Serpent, and Twofish
as well as DES, Triple DES, and IDEA by examining
independently developed Java implementations. We
give performance measurement results on several
platforms, list the memory requirements, and present
a subjective estimate for the implementation difficulty
of the algorithms. Our results indicate that all AES
ciphers offer reasonable performance in Java, the
fastest algorithm being about twice as fast as the
slowest.

1. Introduction

The performance of the AES candidates has been
the subject of  significant discussion, both in the
authors' specifications as well as by other parties.
Most of this discussion was focused on C and assem-
bler implementations. Some attention has been given
to Java implementations but the results were not fully
conclusive. This was mostly caused by the fact that
the authors' reference Java implementations were
evaluated which vary significantly in their coding
assumptions and in the degree to which they were
subject to optimizations. We intend to fill this gap by
evaluating independently developed, consistent Java
implementations and comparing the AES candidates'
performance to ciphers currently in use.

2. Implementation Notes

The code was developed at the IAIK by Andreas
Sterbenz. The AES core code is available under a free
license including source at [1] or with a JCE 1.2
compatible API as part of the IAIK JCE library. Ser-
pent S-Box expressions and Rijndael and Twofish
setup code are based on C code developed by Dr.
Brian Gladman [2].

The design paradigm used is derived from the Java
Cryptography Extension (JCE) defined by Javasoft
and modified for use within the IAIK JCE library: for
each cipher stream a Java object is created which is
then initialized with a certain key in either encryption

or decryption mode. Then the data to be encrypted is
passed to the encrypt (decrypt) method one 128 bit
block at a time. Buffering, block chaining, and pad-
ding are all performed on a higher level and do not
influence the design of the core code. Therefore, for
each AES cipher only three methods need to be pro-
vided: key setup, encryption, and decryption.

The algorithms have been subject to significant
optimization work. The primary focus for the optimi-
zation was to maximize encryption and decryption
throughput. Secondary and tertiary goals were key
setup speed and memory usage, respectively.

3. Java

The Java programming language has become fairly
popular in recent years. This is partly due to the fact
that Java programs are platform (i.e. processor and
operating system) independent in both source and
binary form. This is possible by employing  a compi-
lation model different from that in most other lan-
guages. Instead of compiling source code into ma-
chine code for one particular processor family, the
compiler produces machine code (called "bytecode")
for an imaginary Java Virtual Machine (JVM). At
runtime this bytecode is then translated into machine
code by a JVM implementation for the particular
platform.

This extra step has influences on the programming
process when optimizing code. It takes you one step
farther away from the hardware making some typical
optimization tricks impossible, like for example di-
rectly using the processor rotation instruction. An-
other problem is that a sizable portion of the compi-
lation is delayed until runtime and performed by the
JVM. As they are not designed for optimizations this
has the effect that those optimizations are not made.

Of course there are several options for the transla-
tion of bytecode to machine code. The simplest and
most obvious is to use an interpreter: take one JVM
instruction at a time and execute the corresponding
machine code instruction(s). Much better perform-
ance is offered by so-called Just-In-Time (JIT) com-
pilers. They take an entire method and translate it to
machine code prior to its first execution, subsequently



the generated machine code is executed. JITs are now
the common JVM type on most platforms and offer
an approximately ten times performance improve-
ment over interpreters. As a third type of JVMs there
are hybrid variants aimed at reducing the initial delay
caused when the JIT compilers translate a large num-
ber of methods at program startup, but this is not
relevant for our application.

3.1. Java in Cryptographic Applications

Today the opinion that Java is not the language to
be used for cryptographic applications still seems to
be popular. Obviously we do not agree. While Java is
of course slower than C the difference is typically less
than a factor of two, heavily optimized C code ex-
cluded, as demonstrated by the results presented in
this paper. Although this difference is of course sig-
nificant Java on today's hardware is faster than C on
two year old hardware. The point being that while
Java will hardly be the language of choice for high
load servers it may well be the choice for medium
load servers and especially clients. Add to that hand-
held and other small devices and performance in Java
becomes an issue.

One particular advantage of Java is that there is a
well established standard cryptographic API, the JCA
and JCE architecture from Javasoft. The success of
cryptography libraries in Java including the libraries
from the IAIK confirms this position.

4. Evaluation Parameters

The algorithms were implemented in Java. Those
implementations were evaluated with respect to three
criteria: execution speed, memory usage, and imple-
mentation difficulty.

4.1. Execution Speed

For symmetric ciphers there are three components
that make up the time required to encrypt some data:
static initialization time, key setup time, and data
encryption time.

Static initialization is used to perform certain
preparation steps, generate constant tables, etc. Be-
cause it takes very little time and is largely dependent
on the code size vs. speed tradeoff chosen in the im-
plementation it was not measured.

Key setup is used to initialize a cipher for a certain
key, i.e. perform round key generation, etc. It is per-
formed once per encryption stream. It may be de-
pendent on whether encryption or decryption mode is
chosen and on the key length. For the ciphers ana-
lyzed only Rijndael and IDEA have different key
setup times for encryption and decryption modes and

only Rijndael and Twofish significantly different
setup times for different key lengths.

Data encryption time is of course the time it takes
to encrypt data bits once the cipher has been properly
initialized. The AES candidates are 128 bit block
ciphers, that means one encryption operation is per-
formed every 16 data bytes. Again it may vary with
the cipher's mode and key length. For all ciphers
analyzed the encryption and decryption times are
virtually identical and only Rijndael's performance is
dependent on the key length.

4.1.1. Key Setup Speed Measurement
Key setup speed was determined as described by

the following pseudo code:

Repeat 128 times
    Generate 32 random keys
    Start timer
    For each key
      Repeat 1024 times
        Initialize cipher with key
    Stop timer

To obtain the final value the average of all meas-
urements within three standard deviations was calcu-
lated.

4.1.2. Encryption Speed Measurement
Similarly encryption speed was measured:

Repeat 128 times
    Generate a random key
    Initialize cipher with key
    Start timer
    Repeat 2048 times
      Encrypt a 1024 byte array
    Stop timer

The same method as above was used to obtain the
final value. Note that the same 1024 byte array is
encrypted each time which takes full advantage of the
CPU caches. In other words, the results presented
here are upper boundaries for real world performance.

4.1.3. Environment
The code was compiled using Symantec Visual

Cafe 2.5a with optimizations enabled. The results
were obtained by running the tests on a machine with
an Intel Pentium Pro 200 MHz CPU and 128 MB
RAM running Windows NT 4.0 with Service Pack 4.
Performance wise this is virtually identical to the
NIST reference platform (64 MB RAM and running
Windows 95).

However, it should be noted that the actual devel-
opment and optimization was done on a machine
using an AMD K6-2 processor. The optimizing proc-
ess, which includes trial and error strategies was per-
formed to maximize throughput on this machine and
not the reference machine. This may in some cases



lead to cases were the performance on the reference
machine is not as good as it could be.

4.2. Memory Usage

We give an estimate of the memory required for
each of the algorithms. The size of the class file (de-
bugging information removed) is listed to give an
idea of the total size, consisting of code size and data
like S-Box tables, etc. This is only done for the AES
candidates because the other algorithms use a slightly
different API which would skew results.

Probably more interesting is the amount of mem-
ory required during execution. We list the data mem-
ory used obtained by counting the variables used in
the source code. Overhead for arrays or data allocated
on the stack is not counted as it is fairly small and
approximately identical for all of the algorithms.

4.3. Implementation Difficulty

We also assign implementation difficulty "grades"
to the algorithms. In difference to the other criteria
these were not measured but are subjective estimates
for the time it required to arrive at an acceptably fast
implementation of the algorithm. If we want to look
at it in a quasi formal way we identify the following
factors:

• Time taken to understand the algorithm (at
least well enough to be able to implement it).

• Time taken to understand how to efficiently
implement the algorithm on a 32 bit platform.
As some algorithms need to be coded very dif-
ferently from their specification in order to be
efficient this part may constitute a significant
part of the total time.

• Time taken to actually code the implementa-
tion.

The first two points are of course to some degree
dependent on the documentation provided by the
algorithm designers and other parties. Therefore, new
or improved documentation may update the results
given here.

5. Algorithms

5.1. DES

The Data Encryption Standard (DES) is the current
US standard which the AES will eventually replace. It
dates back from the 1970s and has become inadequate
in particular because of its key length of only 56 bit.
DES was designed for hardware implementations and
requires tricks to operate moderately fast in 32 bit
software implementations. These tricks are not obvi-
ous which is why DES only earns a B- for imple-
mentation difficulty. However, an advantage of DES
over all other algorithms examined except Triple DES
is that the encrypt and decrypt operations are identical
save for the key schedule resulting in smaller code.

5.2. Triple DES

Triple DES overcomes the limitation of the short
DES key length by using three DES cores with sepa-
rate keys in sequence. This results in an effective
strength of 112 bit (meet in the middle attacks) at the
price a significant performance drop. Triple DES only
performs somewhat faster than one third of the speed
of DES (reduced overhead, leaving off the initial and
final permutations), which means it is very slow in
software. Implementation difficulty is B- as with
DES.

DES Triple DES IDEA MARS RC6 Rijndael Serpent Twofish
Class File Size n/a n/a n/a 9984 1931 4900 12483 5204
Per process memory 5120 5120 0 3220 0 20520 0 6816
Per instance memory 128 384 416 220 432 240 576 4400

Table 1: Class file size and memory usage in bytes.
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5.3. IDEA

IDEA is a 16 bit oriented cipher which uses multi-
plication modulo 65537 for fast diffusion. Conse-
quently it performs quite well compared to DES (de-
pending on the processors multiplication unit). How-
ever, its key setup is quite slow in decryption mode as
multiplicative inverses have to be calculated. It has
also to be noted that a class of weak keys has been
discovered. For implementation difficulty it earns B+
as that is fairly straight forward.

5.4. MARS

MARS is the first of the AES candidates we ex-
amine. It uses 8 rounds of unkeyed mixing before and
after the core encryption rounds. One of its advan-
tages is that a 32 bit implementation can be written
exactly the way the algorithm is specified, also aided
by the pseudo code given in the specification. Imple-
mentation difficulty B+.

5.5. RC6

RC6 is a cipher that evolved from RC5. It is very
simple to understand and implement and very fast on
32 bit processors; implementation difficulty A. Al-
though the least time was spent on optimizing RC6 it
still comes out as the fastest algorithm on almost all
platforms.

5.6. Rijndael

Rijndael was designed based on strong mathemati-
cal foundations. Implemented on 32 bit processors
only table lookup, XOR and shift operations are used.
The number of rounds in the Rijndael cipher in-
creases with the key length resulting in decreasing
speed for both key setup and encryption. Key setup
for Rijndael is very fast for in encryption mode but
slower in decryption mode as an additional inversion
step is required. Implementation difficulty B.

5.7. Serpent

Serpent was designed for so-called bitslice imple-
mentations. The idea is to view a 32 bit register as 32
one bit registers which are operated on by 32 one bit
SIMD processors with e.g. logical operations. How-
ever, S-Boxes have to be implemented via logical
expressions in this mode. Efficient expressions are
not trivial to obtain and no expressions are given in
the specification, contributing to the B- grade for
implementation difficulty. Serpent was designed with
a large safety margin of 32 rounds vs. about 20 mini-
mum secure rounds. This results in lower speed, the

penalty depending on the JVM implementation and
the processor.

5.8. Twofish

Twofish is a very flexible cipher that allows for
several implementation options allowing a memory
usage vs. key setup speed vs. encryption speed trade-
off. As maximum encryption throughput was desired
the "full keying" option was chosen for the imple-
mentation. A special property of Twofish is that key
dependent S-Boxes are used. This somewhat hurts
performance on certain JVMs, in particular when
using the Symantec JIT compiler that comes with the
JDK on the Windows platform and which was used
for the measurements. This means that Twofish may
be somewhat faster compared to the other algorithms
on other platforms. As Twofish is a quite complicated
cipher it earns B- for implementation difficulty.

6. Conclusions

We have analyzed the performance of the AES
candidate and other ciphers.

The results for encryption and decryption speed
show that RC6 is about 25% faster than the other
algorithms. Then MARS, Rijndael, and Twofish fol-
low with virtually identical performance for 128 bit
keys, Rijndael being slower for longer keys. Serpent
is trailing behind but is still about as fast as IDEA.
DES follows with Triple DES far behind. These re-
sults are similar to some tests made using C imple-
mentations but deviate much from Java studies. The
results also show that Java is no more than a factor of
2-3 slower than optimized C code.

The key setup performance is more varied with the
fastest AES candidate more than 7 times as fast as the
slowest. This appears to be partly due to differing
opinions about the purpose of the key schedule. It
could be viewed as a one way hash function: accept-
ing an arbitrarily long key, producing output of fixed
length (the round keys). All round keys depend on all
input bits and obtaining a round key (using some
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attack) does not yield any information about the
original key. Some algorithms try to approximate this
ideal while others only generate the necessary key
material in a straight forward way.

In any case Rijndael is the fastest algorithm with
respect to key setup, although it is not that far ahead
when keys longer than 128 bit are used and in de-
cryption mode. Twofish has a fairly slow key setup
using this implementation option.

In summary it can be said that if properly imple-
mented all algorithm offer reasonable performance in
Java. The results are mostly in line with those ob-
tained by studies evaluating C implementations.
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Appendix

This appendix includes the full performance figures as obtained on the reference machine.

Encryption
Speed

(kbit/s)

DES
(56 bit)

Triple DES
(168 bit)

IDEA MARS RC6 Rijndael Serpent Twofish

128 bit key 10508 4178 12820 19718 26212 19321 11464 19265
192 bit key n/a n/a n/a 19760 26192 16922 11474 19296
256 bit key n/a n/a n/a 19737 26209 14957 11471 19275

Decryption
Speed

(kbit/s)

DES
(56 bit)

Triple DES
(168 bit)

IDEA MARS RC6 Rijndael Serpent Twofish

128 bit key 10519 4173 13018 19443 24338 18868 11519 18841
192 bit key n/a n/a n/a 19670 24382 16484 11514 18841
256 bit key n/a n/a n/a 19489 24279 14468 11533 18806

Encryption
Key Setup

(keys/s)

DES
(56 bit)

Triple DES
(168 bit)

IDEA MARS RC6 Rijndael Serpent Twofish

128 bit key 18128 5150 90571 28680 45603 96234 34729 13469
192 bit key n/a n/a n/a 27928 40625 86773 33516 10556
256 bit key n/a n/a n/a 26683 29069 70494 31973 8500

Decryption
Key Setup

(keys/s)

DES
(56 bit)

Triple DES
(168 bit)

IDEA MARS RC6 Rijndael Serpent Twofish

128 bit key 18039 5136 20737 28743 45709 56017 34687 13469
192 bit key n/a n/a n/a 27917 40625 48324 33560 10550
256 bit key n/a n/a n/a 26731 39028 39963 31973 8531
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Abstract. In this paper, we discuss ways to attack various reduced-
round variants of MARS. We consider cryptanalysis of two reduced-
round variants of MARS: MARS with the full mixing layers but fewer
core rounds, and MARS with each of the four kinds of rounds reduced by
the same amount. We develop some new techniques for attacking both
of these MARS variants. Our best attacks break MARS with full mix-
ing and five core rounds (21 rounds total), and MARS symmetrically
reduced to twelve rounds (3 of each kind of round).

1 Introduction

MARS [BCD+98] is a block cipher submitted by IBM to the AES [NIST97a]
[NIST97b], and one of the five finalists for AES. The cipher has an uncon-
ventional structure, consisting of a cryptographic “core” in the middle, and a
“wrapper” surrounding the core to protect it from various kinds of attack. As
with all ciphers, the only way we know to determine the strength of MARS is
to try to cryptanalyze various weakened versions of it.

In this paper, we discuss attacks on reduced-round variants of MARS. Be-
cause of MARS’ unconventional structure, there are many different reduced-
round variants worth considering. Here, we focus on two: A variant with the full
“wrapper” but fewer rounds of cryptographic core, and a variant with both the
core and wrapper reduced by the same number of rounds. In other work [KS00],
we have considered the cryptographic core without the wrapper. In view of the
stated purpose of the “core” and “wrapper” rounds, we believe the two variants
in this paper have a great deal to teach us about the ultimate strength of MARS.

1.1 Current Results

Our results are as follows:

Attacks on Reduced-Round MARS Variants
Reduced-Round Work Memory Text Requirements
Version
Full Mixing + 5 Core 2232 half encs 2236 bytes 8 known plain
Full Mixing + 5 Core 2247 partial encs 2197 bytes 250 known plain
6 Mixing + 6 Core 2197 partial decs 273 bytes 269 chosen plain
0 Mixing + 11 Core 2229 partial encs 269 bytes 265 chosen plain



For reasons of both space and clarity of presentation, the attacks against the
core rounds only are not included in this paper, and can be found in [KS00].

1.2 Implications of the Results

None of our current results on MARS come close to breaking the full cipher; our
best results to date break only 21 out of 32 rounds (and this counts attacking 16
mixing rounds, which are far weaker than the core rounds). However, the attacks
in this paper demonstrate ways to attack the MARS structure, and so highlight
potential weaknesses of that structure. They also help us to understand how the
components of this complex cipher interact to resist attack.

We also introduce a new kind of meet-in-the-middle attack, which may be
of independent interest. Although we demonstrate its use initially on MARS, it
may be useful against other ciphers, especially other ciphers with heterogenous
structures.

1.3 Guide to the Rest of the Paper

The remainder of the paper is arranged as follows: First, we discuss the structure
of MARS, and introduce notation and terminology to describe its inner workings.
Next, we discuss a set of attacks on MARS with only the number of core rounds
reduced. Next, we develop attacks on MARS variants with the same number of
each kind of round taken out. We conclude the paper with a discussion of the
new techniques we have developed for MARS, the implications of our results,
and some open questions.

2 The MARS Structure

The MARS structure can be considered as six different layers through which a
plaintext block must pass to become a ciphertext block:

1. Pre-Whitening Layer: The plaintext has 128 bits of key material added to
its words modulo 232.

2. Forward Mixing Layer: Eight rounds of unkeyed mixing operations making
extensive use of the MARS S-box.

3. Forward Core Layer: Eight rounds of keyed unbalanced Feistel cipher, using
a combination of S-box lookups, multiplications, data-dependent rotations,
additions, and xors to resist cryptanalytic attack.

4. Backward Core Layer: Eight rounds of keyed unbalanced Feistel cipher, using
a combination of S-box lookups, multiplications, data-dependent rotations,
additions, and xors to resist cryptanalytic attack.

5. Backward Mixing Layer: Eight rounds of unkeyed mixing operations making
extensive use of the MARS S-box.

6. Post-Whitening Layer: The block has 128 bits of key material subtracted
from its words modulo 232.



In this paper, we typically discuss MARS in terms of two different compo-
nents. The forward and backward core layers together make up the “crypto-
graphic core”; this core looks like a relatively conventional block cipher, and
appears to be reasonably resistant to attack. The pre-whitening, forward mixing
layer, backward mixing layer, and post-whitening layer together make up the
“wrapper,” which protects the cryptographic core from various kinds of attack
by requiring a large key guess or some clever cryptanalysis to gain access to
inputs and outputs of the core. This is a very different block cipher design than
is used in the other AES candidates. Among other things, this new design makes
it relatively difficult to determine how to come up with reduced-round variants
of the cipher to attack.

2.1 The Cryptographic Core

The strength of MARS resides fundamentally in the strength of the core rounds.
Both forward and backward core rounds use the same E function, which takes
one 32-bit input and two subkey words, and provides three 32-bit words. Each
output is combined into one of the three other words. The only difference between
forward and backward rounds is the order in which the outputs are combined
with the words. The core rounds’ strength is based primarily on mixing incom-
patible operations in the E function, and in their target-heavy Feistel structure,
which causes both linear and differential characteristics to quickly spread out into
every word. A full description of the MARS core rounds appears in [BCD+98].

The cryptographic core, with a few additional rounds, could stand alone as
a cipher; indeed, this would have been a fairly conventional design. Instead,
the MARS design team chose to use a smaller number of core rounds,1 but to
surround the core with a “wrapper.”

2.2 The Wrapper

The key addition/subtraction and mixing layers surround the core rounds, pre-
venting direct access to the core rounds from either the plaintext or the cipher-
text side. While the wrapper itself isn’t particularly resistant to cryptanalysis, it
is quite different in structure than the core, and it is designed to require guessing
of key material before an attacker can learn or control either inputs or outputs
to the core.

The mixing layers, like the core, have an unbalanced (target-heavy) Feistel
structure, but use only S-boxes and mixing of addition and xor.

We are a little puzzled by the decision to involve only 128 bits of key material
on each side of the core. This leaves the possibility of an attacker guessing his
way past either half of the wrapper, and thus seeing either input or output, with
a guess of only half the maximum key length. A small change to the design would
have involved 256 bits of key material on each side, and thus made partial key

1 Assuming the same level of performance, adding the wrapper requires reducing the
number of core rounds.



guessing worthless as a method of bypassing the wrapper. Below, we consider
some attacks that simply guess key material to bypass the wrapper entirely.
Inclusion of additional key material would apparently have stopped such attacks
at very little cost. While we understand the role of the “wrapper” in helping the
core resist attacks, we don’t understand why it couldn’t fulfill this role just as
well with another 128 bits of key material being combined in on each side. Such
a change to the design would have rendered many of the attacks we describe in
this paper impossible, at a low performance cost.

2.3 Reduced-Round MARS Variants

In a conventional cipher design, the rounds are all more-or-less the same except
for subkeys (and sometimes round constants). There is an obvious way to develop
weakened versions of such ciphers: simply reduce the number of rounds. Because
of the very different roles of the different kinds of rounds in MARS, however,
there are a number of reduced-round MARS variants that can teach us valuable
lessons about the ultimate strength or weakness of MARS.

Some reduced-round variants we have considered include:

Chopping Off the Beginning or End We evaluate the strength of most ci-
phers by considering versions with several of the first or last rounds omitted:
first the whitening layers and then several rounds of the mixing layers. This
isn’t a terribly rewarding way to look at MARS, since it omits important
parts of the cipher’s structure.

Core Rounds Only Because most of the cryptographic strength of MARS ap-
parently resides in the core rounds, it is reasonable to consider the strength
of these rounds independently. By developing such attacks, we learn how
to attack a fundamental component of the cipher, which may be of use in
mounting attacks on the full cipher in the future. For space reasons, most of
our analysis of the MARS core is described in another paper [KS00].

Full Cipher with Reduced Core Rounds An alternative way to evaluate
the strength of MARS is to consider the full cipher, but with fewer core
rounds. This allows us to see how the core rounds might be attacked, even
through the whitening and mixing layers that wrap the core rounds of the
cipher. It also gives us insights into how strong the core needs to be to allow
MARS to resist cryptanalysis.

Symmetric Reductions of the Cipher In the full MARS, there are four dif-
ferent types of rounds, each repeated eight times, for a total of 32 total
rounds. It is reasonable to consider symmetric reductions of this; for ex-
ample, we can consider a MARS variant with only three or four or six of
each kind of round. In some sense, this probably provides more information
about attacking the full MARS cipher than other kinds of weakened variant,
because all the components of the cipher are present.

We believe the last three can teach us many lessons about the ultimate
strength of MARS, both in terms of developing tools for attacking the full cipher,
and in terms of evaluating how close the best current attacks come to breaking
the full MARS.



3 Full Mixing with Reduced Core Rounds

In this section, we consider attacks on a MARS variant with the full “wrapper,”
but a reduced “cryptographic core.” These attacks demonstrate how it is possible
to mount attacks on a cryptographic core, even through the full wrapper, albeit
against a much-weakened core. These attacks penetrate by far the largest number
of rounds of the cipher, because they focus on the relatively weak mixing rounds,
rather than the much stronger core rounds.

Our attacks in this section are meet-in-the-middle attacks, requiring enor-
mous memory resources to implement, and thus purely academic. In the re-
mainder of this section, we will assume that one memory access to these huge
memory devices costs about the same amount of work as a partial encryption.
There are ways to trade off time for memory in these attacks, but they generally
aren’t useful in the context of these attacks.

3.1 A Straightforward Meet-in-the-Middle Attack on Five Core
Rounds

Consider MARS with full mixing and whitening layers, but with the core reduced
to three forward and two backward core rounds. This is vulnerable to a meet-
in-the-middle attack as follows:

1. Request eight plaintext/ciphertext pairs.
2. From the plaintext side, guess:

(a) The 128-bit pre-whitening key.
(b) The 62-bit first round key.
(c) K× and the low nine bits of K+ for the second round.
(d) This yields knowledge of A2 = D3 >>> 13. Compute this value for all

eight plaintexts, and put the resulting 256-bit value in a sorted list.
3. From the ciphertext side, guess:

(a) The 128-bit post-whitening key.
(b) The 62-bit last round key.
(c) K× and the low nine bits of K+ for the next-to-last round.
(d) This yields knowledge of A2 = D3 >>> 13. Compute this value for all

eight ciphertexts, and search the sorted list from the plaintext guesses
for a match on this 256-bit value.

This attack passes through 16 mixing rounds and 5 core rounds (thus 21
rounds total), at a cost of about 2232 half encryptions’ work (that is, 2229 work
for each of the eight texts), and about 2236 bytes of memory. The memory re-
quirements are totally unreasonable in practice, so this attack is purely academic.

Summary of Results
Attack On: Full Mixing Plus Five Core Rounds (21 total rounds)
Attack Type: Meet-in-the-Middle
Work: 2232 half-encryptions
Memory: 2236 bytes
Texts: Eight known plaintexts



3.2 The Differential Meet-in-the-Middle Attack

Here, we introduce the concept of a differential meet-in-the-middle attack. This
attack is related to the attack on the Mansour-Even construction by Daemen
[Dae95], the attack on DESX by Kilian and Rogaway [KR96], and the inside-out
attack of Wagner [Wag99].

In a standard meet-in-the-middle attack, we guess some key from the first
and second halves of the cipher, and then match on some middle value. For
example, an attack on double-DES starts by getting two plaintexts and their
corresponding ciphertexts. We then guess the key for the first DES encryption,
and for each such key guess, we compute the middle value from the two plaintexts
if they were encrypted under that key. This is stored in a sorted list. We then
guess the second DES key, and compute, for each guess, the middle value from
decrypting the two ciphertexts. These values are searched for in the sorted list.
When we find a matching value, it is very likely that this corresponds to the
right key.

This attack can be generalized. For example, it is not necessary that the
whole intermediate value to an encryption be computed; we can compute a
single bit from each direction, and then examine more plaintext/ciphertext pairs.
Similarly, if we can compute some checksum from intermediate values we reach
by key guesses from the plaintext and ciphertext sides, then we need never have
any knowledge of actual intermediate text values, as in [KSW99].

An extension to this idea allows the use of probability one differentials
through some intermediate part of the cipher. Consider the truncated differ-
ential (0, 0, 0, δ0) → (δ1, 0, 0, 0), which goes through three MARS core rounds
with probability one. The truncated differential works the same way in reverse,
naturally. This means that if we see a right input pair (a pair with differ-
ence (0, 0, 0, δ0)), we will also see a right output pair (a pair with difference
(δ1, 0, 0, 0)).

In a meet-in-the-middle attack, we must find some value that can be com-
puted from both the top (input) and the bottom (output) of the cipher with
a key guess, build a sorted list of these values, and look for pairs of keys that
match on these values.

With these differentials, we can compute such a value as follows:

1. Get about 250 known plaintexts and their corresponding ciphertexts. Label
each plaintext/ciphertext pair with an index number, 0..250 − 1.

2. Guess part of the key from the top, and compute intermediate states for
each plaintext given that key guess.

3. Sort the plaintext-intermediate values on their first three words.
4. Go through these values, and note each pair of texts that matches on their

first three words by their index numbers. List these in sorted order, lower
index number first in each pair. We expect about eight of these pairs.

5. Guess part of the key from the bottom, and compute intermediate states for
each ciphertext from that key guess. Sort the ciphertext-intermediate values
on their last three words.



6. Go through these values, and note each pair of texts that matches on their
last three words by their index numbers. List these in sorted order, lower
index number first in each pair. We expect about eight of these pairs.

7. Because the differential has probability one in both directions, there must
be the same number of these pairs, and the pairs must be identical, from
both plaintext and ciphertext. All we’ve done here is to list which pairs have
the right input and output xor differences to fit this truncated differential.

From this, we now have a “checksum” (the right pair indices) that we can
compute across three MARS core rounds. (We can easily restrict the checksum’s
size to four or eight matching pairs. The indices of the pairs must be put in
some standard order; for example, note each right input pair of indices in sorted
order, and then sort the pairs in order of each pair’s lowest index number.) This
checksum costs about 50 × 250 ≈ 256 work to find for any block of 250 texts.
We can thus do the following differential meet-in-the-middle attack on the full
MARS mixing layers plus five rounds of core:

1. Get 250 known plaintext/ciphertext pairs, and label each by an index number
as described above.

2. From the plaintext side, guess the pre-addition key and the first core round
key, a total of 2190 different key guesses.

3. For each key guess, take the predicted inputs to the second core round, and
compute the input right pair indices as described above. This takes about
256 work per key guess. Write the input right pair indices to a huge list,
one entry per key guess with the first eight right input pair indices in sorted
order.

4. Do the same thing from the bottom, continuing to add entries to the huge
list.

5. Sort the huge list, which will now have 2191 entries in it, and should thus
take about 191× 2191 ≈ 2199 work to sort.

6. Find the match between key guesses from the plaintext and ciphertext sides.

The total work done is thus 2190× 256× 2+ 2199 ≈ 2247. The attack recovers
all key material used in the pre- and post-addition/subtraction keys, and the
first and last core rounds’ values, as well. The total memory taken is 56× 2191

bytes.

Summary of Results
Attack On: Full Mixing Plus Five Core Rounds (21 total rounds)
Attack Type: Differential Meet-in-the-Middle
Work: 2247 partial encryptions
Memory: 2197 bytes
Texts: 250 known plaintexts

3.3 Tradeoffs Between Differential and Conventional
Meet-in-the-Middle Attacks

Note that the differential meet-in-the-middle attack requires slightly more work
but considerably less memory than the conventional meet-in-the-middle attack.



The advantage of the differential meet-in-the-middle attack is that it allows us
to pass through three core rounds for free; the disadvantage is in the cost of
detecting the property that passes through those three core rounds for free, and
the far larger number of known plaintexts required. This tradeoff determines
which attack is best-suited for a given cipher and attack model.

For reference, we will point out that the differential meet-in-the-middle at-
tacks can be used with less memory against smaller numbers of core rounds. For
example, we can use the same truncated differential and filtering process against
three rounds of core, dropping the total memory required to about 2133 bytes of
memory, at a work factor of about 2185 partial encryptions.

We have considered ways of extending the differential meet-in-the-middle
attack another round. Unfortunately, there are complications involved in using
either differentials with probability substantially lower than one, or in using
differentials that don’t run both directions with approximately equal probability.

3.4 Using Lower Probability Differentials

Consider a differential with probability 1/2 through several rounds of some ci-
pher, and assume we must find four input right pairs that are also output right
pairs. The problem is that we must have an exact match for the final sorting and
searching phase of the meet-in-the-middle attack to work. The only way we can
see to mount the attack in this situation is to generate and store many different
input right pairs, in hopes that one will consist of all successful differentials, and
thus, right output pairs.

The most efficient way to do this will probably be to find R right input pairs,
and add to the sorted list of input right pairs every possible 4-tuple of the pairs,
and then to do the same with the right output pairs. That will involve R choose
4 entries in the list, and we can expect it to work if we expect at least 4 of the R
input right pairs to result in output right pairs. The number of expected right
output pairs from R right input pairs is binomially distributed; for reference,
with nine right input pairs, we expect four right output pairs with probability
1/2. With twenty right input pairs, we have about a 0.94 probability of getting
some subset of four right input pairs.

This implies an unpleasant tradeoff between probability of the differential
used, and memory required for the attack. Consider the following numbers, which
describe the impact of using lower-probability differentials on the difficulty of the
attack. These numbers are for parameters that give the attack an approximate
probability of success of 1/2.

Memory vs. Probability Tradeoff
Prob. of Num. Right Input Num. Entries in Sorted
Characteristic Pairs Required List per Key Guess
0.9 5 5
0.5 9 126
0.1 47 178365
0.01 467 1.96× 109

0.001 ≈ 5000 2.60× 1013



As a rule, multiplying the number of entries in the sorted list per key guess
by N multiplies the size of that list by N , which multiplies the work involved in
handling it by N log N . We thus have great difficulty in using differentials with
very low probabilities.

Truncated Differentials with Substantially Lower Probabilities in the
Decryption Direction Normal differentials must have the same probability
in both directions. (This can be established by a simple counting argument.)
However, truncated differentials, which don’t specify the whole difference, can
have different probabilities in different directions. For example, in the MARS
forward core rounds, the following four-round differential has probability one:

(0, 0, 0, 231)→ (?, ?, (low 12 bits = 0x1000), 212)

However, this truncated differential cannot be run backwards with reasonable
probability. There are about 2211+2127 pairs of inputs that will yield this output
difference; of these pairs, only about 2−84 have input difference (0, 0, 0, 231). This
makes the attack much more costly; in fact, our best methods to mount the
attack in this case allow us to attack the full mixing and four rounds of core,
but not five rounds of core.

3.5 Boomerang Meet-in-the-Middle Attacks

We have also considered using the same kind of technique, but with boomerangs
[Wag99] (basically, 4-tuples with a differential relationship between all four texts
in the middle of the cipher) instead of individual ciphertexts. The problem of
detecting when we have the expected boomerangs is difficult; thus far, we have
been unable to find a way to do this that isn’t far costlier than the rest of the
attack can afford.

3.6 Other Techniques

In this section, we have focused on meet-in-the-middle attacks, because these are
the most obvious kinds of attacks to consider. However, there are other attacks
that might be useful against this kind of reduced-round MARS version. For
example, we might guess our way past the pre-addition key and forward mixing
layers, and look for a set of text pairs whose properties will show through eight
rounds of backward mixing layer. We haven’t yet found an effective way to do
this for all eight backward mixing rounds, but research is ongoing.

4 Symmetric Reductions of the Cipher

MARS consists of eight rounds each of four kinds of round functions. A natural
way to derive a reduced-round version of MARS to analyze is to consider k
rounds of each kind. For example, when k = 2, we have eight total rounds; when



k = 3, twelve; and when k = 4, sixteen. Cryptanalysis of such reduced-round
versions of the cipher allows us to learn important lessons about how to attack
a the general MARS structure.

Our attacks typically work as follows:

1. First, we choose N batches of input pairs, so that one such batch is likely to
consist of many pairs that have some differential after the mixing layer.

2. We then exploit some differential property that passes through the core
rounds, leaving a detectable differential property somewhere near the end of
the cipher.

3. Finally, we guess enough key material at the end to detect the detectable
property; the partial key guess that allows us to detect the differential prop-
erty is the correct one.

4.1 Attacking MARS Symmetrically Reduced to Eight Rounds

When k = 2 (eight rounds total), we have a cipher that is obviously not very
strong. It is still worthwhile to consider how this might be attacked, in part to
help develop techniques for attacking stronger versions. Recall that this cipher
consists of the key addition, the first two forward mixing rounds, two forward
core rounds, two backward core rounds, the last two backward mixing rounds,
and the key subtraction.

For this version, we can simply use one of the meet-in-the-middle attacks
discussed in the previous section, since there are only four rounds. However, we
can do much better than that.

Our attack works as follows:

1. We choose N batches of eight pairs each, where N ≤ 240. The batches
will be described below; one batch will have all eight pairs with difference
(0, 0, 0, 231) after the forward mixing layer.

2. In the right batch, this passes through the four core rounds with probability
one, leaving (?, ?, ?, 212).

3. We guess a few bits of subtraction key at the end of the cipher, and thus
distinguish the right batch from all the wrong batches. If we guess m bits
of effective key, we will need about 2m+44 partial decryptions to distinguish
the right batch from the wrong batches.

Choosing the Batches The first step to this attack is to get pairs of texts
through two forward mixing rounds, so that we have pairs with the difference
(0, 0, 0, 231) in the input to the first core round.

Our plan is to put a 27 difference in A, and an offsetting difference T in B,
and finally a difference to cancel A’s difference in D. To simplify the filtering
problem at the end, we will choose batches of eight pairs of texts, so that one of
the batches will give us eight right pairs through the forward mixing layer.



Choosing A, A∗ We show the first difference as being 27, in A, which passes
through the key addition with approximate probability 1/2, and then generates
expected difference T in the output to the first use of S-box s0 with probability
2−7. This then has probability of 2−8. This is based on simply looking for a pair
of S-box inputs, (u, u⊕ 27), such that s0[u]⊕ s0[u⊕ 27] = T . We look at all 128
such pairs, and use the difference with the lowest weight in its low 31 bits, for
reasons that will become clear momentarily.

For each batch, we hold the low eight bits of A constant. For one such value,
A, A∗ = A⊕ 27 will leave a 27 difference in A, and a T difference in the output
from the first s0.

Choosing B, B∗ The second difference is shown as being T , in B. This passes
through the key addition with approximate probability 2−w(T ), where w(T ) is
the Hamming weight of the low 31 bits of T . If we get T as the xor differences in
both line B and the s0 output from A, they cancel out with probability one. (We
can also consider a mod 232 difference T that passes through the key addition
with probability one, and cancels out the T additive difference in the s0 output
with probability about 2−w; naturally, there is no difference in the probabilities
involved.) Recall that we chose u, u⊕ 27 in A to minimize w(T ). Let us assume
that the minimum value for w(T ) is 12. Then, we have about 2−12 probability of
finding a pair B, B∗ such that their difference after the key addition is T , simply
by using the rule that B∗ = B ⊕ T . We can actually do somewhat better than
this in our selection of batches.

Building the Batches The third difference is shown as being 231, in D. This
difference passes through all xors and additions with probability one.

We can thus build batches of (A, B, C, D), (A∗, B∗, C, D∗) pairs. Each batch
of eight pairs contains the same low-order eight bits for A and all the same bits
for B. There are thus 224 × 232 × 232 = 288 possible pairs for each batch, and
there are 240 batches possible, and about 212×28 = 220 expected to be necessary.

We build 220 batches of eight pairs, for a total of 224 chosen plaintexts.

Guessing Key at the End After the core rounds, input pairs with difference
(0, 0, 0, 231) must have output difference (?, ?, ?, 212). We must thus learn the
value of D in the output from the core rounds. To do this, we must guess about
12 bits of the subtractive key for C, and all of the subtractive key for D. Using
these guesses, we can derive the values for D after the core rounds. We must do
this for all 224 texts. We thus have total work of about 224 × 244 = 268 partial
decryptions. (We suspect that there are better attacks for k = 2, but that these
attacks don’t generalize for larger k values.)

Summary of Results
Attack On: MARS Symmetrically Reduced to Eight Rounds
Attack Type: Differential
Work: 268 partial decryptions
Memory: 229 bytes
Texts: 225 chosen plaintexts



4.2 Extending the Attack to k = 3 (Twelve Rounds)

We now consider an attack on MARS symmetrically reduced to 12 rounds. Again,
the cipher is obviously not very strong. However, the structure is beginning to
add difficulties to the attack. We use a boomerang-amplifier to cover the six core
rounds with probability 2−96 for each pair of pairs with difference (0, 0, 0, 231)
into the core rounds. With about 250 right pairs into the core rounds’ input, we
expect to see about four right pairs of pairs. These pairs will then pass through
six more rounds, and can be detected by examining the whole output blocks
from all the texts.

Requesting Inputs We use the same input structure as before, but instead of
requesting eight pairs for each batch, we request 250 pairs for each batch.

The Boomerang Amplifier The boomerang-amplifier attack is introduced in
[KS00], and is based on the concept of “boomerangs,” as described in [Wag99].
The basic idea of the attack involves a property occurring in pairs of pairs of
texts.

For the MARS core, we use the batches of input pairs described above to try
to find a batch of 250 pairs of texts, all of which will have difference (0, 0, 0, 231)
in the input to the first core round. Since there is a probability one differential
for the core rounds, (0, 0, 0, 231) → (231, 0, 0, 0), this means that all 250 pairs of
the batch will have difference (231, 0, 0, 0) after three core rounds.

Consider the set of 250 of these pairs in the batch. We will refer to these
pairs as ((W0, W

∗

0 ), (W1, W
∗

1 ), ..., (Wi, W
∗

i )) in input to the core rounds, and as
((X0, X

∗

0 ), (X1, X
∗

1 ), ..., (Xi, X
∗

i )) after round three. There are about 299 pairs
of pairs. That is, there are about 299 different ways to choose two of these pairs
out of this batch and look at them together; for example, ((Xi, X

∗

i ), (Xj , X
∗

j )).
Now, consider the difference (0, 0, 0, a), where a is unknown. For any pair of
texts to have such a difference, they must collide in 96 bits; the difference thus
is expected to occur in 2−96 of all random pairs of texts. Thus, if Xi, Xj can
be considered as a more-or-less random pair of texts (and they apparently can),
then the probability that each i, j pair will have this difference is 2−96, and since
we have 299 such pairs, we expect about eight pairs Xi, Xj with this difference.
However, we know that Xi⊕X∗

i = (231, 0, 0, 0) for all i. This lets us algebraically
show that when Xi ⊕ Xj = (0, 0, 0, a), X∗

i ⊕ X∗

j must also equal (0, 0, 0, a).
This boomerang structure thus amplifies the effect of the low-probability event,
making it detectable, since when this happens we get two pairs of texts that
follow the truncated differential (0, 0, 0, a)→ (b, 0, 0, 0) over three rounds.

Distinguishing the Right Key Guess To distinguish the right key guess,
we examine the result of trial partial decryption of a whole batch of pairs at
a time. Let Yi, Y

∗

i be the results of encrypting input pair Wi, W
∗

i through the
whole cryptographic core in some batch. We build a list of all the Yi and Y ∗

i

values. We then sort this list on its low-order 96 bits. Next, we go through the



list, and for each pair Yi, Yj or Yi, Y
∗

j that matches in those last 96 bits, the pair
i, j is added to a sorted list of pairs that collided. Finally, we count the number
of times each i, j appears in the list. When we see two or more instances of the
same i, j occurring twice, we are extremely likely to have a correct key guess.

Recall that we expect eight pairs i, j such that Xi ⊕ Xj = X∗

i ⊕ X∗

j =
(0, 0, 0, a) These will inevitably lead to eight pairs i, j such that Yi ⊕ Yj =
(b, 0, 0, 0) and Y ∗

i ⊕ Y ∗

j = (b′, 0, 0, 0). (The property works just as well if the
collision occurs between Xi and X∗

j , naturally.)
The probability of any given i, j pair having this property after a random

permutation has been applied to it is 2−192 Since there are 299 pairs in each
batch, we expect no such i, j pairs. The probability of seeing two such pairs in a
batch (that is, among 299 potential pairs) is about 2−186. We will be examining
220 different batches, each under 2128 different keys, so we’ll have 2148 total
batches to examine in this way. So with overwhelming probability, there will be
only one partial key guess that will give us two or more such i, j pairs.

Summary of the Attack The attack on 12 rounds (k = 3) makes use of a
boomerang amplifier. It requires about 220 × 248 × 2 = 269 texts, about 225

bytes of random-access memory (to hold a batch of texts at a time), and about
273 bytes of sequential memory to store all the ciphertexts so we can apply
our guesses to them. The attack also requires about 2128 × 269 = 2197 partial
decryptions, each consisting of about one quarter of the cipher.

Summary of Results
Attack On: MARS Symmetrically Reduced to 12 Rounds
Attack Type: Boomerang Amplifier
Work: 2197 partial decryptions
Memory: 273 bytes
Texts: 269 chosen plaintexts

5 Conclusions

In this paper, we have developed several new attacks on reduced-round versions
of MARS. While none of these attacks is able to break the full cipher, we feel
that these results provide valuable insights into the security of MARS. We regard
these results as preliminary, and would be unsurprised to see moderate improve-
ments in any of our attacks. However, if major improvements in the results are
possible, we expect that they will require new techniques. Below, we describe
some ideas for additional attacks on reduced-round MARS variants.

5.1 Lessons from the Analysis

The results in this paper show the overwhelming importance of the strength of
the MARS cryptographic core; we can attack the full mixing layers with only
five core rounds, a total of 21 rounds, but can currently attack no more than 11
core rounds.



Our results also show how the “wrapper” layers protect the core rounds from
attacks that require large numbers of chosen plaintexts or chosen ciphertexts.

Finally, our results demonstrate that, when evaluating a fundamentally new
cipher design, it is important to be able to innovate—to develop new techniques
to attack the cipher, rather than merely reusing the standard differential and
linear attacks. Because MARS is such an unconventional block cipher, we needed
to develop new attacks to get very far in our analysis.

5.2 Why This Is Important

The only way we know of actually determining the strength of a cipher is to try
to attack it, including reduced-round versions. Proofs of security have proven
unreliable; security arguments based on estimates of the best differential and
linear characteristics tell us little about what other attacks may be done; design
principles that protect against some attacks sometimes allow new attacks in their
place; as in Square, where the use of the MDS matrix made differential attacks
extremely difficult, while allowing Knudsen’s dedicated attack. The history of
cryptography is littered with ciphers whose designers were convinced of their
security, but whose attackers were not. Without a solid understanding of the
security of each of the AES finalists, NIST and the cryptographic community
will likely make a final decision on AES based only on performance.

In this paper, we have done some very preliminary analysis of two versions
of MARS with reduced rounds. MARS is a complicated enough design that
beginning to analyze it involves a significant investment of time (though even
conceptually very simple ciphers seem to have much the same property). We
hope to see our work spur others to go beyond the very preliminary results in
this paper.

5.3 Ideas for Future Attacks

We have spent considerable time trying to get boomerangs to work within meet-
in-the-middle attacks. A “boomerang-in-the-middle” attack would go through
six rounds for free, and thus would be quite powerful. Similarly, there is a seven-
round impossible differential through the core rounds; we are as yet unable to
find a way to use either of these ideas in a meet-in-the-middle attack. The un-
derlying problem in the case of the boomerang-in-the-middle attack is that a
boomerang 4-tuple can be identified only by considering both input and output
simultaneously. We have not been able to find a way around this problem so
far. The underlying problem with the impossible differential meet-in-the-middle
attack is that we can rule out candidate key guesses only by (again) examining
right pairs for both input and output simultaneously. We are still looking for a
way around this problem, or for a proof than none exists.

In our differential meet-in-the-middle attacks, we dealt with the mixing layers
by simply guessing our way past them. We expect significant improvements to
the attacks are possible with more analysis of the mixing layers, particularly in
terms of partial guessing of key material. We have spent far more time analyzing



the core rounds than the unkeyed mixing layers, and so this is a good area for
further research.

Attacking the symmetrically reduced version of the cipher with k = 4 ap-
parently requires a better way of choosing inputs than the input structure we
discuss above. We hope to find a better input structure, or a better property
to push through all eight core rounds. Previous attempts to attack k = 4 have
exceeded 2256 work, usually due to the huge plaintext requirements.

It may also be worthwhile to attack variants of MARS that cut off in the
middle (after 12 or 16 rounds total); we have some ideas in this direction.

Finally, in future work, we hope to examine how the MARS key schedule
functions with various reduced-round variants.
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Impossible Di�erential on 8-Round

MARS' Core

Eli Biham� Vladimir Furmany

March 15, 2000

Abstract

MARS is one of the AES �nalists. The up-to-date analysis of MARS

includes the discovery of weak keys, and Biham's estimation that a 12-

round variant of MARS is breakable. This estimation was partly founded

based on a 7-round impossible di�erential of the core of MARS. However,

no such attack was presented to-date. In this paper we present two new

longer impossible di�erentials of 8 rounds.

1 Introduction

MARS[5] is a block cipher designed by IBM as a candidate for the Advanced
Encryption Standard selection process, and was accepted as one of the �ve
�nalists.

The up-to-date analysis of MARS includes weak keys, and Biham's estima-
tion that MARS reduced to 12 rounds can be attacked[2]. This estimate was
partially based on the existence of a 7-round impossible di�erential of MARS[1]
(see [3, 4, 6] for more details on attacks using impossible di�erential ). In this
paper we introduce two 8-round impossible di�erentials of MARS' core.

2 An 8-Round Impossible Di�erential

We denote binary numbers with a subscript b, and a 32-bit binary numbers
whose all bits except of bit i are all zero, and only bit i is one by �i = 031�i110ib
(i.e., 1<<i in C). We also denote a string of 0's (and 1's) of variable lengths
(including zero length) by 0�b (and 1�b) and the complement of a bit-value x by
�x (�x = 1� x).

�Computer Science Department, Technion - Israel Institute of Technology, Haifa 32000,
Israel. biham@cs.technion.ac.il, http://www.cs.technion.ac.il/�biham/.

yComputer Science Department, Technion - Israel Institute of Technology, Haifa 32000,
Israel. vfurman@cs.technion.ac.il.

1



The 7-round impossible wordwise (truncated) di�erential of MARS is of the
form

(0; 0; 0; X)
3 rounds
! (Y; 0; 0; 0)

1 round

!= (0; 0; 0;W )
3 rounds
! (Z; 0; 0; 0)

where W , X, Y , and Z are non-zero, all pairs with di�erences of the form
(0; 0; 0; X) must have di�erences of the form (Y; 0; 0; 0) after 3 rounds, and
similarly the di�erences (0; 0; 0;W ) always cause di�erences (Z; 0; 0; 0) after 3
rounds. However, there are no pairs with di�erences (Y; 0; 0; 0) such that the
di�erences become (0; 0; 0;W ) after one round.

We observe that an extension of this impossible di�erential shows that when
W = �31 the intermediate one-round impossible di�erential can be replaced by

a two-round impossible di�erential (Y; 0; 0; 0)
2 rounds

!= (0; 0; 0; �31), for some
values of Y , leading to the following 8-round impossible di�erential for some
values of X

(0; 0; 0; X)
3 rounds
! (Y; 0; 0; 0)

2 rounds

!= (0; 0; 0; �31)
3 rounds
! (�31; 0; 0; 0):

In the following we describe the 3-round di�erentials with probability 1.
Then, we describe why the 2-round intermediate di�erential is impossible, and
for which values of Y . The conjunction of the various di�erentials to the 8-round
impossible di�erentials is described at the end of this section.

2.1 The 3-Round Di�erentials with Probability 1

We denote additive di�erence by �, and XOR-di�erences by �xor. In every
round of MARS' core, every single 32-bit input word B, C and D inuences
only one 32-bit output word (on A, B and C respectively). Thus if we take
the input di�erence of one of the foregoing to be non-zero (e.g., �B 6= 0) and
all others including �A to be 0 (e.g., �A = �C = �D = 0), then we receive
the output di�erence with only one non-zero di�erence. In particular, if we
take some input di�erence (0; 0; 0; X) where X is non-zero, we get the di�erence
(0; 0; X1; 0) for some non-zero X1 after one round, then the di�erence becomes
(0; X2; 0; 0) for some non-zero X2 after the next round. Finally, the di�erence
becomes (Y; 0; 0; 0) for some non-zero Y after the third round. In total we get
a 3-round truncated di�erential (0; 0; 0; X)! (Y; 0; 0; 0) with probability 1.

Note that, if the least signi�cant bits of X have the form 1 0::0
|{z}

i

(i � 0), then

the least signi�cant bits of Y have the same form. It follows from the fact that
the least signi�cant bits of such form are preserved in both additive and XOR
di�erences.

In the particular case X = �31 we always get Y = �31: We start with the
following di�erence (0; 0; 0; �31), i.e., �A0 = �B0 = �C0 = 0;�D0 = �31. Since
�A0 = 0, the mixings to B, C, and D have zero di�erences. Since the di�erence

2
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Figure 2: Round i in forward mode on MARS core

in �D is only in the most signi�cant bit, this di�erence remains only in the most
signi�cant bit independently of whether the mixing operation is performed by
addition or by XOR. Therefore, we get the di�erence (�A1;�B1;�C1;�D1) =
(0; 0; �31; 0) after one round with probability 1. This can be repeated three
times, and we get the di�erence (�31; 0; 0; 0) with probability one after 3 rounds,
as shown in Figure 1. Notice, that this di�erential holds in all the rounds of the
core including the forward mode, the backward mode and even on the boundary
of both.

2.2 The 2-Round Impossible Di�erential

In this section we describe the 2-round impossible di�erential of MARS core.
Let (�A0;�B0;�C0;�D0) = (Y; 0; 0; 0), where Y is an unknown value and

(�A2;�B2;�C2;�D2) = (0; 0; 0; �31). We want to �nd the values of Y that
give impossible di�erential on a 2-round MARS core. We look for these values
separately in the cases of forward and backward modes.

2.2.1 Forward Mode

Figure 2 outlines one round of the forward mode.

3
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� We know that Ri = ((Ai�1 <<< 13) �K) <<< 10 = (Di �K) <<< 10,
where K is an unknown subkey. Because, the key used in this stage is odd
and �D2 = �31, we have that �xorR2 = �9.

� We have �xorR2 = �9 and �C2 = �xorC2 = 0, so �xorD1 = �9. Thus,
we receive �xorA0 = �28.

� �xorA0 = �28 ) �A0 = aaa1 0::0
|{z}

28

b, where a is either 0 or 1 (i.e., �A0 =

��28).

In total, we get that all values of Y , with possible exception of ��28, give
impossible di�erentials on a 2-round MARS core in the forward mode.

2.2.2 Backward Mode

The Figure 3 outlines the backward mode round.

� �D2 = �31 ) �xorD2 = �31 ) �xorA1 = �18:

� �B0 = 0 ) �xorB0 = 0; Together with �xorA1 = �18 we get that
�xorR1 = �18:

� Ri = ((Ai�1 <<< 13) � K) <<< 10 = (Di � K) <<< 10, so �xor(Di �
K) = �xorRi >>> 10. So �xor(D1 � K) = �18 >>> 10 = �8, and
�(D1 �K) = �D1 �K = ��8. Because, the key used in this stage is odd,
we have two important conclusions:

1. �D1 has 10::0
| {z }

9

b as a 9 least signi�cant bits.

2. We may look at this as (�D1=2
8)�(K mod 224) = �1. So the 24 least

signi�cant bits of the key are equal to the inverse of �(�D1=28) mod
224.

4



� On the other hand:

L2 = (S[9 least signi�cant bits of (A1+K+)]�(R2 >>> 5)�R2) <<< (5
least signi�cant bits of R2),

where K+ is an unknown subkey.

{ �xorA1 = �18 so the 9 least signi�cant bits of �A1 are 0, then �(9
least signi�cant bits of (A1+K

+)) = 0, so �S = 0 and thus �xorS =
0.

{ As in forward mode, we get �xorR2 = �9, so �xor(R2 >>> 5) = �4.

{ �xor(S � (R2 >>> 5)�R2) = 0::0
|{z}

22

1000010000b.

{ A variable rotation is performed on L2 by a number of bits derived
from the 5 least signi�cant bits of R2. Because �xorR2 = �9 both
rotations are by the same number of bits (denoted by rl), so we have:

�xorL2 = 0::0
|{z}

22

1000010000b <<< rl:

{ After the rotation, the result is always of the form:

�xorL2 = 0::0
|{z}

30�i�j

1 0::0
|{z}

j

1 0::0
|{z}

i

b;

where j = 4 or 26, and i = 0::30� j.

{ Thus we have �L2 = b::b
|{z}

30�i�j

�a a::a
|{z}

j

1 0::0
|{z}

i

b, where a,b are unknown

bit values.

� Because �L2+�D1 = �C2 = 0, we have that �D1 = �b::�b
|{z}

30�i�j

a �a::�a
|{z}

j

1 0::0
|{z}

i

b.

But we know that �D1 has 10::0
| {z }

9

b as the 9 least signi�cant bits, so only

a single possibility remains:

�D1 = �b::�b
|{z}

18

a �a::�a
|{z}

4

1 0::0
|{z}

8

b:

Observation: �D1 may have four possible values:

{ 0::0
|{z}

18

1 0::0
|{z}

4

1 0::0
|{z}

8

b and 1::1
|{z}

18

0 1::1
|{z}

4

1 0::0
|{z}

8

b (i.e., � 0::0
|{z}

18

1 0::0
|{z}

4

1 0::0
|{z}

8

b).

{ 0::0
|{z}

18

0 1::1
|{z}

4

1 0::0
|{z}

8

b and 1::1
|{z}

18

1 0::0
|{z}

4

1 0::0
|{z}

8

b (i.e., � 0::0
|{z}

19

1::1
|{z}

4

1 0::0
|{z}

8

b).
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We have two pairs of possible values for �D1, and thus there are only two
possible values (one for each pair) for the 24 least signi�cant bits of the key
used in �rst round for multiplication (according to the conclusion in the
beginning of this section(2.2.2)). These key values in hexadecimal form
are f07c1fx (for �D1 = � 0::0

|{z}

18

1 0::0
|{z}

4

1 0::0
|{z}

8

b) and ef7bdfx (for �D1 =

� 0::0
|{z}

19

1::1
|{z}

4

1 0::0
|{z}

8

b).

� It is known that sequences of the form 01�1b or of the form 10�1b in the
additive di�erence (�) are translated to the sequence of the form either
100�1�1b or 01�1b in the corresponding XOR di�erence (�xor)1. Thus we
have two options:

1. �xorD1 = 0�1�
|{z}

18

100�1�
| {z }

5

1 0::0
|{z}

8

b

2. �xorD1 = 0�1�
|{z}

18

01::1
| {z }

5

1 0::0
|{z}

8

b

� �xorA0 = �xorD1 >>> 13, so there are two possible values for �xorA0:

1. �xorA0 = 00�1�
| {z }

4

1 0::0
|{z}

8

0�1�
|{z}

18

1b

2. �xorA0 = 1::1
|{z}

4

1 0::0
|{z}

8

0�1�
|{z}

18

0b

� In the �rst case, �xorA0 is odd, so the �A0 is odd too, and we cannot
show that this case is impossible. In the second case, �xorA0 is even so the
�A0 is even too, and therefore we can divide this case in two sub-cases:

1. There is at least one 1 in 0�1�
|{z}

18

b, so we have 10b as two least signi�cant

bits in �xorA0 and �A0. This sub-case is impossible (see Appendix A
for a detailed proof).

1For checking this fact, look at di�erent cases of such sequence with and without carry
from previous bits. For example, we take �I = 10::01b, i.e., I

1 � I
2 = 10::01b. Then either:

1. The least signi�cant bit of I
1 is 1: then the least signi�cant bit of I

2 must be 0, and
thus there is no carry to the next bit. On the other hand, the next bit in the di�erence
is 0. Combining these together we conclude that the next bit in I1 and the next bit in
I
2 must be equal. Continuing in this way we get that �xorI = 10::01b.

2. The least signi�cant bit of I1 is 0: then the least signi�cant bit of I2 must be 1, and
thus there is a carry to the next bit. On the other hand, the next bit in the di�erence
is 0. Combining these together we conclude that the next bit in I1 and the next bit in
I
2 have di�erent values. Continuing in this way we get that the corresponding bits in

I
1 and in I

2 are di�erent till either: 1) in some bit I
1 has 1 and in I

2 has 0, or 2) we
reach the most signi�cant bits with di�erence 1 and, due to existence of a carry from
the previous bits, this bit in I

1 and I
2 must have the same value. So �xorI is equal

either to 100�1�11b or to 01::11b.
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2. There are no 1's in 0�1�
|{z}

18

b, so �xorA0 = 1::1
|{z}

4

1 0::0
|{z}

27

b, and �A0 has

1 0::0
|{z}

27

b as 28 least signi�cant bits. For this sub-case, we cannot show

that it is impossible.

Thus, we have a 2-round impossible di�erential for any even Y whose 28
least signi�cant bits are not 10::0

| {z }

28

b. For other Y 's we cannot say anything

whether there exist impossible di�erentials. However, if the di�erentials are not
impossible for some Y , then the 24 least signi�cant bits of the multiplication
key used in the �rst round of the di�erential are either f07c1fx or ef7bdfx.

2.3 Conjunction to the 8-Round Impossible Di�erentials

Wewant now to check what values ofX give the 8-round impossible di�erentials.
We describe the two cases in which the two middle rounds work in forward mode
and in backward mode.

For forward mode, we have a 2-round impossible di�erential for any value of

Y , except of��28. Because in (0; 0; 0; X)
3 rounds
! (Y; 0; 0; 0) the relation between

X to Y passes through two additions and one exclusive-or operation, the 29
rightmost bits remains 1 0::0

|{z}

28

b and the 3 most signi�cant bits may get any value.

So, we have the 8-round impossible di�erentials (0; 0; 0; X)
8 rounds

!= (�31; 0; 0; 0)
for all X, except of those with 10::0

| {z }

29

b as the 29 least signi�cant bits.

For backward mode, we have a 2-round impossible di�erential for any even
Y , except of those with 10::0

| {z }

28

b as 28 least signi�cant bits. As in forward mode,

in (0; 0; 0; X)
3 rounds
! (Y; 0; 0; 0) the 28 least signi�cant bits remains 10::0

| {z }

28

b and

the 4 most signi�cant bits may get any value. So we have the 8-round impossible

di�erentials (0; 0; 0; X)
8 rounds

!= (�31; 0; 0; 0) for any even X, except of those with
10::0
| {z }

28

b as the 28 least signi�cant bits.

3 Another 8-Round Impossible Di�erential

There is another 8-round impossible di�erential on MARS' core:

(0; 0; 0; �31)
3 rounds
! (�31; 0; 0; 0)

3 rounds

!= (0; 0; X; �31)
2 rounds
! (Y; �31; 0; 0);

7



where the 3 middle round are in backward mode, and X,Y are non-zero val-
ues such that X must have 0::0

|{z}

24

b as the least signi�cant bits, and the 8 most

signi�cant bits of X may have any value (except of all zeroes). Thus, as was
shown in the previous section, Y must have 0::0

|{z}

24

b as the least signi�cant bits,

and the 8 most signi�cant bits may have any value (except of all zeroes). The
explanation for this di�erential is similar to the explanation described earlier.
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A Impossible di�erential for Y , with 10b as least

signi�cant bits, in backward mode on MARS

core.

In this appendix we show that the sub-case of backward mode where �xorA0 =
1::1
|{z}

4

1 0::0
|{z}

8

0�1�
|{z}

17

10b, mentioned in section 2.2.2, is impossible.

� As in forward mode �D2 = �31 ) �xorR2 = �9.

� �xorR2 ��xorB1 = �xorA2 = 0, so �xorB1 = �xorR2 = �9.

� �xorB1 = �9 ) �B1 = a::a
|{z}

22

1 0::0
|{z}

9

b, where a is unknown bit value.

� �C0+�M1 = �B1 = a::a
|{z}

22

1 0::0
|{z}

9

b. Because �C0 = 0, �M1 = a::a
|{z}

22

1 0::0
|{z}

9

b.

� �M1 = a::a
|{z}

22

1 0::0
|{z}

9

b ) �xorM1 = 0�1�
|{z}

22

1 0::0
|{z}

9

b.

� We know that Mi = (Ai�1 +K) <<< (low 5 bits of (Ri >>> 5)).
However, because �xorR1 = �18, both rotations are by the same number
of bits (denoted rm), and because �K = 0 we have

�M1 = �A0 <<< rm

or
�A0 = �M1 >>> rm:

� We know that �xorA0 = 1::1
|{z}

4

1 0::0
|{z}

8

0�1�
|{z}

17

10b. It gives us that �A0 =

x
|{z}

4

�a a::a
|{z}

9

z
|{z}

17

10b, where x; z are unknown binary word and a is unknown

bit value.

� The �A0 has 10b as 2 least signi�cant bits, so the only one possibility
for rm to be 8. Thus �xor(M1 >>> 8) = 0::0

|{z}

8

0�1�
|{z}

22

10b, and therefore,

�(M1 >>> 8) = b::b
|{z}

8

y
|{z}

22

10b, where b is an unknown bit value and y is

unknown binary word.

� Now we have �(M1 >>> 8) = b::b
|{z}

8

y
|{z}

22

10b and �A0 = x
|{z}

4

�a a::a
|{z}

9

z
|{z}

17

10b.

These must be equal. However, the bit 26th of the later di�er than bit
27th, while bits 26th and 27th of the former are equal. This contradicts
the fact that both values must be equal.
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Abstract. Serpent is a 32-round AES block cipher �nalist. In this paper
we present several attacks on reduced-round variants of Serpent that re-
quire less work than exhaustive search. We attack six-round 256-bit Ser-
pent using the meet-in-the-middle technique, 512 known plaintexts, 2246

bytes of memory, and approximately 2247 trial encryptions. For all key
sizes, we attack six-round Serpent using standard di�erential cryptanaly-
sis, 283 chosen plaintexts, 240 bytes of memory, and 290 trial encryptions.
We present boomerang and ampli�ed boomerang attacks on seven- and
eight-round Serpent, and show how to break nine-round 256-bit Serpent
using the ampli�ed boomerang technique, 2110 chosen plaintexts, 2212

bytes of memory, and approximately 2252 trial encryptions.

1 Introduction

Serpent is an AES-candidate block cipher invented by Ross Anderson, Eli Biham,
and Lars Knudsen [ABK98], and selected by NIST as an AES �nalist. It is
a 32-round SP-network with key lengths of 128 bits, 192 bits, and 256 bits.
Serpent makes clever use of the bitslice technique to make it e�cient in software.
However, because of its conservative design and 32 rounds, Serpent is still three
times slower than the fastest AES candidates [SKW+99].

In the Serpent submission document [ABK98], the authors give upper bounds
for the best di�erential characteristics through the cipher. However, no speci�c
attacks on reduced-round versions of the cipher are presented. In this paper we
consider four kinds of attacks on reduced-round variants of Serpent: di�erential
[BS93], boomerang [Wag99], ampli�ed boomerang [KKS00], and meet-in-the-
middle. To the best of our knowledge, these are the best published attacks against
reduced-round versions of Serpent.1

The current results on Serpent are as follows (see Table 1):

1. A meet-in-the-middle attack on Serpent reduced to six rounds, requiring 512
known plaintext/ciphertext pairs, 2246 bytes of random-access memory, and
work equivalent to approximately 2247 six-round Serpent encryptions.

? Part of this work was done while working for Counterpane Internet Security, Inc.
1 Dunkelman cryptanalyzed a Serpent variant with a modi�ed linear transformation
in [Dun99].



Rounds Key Size Complexity Comments
[Data] [Work] [Space]

| | | | | no previous results
6 256 512 KP 2247 2246 meet-in-the-middle (x6)
6 all 283 CP 290 240 di�erential (x3.2)
6 all 271 CP 2103 275 di�erential (x3.3)
6 192 & 256 241 CP 2163 245 di�erential (x3.4)
7 256 2122 CP 2248 2126 di�erential (x3.5)
8 192 & 256 2128 CPC 2163 2133 boomerang (x4.2)
8 192 & 256 2110 CP 2175 2115 amp. boomerang (x5.3)
9 256 2110 CP 2252 2212 amp. boomerang (x5.4)

KP | known plaintext, CP | chosen plaintext, CPC | chosen plaintext/ciphertext.

Table 1. Summary of attacks on Serpent. Work is measured in trial encryptions; space
is measured in bytes.

2. A di�erential attack on Serpent reduced to six rounds, requiring 283 chosen
plaintexts, 240 bytes of sequential-access memory, and work equivalent to
approximately 290 six-round Serpent encryptions.

3. A di�erential �ltering attack on Serpent reduced to seven rounds, requiring
2122 chosen plaintexts, 2126 bytes of sequential-access memory, and work
equivalent to approximately 2248 six-round Serpent encryptions.

4. A boomerang attack on Serpent reduced to eight rounds, requiring all 2128

plaintext/ciphertext pairs under a given key, 2133 bytes of random-access
memory, and work equivalent to approximately 2163 eight-round Serpent
encryptions.2

5. An ampli�ed-boomerang key-recovery attack on Serpent reduced to eight
rounds, requiring 2110 chosen plaintexts, 2115 bytes of random-access mem-
ory, and work equivalent to approximately 2175 eight-round Serpent encryp-
tions.

6. An ampli�ed-boomerang key-recovery attack on Serpent reduced to nine
rounds, requiring 2110 chosen plaintexts, 2212 bytes of random-access mem-
ory, and work equivalent to approximately 2252 nine-round Serpent encryp-
tions.

The remainder of this paper is organized as follows: First, we discuss the
internals of Serpent and explain the notation we use in this paper. We then
use di�erential, boomerang, and ampli�ed boomerang techniques to break up
to nine rounds of Serpent. Subsequently we discuss a six-round meet-in-the-
middle attack on Serpent. We then discuss some observations on the Serpent key
schedule. We conclude with a discussion of our results and some open questions.

2 Because this eight-round boomerang attack requires the entire codebook under a
single key, one can consider this attack a glori�ed distinguisher that also recovers
the key.
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2 Description of Serpent

In this document we consider only the bitsliced version of Serpent. The bitsliced
and non-bitsliced versions of Serpent are functionally equivalent; the primary
di�erence between the bitsliced and non-bitsliced versions of Serpent are the
order in which the bits appear in the intermediate stages of the cipher. Full
details of the bitsliced and non-bitsliced version of Serpent are in [ABK98].

2.1 The Encryption Process

Serpent is a 32-round block cipher operating on 128-bit blocks. In the bitsliced
version of Serpent, one can consider each 128-bit block as the concatenation of
four 32-bit words.

Let Bi represent Serpent's intermediate state prior to the ith round of en-
cryption. Notice that B0 = P and B32 = C, where P and C are the plaintext
and ciphertext, respectively.

Let Ki represent the 128-bit ith round subkey and let Si represent the ap-
plication of the ith round S-box. Let L be Serpent's linear transformation. Then
the Serpent round function is de�ned as:

Xi  Bi �Ki

Yi  Si(Xi)
Bi+1  L(Yi) i = 0; : : : ; 30
Bi+1  Yi �Ki+1 i = 31

Serpent uses eight S-boxes S0; : : : ; S7. The indices to S are reduced modulo
8; i.e., S0 = S8 = S16 = S24. The Serpent S-boxes take four input bits and
produce four output bits. Consider the application of an S-box Si to the 128 bit
block Xi. Serpent �rst separatesXi into four 32-bit words x0, x1, x2, and x3. For
each of the 32-bit positions, Serpent constructs a nibble from the corresponding
bit in each of the four words, with the bit from x3 being the most signi�cant
bit. Serpent then applies the S-box Si to the constructed nibble and stores the
result in the respective bits of Yi = (y0; y1; y2; y3).

The linear transform L on Yi = (y0; y1; y2; y3) is de�ned as

y0  y0n 13

y2  y2n 3

y1  y0 � y1 � y2

y3  y2 � y3 � (y0 � 3)

y1  y1n 1

y3  y3n 7

y0  y0 � y1 � y3

y2  y2 � y3 � (y1 � 7)

y0  y0n 5

y2  y2n 22

Bi+1  (y0; y1; y2; y3)

3



wheren denotes a left rotation and � denotes a left shift.
When discussing the internal state of the Serpent, we will often refer to

diagrams such as

x0
x1
x2
x3

where Xi is the internal state under inspection and Xi = (x0; x1; x2; x3). As
suggested by this diagram, we will occasionally refer to an active S-box as a
\column."

2.2 The Key Schedule

Serpent's key schedule can accept key sizes up to 256 bits. If a 256-bit key is
used, Serpent sets the eight 32-bit words w�8; w�7; : : : ; w�1 to the key. If not,
the key is converted to a 256-bit key by appending a `1' bit followed by a string
of `0's.

Serpent computes the prekeys w0; w1; : : : ; w131 using the recurrence

wi  (wi�8 � wi�5 � wi�3 � wi�1 � �� i)n 11

where � is 0x9e3779b9.
Serpent then computes the 128-bit subkeys Kj by applying an S-box to the

prekeys w4j ; : : : ; w4j+3:

K0  S3(w0; w1; w2; w3)

K1  S2(w4; w5; w6; w7)

K2  S1(w8; w9; w10; w11)

K3  S0(w12; w13; w14; w15)

K4  S7(w16; w17; w18; w19)

...

K31  S4(w124; w125; w126; w127)

K32  S3(w128; w129; w130; w131)

3 Di�erential Cryptanalysis

Di�erential cryptanalysis, �rst publicly discussed by Biham and Shamir [BS93],
is one of the most well-known and powerful cryptanalytic techniques. Although
the original Serpent proposal provided theoretical upper bounds for the highest
probability characteristics through reduced-round Serpent variants [ABK98], the
Serpent proposal did not present any empirical results describing how successful
di�erential cryptanalysis would be against Serpent in practice.
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In this section we consider actual di�erential attacks against reduced-round
Serpent variants. Although there may exist other high-probability di�erentials
through several rounds of Serpent, we focus on a particular �ve-round charac-
teristic, B0

1 ! Y 0

5 , with probability p = 2�80. This characteristic spans Serpent's
second through sixth rounds (rounds i = 1; : : : ; 5). For completeness, this char-
acteristic is illustrated in Appendix A.1. Notationally, we use X 0 to represent
the xor di�erence between two values X and X�.

3.1 Basic Six-Round Di�erential Attack

We can use the above-mentioned �ve-round, probability 2�80, characteristic to
attack rounds one through six of 192- and 256-bit Serpent.

To sketch our attack: we request 282 plaintext pairs with an input di�erence
B0

1. For each last round subkey guess, we initialize a count variable to zero. Then,
for each un�ltered pair, we peel o� the last round and look for our expected out-
put di�erence from the �fth round. If we observe our expected output di�erence,
we increment our counter. If we count three or more right pairs, we note this
subkey as likely to be correct.

If we apply the linear transformation L to the intermediate di�erence Y 0

5

(Appendix A.1), we get the following expected input di�erence to the sixth
round:

B0

6

We can immediately identify all but approximately 2�47 of our ciphertext pairs
as wrong pairs because their di�erences B0

7 cannot correspond to our desired
di�erence B0

6.

After �ltering we are left with approximately 235 ciphertext pairs. Our attack
thus requires approximately 236 � 2116 partial decryptions, or work equivalent
to approximately 2150 six-round Serpent encryptions. If we retain only our un�l-
tered ciphertext pairs, this attack requires approximately 240 bytes of sequential
memory. The signal-to-noise ratio of this attack is 283.

3.2 Improved Six-Round Di�erential Attack

By counting on fewer than 116 bits of the last round subkey, we can considerably
improve the six-round di�erential attack in the previous section. For example, if
we count on two sets of 56 bits, our work is reduced to about 290 Serpent six-
round encryptions. This allows us to break six rounds of 128-, 192-, and 256-bit
Serpent using less work than exhaustive search.
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3.3 Bypassing the First Round

We can use structures to bypass the �rst round of our �ve-round characteristic
B0

1 ! Y 0

5 . This gives us an attack that requires fewer chosen plaintexts but
more work than the attack in Section 3.2. In this attack we use the four-round,
probability 2�67, characteristic B0

2 ! Y 0

5 . We request 247 blocks of 224 plaintexts
such that each block varies over all possible inputs to the active S-boxes in B0

1.
This gives us 270 pairs with our desired input di�erence to the second round.
We expect eight pairs with our desired di�erence Y 0

5 .
We can mount the attack in Section 3.2 by looking for the last round subkey

suggested seven or more times. In this attack we must consider a total of 294

possible ciphertext pairs. As with Section 3.2, we can immediately identify all
but 2�47 of these pairs as wrong pairs. This attack requires work equivalent to
approximately 2102 Serpent six-round encryptions and approximately 275 bytes
of random-access memory.

3.4 Additional Six-Round Di�erential Attack

We can modify our basic six-round di�erential attack by guessing part of the
last round subkey and looking at the eight passive S-boxes in B0

5. In order to do
this, we must guess 124 bits of the last round subkey.

In this attack we request 240 chosen-plaintext pairs with our input di�erence
B0

1. This gives us 29 pairs with di�erence B0

5 entering the �fth round. For a
correct 124-bit last round subkey guess, we expect to count 29 pairs with passive
S-boxes in Y 0

5 corresponding to the passive S-boxes in B0

5. For an incorrect last
round subkey guess, the number of occurrences of pairs with passive di�erences
in our eight target S-boxes is approximately normal with mean 28 and standard
deviation 24. Since 29 is 16 standard deviations to the right of 28, we expect no
false positives.

This attack requires 245 bytes of sequential memory and work equivalent to
approximately 2163 Serpent six-round encryptions.

3.5 Seven-Round Di�erential Filtering Attack

We can use our �ltering scheme in Section 3.1 to distinguish six rounds of Ser-
pent from a random permutation. In this distinguishing attack we request 2121

plaintext pairs with our desired input di�erence B0

1. We expect approximately
241 right pairs. Since our �lter passes ciphertext pairs with a probability 2�47,
we expect approximately 274 + 241 ciphertext pairs to pass our �lter.

In a random permutation, the number of un�ltered pairs is approximately a
normal distribution with mean 274 and standard deviation 237. Since 274 + 241

is 16 standard deviations to the right of the random distribution's mean of 274,
we can distinguish six-round Serpent from a random permutation. For a random
distribution, the probability of observing 274 + 241 or more un�ltered pairs is
approximately 2�190.
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We can extend this six-round distinguishing attack to a seven-round key re-
covery attack on rounds one through seven by guessing the entire last round
subkey K8 and performing our six-round distinguishing attack. This attack re-
quires approximately 2126 bytes of sequential memory 2248 Serpent seven-round
encryptions.

4 Boomerang Attacks

4.1 Seven-Round Boomerang Distinguisher

In addition to being able to perform traditional di�erential attacks against Ser-
pent, we can also use Wagner's boomerang attack [Wag99] to distinguish seven
rounds of Serpent from a random permutation.

Let us consider a seven-round variant of Serpent corresponding to the second
through eighth rounds of the full 32-round Serpent (i.e., rounds i = 1; : : : ; 7).
Call the �rst four rounds of this seven-round Serpent E0 and call the �nal three
rounds E1. Our seven-round Serpent is thus E = E1 �E0. We can now apply the
boomerang technique to this reduced-round Serpent.

Notice that if we only consider the �rst four rounds of the �ve-round charac-
teristic in Appendix A.1, we have a four-round characteristic B0

1 ! Y 0

4 through
E0 with probability 2�31. Also notice that there exist three-round characteristics
through E1 with relatively high probability. Appendix A.2 illustrates one such
characteristic, B0

5 ! Y 0

7 , with probability 2�16.
To use the terminology in [Wag99], let � = B0

1, let �
� = Y 0

4 , let r = Y 0

7 and
let r� = B0

5. We then use � ! �� as our di�erential characteristic for E0 and
r ! r� as our di�erential characteristic for E�1

1 .
In the boomerang distinguishing attack, we require approximately 4 � 294

adaptive-chosen plaintext/ciphertext queries, or approximately 294 quartets P ,
P 0, Q, and Q0 and their respective ciphertexts C, C 0, D, and D0. More speci�-
cally, in our distinguishing attack we request the ciphertext C and C 0 for about
294 plaintexts P and P 0 where P � P 0 = �. From C and C 0 we compute the
ciphertexts D = C �r and D0 = C 0 �r. We then apply the inverse cipher to
D and D0 to obtain Q and Q0. For any quartet P , P 0, Q, and Q0, we expect the
combined properties P � P 0 = Q�Q0 = � and C �D = C 0 �D0 = r to hold
with probability 2�94.

4.2 Eight-Round Boomerang Key Recovery Attack

We can extend our seven-round boomerang distinguisher to an eight-round key
recovery attack on 192- and 256-bit Serpent reduced to rounds i = 1; : : : ; 8 (or
rounds i = 9; : : : ; 16 or rounds i = 17; : : : ; 24). The basic idea is that we peel
o� the last round by guessing the last round subkey and look for our property
in the preceding seven rounds.

A di�culty arises because the boomerang attack makes adaptive chosen
plaintext and ciphertext queries. Suppose we encrypt P and P 0 to get C and
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C 0. To get D and D0, we must peel o� one round from each ciphertext C and
C 0, xor the result with r, and then re-encrypt the last round with the guessed
subkey. To do this, we will have to guess the 68 bits of the last round subkey
corresponding to the 17 active S-boxes of B0

8. Assume we consider 294 plaintext
pairs P and P 0. For each of these pairs, we will have to compute 268 di�erent
pairs Q and Q0 (for each of the 268 possible last round subkeys). Unfortunately,
this means we will likely end up working with the entire codebook of all 2128

possible plaintext/ciphertext pairs.
If we are willing to work with the entire codebook of 2128 plaintexts and

ciphertexts, then we can extract the last round subkey in the following manner.
We request the ciphertexts C and C 0 of 296 plaintext pairs with an input dif-
ference �. Then for each of our 268 possible last round subkeys and for each
of our 296 ciphertext pairs, we compute the boomerang ciphertexts D and D0.
We then request the plaintexts Q and Q0 corresponding to these ciphertexts. If
we correctly guess the last round subkey, we should expect to see the plaintext
di�erence Q�Q0 = � with probability 2�94. That is, for the correct subkey we
should expect to see the di�erence Q�Q0 = � approximately four times. (Or,
put yet another way, if we guess the correct subkey, we should generate about
four right quartets.)

This attack requires 268�297 partial decryptions and encryptions, or approx-
imately 2163 eight-round Serpent encryptions. This attack also requires access to
the entire codebook, and thus 2128 plaintexts and 2133 bytes of random-access
memory.

5 Ampli�ed Boomerang Attacks

In [KKS00] we introduced a new class of cryptanalytic attacks which we call
\ampli�ed boomerangs." Ampli�ed boomerang attacks are similar to traditional
boomerang attacks but require only chosen plaintexts. The chosen-plaintext{
only requirement makes the ampli�ed boomerang attacks more practical than
the traditional boomerang attacks in many situations. In [KKS00] we describe
a seven-round boomerang ampli�er distinguishing attack and an eight-round
boomerang ampli�er key recovery attack requiring 2113 chosen plaintext pairs,
2119 bytes of random-access memory, and roughly 2179 Serpent eight-round en-
cryptions.

5.1 Ampli�ed Seven-Round Distinguisher

In this section we review the seven-round ampli�ed boomerang distinguishing
attack presented in [KKS00]. We request 2112 plaintext pairs with our input
di�erence �. After encrypting with the �rst half of the cipher E0, we expect
roughly 281 pairs to satisfy the �rst characteristic �! ��. There are approx-
imately 2161 ways to form quartets using these 281 pairs. We expect there to
be approximately 233 quartets (Y 0

4 ; Y
1
4 ) and (Y 2

4 ; Y
3
4 ) such that Y 0

4 � Y
2
4 = r�.

However, because (Y 0
4 ; Y

1
4 ) and (Y 2

4 ; Y
3
4 ) are right pairs for the �rst half of the
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cipher, and Y 0
4 � Y 1

4 = Y 2
4 � Y 3

4 = ��, we have that Y 1
4 � Y 3

4 must also equal
r�. In e�ect, the randomly occurring di�erence between Y 0

4 and Y 2
4 has been

\ampli�ed" to include Y 1
4 and Y 3

4 .
At the input to E1 we expect approximately 233 quartets with a di�erence

of (r�;r�) between the pairs. This gives us approximately two quartets after
the seventh round with an output di�erence of (r;r) across the pairs. We can
identify these quartets by intelligently hashing our original ciphertext pairs with
our ciphertext pairs xored with (r;r) and noting those pairs that collide.
For a random distribution, the probability of observing a single instance of our
cross-pair di�erence (r;r) is approximately 2�33.

5.2 Ampli�ed Eight-Round Key Recovery Attack

In [KKS00] we extended the previous distinguishing attack to an eight-round key-
recovery attack on rounds one through eight of Serpent requiring 2113 chosen-
plaintext pairs, 2119 bytes of random-access memory, and work equivalent to
approximately 2179 eight round Serpent encryptions. In this attack we guess 68
bits of Serpent's last round keyK9. For each key guess, we peel o� the last round
and perform the previous distinguishing attack.

5.3 Experimental Improvements to the Eight-Round Attack

We can improve our eight-round boomerang ampli�er attack by observing that
we do not need to restrict ourselves to using only one speci�c cross-pair di�erence
(r�;r�) after E0. That is, rather than considering only pairs of pairs with a
cross-pair di�erence of (r�;r�) after E0, we can use pairs of pairs with a cross-
pair di�erence of (x; x) after E0, for any x, provided that both pairs follow the
characteristic x! r through E1 with su�ciently high probability.

Experimentally, we �nd that
P

x Pr[x ! r through E1]
2 is approximately

2�23.3 Consequently, if we request 2109 chosen-plaintext pairs with our input
di�erence � to E0, we should expect approximately 16 pairs of pairs with a
cross-pair di�erence of (r;r) after E1. This reduces the work of our attack
in Section 5.2 to approximately 2175 eight-round Serpent encryptions. As noted
in [Wag99], this observation can also be used to improve the standard boomerang
attack.

5.4 Ampli�ed Nine-Round Key Recovery Attack

We can further extend the above eight-round attack to break nine rounds of 256-
bit Serpent using less work than exhaustive search. To do this, let us consider
a nine-round Serpent variant corresponding to rounds zero through eight of

3 We generated 228 pairs of ciphertext pairs with a cross-pair di�erence (r;r). We
decrypted each pair through E�1

1 and counted the number of pairs with a cross pair
di�erence (x; x) for any x. We observed 35 such pairs of pairs.

9



Serpent. Let us still refer to rounds one through four as E0 and rounds �ve
through seven as E1.

If we apply the inverse linear transformation to � we get

Y 0

0

where Y 0

0 has 24 active S-boxes. We request 214 blocks of 296 chosen plaintexts
such that each block varies over all the possible inputs to the active S-boxes in
Y 0

0 . This gives us 2
109 pairs with our desired di�erence � into E0 and 16 pairs

of pairs with a cross-pair di�erence (r;r) after E1. In order to identify our
ampli�ed boomerang, we must guess 96 bits of the �rst round subkey K0 and
68 bits of the last round subkey K9.

We �rst guess the 96 bits of K0 corresponding to the 24 active S-boxes in Y
0

0 .
For each 96 bit key guess and for each plaintext P , we encrypt P one round to Y0.
We store P with satellite data Y0 in HASH0[K0] and we store Y0 with satellite
data P in HASH1[K0]. This step takes approximately 2212 bytes of random-
access memory and work equivalent to 2203 Serpent eight-round encryptions.

Next, for each 68-bit key guess of K9, we want to establish a list of all pairs
(P 0; P 2) that have di�erence r as the output of the eighth round. To do this,
for each ciphertext C0, we decrypt up one round to X0

8 , compute X2
8 = X0

8�B
0

8,
and store (X0

8 ; X
2
8 ) or (X

2
8 ; X

0
8 ) in a hash table (where the order of X0

8 and X2
8

depends on whether X0
8 is less than X2

8 ). The satellite data in our hash table
entry includes the plaintext P 0 corresponding to C0. If a collision occurs in
our hash table, we have found two plaintexts P 0 and P 2 that have our desired
di�erence r after the eighth round. We store these pairs (P 0; P 2) in LIST2[K9]
and HASH2[K9]. This step takes approximately 2184 bytes of random-access
memory and work equivalent to 2175 Serpent eight-round encryptions.

The following algorithm counts the number of occurrences of our boomerang
ampli�er through E1 � E0. This algorithm can be thought of as sending a
boomerang from the ciphertext to the plaintext and back again:

for each 96-bit subkey guess of K0 do

for each 68-bit subkey guess of K9 do

count  0
for each pair (P 0; P 2) in LIST2[K9] do
lookup Y 0

0 , Y
2
0 corresponding to P 0, P 2 in HASH0[K0]

Y 1
0  Y 0

0 � Y
0

0 , Y
3
0  Y 2

0 � Y
0

0

lookup P 1, P 3 corresponding to Y 1
0 , Y

3
0 in HASH1[K0]

if (P 1; P 3) in HASH2[K9] then
count  count + 1

if count � 15 then
save key guess for K0, K9

For each subkey guess guess of K9, we expect LIST2[K9] will contain approxi-
mately 2219 � 2�128 = 291 pairs. Consequently, we expect the inner loop of the
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above algorithm to execute 2255 times. This attack requires work equivalent to
approximately 2252 Serpent nine-round encryptions.

6 Meet-in-the-Middle Attacks

Although not as powerful as our previous attacks, we can use the meet-in-the-
middle technique to attack six-round Serpent. In the meet-in-the-middle attack,
we try to determine the value of a set of intermediate bits in a cipher by guessing
key bits from both the plaintext and ciphertext sides. The attack looks for key
guesses that match on the predicted values of the intermediate bits.

We did a computer search for the best meet-in-the-middle attacks that isolate
a set of bits in one column of an intermediate state of Serpent. Table 2 summa-
rizes our results. Although we can also use the meet-in-the-middle technique to
predict bits in more than one column of an intermediate state of Serpent, doing
so requires additional key guesses and is thus undesirable.

Rounds b s Key guess from top Key guess from bottom

6 1 B3 236 239
5 2 B2 152 223
5 3 B2 176 224
5 4 B2 204 225
6 1 X3 237 238
5 2 X2 154 221
5 3 X2 179 221
5 4 X2 208 221
5 1 Y2 200 104
5 2 Y2 200 178
5 3 Y2 208 198
5 4 Y2 208 221

Table 2. Meet-in-the-middle requirements to determine b intermediate bits of internal
state s in a given number round Serpent variant.

The clearest way to illustrate the meet-in-the-middle attack on Serpent is
through diagrams similar to those used in Section 3 and Appendix A. The plain-
text in this attack on six-round Serpent is B0 and the ciphertext is B6. The bit
we are trying to predict is the eighth most signi�cant bits of x3 where x3 is the
fourth word of X3, X3 = (x0; x1; x2; x3).

The 237 key bits guessed from the plaintext side are

K0

11



K1

K2

K3

and the 238 key bits guessed from the ciphertext side are

K4

K5

K6

where the shaded cells denote the bits we guess.
The attack proceeds as follows. We obtain 512 known plaintexts and their

corresponding ciphertexts. For each plaintext key guess, we compute the target
bit of X3 for each of our 512 plaintexts. We concatenate these bits for each
plaintext into a 512-bit value. We then store this 512-bit value, along with the
associated key guess, in a hash table.

For each ciphertext key guess, we proceed along the same lines and compute
the target bit of X3 for each of our 512 ciphertexts. We concatenate these bits
for each ciphertext into a 512-bit value and look for this value in our hash table.
If we �nd such a value, then the plaintext and ciphertext keys suggested by the
match will likely be correct. This attack requires approximately 2246 bytes of
random-access memory and work equivalent to 2247 six-round encryptions.

7 Key Schedule Observations

This section addresses some observations we have about the Serpent key sched-
ule. We currently do not know of any cryptanalytic attacks that use these ob-
servations.
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As described in Section 2, the prekeys w0; w1; : : : ; w131 are computed using
the recurrence

wi  (wi�8 � wi�5 � wi�3 � wi�1 � �� i)n 11 (1)

where w�8; : : : ; w�1 is the initial 256 bit master key. If we ignore the rotation
and the internal xor with � and i, we get the linear feedback construction

wi  wi�8 � wi�5 � wi�3 � wi�1 (2)

Let us now consider two keys K and K� that have a di�erence K 0 = K�K�.
The prekeys for K and K� expand to w0; : : : ; w131 and w�

0 ; : : : ; w
�

131, respec-
tively. By virtue of Equation 2, the prekey di�erences for K 0 can be computed
using the recurrence

w0

i = wi � w
�

i = w0

i�8 � w
0

i�5 � w
0

i�3 � w
0

i�1 (3)

for i = 0; : : : ; 131. If we use the original recurrence (Equation 1) to compute the
prekeys rather than Equation 2, the recurrence for w0

i becomes

w0

i = (w0

i�8 � w
0

i�5 � w
0

i�3 � w
0

i�1)n 11 (4)

for i = 0; : : : ; 131.
For any key K, the ith round subkey Ki is computed from the four prekeys

w4i; w4i+1; w4i+2; w4i+3. The same can be said for the key K�. If for any given
round i the four prekeys for K are equivalent to the corresponding four prekeys
for K�, then the subkeys Ki and K�

i will be equivalent; this occurs when the
prekey di�erences w0

4i; w
0

4i+1; w
0

4i+2; w
0

4i+3 are zero.
Let us now observe some situations where the prekey di�erences for the ith

round subkey are zero. As a simple example, let us consider Figure 1. The shaded
cells in Figure 1 depict prekeys that are di�erent for K and K�. The unshaded
areas are equivalent between the keys. Notice that six out of the 33 128-bit
subkeys are equivalent.

There is a heavy restriction on Figure 1: all the di�erences must be the
same. That is, when Equation 2 is used for the prekey computation, it must
be that w0

�5 = w0

�3 = w0

�1 = � � � = w0

127 = k for some constant k. If we
consider the original prekey recursion (Equation 4), this example works only
when k = 0xFFFFFFFF. Furthermore, when the non-zero prekey di�erences are
0xFFFFFFFF, six out of 33 subkeys are equivalent and �ve out of 33 subkeys have
complementary prekeys.

8 Conclusions

In this paper we consider several attacks on Serpent. We show how to use di�er-
ential, boomerang, and ampli�ed boomerang techniques to recover the key for
Serpent up to nine rounds. We also show how to break six rounds of Serpent
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w0

�8 : : : w
0

15

w0

16 : : : w
0

39

w0

40 : : : w
0

63

w0

64 : : : w
0

87

w0

88 : : : w
0

111

w0

112 : : : w
0

131

Fig. 1. Di�erence propagation in the key schedule when w0

�5 = w0

�3 = w0

�1 =
0xFFFFFFFF.

using a meet-in-the-middle attack. We then provide key schedule observations
that may someday be used as the foundation for additional attacks.

Although these attacks do not come close to breaking the full 32-round cipher,
we feel that these results are worth reporting for several reasons. Speci�cally,
the results and observations in this paper provide a starting point for additional
research on Serpent. These results also provide a security reference point for
discussions about modifying the number of rounds in Serpent.

In conjunction with the previous observation, we would like to point out
that there are several avenues for further research. Although our current pa-
per addresses di�erential attacks against Serpent, we have not yet tried lin-
ear and di�erential-linear attacks. We are also attempting to mount additional
boomerang variants against Serpent. We expect that all these attacks, while
quite capable of breaking reduced-round versions of Serpent, will fail to break
the entire 32-round Serpent. In order to break a substantial portion of Serpent's
32 rounds, we suspect that entirely new attacks may need to be invented.
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A Di�erential Characteristics

A.1 Five-Round Characteristic

The following is an example of a �ve-round di�erential characteristic with prob-
ability p = 2�80. We used this characteristic in Section 3. This characteristic
passes between rounds i = 1 mod 8 and i = 5 mod 8. We used only the �rst four
rounds of this �ve-round characteristic for our boomerang attack in Section 4.

We illustrate this characteristic by showing �ve one-round characteristics that
can be connected with the Serpent linear transformation L. The shaded bits in
the �gures denote di�erences in the pairs. We feel that these �gures provide an
intuitive way to express Serpent's internal states.

The �rst-round characteristic, B0

1 ! Y 0

1 , has probability 2�13:

B0

1

Y 0

1

The second-round characteristic has probability 2�5:

B0

2

Y 0

2
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The third-round characteristic has probability 2�3:

B0

3

Y 0

3

The fourth-round characteristic has probability 2�10.

B0

4

Y 0

4

The �fth-round characteristic has probability 2�49.

B0

5

Y 0

5

A.2 Boomerang Characteristic

The following is an example of a three-round characteristic with probability
p = 2�16. We used this characteristic in Section 4. This characteristic passes
between rounds i = 5 mod 8 and i = 7 mod 8.
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The �fth-round characteristic has probability 2�10:

B0

5

Y 0

5

The sixth-round characteristic has probability 2�2:

B0

6

Y 0

6

The seventh-round characteristic has probability 2�4:

B0

7

Y 0

7

If we apply the linear transformation L to Y 0

7 , we get:

B0

8
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Abstract. The authors of Rijndael [3] describe the \Square attack" as
the best known attack against the block cipher Rijndael. If the key size is
128 bit, the attack is faster than exhaustive search for up to six rounds.
We extend the Square attack on Rijndael variants with larger keys of 192
bit and 256 bit. Our attacks exploit minor weaknesses of the Rijndael
key schedule and are faster than exhaustive search for up to seven rounds
of Rijndael.

1 Introduction

The block cipher Rijndael [3] has been proposed as an AES candidate
and was selected for the secound round. It is a member of a fast-growing
family of Square-like ciphers [2{4, 6, 7].

Rijndael allows both a variable block length of M � 32 bit with M 2
f4; 6; 8g and a variable key length of N � 32 bit, N an integer. In the
context of this paper we concentrate on M = 4, i.e., on a block length of
128 bit, and on N 2 f4; 6; 8g, i.e., on key sizes of 128, 192, and 256 bit.
We abridge these variants by RD-128, RD-192 and RD-256. The number
R of rounds is speci�ed to be R = 10 for RD-128, R = 12 for RD-192, and
R = 14 for RD-256. In the context of this paper, we consider reduced-
round versions with R � 7.

The authors of Square [2] described the \Square attack", a dedicated
attack exploiting the byte-oriented structure of Square. The attack works
for Square reduced to six rounds and is applicable to Rijndael and other
Square-like ciphers as well [3, 4, 1]. This paper deals with extensions of
the Square-attack for RD-192 and RD-256.

In Section 2, we shortly describe Rijndael, leaving out many details
and pointing out some properties relevant for our analysis. Section 3 deals
with the Square attack for up to six rounds of Rijndael, originating from

? Supported by DFG grant Kr 1521/3-1.



[2, 3]. In Sections 4{6 we describe attacks for seven rounds of Rijndael.
The attack in Section 4 and its analysis is valid for all versions of Rijndael,
while the attacks in Section 5 and Section 6 are dedicatedly for Rijndael-
256 and Rijndael-192, exploiting minor weaknesses of the Rijndael key
schedule. We give �nal comments and conclude in Section 7.

2 A Description of Rijndael

Rijndael is a byte-oriented iterated block cipher. The plaintext (a 128-
bit value) is used as initial state, the state undergoes a couple of key-
dependent transformations, and the �nal state is taken as the cipher-
text. A state A 2 f0; 1g128 is regarded as a 4 � 4 matrix (Ai;j), i; j 2
f0; 1; 2; 3g of bytes (see Figure 1). The four columns of A are Ai =
(A0;j ; A1;j ; A2;j ; A3;j).

(3,0) (3,2) (3,3)

(1,3)

(0,3)(0,0) (0,2)

(1,2)

(2,2)

(1,0)

(2,0)

(0,1)

(1,1)

(2,1)

(3,1)

(2,3)

Fig. 1. The index positions (i; j) for a 4*4 matrix of bytes.

Given the initial state, R rounds of transformations are applied. Each
round can be divided into several elementary transformations.

By the key schedule, the key, a (N �32)-bit value with N 2 f4; 6; 8g, is
expanded into an array W [�] of 4(R+1) 32-bit words W [0]; : : : ;W [4(R+
1) � 1]. Four such words W [4r + j] with j 2 f0; 1; 2; 3g together are
used as r-th \round key" Kr, with r 2 f0; : : : ; Rg. Like the state, we
regard a round key Kr as a 4 � 4 matrix of bytes Kr

i;j with four columns
Kr

j =W [4r + j] for j 2 f0; 1; 2; 3g.

2.1 The Elementary Transformations of Rijndael

Rijndael uses four elementary operations to transform a state A = (Ai;j)
into a new state B = (Bi;j), see also Figure 2:
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1. The byte substitution (BS): Bi;j := S(Ai;j) for i; j 2 f0; 1; 2; 3g. Here,
S denotes a permutation over f0; 1g8, i.e., S�1 is de�ned with Ai;j =
S�1(Bi;j).

2. The shift row operation (SR), a cyclic shift of bytes: Bi;j := Ai;(j+i) mod 4.
3. The mix column transformation (MC). Each column Ai of state A

is transformed via a linear transformation � over f0; 1g32, i.e. Bi :=
�(Ai) for i 2 f0; 1; 2; 3g. Also, � is invertible.
An inputX 2 f0; 1g32 for � can be seen as a vectorX = (X0;X1;X2;X3)
of four bytes. Consider X 0 = (X 0

0;X
0

1;X
0

2;X
0

3) to be di�erent from X

in exactly k bytes (1 � k � 4), i.e.

k =
��f i 2 f0; 1; 2; 3g j Xi 6= X 0

i g
�� :

Then Y = �(X) and Y 0 = �(X 0) are di�erent in at least 5�k of their
four bytes. The same property holds for the inverse ��1 of �.

4. The key addition (KA). The r-th round key Kr = (Kr
i;j) is added to

the state A by bit-wise XOR: Bi;j := Ai;j �Kr
i;j.

Note that all elementary transformations of Rijndael are invertible.

S

Mix Column (MC)

Shift Row (SR)

Byte Substitution (BS)

Key Addition (KA)

Fig. 2. The four elementary transformations of Rijndael.
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2.2 The Rijndael Round Transformation

For r 2 f0; : : : ; Rg, the round key Kr consists of the expanded key words
W [4r], . . . , W [4r + 3]. The structure of Rijndael is de�ned as follows1:

1. S := plaintext;

2. KA (S, K0); (� add round key 0 before the �rst round �)

3. for r := 1 to R do: (� run through round 1, 2, . . . , R �)

4. S := BS(S); (� byte substitution �)

5. S := SR(S); (� shift row �)

6. S := MC(S); (� mix column �)

7. S := KA(S, Kr); (� add round key r �)

8. ciphertext := S.

Steps 4{7 are the \standard representation" of the Rijndael round struc-
ture. The implementor of Rijndael has a great degree of freedom to change
the order the elementary operations are done { without changing the be-
havior of the cipher. (We refer the reader to the description of the \alge-
braic properties" and the \equivalent inverse cipher structure" for details
[3, Section 5.3].) We describe one alternative representation of the round
structure. As an \alias" for the r-th round key Kr we use the value

Lr = SR�1(MC�1(Kr)): (1)

Accordingly, we distinguish between the \L-representation" Lr of a round
key and its \K-representation". Knowing Lr is equivalent to knowingKr,
and knowing a column Kr

j of Kr is equivalent to knowing four bytes of
Lr, see Table 1.

known column of Kr known bytes Lr
i;j of L

r

Kr
0 (i; j) 2 f(0; 0); (1; 3); (2; 2); (3; 1)g

Kr
1 (i; j) 2 f(0; 1); (1; 0); (2; 3); (3; 2)g

Kr
2 (i; j) 2 f(0; 2); (1; 1); (2; 0); (3; 3)g

Kr
3 (i; j) 2 f(0; 3); (1; 2); (2; 1); (3; 0)g

Table 1. Known columns of a key in K-representation and the corresponding known
key bytes in L-representation.

1 Actually, the authors of Rijndael [3] specify an exception: in the last round, the MC-
operation is left out. As was stressed in [3], this modi�cation does not strengthen
or weaken the cipher. In the current paper, we assume for simplicity that the last
round behaves exactly like the other rounds.
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The following describes a functionally equivalent round structure for
Rijndael, see also Figure 3.

4. S := BS(S); (� byte substitution �)
5. S := KA(S, Lr); (� add round key, given in L- representation �)
6. S := SR(S); (� shift row �)
7. S := MC(S); (� mix column �)

S S

Kr

Lr

SR

MC

KA

BS BS

KA

SR

MC

SR

MC

L-repr.

K-repr.

Fig. 3. The Structure of a Rijndael round.
Left: The standard representation of the Rijndael round transformation
Middle: The round key { changing between K-representation and L-representation
Right: The alternative representation of the Rijndael round transformation

2.3 The Rijndael Key Schedule

The key schedule is used to generate an expanded key from a short (128{
256 bit) \cipher key". We describe the key-schedule using word-wise oper-
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ations (where a word is a 32-bit quantity), instead of byte-wise ones. The
cipher key consists of N 32-bit words, the expanded key of 4�(R+1) such
wordsW [�]. The �rst N wordsW [0], . . . , W [N�1] are directly initialised
by the N words of the cipher key.

For k 2 f1; 2; : : :g, const(k) denotes �xed constants, and f; g : f0; 1g32 !
f0; 1g32 are nonlinear permutations.2 For i 2 fN; : : : ; 4 � (R+1)� 1g the
words W [i] are de�ned recursively:

If (i mod N) = 0
then W [i] :=W [i�N ]� f(W [i� 1])� const(idivN)
else if ((N > 6) and (i mod N) = 4)

then W [i] :=W [i�N ]� g(W [i � 1])
else W [i] :=W [i�N ]�W [i� 1]:

(2)

Note that two words W [i� 1] and W [i�N ] suÆce to compute the word
W [i]. Similarly, we can go backwards: Given two wordsW [i] andW [i�1],
we can compute W [i � N ]. (This will be useful for our attacks below.)
Hence, any N consecutive wordsW [k], . . . , W [k+N�1] of the expanded
key suÆce to eÆciently generate the complete expanded key and thus to
completely break Rijndael.

3 The Square Attack for Rijndael

In this section we describe the dedicated Square-Attack for Rijndael. More
details can be found in [2, 3]. We start with a simple attack on four rounds
and extend the simple attack by an additional round at the beginning and
another one at the end. This leads to the \Square-6" attack for six rounds
of Rijndael. Analysing the performance of our attacks with respect to RD-
192 and RD-256 is delayed until the end of this section.

3.1 Attacking Four Rounds { the Simple Attack

To describe the attack we need the notion of a \�-set", i.e., a set of
28 states that are all di�erent in some of their 4 � 4 bytes (the \active"
bytes), and all equal in the other (\passive") bytes. In other words, for
two distinct states A and B in a �-set we always have

Ai;j 6= Ai;j if the byte at position (i; j) is active, and
Ai;j = Bi;j else, i.e., if the byte at (i; j) is passive.

2 We omit the de�nition of f and g, but we point out that the four functions f , g,
f�1 and g�1 are �xed in the de�nition of Rijndael and can be computed eÆciently.
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A �-set with exactly k active bytes is a \�k-set".

The adversary chooses one �1-set P0 of states (plaintexts). By Pi we
denote the sets of 28 states which are the output of round i. P1 is a �4-
set, all four active bytes in the the same column. P2 is a �16-set. P3 is
unlikely to be a �-set. But, as explained in [2, 3], all the bytes of S3 are
\balanced", i.e., the following property holds:

For all (i; j) 2 f0; 1; 2; 3g2 :
M

A2P3

Ai;j = 0: (3)

Recall that we consider a four-round attack, i.e., P4 is the set of 28

ciphertexts the adversary learns. It is unlikely that the bytes of P4 are
balanced, but the balancedness of the bytes of P3 can be exploited to
�nd the fourth round key K4. Let L4 be the L-representation of K4, cf.
Equation (1). The attack de�nes a set Q4 \in between"3 P3 and P4:

1. For X 2 P4:

Y := MC�1(X);
Z := SR�1(Y ).

Denote the set of 28 states Z by Q4.

2. For all (i; j) 2 f0; 1; 2; 3g2 :

for a 2 f0; 1g8:

b(a) :=
L

Z2Q4
S�1(Zi;j � a);

if b(a) 6= 0 then conclude L4
i;j 6= a.

In short, we invert round four step by step: invert the mix column oper-
ation, invert the shift row operation, add (a possible choice for) the key
byte L4

i;j and invert the byte substitution. If the guess a 2 f0; 1g8 for
the key L4

i;j is correct, the set of 2
8 bytes S�1(Zi;j � a) is balanced, i.e.,

b(a) = 0. But if our guess a0 for L4
i;j is wrong, we estimate b(a0) = 0 to

hold with only a probability of 2�8. Thus, on the average two candidates
for for each byte L4

i;j are left { the correct byte and a wrong one. We can
easily reconstruct an expected number of less than 216 candidates for L4.

Each candidate corresponds with a unique choice for the 128-bit cipher
key of RD-128. To �nd the cipher key, we may either choose a second �1-
set of plaintexts, or just use exhaustive search over all key candidates,
using the same 28 known pairs of plaintext and ciphertext as before.
With overwhelming probability, either approach uniquely determines the

3 In general, we regard Q5 to be a set of states \in between" Pr�1 and Pr. Note
that converting a state in Pr into its counterpart in P4 does not depend on the
key and can be just like converting a round key from its K-representation into its
L-representation, similarly to Equation (1).
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cipher key, using few memory and an amount of work determined by step
2, i.e., about 220 byte-wise XOR-operations. Note that the �rst approach
needs twice as many chosen plaintexts as the second one.

3.2 An Extension at the End

As suggested in [2, 3], the above basic attack can be extended by one
additional round at the beginning and another round at the end. We
start with extending the additional round at the end.

Let P0 be chosen as above. By P5, we denote the set of 28 outputs
of round 5. Similar to Q4 above, the adversary can �nd Q5 by applying
MC�1 and applying SR�1. Given the set Q5, we can compute P3 by
inverting 112 rounds of Rijndael.

If the set P5 (or Q5) is �xed, the bytes of P3 at position, say, (0; 1)
only depend on L5

0;1, L
5
1;1, L

5
2;1, L

5
3;1, and on L4

0;1, see Figure 4.

Similar to the four-round attack, we may guess such a �ve-tuple of key
bytes and compute the corresponding bytes of P3. If these aren't balanced,
we reject the corresponding key bytes. We expect one out of 28 incorrect
�ve-tuples to be not rejected. With �ve �-sets of plaintexts, i.e., 5 � 28

chosen plaintexts, the the cipher key can easily be found via exhaustive
search. (A more diligent treatment would allow us to reduce the number of
chosen plaintexts for this attack, but without much e�ect on the required
number of chosen plaintexts for the six-round attack below.)

To measure the running time of our attacks, we use the notion of a
\basic operation". Given a column Yj of bytes of a state Y in Qr, the key
column Lr

j and another key byte Lr�1
k;j with the row index k as the input,

we compute the byte Xk;j of a state X in Pr�2, using V = (V0; V1; V2; V3)
and W = (W0;W1;W2;W3) as intermediate values and de�ne the basic
operation Xk;j = BO(Yj ; k; L

r
j ; L

r�1
k;j ) as follows:

1. For i := 0 to 3: Vi := S�1(Yi;j � Lr
i;j).

2. W := ��1(V ).

3. Xk;j := S�1(Wk;j � Lr�1
k;j ).

In short: one basic operation requires 5 byte-wise XORs, 5 evaluations of
S�1, and one evaluation of ��1.

To check the correctness of a quintuple of bytes, we have to do 28

basic operations and to XOR the results for a balance-check by verifying
Equation (3). We do this for every quintuple of bytes. Thus, the �ve-round
attack takes the time of about 248 basic operations.
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Fig. 4. 1 1
2
rounds of Rijndael: Given one column Yj of the output state Y and �ve

corresponding key bytes, one can �nd one byte Xk;j of the input X by inverting these
1 1
2
rounds of Rijndael; we write Xk;j = BO(Yj ,k,key bytes) and consider this a \basic

operation" for our attacks.

3.3 Attacking Six Rounds { the Square-6 attack

Now we extend the above attack by an additional \round 0". We denote
this attack the \Square-6 attack".

Let P0 be a �1-set, as before. By doing one additional round of
decryption, we get a �4-set P�1. The active bytes of P�1 are at positions
determined by the positions of the active P0-byte. E.g., if the P0-byte at
position (0; 0) is the active one, the P�1-bytes at positions (0; 0), (1; 3),
(2; 2), and (3; 1) are active.

The idea is to arbitrarily �x the plaintext bytes at the passive posi-
tions and to choose 232 plaintexts varying at the active positions. If the
four corresponding bytes of the round key K�1 for round 0 are known
(e.g. for the active P0-byte at position (0; 0): if K�1

0;0 , K
�1
1;3 , K

�1
2;2 and
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K�1
3;1 are known), the adversary can easily determine many 28-sets P�1 of

plaintexts, such that the sets P0 are �
1-sets.

The adversary accordingly chooses 232 plaintexts and, for all 232 rel-
evant key bytes, runs the �ve-round attack described above. This is 232

times slower than the �ve-round attack itself, i.e. takes about 280 basic
operations. The memory requirement for this attack is dominated by the
need to store 232 ciphertexts.

3.4 Considering RD-192 and RD-256

Note that the six-round Square-6 attack and the �ve-round attack allow
us to �nds two round keys K4 and K5 at the same time. (The attacker
chooses a �ve-tuple of key bytes, one byte from K4 and four from K5,
and probabilistically verify if that choice is correct.) Once the attacker
knows two consecutive round keys, i.e. eight consecutive words from the
expanded key, the attacker can easily run the key schedule backwards
to �nd the cipher key. In other words, the performance of the Square-6
attack does not depend on which avor of Rijndael we attack, RD-128,
RD-192, or RD-256. We call such an attack a \generic" attack.

The simple four-round attack only provides the attacker with the
round key K4. But �nding the round key K3 is easy, since the set P2
of states is a �16-set.

4 A Generic Attack for Seven Rounds of Rijndael

It is easy to extend the Square-6 attack to seven rounds of Rijndael:

1. Choose 232 input plaintexts for the Square-6 attack and ask for the
corresponding ciphertexts.

2. For all K7 2 f0; 1g128 :
3. Last-round-decrypt the 232 ciphertexts under K7.
4. Run the Square-6 attack for the results, to get the round keys K6

and K5.
5. Given the round keysK5,K6 andK7, we have more than suÆcient

key material to recover the complete extended key and to check it
for correctness.

The seven-round attack requires the same amount of chosen plaintexts
and memory as the Square-6 attack. The running time increases by a
factor of 2128, i.e. to the equivalent of

280 � 2128 = 2208 basic operations.
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Even though the attack is generic, it is pointless for attacking either RD-
128 or RD-192 { exhaustive key search is much faster for these variants
of Rijndael.

5 Attacking Seven Rounds of RD-256

For RD-256, the above generic seven-round attack improves on exhaus-
tive search. But, as shown here, the RD-256 key schedule allows us to
accelerate the attack by a factor of 28.

Note that if we know (or have chosen) K7, we know the expanded key
words W [28], W [29], W [30], and W [31]. By Formula (2), we get

W [21] =W [28] �W [29];

W [22] =W [29] �W [30]; and

W [23] =W [30] �W [31]:

Hence, we know know three columns of K5, including e.g. K5
1 . As ex-

plained in Section 2.3, this implies knowing 12 bytes of L5, including e.g.
L5
0;1. To test the bytes of 256-set P4 at position (0; 1), we need the bytes

in column 1 from Q6, the corresponding key column L6
1 from L6 and the

key byte L5
0;1 from L5 (cf. Figure 4 at page 9). We attack seven rounds

of RD-256 by the following algorithm:

1. Choose 232 distinct input plaintexts, varying at the byte positions
(0; 0), (1; 2), (2; 2), and (3; 1) and constant at the other byte positions.
Ask for the corresponding ciphertexts.

2. For all 232 combinations of K0
0;0, K

0
1;3, K

0
2;2, K

0
3;1:

3. Fix 32 distinct sets P0[i] of plaintexts (i 2 f0; : : : ; 31g) with jP0[i]j =
28, such that the corresponding P1[i] are �

1-sets.
4. For all 2128 round keys K7:

5. Decipher the 32 sets of ciphertexts P7[i] to get P6[i] and Q6[i].
6. Compute L5

0;1.
7. For all 232 combinations of L6

1 = (L6
0;1; L

6
1;1; L

6
2;1; L

6
3;1):

8. i := 0; reject := false;
9. while i � 31 and reject=false:

begin
10. Compute

b[i] :=
M

A2Q6[i]

BO(A1; 1; L
6
1; L

5
0;1):

11



11. If b[i] = 0 then i := i+1
else reject := true.

end (� while �).
12. If reject=false then stop (� and accept key bytes �).

The above algorithm exhaustively searches a subspace of size 2192 of
the full key space. When all 24 key bytes are correct, step 11 always exe-
cutes then-clause and increments the counter i. After 32 such iterations,
the algorithm stops in step 12.

If any of the 24 byte key bytes is wrong, we execute the then-clause
only with a probability of 2�8. Since the counter i runs from 0 to 31,
the probability for a wrong 24-tuple of key bytes to be accepted is below
2�8�32 = 2�256. There are only 2192 such tuples of key bytes, thus the
probability to accept any wrong 24-tuple is less than 232�2128�232�2�256 �
2�64, i.e. negligible.

When stopping, the algorithm accepts K7 and four bytes of K6 (or
L6). By exhaustive search, it is easy to �nd the other 12 bytes of K6.
Having done that, the key schedule allows to �nd the full expanded key.

For the attack, 232 chosen plaintexts suÆce, and the required storage
space is dominated by the need to store the corresponding 232 ciphertexts.

What about the running time? The loop in step 2 is iterated 232 times,
step 4 takes 2128 iterations, and the loop in step 7 is iterated 232 times.
On the average, the while-loop is iterated 1+ 2�8+2�16 + : : : times, i.e.,
about once. Step 12 needs 28 basic operations. This makes about

232 � 2128 � 232 � 1 � 28 = 2200 basic operations.

6 Attacking Seven Rounds of RD-192

In the case of RD-192, accelerating the generic attack by a factor of 28,
as in the case of RD-256, would still not suÆce to outperform exhaustive
search. Fortunately (for the cryptanalyst), the RD-192 key schedule allows
an acceleration by a factor of 224, compared to the generic attack,

The columns of K7 are the words W [28], W [29], W [30], and W [31] of
the expanded key. These four words allow us to compute three more words
{ in the case of RD-192, these are W [23], W [24], and W [25], cf. Section
2.3. Two of these words are columns of the round key K6, while the third
word is a column of K5: W [24] = K6

0 , W [25] = K6
1 , and W [23] = K5

3 .
FromW [23],W [24], andW [25], we can compute three useful key bytes

for the attack, for example L5
0;3, L

6
1;3, and L

6
2;3, cf. Table 1 on page 4. The

two remaining key bytes (in our example L6
0;3 and L6

3;3) still have to be
found:
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1. Choose 232 distinct input plaintexts, varying at the byte positions
(0; 0), (1; 2), (2; 2), and (3; 1) and constant at the other byte positions.
Ask for the corresponding ciphertexts.

2. For all 232 combinations of K0
0;0, K

0
1;3, K

0
2;2, K

0
3;1:

3. Fix 32 distinct sets P0[i] of plaintexts (i 2 f0; : : : ; 31g) with jP0[i]j =
28, such that the corresponding P1[i] are �

1-sets.

4. For all 2128 round keys K7:

5. Decipher the 32 sets of ciphertexts P7[i] to get P6[i] and Q6[i].
6. Compute L5

0;3, L
6
1;3, and L

6
2;3.

7. For all 216 combinatios of L6
0;3 and L

6
3;3:

8. i := 0; reject := false;
9. while i � 31 and reject=false:

begin

10. Compute

b[i] :=
M

A2Q5[i]

BO(A3; 3; L
6
1; L

5
0;1):

11. If b[i] = 0 then i := i+1
else reject := true.

end (� while �).
12. If reject=false then stop (� and accept key bytes �).

The analysis of the attack is essentially the same as its counterpart
for RD-256. The only di�erence is that the loop in step 7 is iterated 216

times instead of 232. So the attack needs the time of about

232 � 2128 � 216 � 1 � 28 = 2184 basic operations.

7 Final Comments, Summary, and Conclusion

In [3], the authors of Rijndael described the Square-6 attack for RD-128.
Extensions of this attack for RD-192 and RD-256 were missing, though.
The target of the current paper is to close this gap.

The attacks described in this paper are highly impractical. Consid-
ering even such certi�cational attacks as ours is good scienti�c practice.
And the design of Rijndael was determined \by looking at the maximum
number of rounds for which shortcut attacks have been found" [3, Chap-
ter 7.6], allowing an additional margin of security. Any attack which is
faster than exhaustive search counts as \shortcut attack".
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Attack target # Rounds # Chosen Time Memory
Plaintexts [# basic operations] [# Ciphertexts]

simple Square generic 4 28 small small

ext. at the end generic 5 5 � 28 248 small

Square-6 generic 6 232 280 232

7-round generic 7 232 2208 232

RD-192 7 232 2184 232

RD-256 7 232 2200 232

Table 2. Summary of Results.

Table 2 summarises how the di�erent attacks perform. The results
for 4{6 rounds of Rijndael originate from [3]. Note that [3] counted the
number of \cipher executions" to measure the running time.

In [5], Fergusen and others describe improved attacks on Rijndael. A
preliminary version of [5] has been sent to the current author by one of
the authors of [5], and the following remarks are base on that version.
[5] describes some weaknesses of the Rijndael key schedule, but does not
exploit these for actual attacks. The attacks in [5] are mainly based on
improvements of the Square-6 attack, using the \partial sums". E.g., an
attack on seven rounds of Rijndael is proposed, which requires 232 chosen
plaintexts and the time equivalent to 2170 trial encryptions. Using the
observations made in the current paper, this attack can be improved by
a factor of 216, i.e., only needs the equivalent of 2156 trial encryptions,
instead of 2170.

Our results exhibit a weakness in the Rijndael key schedule. If, e.g.,
the wordsW [�] of the expanded key were generated pseudorandomly using
a cryptographically secure pseudorandom bit generator, dedicated attacks
could not be more eÆcient than their generic counterparts.

This does not indicate the necessity to modify the Rijndael key sched-
ule, though. The improvements on the generic case are quite small. If we
concentrate on counting the number of rounds for which shortcut at-
tacks exist, the cryptanalytic gain of this paper is one round for RD-192,
not more. The authors of Rijndael seem to have anticipated such crypt-
analytic results by specifying a high security margin for the number of
rounds (two additional rounds for RD-192, compared to RD-128 with its
ten rounds).
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Abstract

Rijndael is one of the �ve candidate blockciphers selected by NIST for
the �nal phase of the AES selection process. The best attack of Rijndael
so far is due to the algorithm designers ; this attack is based upon the
existence of an eÆcient distinguisher between 3 Rijndael inner rounds and
a random permutation, and it is limited to 6 rounds for each of the three
possible values of the keysize parameter (128 bits, 196 bits and 256 bits).
In this paper, we construct an eÆcient distinguisher between 4 inner
rounds of Rijndael and a random permutation of the blocks space, by
exploiting the existence of collisions between some partial functions in-
duced by the cipher. We present an attack based upon this 4-rounds
distinguisher that requires 232 chosen plaintexts and is applicable to up
to 7-rounds for the 196 keybits and 256 keybits version of Rijndael.
Since the minimal number of rounds in the Rijndael parameter settings
proposed for AES is 10, our attack does not endanger the security of the
cipher, indicate any aw in the design or prove any inadequacy in selec-
tion of number of rounds. The only claim we make is that our results
represent improvements of the previously known cryptanalytic results on
Rijndael.

1 Introduction

Rijndael [DaRi98], a blockcipher designed by Vincent Rijmen and Joan Daemen,
is one of the 5 �nalists selected by NIST in the Advanced Encryption Standard
competition [AES99]. It is a variant of the Square blockcipher, due to the same
authors [DaKnRi97]. It has a variable block length b and a variable key length
k, which can be set to 128, 192 or 256 bits. The recommended nr number of
rounds is determined by b and k, and varies between 10 and 14. In the sequel
we will sometimes use the notation Rijndael/b/k/nr to refer to the Rijndael
variant determined by a particular choice of the b, k and nr parameters.
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The best Rijndael attack published so far is due to the algorithm designers
[DaRi98]. It is a variant of a the "Square" attack, and exploits the byte-oriented
structure of Rijndael [DaKnRi97]. This attack is based upon an eÆcient distin-
guisher between 3 Rijndael inner rounds and a random permutation. It is stated
in [DaRi98] that "for the di�erent block lengths of Rijndael no extensions to 7
rounds faster than exhaustive search have been found".
In this paper we describe an eÆcient distinguisher between 4 Rijndael inner
rounds and a random permutation, and we present resulting 7-rounds attacks
of Rijndael/b=128 which are substantially faster than an exhaustive key search
for the k = 196 bits and k = 256 bits versions and marginally faster than an
exhaustive key search for the k = 128 bits version.

This paper is organised as follows. Section 2 provides an outline of the
cipher. Section 3 investigates partial functions induced by the cipher and the
existence of collisions between such partial functions, and describes a resulting
distinguisher for 4 inner rounds. Section 4 presents 7-rounds attacks based on
the 4-rounds distinguisher of Section 3. Section 5 concludes the paper.

2 An outline of Rijndael/b = 128

In this Section we briey described the Rijndael algorithm. We restrict our
description to the b=128 bits blocksize and will consider no other blocksize in
the rest of this paper.
Rijndael/b/k/nr consists of a key schedule and an iterated encryption function
with nr rounds. The key schedule derives nr+1 128-bit round keys K0 to Knr

from the k = 128; 196 or 256 bits long Rijndael key K. Since attacks presented
in the sequel do not use the details of the dependence between round keys, we
do not provide a description of the key schedule.
The Rijndael encryption function is the composition of nr block transformations.
The current 128-bit block value B is represented by a 4� 4 matrix :

B =

b0;0 b0;1 b0;2 b0;3
b1;0 b1;1 b1;2 b1;3
b2;0 b2;1 b2;2 b2;3
b3;0 b3;1 b3;2 b3;3

The de�nition of the round functions involves four elementary mappings :

� the �=ByteSub byte substitution transforms each of the 16 input bytes
under a �xed byte permutation P (the Rijndael S-box).

� the �=ShiftRow rows shift circularly shifts row i (i = 0 to 3) in the B

matrix by i bytes to the right.

� the �=MixColumn is a matrix multiplication by a �xed 4 � 4 matrix of
non-zero GF(28) elements.

� the �r=KeyAddition is a bitwise addition with a 128-bit round key Kr.
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The Rijndael cipher is composed by an initial round key addition �0, nr� 1
inner rounds and a �nal transformation. The rth inner round (1 � r � nr � 1)
is de�ned as the �r Æ � Æ � Æ � function. The �nal transformation at the round
nr is an inner round without MixColumn mapping : FinalRound = �nr Æ � Æ �.
We can thus summarise the cipher as follows:

B:=�0(B);
For r = 1 to nr � 1

B:=InnerRound(B);
FinalRound(B);

Remarks :

� � is the single non GF (8)-linear function of the whole cipher.

� The Rijndael S-box P is the composition of the multiplicative in-
verse function in GF(8) (NB : '00' is mapped into itself) and a �xed
GF(2)-aÆne byte transformation. If the aÆne part of P was omit-
ted, algebraic methods (e.g. interpolation attacks) could probably
be considered for the cryptanalysis of Rijndael.

� The � Æ � linear part of Rijndael appears to have been carefully de-
signed. It achieves a full di�usion after 2 rounds, and the Maximum
Distance Separability (MDS) property of � prevents good di�eren-
tial or linear "characteristics" since it ensures that two consecutive
rounds involve many active S-boxes.

3 Distinguishing 4 inner rounds of Rijndael/b=128
from a random permutation

3.1 Notation

Figure 1 represents 4 consecutive inner round functions of Rijndael associated
with any 4 �xed unknown 128-round keys. Y; Z;R; S represent the input blocks
of the 4 rounds and T represents the output of the 4th round. We introduce
short notations for some particular bytes of Y; Z;R; S; T , which play a particular
role in the sequel : y = Y0;0, z0 = Z0;0, z1 = Z1;0, z2 = Z2;0, z3 = Z3;0, and
so on. Finally we denote by c the (c0 = Y1;0, c1 = Y2;0, c2 = Y3;0) triplet of Y
bytes.

Let us �x all the Y bytes but y to any 11-uple of constant values. So the c
triplet is assumed to be equal to a constant c = (c0; c1; c2) triplet, and the 12
Yi;j , i=1 to 3, j=0 to 3 are also assumed to be constant. The Z;R; S; T bytes z0
to z3, r0 to r3, s, and t0 to t3 introduced in Figure 1 can be seen as c-dependent
functions of the y input byte. In the sequel we sometimes denote by zc0[y] to
zc3[y], r

c
0[y] to r

c
3[y], s

c[y], tc0[y] to t
c
3[y] the zi, ri, s, ti byte value associated with

a c constant and one y 2 0::255 value.
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T

Figure 1: 4 inner rounds of Rijndael
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3.2 The 3-rounds distinguisher used in the Rijndael/b=128
designers' attack

The Rijndael designers' attack is based upon the observations that :
- bytes z0 to z3 are one to one functions of y and the other Z bytes are constant.
- bytes r0 to r3 are one to one functions of y (as well as the 12 other R bytes).

- s is the XOR of four one to one functions of y and thus
P255

y=0 s[y] = 0.
Thus 3 consecutive inner rounds of Rijndael have the distinguishing property

that if all Y bytes but y are �xed and y is taken equal to each of the 256 possible
values, then the sum of the 256 resulting s values is equal to zero.

This leads to a 6-rounds attack (initial key addition followed by 5 inner
rounds followed by �nal round). As a matter of fact an initial round (i.e. an ini-
tial key addition followed by 1 inner round) can be added on top, at the expense
of testing assumptions on 4 key bytes of the initial key addition. Moreover, two
additional rounds can be added at the end (namely one additional inner round
followed by one �nal round), at the expense of testing assumptions on 4 �nal
round key bytes. Combining both extensions provides an attack which requires
232 plaintexts and has a complexity of 272 encryptions.

3.3 A 4-rounds distinguisher for Rijndael/b = 128

We now analyse in detail the dependency of the byte oriented functions intro-
duced in Section 3.1 in the c constant and the expanded key. We show that the
sc[y] function is entirely determined by a surprisingly small number of unknown
bytes, which either only depend upon the key or depend upon both the key
and the c value, and that as a consequence there exist (c0; c00) pairs of distinct c
values such that the sc

0

[�] and sc
00

[�] partial functions collide, i.e. sc
0

[y] = sc
00

[y]
for y = 0; 1; � � � ; 255. This provides an eÆcient test for distinguishing 4 inner
rounds of Rijndael from a random permutation.

The construction of the proposed distinguisher is based upon the following
observations, which are illustrated in Figure 1.

Property 1 : At round 1, the y ! zc0[y] one to one function is independent of
the value of the c triplet and is entirely determined by one key byte. The
same property holds for z1; z2; z3. This is because at the output of the
�rst round ShiftRow the c0 to c2 constants only a�ect columns 1 to 3 of
the current block value, whereas the z0 to z3 bytes entirely depend upon
column 0. For similar reasons, the other bytes of Z are independent of y :
each of the bytes of column 1 (resp 2, resp 3) of Z is entirely determined
by the c0 (resp c1, resp c2) byte and one key-dependent byte.
More formally, there exist 16 MixColumn matrix coeÆcients ai;j ,i=0..3,
j=0..3 and 16 key-dependent constants bi;j , i=0..3, j=0..3 such that zi =
ai;0P (y) + bi;0, i=0..3 and zi;j = ai;0P (cj�1) + bi;j , i=1..3, j=0..3.

Property 2 : At round 2, each of the four bytes ri[y], i = 0::3 is a one to one
function of zi[y], and the ri[y]! zi[y] is entirely determined by one single
unknown constant byte that is entirely determined by c and the key.
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More formally, there exist 16 MixColumn coeÆcients �i, i = 0::3, �i,
i = 0::3 i, i = 0::3 and Æi, i = 0::3 and 4 key-dependent constants �i,
i = 0::3 such that ri = �i �P (zi;0)+�i �P (zi;1)+i �P (zi;2)+Æi �P (zi;3)+�i,
i = 0::3. The ri bytes are thus related to c and y by the relations :
ri = �i � P (ai;0P (y) + bi;0) + �i � P (ai;1P (c0) + bi;1) + i � P (ai;2P (c1) +
bi;2) + Æi � P (ai;3P (c2) + bi;3) + �i, i = 0::3.
Consequently, the r0[y] to r3[y] one to one functions of y are entirely de-
termined by the 4 key-dependent constant unknown bytes bi;0 introduced
in property (1) and the 4 c- and k-dependent bytes bi = �i �P (ai;1P (c0)+
bi;1) + i � P (ai;2P (c1) + bi;2) + Æi � P (ai;3P (c2) + bi;3) + �i, i= 0 � �3.

Property 3 : At round 3, the s byte can be expressed as a function of the r0
to r3 bytes and one c-independent and key-dependent unknown constant.
Consequently, the sc[y] function is entirely determined by 4 key-dependent
and c-dependent constants and 5 c-independent and key-dependent con-
stants.

Property 4 : Let us consider the decryption of the fourth inner round : s can
be expressed as s = p�1[(0E:t0 + 0B:t1 + 0D:t2 + 09:t3) + k5] where p

represents the single S-box. In other words 0E:t0 + 0B:t1 + 0D:t2 + 09:t3
is a one to one function of s, and that function is entirely determined by
one single key byte k5. Thus 0E:t0 + 0B:t1 + 0D:t2 + 09:t3 is a function
of y that is entirely determined by 6 unknown bytes which only depend
upon the key and by 4 additional unknown bytes which depend both upon
c and the key.

The above properties provide an eÆcient 4-rounds distinguisher. We can
restate property (3) in saying that the sc[y] function is entirely determined (in
a key-dependent manner) by the 4 c-dependent bytes b0 to b3. Let us make
the heuristic assumption that these 4 unknown c-dependent bytes behave as a
random function of the c triplet of bytes. By the birthday paradox, given a C

set of about 216 c triplet values, there exist with a non negligible probability
two distinct c0 and c00 in C such that the sc

0

[y] and sc
00

[y] functions induced
by c0 and c00 are equal (i.e. in other words such that the (sc

0

[y])y=0::255 and

(sc
00

[y])y=0::255 lists of 256 bytes are equal). Property (4) provides a method to
test such a "collision", using the t0 to t3 output bytes of 4 inner rounds : c0

and c00 collide if and only if 8y 2 [0; :::; 255], 0E:tc
0

0 + 0B:tc
0

1 + 0D:tc
0

2 + 09:tc
0

3 =
0E:tc

00

0 + 0B:tc
00

1 + 0D:tc
00

2 + 09:tc
00

3 . Note that it is suÆcient to test the above
equality on a limited number of y values (say 16 for instance) to know with a
quite negligible "false alarms" probability whether the sc

0

[y] and sc
00

[y] func-
tions collide.

We performed some computer experiments which con�rmed the existence, for
arbitrarily chosen key values, of (c0; c00) pairs of c value such that the sc

0

[y]
and sc

00

[y] functions collide. For some key values, we could even �nd four byte
values c01, c

0

2, c
00

1 and c002 such that for each of the 256 possible values of the
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c0 byte, the sc
0

[y] and sc
00

[y] functions associated with the c0 = (c0; c
0

1; c
0

2) and
c00 = (c0; c

00

1 ; c
00

2) triplets of bytes collide. This stronger property, which is rather
easy to explain using the expression of the bi constants introduced in Property
(2), is not used in the sequel.

The proposed 4 rounds distinguisher uses the collision test derived from
property (4) is the following manner :

� select a C set of about 216 c triplet values and a subset of f0..255g, say
for instance a � subset of 16 y values.

� for each c triplet value, compute the Lc = (0E:tc0 + 0B:tc1 + 0D:tc2 +
09:tc3)y2�. We claim that such a computation of 16 linear combinations
of the outputs represents substantially less than one single Rijndael oper-
ation.

� check whether two of the above lists, Lc0 and Lc00 are equal. The 4 round
distinguisher requires about 220 chosen inputs Y , and since the collision
detection computations (based on the analysis of the corresponding T

values) require less operations than the 220 4-inner rounds computations,
the complexity of the distinguisher is less than 220 Rijndael encryptions.

Note that property (4) also provides another method to distinguish 4 inner
round from a random permutation, using N � 256 plaintexts and 280 N oper-
ations, namely performing an exhaustive search of the 10 unknown constants
considered in property (4). Note that a value such as N = 16 is far suÆcient in
practice. However, we only consider in the sequel the above described birthday
test, which provides a more eÆcient distinguisher.

4 An attack of the 7-rounds Rijndael/b=128 ci-
pher with 2

32 chosen plaintexts

In this Section we show that the 4 inner rounds distinguisher of Section 3 pro-
vides attacks of the 7-rounds Rijndael for the b=128 blocksize and the various
keysizes. We present two slightly di�erent attacks. The �rst one (cf Section 4.2
hereafter) is substantially faster than an exhaustive search for the k=196 and
k=256 keysizes, but slower than exhaustive search for the k=128 bits keysize.
The second attack (cf Section 4.2) is dedicated to the k=128 keysize, and is
marginally faster than an exhaustive search for that keysize.

The 7-rounds Rijndael is depicted at Figure 2. X represents a plaintext
block, and V represents a ciphertext block. In Figure 2 the 4 inner rounds of
Figure 1 are surrounded by one initial X ! Y round (which consists of an initial
key addition followed by one round), and two �nal rounds (which consist of one
T ! U inner round followed by an U ! V �nal round).

Our attack method is basically a combination of the 4-round distinguisher
presented in Section 3 and an exhaustive search of some keybytes (or combina-
tions of keybytes) of the initial and the two �nal rounds. In the attack of Section
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Figure 2: 7-rounds Rijndael
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4.1 we are using the property that in the equations provided by the 4-rounds
distinguisher there is a variables separations in terms which involve one half of
the 2 last rounds key bytes and terms which involve a second half of the 2 last
round key bytes in order to save a 280 factor in the exhaustive search complexity.
In the attack of Section 4.2, we are using precomputations on colliding pairs of c
values to test each 128-bits key assumption with less operations than one single
Rijndael encryption.

4.1 An attack of the 7-rounds Rijndael/b=128/k=196 or
256 with 232 chosen plaintexts and a complexity of
about 2140

We now explain the attack procedure in some details, using the notation intro-
duced in Figure 2. We �x all X bytes except the four bytes x0 to x3 equal to 12
arbitrary constant values. We encrypt the 232 plaintexts obtained by taking all
possible values for the x0 to x3 bytes, thus obtaining 232 V ciphertext blocks.
We are using the two following observations :

Property 5 : If the 4 key bytes added with the x0 to x3 bytes in the initial
key addition are known (let us denote them by kini = (k0; k1; k2; k3),
then it is possible to partition the 232 plaintexts in 224 subsets of 256
plaintext values satisfying the conditions of Section 3, i.e. such that the
corresponding 256 Y values satisfy the following conditions :
- the y byte takes 256 distinct values (which are known up to an unknown
constant �rst round key byte which is not required for the attack).
- the c = (c0; c1; c2) triplet of bytes is constant ; moreover, each of the
224 subsets corresponds to a distinct c value (the c value corresponding to
each subset is known up to three constant �rst round keybytes which are
not required for the attack).
- the 12 other Y bytes are constant and their constant values Yi;j for i=1..3
and j=0..3 is the same for all subsets.
Note that the same property is used in the Rijndael designers' attack.

Property 6 : Each of the t0; t1; t2; t3 bytes can be expressed as a function of
four bytes of the V ciphertext and �ve unknown key bytes (i.e. 4 of the
�nal round key bytes and one linear combination of the penultimate round
key bytes). Therefore, we can "split" the tc[y] =0 0E0:tc0[y] +

0 0B0:tc1[y] +
0

0D0:tc2[y] +
0 090:tc3[y] combination of the four tci [y] bytes considered in the

4-rounds distinguisher as the XOR of two terms �c1 [y] and �c2 [y] which can
both be expressed as a function of 8 ciphertext bytes and 10 unknown key
bytes, namely �1 =

0 0E0:tc0[y] +
0 0B0:tc1[y] and �2 =

0 0D0:tc2[y] +
0 090:tc3[y].

We denote in the sequel by k�1 those 10 unknown keybytes which allow to
derive �1 from 8 bytes of the V ciphertext, and by k�2 those 10 keybytes
which allow to derive �1 from 8 bytes of the V ciphertext.

We perform an eÆcient exhaustive search of the kini, k�1 and k�2 keys in the
following way :
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� For each of the 232 possible kini assumptions, we can partition the set of
the 2564 possible X values in 2563 subsets of 256 X values each, according
to the value of the c constant, and select say 2562 of these 2563 subsets.
Thus each of the 2562 selected subsets is associated with a distinct value
of the c constant. Note that the c value associated with a subset and the y
values associated with each of the X plaintexts of a subset are only known
up to unknown keybits, but this does not matter for our attack. We can
denote by c� and y� the known values which only di�er from the actual
values by �xed unknown key bits.

� Now for each subset associated with a c� constant triplet, based on the
say 16 ciphertexts associated with the y� = 0 to y� = 15 values, we
can precompute the (� c1 (y))y�=0::15 16-tuple of bytes for each of the 280

possible k�1 keys. We can also precompute the (�c2 (y))y�=0::15 16-tuple for
each of the 280 possible k�2 keys.

Based on this precomputation, for each (c0�; c00�) pair of distinct c* values :

� We precompute a (sorted) table the (�c
0

1 (y) � �c
00

1 (y))y�=0::15 16-tuple of
bytes for each of the 280 possible k�1 keys (the computation of each 16-
tuple just consists in xoring two precomputed values)

� For each of the 280 possible values of the k�2 key, we compute the (�
c0

2 (y)�
�c

00

2 (y))y�=0::15 16-tuple of bytes associated with the observed ciphertext,
and check whether this t-uple belongs to the precomputed table of 16-
tuple (�c

0

1 (y) � �c
00

1 (y))y�=0::15. If for a given k�1 value there exists a k�2
value such that (� c

0

1 (y) � �c
00

1 (y))y�=0::15 = (�c
0

2 (y) � �c
00

2 (y))y�=0::15, (i.e.

tc
0

[y] = tc
00

[y] for each of the y values associated with y� = 0 to 16, this
represents an alarm). The equality between the t bytes associated with c0

and c00 is checked for the other y� values. If the equality is con�rmed, this
means that a collision between the sc[y] functions associated with c0 and
c00. This provides 20 bytes of information on the last and penultimate key
values, since with overwhelming probability, the right values of kini, k�1
and k�2 have then been found.

Since the above procedure tests whether the exist collisions inside a random set
of 2562 of the 2564 possible sc[y] functions, the probability of the procedure to
result in a collision, and thus to provide kini, k�1 and k�2 is high (say about
1/2). In other words, the success probability of the attack is about 1/2.

Once kini, k�1 and k�2 have been found, the 16-bytes �nal round key is
entirely determined and the �nal round can be decrypted, so one is left with the
problem of cryptanalysing the 6-round version of Rijndael. One might object
that the last round of the left 6-round cipher is not a �nal round, but an inner
round. However, it is easy to see that by applying a linear one to one change of
variable to U and the 6th round key (i.e. replacing U by a U 0 linear function
of U and K6 by a linear function K 0

6 of K6), the last round can be represented
as a �nal round (i.e. U 0 is the image of T by the �nal round associated with
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K 0

6). Thus we are in fact left with the cryptanalysis of the 6-round Rijndael,
and the last round subkey is easy to derive. The process of deriving the subkeys
of the various rounds can then be continued (using a subset of the 232 chosen
plaintexts used for the derivation of kini, k�1 and k�2), with negligible additional
complexity, until the entire key has eventually been recovered.

4.2 An attack of the 7-rounds Rijndael/b=128/k=128 232

chosen plaintext

We now outline a variant of the former attack that is dedicated to the k=128
bits version of Rijndael and is marginally faster than an exhaustive search. This
attack requires a large amount of precomputations.

As a matter of fact, it can be shown that the 4 c-dependent bytes that de-
termine the mapping between four zci [y] bytes and the four rci [y] are entirely
determined by 12 key-dependent (and c-independent) bytes. For each of the
25612 possible values of this �(K) 12-tuple of bytes, we can compute colliding
c0 and c00 triplets of bytes (this can be done performing about 2562 partial Ri-
jndael computations corresponding to say 2562 distinct c values and looking for
a collision. One can accept that no collision be found for some �(K) values :
this just means that the attack will fail for a certain fraction (say 1/2) of the
key values. We store c0 and c00 (if any) in a table of 25612 �(K) entries.

Now we perform an exhaustive search of the K key. To test a key assump-
tion, we compute the kini, k�1 , k�2 and �(K) values. Then we �nd the (c0; c00)
pair of colliding c values in the precomputed table, compute the two associ-
ated c0� and c00 values, determine which two precomputed lists (V c0

[y])y�=0::15
(V c00

[y])y�=0::15of 16 ciphertext values each are associated with c0� and c00�,

and �nally compute the associated (tc
0

[y])y�=0::15 and (tc
00

[y])y�=0::15 bytes by
means of partial Rijndael decryption. The two values associated with y� = 0 are
�rst computed and compared. The two values associated with y� = 1 are only
computed and compared if they are equal, etc, thus in average only two partial
decryption are performed. It the two lists of 16 t bytes are equal, then there is
an alarm, and the K is further tested with a few plaintexts and ciphertexts.

We claim than the complexity of the operations performed to test one K

key is marginally less than one Rijndael encryption.

5 Conclusion

We have shown that the existence of collisions between some partial byte ori-
ented functions induced by the Rijndael cipher provides a distinguisher between
4 inner rounds of Rijndael and a random permutation, which in turn enables to
mount attacks on a 7-rounds version of Rijndael for any key-length.
Unlike many recent attacks on block ciphers, our attacks are not statistical in
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nature. They exploit (using the birthday paradox) a new kind of cryptanalytic
bottleneck, namely the fact that a partial function induced by the cipher (the
sc[y] function) is entirely determined by a remarkably small number of unknown
constants. Therefore, unlike most statistical attacks, they require a rather lim-
ited number of plaintexts (about 232). However, they are not practical because
of their high computational complexity, and do not endanger the full version of
Rijndael. Thus we do not consider they represent arguments against Rijndael
in the AES competition.
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Abstract

We propose a new method for evaluating the security of block ciphers against di�er-
ential cryptanalysis and propose new structures for block ciphers. To this end, we de�ne
the word-wise Markov (Feistel) cipher and random output-di�erential (Feistel) cipher and
clarify the relations among the di�erential, the truncated di�erential and the impossible
di�erential cryptanalyses of the random output-di�erential (Feistel) cipher. This random
output-di�erential (Feistel) cipher model uses a not too strong assumption because denying
this approximation model is equivalent to denying truncated di�erential cryptanalysis. U-
tilizing these relations, we evaluate the truncated di�erential probability and the maximum
average of di�erential probability of the word-wise Markov (Feistel) ciphers like Rijndael,
E2 and the modi�ed version of block cipher E2. This evaluation indicates that all three are
provably secure against di�erential cryptanalysis, and that Rijndael and a modi�ed version
of block cipher E2 have stronger security than E2.

keywords. truncated di�erential cryptanalysis, truncated di�erential probability, max-
imum average of di�erential probability, generalized E2-like transformation, SPN-structure,
word-wise Markov cipher, random output-di�erential cipher

1 Introduction

As a measure of the security of block ciphers, the maximum average of di�erential probability
was de�ned by Nyberg and Knudsen [15] by generalizing provable security against di�erential
cryptanalysis as introduced by Biham and Shamir [2]. Based on this idea, many new block
ciphers have been proposed, e.g. the block cipher MISTY was proposed by M. Matsui [10].
It was designed on the basis of the theory of provable security against di�erential and linear
cryptanalysis.

The block cipher E2 was proposed in [6] as an AES candidate. This cipher uses Feistel
structures as a global structure like DES, and uses the SPN (Substitution and Permutation
Network)-structure in its S-boxes. [6] said this cipher can be 'proved' to o�er immunity
against di�erential cryptanalysis by counting the maximum number of active S-boxes. How-
ever, Sugita proposed a method for evaluating the maximux average of di�erential probability
of SPN-structures, and then evaluated the SPN-structure of E2[16, 17]. Using the similar
method, Matsui stated that 8-rounds E2 can be defeated by truncated di�erential cryptanal-
ysis [19, 14], which implies that just counting the maximum number of active S-boxes is not
su�cient for proving the security of block ciphers.
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The block cipher Rijndael was also proposed as an AES candidate [3]. This cipher uses
the SPN (Substitution and Permutation Network)-structure as its basic structure. The basis
for proving its security against di�erential cryptanalysis involves a similar evaluation method
as used for E2. Therefore more accurate proof is necessary.

In this paper, we introduce the word-wise Markov (Feistel) cipher and random output-
di�erential (Feistel) cipher as a approximation model for the accurate de�nition of truncated
di�erential probability, and clarify the relationships among di�erential, truncated di�erential
and impossible di�erential cryptanalyses, and propose a new method for evaluating the
security of block ciphers against di�erential, truncated di�erential and impossible di�erential
cryptanalysis under this model, and propose new structures for block ciphers that are secure
against these cryptanalyses. This random output-di�erential (Feistel) cipher model does not
use too strong an assumption because denying this model is equivalent to denying truncated
di�erential cryptanalysis.

This report is organized as follows.
Section 2 de�nes the structures of word-oriented block ciphers like SPN-Structures, PSN-

structures and the E2(0)-like transformation.
Section 3 de�nes the di�erential probability, and de�nes the word-wise Markov (Feistel)

cipher, random output-di�erential (Feistel) cipher, and using these de�nitions, de�nes the
truncated di�erential probability.

Section 4 clari�es the relations between the truncated di�erential probability and the
di�erential probability of the random output-di�erential (Feistel) cipher. It then describes
a procedure for calculating the truncated di�erential probability and (maximum average of)
the di�erential probability of typical random output-di�erential ciphers like SPN-structures
including Rijndael and E2(0)-like transformations. It proves that both Rijndael and the
modi�ed E2-like transformation are provably secure against di�erential, truncated di�erential
and impossible di�erential cryptanalysis if they can be approximated as random output-
di�erential (Feistel) ciphers.

Section 5 concludes this paper.

2 Structures of Word-oriented Block Ciphers

2.1 Word-oriented Block Ciphers

A word-oriented block cipher is a block cipher whose input and output data is a set of input
words of �xed size, and whose operations consist only of word-wise operations of �xed size.
In the usual case, the word size is 8, i.e. byte size. Example of these ciphers include Rijndael,
E2, etc.

2.2 Feistel Structures

Associate with a function f : GF (2)n ! GF (2)n, a function �2n;f (L;R) = (R� f(L); L) for
all L;R 2 GF (2)n. �2n;f is called the Feistel transformation associated with f . Furthermore,
for functions f1; f2; � � � ; fs : GF (2)

n ! GF (2)n, de�ne  n(f1; f2; � � � ; fs) = �2n;fs�� � ���2n;f2�
�2n;f1 . We call D(f1; f2; � � � ; fs) =  n(f1; f2; � � � ; fs) as the s-round Feistel structure. At this
time, we call the functions f1; f2; � � � ; fs as S-boxes of the Feistel structure D(f1; f2; � � � ; fs).

2.3 SPN-Structures and PSN-Structures

[11] de�nes SPN-Structures. First we de�ne the 3-layer SPN-structure.
This structure consists of two kinds of layers, i.e. nonlinear layer and bijective linear

layer. Each layer has di�erent features as follows.
Nonlinear layer: This layer is composed of m parallel n-bit bijective nonlinear trans-

formations.
Linear layer: This layer is composed of linear transformations over the �eld GF (2n)

(especially in the case of E2, bit-wise XOR), where inputs are transformed linearly to outputs
per word (n-bits).



Next for s 2 N we de�ne the s-layer SPN-structure, which consists of s layers. First is a
nonlinear layer, second is a linear layer, third is a nonlinear layer, � � � .

Similarly, for s 2 N we de�ne the s-layer PSN-structure. This layer consists of s layers.
First is a linear layer, second is a nonlinear layer, third is a linear layer, � � �.

The SPN-structure is the basic structure of Rijndael, a candidate for AES. We will analyze
the security of Rijndael afterwards.

2.4 E2(0)-like Transformations

[6] proposed the block cipher E2. This cipher has Feistel structures and its S-boxes are
composed of 3-layers SPN structures. We generalize this structure, and de�ne E2-like trans-
formations as Feistel structure with S-boxes composed of s-layers (in the case of E2, 3-layers)
SPN-structures.

Similarly, we de�ne E20-like transformations as Feistel structures with S-boxes composed
of s-layer PSN-structures.

3 Di�erential Probability, Truncated Di�erential Prob-

ability, Word-wise Markov (Feistel) Cipher and Random
Output-Di�erential (Feistel) Cipher

This section de�nes the (maximum average of) di�erential probability, truncated di�eren-
tial probability, word-wise (Feistel) Markov cipher and random output-di�erential (Feistel)
cipher.

3.1 Di�erential Probability of Block Ciphers

We de�ne the di�erential of block ciphers. We consider the encryption of a pair of distinct
plaintexts by an r-round iterated cipher. Here the round function Y = f(X;Z) is such that,
for every round sub-key Z, f( � ; Z) establishes a one-to-one correspondence between the
round input X and the round output Y . Let the \di�erence" �X between two plain-texts
(or two cipher texts) X and X� be de�ned as

�X = X �X�:

From the pair of encryption results, one obtains the sequence of di�erences �X(0);�X(1);
� � � ;�X(r) where X(0) = X and X(0)� = X� denote the plaintext pair (such that �X(0) =
�X) and where X(i) and X�(i) for (0 < i < r) are the outputs of the i-th round, which are
also the inputs to the (i+ 1)-th round. The sub-key for the i-th round is denoted as Z(i).

Next we de�ne the i-th round di�erential and maximum average of di�erential probabil-
ities.

De�nition 1 [7] An i-round di�erential is the couple (�; �), where � is the di�erential of a
pair of distinct plaintexts X and X� and � is a possible di�erence for the resulting i-th round
outputs X(i) and X�(i). The probability of an i-round di�erential (�; �) is the conditional
probability that � is the di�erence, �X(i), of the cipher text pair after i rounds given that
the plaintext pair (X;X�) has di�erence �X = � when the plaintext X and the sub-keys
Z(1); � � � ; Z(i) are independent and uniformly random. We denote this di�erential probability
by P (�X(i) = �j�X = �).

The probability of an s-round di�erential is known to satisfy the following property.

Lemma 1 [7] For the Markov cipher, the probability of an s-round di�erential equals

P (�X(s) = �(s)j�X(0) = �(0)) =

X
�(1)

X
�(2)

� � �
X

�(s�1)

sY
i=1

P (�X(i) = �(i)j�X(i� 1) = �(i� 1)):



We de�ne the maximum average of di�erential probability as follows. This value is known to
be the best measure with which to con�rm that block ciphers are secure against di�erential
cryptanalysis.

De�nition 2 [15] We de�ne the maximum average of di�erential probability ADP
(s)
max by

ADP(s)
max = max�6=0;�P (�X(s) = �j�X = �):

3.2 Word-wise Markov (Feistel) Cipher

[5] uses the truncated di�erential for the cryptanalysis of word-oriented block ciphers. How-
ever, the accurate de�nition of truncated di�erential probability is not o�ered because this
cryptanalysis is essentially based on approximation. In this subsection, in order to legitimate
this notion, we rede�ne the truncated di�erential probability of word-oriented block ciphers.

We consider the encryption of a pair of distinct plaintexts by an r-round iterated ci-
pher. Here the round function Y = f(X;Z) is such that, for every round sub-key Z =
(Z1; Z2; � � � ; Zm0) 2 GF (2n)m

0

, f( � ; Z) establishes a one-to-one correspondence between the
round inputX = (X1;X2; � � � ; Xm) 2 GF (2

n)m and the round output Y = (Y1; Y2; � � � ; Ym) 2
GF (2n)m.

We de�ne a characteristic function � : GF (2n)m ! GF (2)m; (x1; � � � ; xm) 7�! (y1; � � � ; ym)
by

yi =

�
0 if xi = 0
1 otherwise;

Hereafter, we call �(x) as a characteristic of x 2 GF (2n)m.
For the de�nition of the truncated di�erential probability, we de�ne the word-wise Markov

cipher as a real block-cipher model, in the same way as the Markov cipher was in [7]

De�nition 3 A word-oriented cipher with round function Y = f(X;Z)(X = (X1; X2; � � � ; Xm) 2
GF (2n)m; Y = (Y1; Y2; � � � ; Ym) 2 GF (2n)m; Z = (Z1; Z2; � � � ; Zm0) 2 GF (2n)m

0

), is a
word-wise Markov cipher if for all choices of � = (�1; �2; � � � ; �m) 2 GF (2n)m(� 6= 0),
� = (�1; �2; � � � ; �m) 2 GF (2

n)m(� 6= 0) and p 2 f1; 2; � � � ;m0g,

P (�Yp = �pj�X = �;X = )

is independent of , and P (�Yp = �pj�Yp 6= 0;�X = �;X = ) (p = 1; 2; � � � ;m) are jointly
statistically independent when the sub-key Z is uniformly random, or, equivalently, if

P (�Yp = �pj�X = �;X = ) = P (�Yp = �pj�X = �)

for all choices of  and P (�Yp = �pj�Yp 6= 0;�X = �) (p = 1; 2; � � � ;m) are jointly statisti-
cally independent when the sub-key Z is uniformly random, where�X = (�X1;�X2; � � � ;�Xm),
�Y = (�Y1;�Y2; � � � ;�Ym) are the di�erential of X, Y , respectively.

Example. the PSN-structure is a word-wise Markov cipher, if every bijective nonlinear
function in a nonlinear layer consists of a concatenation of XOR and substitution (like DES
does). Therefore, block cipher Rijndael and the S-boxes of block cipher E2 are also word-wise
Markov ciphers with the same kind of nonlinear functions.

We expand this de�nition to the Feistel cipher.

De�nition 4 We de�ne a word-wise Markov Feistel cipher as a Feistel cipher whose S-boxes
are word-wise Markov ciphers.

Example. E20-like transformation is a word-wise Markov Feistel cipher because the PSN-
structure is a word-wise Markov cipher if every nonlinear function in a nonlinear layer consists
of the concatenation of XOR of the key and substitution (like DES does).



3.3 Random Output-Di�erential (Feistel) Cipher

As preparation for de�ning the random output-di�erential cipher, we de�ne the random
output-di�erential transformation.

De�nition 5 A word-oriented transformation Y = g(X;Z) (X = (X1; X2; � � � ; Xm) 2
GF (2n)m; Y = (Y1; Y2; � � � ; Ym) 2 GF (2n)m; Z = (Z1; Z2; � � � ; Zm0) 2 GF (2n)m

0

), is a
random output-di�erential transformation, if for any input-di�erential value �, the following
relation is satis�ed,

P (�Y = �j�X = �) = ph(�(�))P (�(�Y ) = �(�)j�X = �);

when keys are randomly selected, where h is the function that indicates the Hamming weight of
the input value, p = 1=(2n�1), and �X = (�X1;�X2; � � � ;�Xm), �Y = (�Y1;�Y2; � � � ;�Ym)
are the di�erential of X, Y , respectively.

Using this de�nition, we de�ne the random output-di�erential cipher for word-oriented
block cipher as approximation model of word-wise Markov cipher.

De�nition 6 A word oriented cipher with round functions X(i + 1) = f(X(i); Z(i))(i =
0; 1; � � � ; r�1); where Z(i)(i = 0; 1; � � �) are sub-keys, is a random output-di�erential cipher if
for any random output-di�erential transformation X(0) = g(X;Z(0)), the composite trans-
formation X(1) = f(g(X;Z(0)); Z(1)) is also a random output-di�erential transformation.

At this time, we call a round function which composes a random output-di�erential cipher
by concatenating, as random output-di�erential round function.

We expand this de�nition to the Feistel cipher.

De�nition 7 A Feistel cipher with S-boxes Y = f(X;Z(i)) (i = 0; 1; � � �), where Z(i)(i =
0; 1; � � �) are sub-keys and i-th round output is X(i) = (X(i)L; X(i)R), is a random output-
di�erential Feistel cipher, if its S-boxes are random output-di�erential ciphers and the round
function of the Feistel cipher

(X(i+ 1)L; X(i+ 1)R) = (X(i)R; X(i)L � f(X(i)R; Z
(i)))

is a random output-di�erential round function.

Matsui stated in his presentation of [14] that 8-round E2 can be cryptanalyzed by truncat-
ed di�erential cryptanalysis only assuming randomness of keys. However, this is not accurate,
because he tacitly assumes this random output-di�erential cipher as an approximation model
of E2 in his explanation.

However, this approximation may be e�ective for word-wise Markov (Feistel) cipher like
E2, E20-like transformation and Rijndael. In fact, in the case of E20-like transformation
with 2-layer PSN-structures, which is also a word-wise Markov Feistel cipher for exam-
ple, let the �X 2 GF (2n)2m be a input di�erential of this cipher, if the input-di�erential
of S-box �W = (�W1;�W2; � � � ;�Wm) 2 GF (2n)m(�(�W ) = 0 2 GF (2)m) is ran-
domly distributed with the probability P (�W = j�(�W ) = 0;�X = �) = ph(

0) for
all  = (1; 2; � � � ; m) (where �() = 0), then the output-di�erential of S-box �U =
(�U1;�U2; � � � ;�Um) 2 GF (2n)m (�(�U) = �0 2 GF (2)m) is supposed to be approxi-
mately random, i.e. approximately P (�U = �j�(�U) = �0;�X = �) = ph(�

0), where
� = (�1; �2; � � � ; �m); �(�) = �0 because, for the input-di�erential of nonlinear layer �W =
(�W1;�W2; � � � ;�Wm) 2 GF (2n)m, each P (�Wp = pj�(�W ) = 0;�X = �) = p =
1=(2n � 1) implies P (�Up = �pj�(�U) = �0;�X = �) = p = 1=(2n � 1) and each
P (�Up = �pj�Wp = p 6= 0;�X = �) ( = (1; 2; � � � ; m); �() = 0) are jointly sta-
tistically independent from the de�nition of word-wise Markov cipher.

So we use this random output-di�erential cipher as an e�ective approximation model in
the following discussion.

Note. Matsui assumed the randomness of input-di�erential of nonlinear layers �W =
(�W1; � � � ;�Wm), i.e.

P (�W = j�(�W ) = 0;�X = �) = ph(
0)P (�(�W ) = 0j�X = �)



instead of the randomness of output-di�erential of nonlinear layers �U = (�U1; � � � ;�Um),
i.e.

P (�U = �j�(�U) = �0;�X = �) = ph(�
0)P (�(�U) = �0j�X = �)

in his presentation of [14]. The randomness of �W is a stronger assumption than the ran-
domness of �U , because, in the case of E20-like transformation with 2-layer PSN-structures
for example, the randomness of �W also implies the randomness of �U . Furthermore, the
randomness of �W may be too strong or even nonsense, because the randomness of input-
di�erentials of linear layer �W = (�W1; � � � ;�Wm) do not always yield the randomness of
input-di�erentials of nonlinear layer �U = (�U1; � � � ;�Um) : Two input-di�erential words
of nonlinear layers �Wp1 , �Wp2 (p1 6= p2) may be both random, i.e.

P (�Wp1 = p1 j�X = �) = P (�Wp2 = p2 j�X = �) = p = 1=(2n � 1)

but coincide, i.e. constantly �Wp1 = �Wp2 .
Therefore, we interpret Matsui's tacit assumption in his explanation as a random output-

di�erential (Feistel) cipher.

3.4 Truncated Di�erential Probability

Using these de�nitions, we can accurately de�ne the truncated di�erential probability. In
this de�nition, as a cipher model, we consider a cipher with a random output-di�erential
initial transformation X(0) = g(X;Z(0)), and a random output-di�erential round function
X(i+ 1) = f(X(i); Z(i))(i = 0; 1; � � � ; r � 1) where Z(i)(i = 0; 1; � � �) are sub-keys.

De�nition 8 Let X(0) = g(X;Z(0)) be an arbitrary random output-di�erential initial trans-
formation and X(i + 1) = f(X(i); Z(i)) be a round function such that X(r) = (f � � � � � f �
g)(X;Z(0); Z(1); � � � ; Z(r)) is also a random output-di�erential cipher for all r. An i-round
truncated di�erential of i-round iterated cipher X(r) = (f � � � � � f)(X(0); Z(1); � � � ; Z(r))
is the couple (�0; �0), where � is the di�erential of a pair of distinct values X(0) and
X�(0), �0 = �(�) is the characteristic of �; � is a possible di�erence for the resulting i-
th round outputs X(i) and X�(i); �0 = �(�) is the characteristic of �. The probability of
i-round truncated di�erential (�0; �0) is the conditional probability that �0 is the character-
istic of di�erence �X(i) of the cipher text pair after i rounds given that the characteristic
of pair (X(0); X(0)�) has di�erence �(�X) = �0 when the plaintext X and the sub-keys
Z(0); � � � ; Z(i) are independent and uniformly random. We denote this truncated di�erential
probability by P 0

i (�
0(i); �0(0)) = P (�(�X(i)) = �0(i)j�(�X(0)) = �0(0);�X = �).

This de�nition is well de�ned if we assume the random output-di�erential (Feistel) cipher.
Without the assumption, this is not well-de�ned, because two input-di�erential values with
same characteristic value do not always yield the same truncated di�erential probabilities.
We assume this model as an e�ective approximation model of a word-wise Markov cipher.

4 Truncated Di�erential Probability and Di�erential
Probability of Random Output-Di�erential (Feistel) Ci-

phers

4.1 Truncated Di�erential Probability of PSN-structures and Dif-
ferential Probability of SPN-structures

In this subsection, we evaluate the truncated di�erential probability of the 2s layer PSN-
structure and (the maximum average of) the di�erential probability of the (2s + 1) layer
SPN-structure, where we assume all random functions are bijective. In this calculation, we
�rst calculate the truncated di�erential probability of the 2s layer PSN-structure, and, using
this probability, we calculate (the maximum average of) the di�erential probability of the
(2s+ 1) layer SPN-structure.



We assume the �rst nonlinear layer is a random output-di�erential (initial) transforma-
tion, and the round functions, which are composed of a linear layer and a nonlinear layer, i.e.
2-layer PSN-structures, is a random output-di�erential round function. We denote �X as
the input-di�erential of the �rst nonlinear layer, �X(0) as the output-di�erential of the �rst
nonlinear layer, �X(1) as the output-di�erential of the second nonlinear layer, � � � ; �X(s)
as the output-di�erential of (s + 1)-th nonlinear layer, �Y (0) as the input-di�erential of
the �rst nonlinear layer, �Y (1) as the input-di�erential of the second nonlinear layer, � � � ;
�Y (s) as the input-di�erential of the (s+ 1)-th nonlinear layer.

We denote the di�erential probability of (2s+ 1)-layer SPN-structures as

Pi(�(i); �) = P (�X(i) = �(i)j�X = �):

We denote the truncated di�erential probability of 2s-layer PSN-structures as

P 0
i (�

0(i); �0(0)) = P (�(�X(i)) = �0(i)j�(�X(0)) = �0(0);�X = �):

The relation between di�erential probability and truncated di�erential probability can
be represented as follows, where �0(i) = �(�(i)) for all i = 0; 1; � � � ; s,

Pi(�(i); �) =X
�0(0)

P (�X(i) = �(i))j�(�X(i)) = �0(i);�X = �)

� P 0
i (�

0(i); �0(0)) � P (�(�X(0) = �0(0))j�X = �):

In this case, if we assume the initial transformation is a random output-di�erential trans-
formation and

P (�(�X(0)) = �0(0)j�X = �) =

�
1 if �0(0) = �(�)
0 otherwise;

as a natural approximation model of the �rst nonlinear layer, we can prove

Pi(�(i); �) = ph(�
0(i))P 0

i (�
0(i); �0);

because
P (�X(i) = �(i)j�(�X(i)) = �0(i);�X = �) = ph(�

0(i));

from the assumption of random output-di�erential cipher, where p = 1=(2n� 1) and h is the
function that indicates the Hamming weight of the input value.

This relation clearly indicates the relationship between the di�erential probability and
the truncated di�erential probability. From this relation we can easily calculate the di�er-
ential probability from the truncated di�erential probability in the case of random output-
di�erential cipher. This relation also implies that the possibility of truncated di�erential
cryptanalysis is equivalent to the possibility of di�erential cryptanalysis, because the ratio
of obtained probability to average probability do not change.

4.2 Procedure for Calculating Di�erential and Truncated Di�eren-
tial Probability of the SPN-structure

The procedure for calculating truncated di�erential probability and the maximum average
of the di�erential probability in case of the SPN structure is as follows.

For this procedure, we de�ne function N(P; ; �) for m �m matrix P over GF (2n) and
; � 2 GF (2)m by

N(P; ; �) = #f(�X;�Y ) 2 (GF (2n)m)2 n f0gj

�Y = P�X;�(�X) = ; �(�Y ) = �g;



For this calculation we de�ne semi-order � in GF (2)m as follows.

a � b, (8i; (a(i) = 1) b(i) = 1)) ^ (a 6= b)

where we denote a(i) and b(i) as the i-th signi�cant bits of a and b, respectively.
For m�m matrix P over GF (2n) and ; � 2 GF (2)m, we de�ne

M(P; ; �) = #f(�X;�Y ) 2 (GF (2n)m)2 n f0gj

�Y = P�X;�(�X) � ; �(�Y ) � �g;

and N(P; ; �) can be calculated recursively, using the following relations.

N(P; ; �) = M(P; ; �)�
X

(0;�0)�(;�)

N(P; 0; �0)

In this case, we assume a random output-di�erential cipher. Under this assumption, we
can prove the following lemma.

Lemma 2

P 0
i (�

0(i); �0(0)) =X
�0(i�1)

N(P; �0(i); �0(i� 1))ph(�
0(i�1))P 0

i�1(�
0(i� 1); �0(0));

where p = 1=(2n � 1).

Proof. From the assumption of a random output-di�erential cipher,

P (�X(i� 1) = �(i� 1)j�(�X(0)) = � 0(0);�X = �)

= P (�X(i� 1) = �(i� 1)j�(�X(i� 1)) = �0(i� 1);�X = �)

� P (�(�X(i� 1)) = �0(i� 1)j�(�X(0)) = �0(0);�X = �)

= ph(�
0(i))P (�(�X(i� 1)) = �0(i� 1)j�(�X(0)) = �0(0);�X = �)

= ph(�
0(i�1))P 0

i�1(�
0(i� 1); �0(0));

where �0(i� 1) = �(�(i� 1)).
From the de�nition of N,

N(P; �0(i); �0(i� 1)) = #f(�X(i);�X(i� 1)) 2 (GF (2n)m n f0g)2j

�X(i) = P�X(i� 1); �(�X(i)) = �0(i); �(�X(i� 1)) = �0(i� 1)g;

.
Therefore,

P 0
i (�

0(i); �0(0))

=
X

�0(i�1)

N(P; �0(i); �0(i� 1))P (�X(i� 1) = �(i� 1)j�(�X(0)) = �0(0))

=
X

�0(i�1)

N(P; �0(i); �0(i� 1))ph(�
0(i�1))P 0

i�1(�
0(i� 1); �0(0));

This lemma, yields the following procedure.

1) Computing the Number of All Di�erential Paths
For given P , calculate N(P; ; �) for every ; � 2 GF (2)m.

M(P; ; �) can be easily calculated by simple rank calculation as follows.



M(P; ; �)

= #f(�X;�Y ) 2 GF (2n)2m n f0gjP�X = �Y; F (�)�X = 0; F (��)�Y = 0g

= 2n�dimf(�X;�Y )2GF (2)2mnf0gjP�X=�Y;F (�)�X=0;F (��)�Y=0g � 1

= 2

n(2m�rank(

0
@ P E

F (�) O
O F (��)

1
A))

� 1;

where � and �� are the complements of  and �, respectively, E is an identity matrix, and
F (�), F (��), denote the diagonal matrices over GF (2n) whose (i; i) component equals
the i-th signi�cant bit of �, �� for i = 1; � � � ;m, respectiveley.

N(P; ; �) can be calculated recursively from the values of M(P; ; �), using the following
relation.

N(P; ; �) = M(P; ; �)�
X

(0;�0)�(;�)

N(P; 0; �0)

2) Initialization
For given �0 2 GF (2)m, calculate P 0

0(�
0(0); �0) for every �0(0) 2 GF (2)m, where

P 0
0(�

0(0); �0) =

�
1 if �0(0) = �0

0 otherwise;

3) Recursive Computation of Truncated Di�erential Probability
Utilizing the values of N(P; ; �), calculate P 0

i (�
0(i); �0) recursively for every �0(i) 2

GF (2)m.

P 0
i (�

0(i); �0) =X
�0(i�1)

N(P; �0(i); �0(i� 1))ph(�
0(i�1))P 0

i�1(�
0(i� 1); �0)

4) Calculation of (Maximum Average of) Di�erential Probability
Evaluate Pi(�(i); �) by

Pi(�(i); �) = ph(�
0(i))P 0

i (�
0(i); �0)

With this procedure we can compute the truncated di�erential probability of PSN-
structures and (the maximum average of) the di�erential probability of SPN-structures with
16 input words. Furthermore, applying this procedure to the each MixColumn transfor-
mations of Rijndael, allows us to compute the truncated di�erential probability and (the
maximum average of) the di�erential probability. From this computation, the maximum
average of the di�erential probability of 7-layer Rijndael including 4 nonlinear layers, i.e.
4-round Rijndael, is upper-bounded by 1:00 � p16 (= 1:065 � 2�128) and that of 9-layer Ri-
jndael including 5 nonlinear layers, i.e. 5-round Rijndael, is upper-bounded by 0:940 � p16

(= 1:0007 � 2�128) 1. To be secure against di�erential and truncated di�erential cryptanal-
ysis, 2 more layers (1 round) are necessary to avoid the exhaustive search of the the last 2
layers (1 round). This implies a total of 80 S-boxes is needed.

1[12] stated that 5-round di�erential with probability 1:06 � 2�128 was found, but this was typo. The correct
round is 4.



4.3 Truncated Di�erential Probability of E20-like Transformation

Using the values of the di�erential probability of the 2r-layer PSN-structures, we can cal-
culate the truncated di�erential probability of E20-like transformations recursively. In this
calculation, we assume the random output-di�erential Feistel cipher, hence the probabili-
ties for �(�x � �y) = 1 and �(�x � �y) = 0 for two random output-di�erential values
�x;�y;2 GF (2n) n f0g are (2n � 2)=(2n � 1) and 1=(2n � 1), respectively.

The procedure for calculating the truncated di�erential probability of the E20-like trans-
formation is as follows.

1) Computation of Truncated Di�erential Probability of Round Functions
Using the procedure for calculating truncated di�erential probability of 2r-layer PSN-
structure, calculate the truncated di�erential of round functions. Hereafter, we denote
the truncated di�erential probability of the i-th round function for the truncated dif-
ferential (� 0(i); �0(i� 1)) by Q0

r(�
0(i); � 0(i� 1)) = P (�(�X(i)) = � 0(i)j�(�X(i� 1)) =

� 0(i� 1)) for � 0(i); �0(i� 1) 2 GF (2)m

2) Initialization
Let �0(0) = (�L0(0);�R0(0)) 2 GF (2)2m. For given �0 2 GF (2)2m, calculate P 0

0(�
0(0); �0)

for every � 0(0) 2 GF (2)2m, where we assume

P 0
0(�

0(0); �0) =

�
1 if � 0(0) = �0

0 otherwise;

3) Recursive Computation of Truncated Di�erential Probability
Let � 0(i) = (�L0(i);�R0(i)) 2 GF (2)2m, �(i) = (�L(i);�R(i)) 2 GF (2)2m, where
�(�(i)) = � 0(i); �(�L(i)) = �L0(i); �(�R(i)) = �R0(i). Utilizing the values of trun-
cated di�erential probabilities of round functions, calculate P 0

i (�
0(i); �0) recursively for

every � 0(i) 2 GF (2)2m.

P 0
i (�

0(i); �0) =X
�0;

�(L(i� 1)� �) = �R0(i);
�(�) = �0

Q0
i(�

0;�R0(i� 1))P 0
i�1(�

0(i� 1); �0)

4) Calculation of (Maximum Average of) Di�erential Probability
Calculate Pi(�(i); �) by

Pi(�(i); �) = ph(�
0(i))P 0

i (�
0(i); �0);

where �(�) = �0.

4.4 (Maximum Average of) Di�erential and Truncated Di�erential
Probability of E20-like Transformation

In this subsection, we evaluate the maximum average of the di�erential probability of E20-like
transformations with proper initial transformations, where we assume the all linear layers
are same as that of E2.

First we consider E20-like transformations with 2-layer PSN-structures. In this case,
a nonlinear layer with 16 nonlinear functions, or 2-round E20-like transformations with 2-
layer PSN-structures can be adopted as the approximately random output-di�erential initial
transformation. 8-round E20-like transformation with 2-layer PSN-structures with proper
initial transformation has maximum average of di�erential probability of less than 0:940�p16

(= 1:0007 � 2�128). In this case, it is provably secure with 80 nonlinear functions. To o�er
security against di�erential cryptanalysis, 2 more rounds are necessary, which means it needs
a total of 96 nonlinear functions.



If we slightly change linear transformation of SPN-structures, it can be provably secure
with 72 nonlinear functions. To o�er security against di�erential cryptanalysis, 2 more
rounds are necessary, which means it needs a total of 88 nonlinear functions.

Next we consider E20-like transformations with 4-layer PSN-structures. In this case, a
nonlinear layer with 16 nonlinear functions or 2-round E20-like transformations with 2-layer
or 4-layer PSN-structures can be adopted as the proper initial transformation. A 5-round
E20-like transformation with 4-layer PSN-structures with proper initial transformation has
maximum average of di�erential probability lower than 0:940 � p16 (= 1:0007 � 2�128). In
this case, it is provably secure with 96 nonlinear functions. To be secure against di�erential
cryptanalysis, 1 more round is necessary, which means it needs a total of 112 nonlinear
functions to avoid the exhaustive search of the �nal round.

On the other hand, an 8-round E2-like transformation with 3-layer SPN-structures, has
maximum average of di�erential probability lower than 0:940 � p16 (= 1:0007 � 2�128). In
this case, it is provably secure with 128 S-boxes (in this case, approximately random output-
di�erential initial function is not necessary because of the �rst nonlinear layers of the �rst and
second S-boxes). To be secure against di�erential cryptanalysis, 1 more round is necessary,
considering the exhaustive search of the �nal round, which implies it needs a total of 144
S-boxes.

These results means that E20-like transformations with 2-layer PSN-structures is more
secure than 3 or 4 layer.

The block cipher MISTY with 16-input words and 3-rounds has maximum average of
di�erential probability equal to p16max, where pmax is the maximum average of di�erential
probability of nonlinear functions. In this case, it is provably secure with 81 S-boxes. To be
secure against di�erential cryptanalysis, 1 more round is necessary, which implies it needs a
total of 108 S-boxes.

4.5 Impossible Di�erential Cryptanalysis of Rijndael, E20-like Trans-
formation

Impossible di�erential cryptanalysis is a cryptanalysis against block ciphers which utilizes
the pair of input and output-di�erentials whose di�erential probability equals 0 [1].

In the previous procedure, we proposed the procedure which calculates the truncated
di�erential probability of random output-di�erential (Feistel) ciphers. It follows that from
the relations between truncated di�erential probability and di�erential probability we can
also calculate the di�erential probability.

From the values of the di�erential probability, our procedure can calculate the resistance
against impossible di�erential cryptanalysis, by counting the number of di�erentials whose
probabilities equal 0. In the case of E20-like transformations with 2-layer PSN-structures, it
can be proved that 9-rounds o�er security against impossible di�erential cryptanalysis while
8-rounds do not. In the case of E2-like transformations with 3-layer SPN-structures, 8-rounds
o�er security against impossible di�erential cryptanalysis and 7-rounds do not. Comparing
the numbers of nonlinear functions, E20-like transformations with 2-layer PSN-structures is
superior to E2-like transformations with 3-layer SPN-structures, i.e. the basic structure of
block cipher E2.

In the case of Rijndael, it can be proved that 7-layers (including 4 nonlinear layers) o�ers
security against impossible di�erential cryptanalysis while 5-layers (including 3 nonlinear
layers) do not. Comparing the numbers of nonlinear functions, basic structure of Rijndael has
a little higher level of security against impossible cryptanalysis than E20-like transformation
with 2-layer PSN-structures. However, considering the amount of linear layer operations,
E20-like transformations with 2-layer PSN-structures may be superior to the basic structure
of Rijndael, because the linear layer of E20-like transformations consists of only \xor" whereas
that of Rijndael consists of heavier linear transformation over Galois �eld GF(28).



5 Conclusion

This paper examined the truncated di�erential probability and the di�erential probability
of the word-oriented Markov ciphers and random output-di�erential (Feistel) ciphers like
Rijndael and (modi�ed) E2 and clari�ed the relations among the di�erential, truncated
di�erential and the impossible di�erential cryptanalysis of the random output-di�erential
(Feistel) cipher. This random output-di�erential (Feistel) cipher uses a weaker assumption
than the assumption that all S-box di�erentials are equally likely. This is not a strong
assumption because denying this model is equivalent to denying the truncated di�erential
cryptanalysis. We then described a procedure for calculating the truncated di�erential prob-
ability and (maximum average of) the di�erential probability of such ciphers. Using this
procedure, we computed and proved the security of Rijndael, E2 and the E20-like transfor-
mation against di�erential, truncated di�erential and impossible di�erential cryptanalyses
under the assumption of a random output-di�erential (Feistel) cipher. Our evaluation �nds
that Rijndael is the most secure, and the E20-like transformation with 2-layer PSN structure
is a little less secure. However, the linear transformation in E20-like transformations is lighter
than that of Rijndael and can be improved by slightly changing, so the overall speed may
be the highest (may be \not" the highest). Our results implies that SPN-structures (like
Rijndael, Serpent) and Feistel structures with S-boxes composed of 2-layer PSN-structures
(like E2-like transformation with 2-layer PSN-structures) have no disadvantage in terms of
security against di�erential and truncated di�erential cryptanalysis. We can similary evalu-
ate the security of Feistel structures with S-boxes composed of 2-layer SPN-structures (like
Two�sh [18]) against di�erential and truncated di�erential cryptanalysis, though we have
not evaluated Two�sh yet because Two�sh is not composed of just word-wise operations of
�xed size. However, Feistel structures with 2-layer SPN-structures can be proved to be secure
and have no disadvantage in terms of security against di�erential and truncated di�erential
cryptanalysis, if we select the proper linear transformations in their SPN-structures.
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Introduction

In a paper submitted previously, the author argued that a new AES
evaluation criterion of future resiliency be added, defined as the
ability to respond to the uncertain future and that this criterion could
best be met by NIST selecting multiple disparate AES winners.  This
paper continues that discussion by providing more rationale.  It also
asks some questions and explores possible outcomes of the AES
process.

Summary From Previous Paper

The author’s previous paper closed with this summary:
“NIST should carefully examine the various classification schemes
that have been made and endeavor to choose the AES second round
finalist candidates considering that it is a worthwhile goal to try to
ensure that differing design approaches are included.  This is
because of reasons of future resiliency, extending cryptographic
knowledge, Super AES, crypto toolbox philosophy, possible patent
complications, target diffusion, avoidance of artificial tiebreakers,
recognition of the problem being multidimensional with imperfect
information, and the constraints of other standards organizations.
That is, in selecting the handful of AES second round finalists,
disparity of design approaches is to be desired over conformity.”

For further explanation of these rationales, see the paper at the NIST
AES website at www.nist.gov/aes.  These rationales continue to be
valid in the discussion regarding whether there should be multiple
AES winners or not.

NIST is to be congratulated for their selection of AES finalists as they
do represent a disparate selection from among the submitted AES
candidates.  Furthermore, the inventors of each finalist algorithm
represent a significant portion of the skills in the cryptographic
community.  As the AES winner(s) must give a royalty-free license (if
the algorithm is patented), perhaps the main rationale to participate in



the AES process is the recognition one receives, with the winner(s)
getting major “bragging rights.”  Another way to look at the NIST AES
finalist selection is that NIST has put “five cats in a bag” to see who
survives as each submitting group is highly motivated to find chinks in
the armor of the other AES finalist algorithms.  Better to find out now
rather than later.

I) Additional Rationale for Multiple Algorithms

Space Probe Scenario

A reason to consider multiple winners is that sometimes one needs to
use hardware for performance reasons, but the hardware is difficult or
impossible to change once deployed.  Consider a commercial space
probe [JC].  Once it arrives at its destination, it must be essentially
self-sufficient.  Calling it back is out of the question.  However,
backup circuitry is a normal part of its design and this flexibility could
be extended to include a backup symmetric cryptographic algorithm.
As these types of projects might take years or decades, such an
algorithm backup is simply prudent.

AES Selection Time

Another factor that should be considered by NIST is the amount of
time that was taken by the AES process.  If a sole AES winner were
to prove unfortunate for some reason, then it could take many years
to determine a substitute.  It has been said that three months is
considered an Internet year.  The time needed to do another AES
process may not meet the requirements of the market.

Infrastructure Overoptimization

As we saw with the deployment of DES, the selection of one
algorithm by NIST meant that best-practices resulted in the use of
that one algorithm.  For much of the life of DES, there was no
pressing need for vendors to try to design systems to support multiple
symmetric cryptographic algorithms, DES was it.  With DES the only
choice, this simplified things for a vendor.  However, we see today
that this simplification resulted in a deployed infrastructure where
there are concerns that some portions are now vulnerable to a
determined attack.



Einstein is reputed to have said, “One should try to make things as
simple as possible, but no simpler.”  Even the selection by NIST of as
few as two winners will mean that vendors will need to design in
flexibility of algorithm choice in some products and provide for the
possibility of algorithm replacement in others, rather than
overoptimize as was done in the case of DES.

NIST as AES Architect

NIST is overseeing the AES process.  As such, NIST is the architect
of the AES process, that is, it is creating the AES design architecture.
There are two fundamental responsibilities of an architect, as follows:
1) Specify enough detail to allow others to proceed.
2) Know what not to specify to allow creativity and flexibility in

others.

In this AES architect role, NIST should follow the general principle of
“If in doubt, don’t.”  NIST/NSA can and should make “apparent
health” statements on the security of the AES finalists.  NIST can and
should make decisions about which AES finalist algorithms are
suitable for government use, using whatever additional criteria (if any)
besides security that NIST deems appropriate.  This is ALL that NIST
should try to do.  NIST should resist the temptation to try to solve
potential challenges resulting from the existence of multiple
algorithms, such as the need to negotiate algorithms or the need for a
vendor or market segment to select the most appropriate algorithm.

NIST or the Marketplace?

Asking NIST to select a sole AES winner means that one believes
this decision is appropriate for top-down decision-making, as in a
command economy or an army.  A top-down methodology is
appropriate when any decision is better than no decision (e.g., traffic
lights) or when a decision must be made quickly (e.g., a battle).
However, simply as a matter of information flow, all the relevant
information cannot be expected to be available to the responsible top-
level decisionmaker.  The marketplace (bottom-up decision-making)
has been shown to be much more responsive and adaptable than a
command economy.  This is because each economic entity or group
of entities makes decisions based on its own information and needs.



So one question that NIST needs to ask itself is does it see the AES
process (that is, the development of commercially-appropriate
symmetric cipher or ciphers) as needing a top-down decision to be
made or does it believe that the marketplace is the most appropriate
place for this decision to be made.  The marketplace has a way of
determining what is appropriate; if there is truly one finalist that is
superior in many ways, it does not need NIST’s selection of it as the
winner to emerge as the winner in the marketplace.  However, there
is a real concern that NIST could make a suboptimal choice due to
insufficient information.  In this case, “hands off” is the wisest course
of action.

NIST needs to resist the temptation to make a decision in an area
beyond their (or anyone’s) competence.  The round 2 discussion
issues asking questions about how to assess speed versus security
margin, need for low-end flexibility, and hardware versus software
performance indicate that NIST recognizes its lack of certainty in
these areas.  This is fundamentally because there are no obviously
single correct answers to these questions.  Different applications may
require different answers to these questions.  NIST should make a
virtue of its (really, everyone’s) ignorance and not attempt to decide
these unanswerable questions one way or the other, but let others
make each decision that is most appropriate for them.

Bias?

It may not be politically correct to say so, but NIST should understand
that any counsel given it might be biased; this might be especially
true of counsel from submitters of algorithms.  This is not necessarily
a bad thing, the submitters of the AES finalists have very high
cryptographic skills and it is certain that the submitters made their
decisions after thinking long and hard about the problem.  It is just
that each submitter naturally thinks their beliefs are correct.

For example, it would be no surprise that a designer of a very flexible
algorithm might think that flexibility is an important AES criterion.
That is likely one of the reasons the submitted algorithm was made
flexible in the first place, so that it would have an advantage when
compared with other AES candidates.



The point is that if NIST were to announce they are seeking a single
winner then this (in turn) results in a ranking of finalists, just as
identifying any other AES criterion as critically important would also
potentially rank the finalists.  However, note that if an algorithm is
truly more flexible than another, it still stands a greater chance of
being used in the “marketplace” selection process mentioned above.
That is, any advantages of an algorithm remain advantages; by
selecting multiple winners and relying on the marketplace, NIST is not
required to try to determine which advantages are more important
than others.

II) Some Questions

Quantum Computers

One big question regarding the future is whether or not quantum
computers are feasible and if they are, what effect they will have on
cryptography.  An arbitrary bitsize quantum computer (assuming it
can be built) allows a square root attack on a symmetric cipher.  The
possibility of this provides some justification for the larger AES
keysizes; a 256-bit symmetric cipher would take 2**128 quantum
operations to exhaust the key space.

However, an interesting question is whether there is some limit in
practice to the number of bits of a quantum computer.  Many
researchers suspect this is the case, that quantum decoherence will
prove insurmountable for some number of quantum bits.

In terms of AES this question becomes: if one can only build an x-bit
quantum computer, how much does this help in attacking each AES
finalist?  As all block ciphers are composed of smaller chunks, how
might these chunks interact with a quantum computer?  This
possibility can be termed a partial quantum attack.  And of course, an
adversary could construct many quantum computers to run the attack
in parallel, assuming this would help.  So the question is: “How does
a parallel partial quantum computer affect the ability to attack the
AES finalists?”

As an example, DES is composed of a 56-bit key.  A 56-bit quantum
computer should be able to attack the DES.  However, the DES
design is such that each of the sixteen rounds uses a 48-bit key.  This



suggests the possibility that a 48-bit quantum computer might
somehow be able to be used to successfully attack the DES.  The
question of how the AES finalists stack up in relation to parallel partial
quantum computers is a critical question to be answered.  NIST
should step up to this analysis if it is not forthcoming from the
research community.  No final AES decision should be made without
some exploration of the expected effects of this possibility.

Random Cipher

It is clear that a random cipher for a certain blocksize is the
unrealizable ideal.  This is a cipher that selects a random choice for
the output block for each input block, the key providing an index into
a set of random selections.  There is no structure that is able to be
attacked by an adversary.  The best attack is key exhaustion, which
is the goal of any symmetric cipher.  It is also clear that such a ideal
block cipher is totally impractical as the space needed is totally
infeasible.  However, one would like any particular block cipher to
“appear” to be ideal to an adversary.  That is, even though the
structure is known to an adversary, this structure does not allow any
shortcuts to be made.  A critical question is whether a AES finalist
appears “random.”  There are many established randomness tests.
Any deviation from random is a cause for concern.

Another related important question is at what point do degenerate
forms of a finalist not appear random.  For example, a finalist may
have 20 rounds.  It is important to know if the output after 4 rounds
appears random or if it takes 8 or even 16 rounds.  This is important
as it gives an indication of the margin of safety built into the cipher.  It
is obvious that a round of cipher A cannot be considered equivalent
to a round of cipher B but this type of analysis allows one to at least
map some internals of one algorithm to another for comparison
purposes.

Knowing what to do with this analysis is more problematical.
Regardless, this is an important data point.  If I know that cipher A is
essentially as fast as cipher B, but that cipher A results in random-
appearing output after 5 of 16 rounds and cipher B results in random-
appearing output after 8 of 12 rounds, then cipher A may be the more
conservative choice in some sense.  But NIST should be wary of this
analysis, one can simply add more rounds at a performance cost.



Should a cipher be rewarded (or penalized) for minimizing overhead?
Should a cipher be rewarded (or penalized) if it has “more” rounds?
This means that (apparent) security and performance are very closely
tied together.

Combined Attacks

In the real world, the adversary is able to combine the effects of
various attacks.  Even if each attack results in only a relatively small
advantage that is not relevant when considered by itself, a
combination of attacks may accumulate to result in a feasible attack.
For this reason, any discovered theoretical advantage for an
adversary attacking an AES finalist (no matter how apparently small)
is a concern.

III) Thoughts on the AES Finalists

Following are some thoughts on the AES finalists.  It should be
recognized that these ideas are tentative and subject to improvement
and correction.  Of course, the detection of any security flaw in a
finalist would have a major impact.  Each finalist algorithm can be
seen as a statement by the designers regarding not only one way to
solve the various tradeoffs of the AES puzzle, but also as how the
designers see the future.  It is hoped that these thoughts on the
finalists are used by NIST in the spirit in which they are given, as food
for thought.

MARS

MARS was designed with some thought to try to avoid potential future
attacks, especially in its heterogeneous structure, a keyed-core
surrounded by unkeyed forwards- and backwards-mixing functions.
The unkeyed mixing functions cost time and space, but their inclusion
seemed prudent to the designers and worth the cost.  The core
“mixing” function uses addition, multiplication, fixed and data-
dependent rotations, and an S-Box (straightforward substitution
cipher).  The designers responded to criticism to improve the
performance of MARS by using the “tweak” allowed by NIST.

From a perspective on the future, the designers of MARS believed
the best way to handle uncertainty was to use many different
techniques using a cost/benefit analysis.  The MARS design is the



most different of the Feistel cipher finalists.  Another way to look at
MARS is that IBM is a large organization which had many people with
good ideas trying to get them incorporated into the IBM submission.
This can be seen in the number of authors of the MARS paper.

From a perspective of future resiliency, the inventors of MARS
thought that a heterogeneous structure was important.

RC6

RC6 was built from a heritage of RC5 and was designed to be fast
and simple to describe.  The core ideas of RC6 came from RC5,
which was designed by one person, as such it represents a unity of
design approach.  In many scenarios, RC6 is the fastest AES finalist.
The pseudocode for RC6 is very straightforward with basic operations
defined on 32-bit words; the RC6 pseudocode is the shortest of all
finalists.  It uses addition, multiplication, data-dependent rotations and
substitution to do the cryptographic “mixing.”  RC6 can be seen as an
example of building a performance-optimized cipher on the idea of
data-dependent rotations.  The challenge for the designers of RC6 is
to show that their design is not too simple.  For example, comparing
RC6 to MARS, MARS adds more complexity to its specification to try
to provide more mixing.

Indeed, the “Correlations in RC6” paper by Knudsen and Meier
(available at www.nist.gov/aes) indicate that reduced rounds of RC6
do not appear random.  The observation by Saarinen in the NIST
RC6 forum on finding “almost equivalent” keys in RC6 suggests other
possible concerns.  These ideas hint that RC6 may be on the edge of
security.

From a future resiliency perspective, the designers of RC6 believed
that parameterization was paramount.  In this way, if a certain
number of rounds was found to be weak, this number could be
adjusted upwards.

Rijndael

Rijndael does not use a Feistel structure, rather it uses a matrix
structure where the cryptographic mixing involves byte substitution,
row shifting and column multiplication.  Rijndael has the most



different structure when compared with the other AES finalists.  It can
be implemented using byte operations and is therefore very flexible.

From a future resiliency perspective, the designers of Rijndael were
willing to go in new directions and wanted high flexibility in
implementation.

Serpent

Serpent is a conservative design and deliberately tries to build on the
vast amount of information relating to DES.  Serpent is also the
slowest of the five AES finalists on most platforms.  Being the
slowest, the challenge for the designers of Serpent is to try to show
how the other finalist algorithms cut corners in ways that Serpent did
not (that is, the additional performance cost should be justified).  For
example, suppose that NIST gave all five AES finalists “certificates of
apparent security,” it is not clear what symmetric algorithm niche
would best be filled by use of Serpent, as opposed to one of the other
finalists.  Of course, a specific implementation might find that Serpent
is the fastest method, if the instructions it uses are fast and the
instructions that other methods use are slow.

The designer’s of Serpent have presented an “equivalent rounds”
analysis of the AES candidates and tried to show how Serpent uses
more rounds than might be thought needed as a safety margin.  Yet
the designers did not officially change the specification of Serpent
(even though they knew that there were many other faster AES
candidates) so they must believe they have good reasons for
designing it as they did.  Serpent and RC6 appear to have opposite
design philosophies in this area of tradeoff between security margin
and performance.

From a future resiliency perspective, the designers of Serpent
decided to use more rounds and affect performance to try to achieve
a higher security margin of safety.  This means Serpent may have
some performance concerns, at least when compared with the
alternatives.



Twofish

Twofish is a byte-oriented Feistel cipher with great flexibility of
implementation, allowing a wide range of time/space tradeoffs.  Many
research reports have been written on various aspects of Twofish,
which give confidence in its security.  There was also a cost/benefit
analysis done by the designers to decide which operations to use.

From a future resiliency perspective, Twofish’s goals were security
and implementation flexibility.

IV) Possible Outcomes
Does NIST want the fastest cipher?  ... the cipher with the largest
safety margin?   ... the cipher with the most flexibility?  ... the cipher
with the most disparate instructions?  ... the most Feistel-like cipher?
... the cipher with the most disparate design?  Single or multiple
winners?  ... some other criteria?  The point is that different answers
to each question can lead to a different ordering of the AES finalists.
Furthermore, any selection by NIST indicates in a backwards fashion
which criteria they decided was more important than others.  As one
example, comparing MARS and Serpent, are more rounds or different
rounds the better way to address having a sufficient safety margin?
As another example, comparing MARS and RC6, are many different
ideas or unity of design the better way to design a cipher?

The problem for NIST is not that there are no answers, it is that there
are too many rational answers.  Barring a security flaw, any of the
AES finalists could be justified as being the sole winner simply by
NIST adopting the corresponding design philosophy behind the
winner as its own.  NIST should resist any temptation to do this.
Rather, as each submission has a different design philosophy, NIST
should accept the implication that there was no obvious single all-
around best solution.  NIST should accept this implicit “higher-level”
statement from the submitters and agree with them (as a group) that
there is no single all-around best answer.

Strictly speaking, NIST’s AES mandate is to select a winner or
winners that is/are suitable for use by the US Federal government to
protect sensitive non-classified data.  Following the historical pattern
of DES, it is also expected that NIST/NSA will issue a statement that
the winner(s) is/are suitable for the intended purpose.  Historically, it



was this endorsement that gave confidence to other groups, such as
the American Bankers Association, to also endorse DES, which in
turn led to DES becoming the most-deployed commercial
cryptographic algorithm.

Now, some 25 years after DES, we see the endorsement by NIST of
3 families of asymmetric cryptographic algorithms in the revision of
FIPS 186; namely, those based on the difficulty of integer
factorization, the normal discrete logarithm, and the elliptic curve
discrete logarithm.  This allows the advantages of each method to
determine the way asymmetric cryptography rolls out in the future.
That is, NIST recognizes that there are multiple answers to the
asymmetric cryptography question.

This author hopes that similar rationale will prevail among the NIST
AES selection team regarding the symmetric cryptography question.
While this author believes that the best outcome of the AES process
is a handful of winners which lets the marketplace determine each
algorithm’s niche, it is realized that not all others share this opinion.

Ranking?

NIST should realize its decision is not restricted between having one
AES winner and having multiple winners, it could also decide to have
a ranking among multiple winners.  As an example, NIST might
specify that algorithm A is the primary winner and algorithm B is the
backup.  In this example, an implementation would be expected to
either implement algorithm A (if resources are constrained) or both
algorithms A and B (if resources are available).  This seems much
preferable to declaring a single AES winner, although inferior to
selecting multiple co-equal winners.

Multiple Endorsement?

Another alternative is that regardless whether one or multiple winners
(ranked or not) are selected by NIST for use by the US Federal
government, NIST/NSA could issue health statements that certain
finalists meet their intended security goals.  This would at least allow
other standards bodies to negotiate with increased confidence for the
rights to an endorsed algorithm, if that algorithm better met their
needs.  For example, NIST might say that algorithm A wins (for US



Federal government use), but also issue a NIST/NSA report that
algorithms A, B, and C meet their intended security goals.

Just to be clear on this point, if all five AES finalists have no known
security weaknesses, then all five finalists should be giving a
“certificate of health” regardless of the decision regarding the number
or specific selection of AES winner(s) for approval for US Federal
government use.
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The Effects of Multiple Algorithms in the
Advanced Encryption Standard

Ian Harvey, nCipher Corporation Ltd, 4th January 2000

Abstract
This paper presents a discussion of the issues relating to the selection of encryption
algorithms in practical situations. An AES standard which recommends multiple
algorithms in a variety of ways is discussed, and it is shown that this can present an
overall advantage.

Introduction
The Advanced Encryption Standard aims to become the first choice for most situations
requiring a block cipher. To do this it has to satisfy a wide variety of requirements for -
amongst other things - security, performance, and resource constraints.

Each of the current five candidate algorithms for AES satisfies a different balance of
these constraints; the ‘best’ algorithm depends on circumstances, which are impossible
to know beforehand. Furthermore, one of the principal requirements - that of security
of the algorithm - cannot easily be measured; subjective judgements therefore must be
made (based, for instance, on notions of ‘safety margin’ or ‘conservative design’) which
may prove to be inaccurate or irrelevant in years to come.

In the absence of a precise definition of what constitutes the ‘best’ algorithm, or
accurate means even to measure this, any choice of algorithm is somewhat arbitrary. In
security terms this seems needlessly risky, and it has been suggested that avoiding the
need for a single final algorithm would have advantages.

In the sections below, we discuss the factors which affect algorithm choice, and then
examine the effect  on these of an AES which offers multiple algorithms.

Factors in algorithm choice
Many factors may be involved in the selection of an algorithm. In most cases, one single
factor is overwhelmingly the most important, and often some are of little or no
importance.

Aside from performance issues, which are discussed later, criteria for algorithm
selection include:

• Security against theoretical attacks

The reputation of an algorithm is frequently a major factor in its selection, both in
terms of the design of the algorithm, and the extent to which it has been studied for
cryptanalysis. A theoretical attack does not have to become practical before the cipher
is rendered commercially unusable (for instance, liability insurance on a system using it
may become void).

It is to be expected that no candidate with a known theoretical weakness will be given
final recommendation within AES. Furthermore, the effect of the AES ‘brand name’ will



be to concentrate research into the selected algorithms; this will (all being well)
improve their reputation as time passes.

• Security of implementations

Some of the most practicable attacks of recent years have been directed against
particular implementations of algorithms, rather than their theoretical definitions. These
include timing attacks, power-analysis attacks, and fault-induction attacks.

In general, defending against these attacks is done when the implementation is
designed, using a range of proprietary techniques. Some algorithms may have features
which make them particularly difficult to defend, but it is generally not possible simply
to define a ‘good’ feature set. Selection of an algorithm to resist implementation attacks
can often only be done when the threat model has been decided, and little generalised
guidance can be given.

• Cost of implementation

The effort required to correctly implement a given algorithm is frequently a major
issue. For software implementations, the factors which affect this include:
- availability of reference implementations in a given language
- ease of understanding and adapting the reference implementation
- complexity of any optimisations required for optimum performance, and
- the ease and completeness of correctness testing.

 For hardware implementation, important factors are:
- the complexity of the cipher
- the clarity of the cipher’s given description
- availability of test vectors sufficient to give complete coverage.

Many developers will want to choose AES on the grounds of easy access to good
reference material.

• Architectural implications

The precise functional ‘shape’ of an algorithm will have an impact on the way systems
and protocols are designed to accommodate the algorithm. The block size and key size
are the principal parameters, and fortunately all AES candidates are required to be
compatible here.

However, additional parameters or features offered by particular algorithms - variable
number of rounds, keys of other than standard length - may create additional
complexities. Where it is not possible to adapt existing protocols to deal with these
parameters, behaviour is often implied. This can be a major cause of interoperability
problems - something which must not be allowed to bedevil the AES.

• Legal issues

Patent, copyright, and export-control issues affect no area of computing more than
cryptography. Commercial developers will accept some licensing costs, but only up to a
point - many of the potentially superior alternatives to DES (e.g. IDEA or RC5) have
not been deployed widely, mainly for cost reasons. Free software developers are often
unable to accept any restrictions on algorithm use.



One of the goals of the AES process is to produce a cipher which can be deployed
universally, and a leading reason for choosing it will be freedom from legal
impediments.

Performance issues
Every situation has its own unique performance criteria, which are invariably a trade-off
between system requirements and speed, given ‘enough’ security. There are three main
categories:

• Best ideal-case speed

The highest bit rate is required, irrespective of implementation complexity. The
platform for deployment can be chosen (or at least unsuitable ones eliminated).
Typically this means an algorithm which does well when hand-optimised in assembler
for a modern processor, or can use parallelism in a large ASIC.

This type of performance is required by high-end hardware manufacturers, software
developers who choose to target few platforms, and users who can choose platforms
for best performance.

• Best worst-case speed

An acceptable bit rate is required, on a wide variety of platforms, or on a relatively
non-standard platform. There should be no platforms on which speed is significantly
lower than an alternative algorithm.

This type of performance is required by software developers who target a broad range
of platforms, and is often associated with good speed available from a portable C
implementation. It is also of significance to manufacturers (of e.g. embedded systems)
whose choice of platform determined by other factors and cryptography is a secondary
consideration.

• Minimum implementation size

Bit rate is not important, but constraints are placed on the resources required: gate
count, code size or table size.

This type of performance is required by manufacturers of embedded systems for mass
deployment, where unit hardware cost is critical. However, this group typically has
much less need of interoperability outside the embedded application. The main reason
to choose AES in this case will be the brand-name security.

It should be noted that performance and available resources will increase dramatically
over time, but resistance to attacks will decrease. A standard intended for the long
term should favour security over performance or resource requirements.

Approaches towards multiple algorithms
An Advanced Encryption Standard may be proposed which recommends more than
one algorithm. There are a number of ways in which this might be done.



Multiple algorithms may be made optional; they must however be specified in such a
way that any conforming AES implementation can interoperate with any other.

In some situations, both encryption and decryption can be controlled by one party, but
in others they are controlled by separate parties and the choice of algorithm must be a
mutually acceptable one. Any two such implementations must therefore share an
algorithm, and the AES recommendations must guarantee this. The following
approaches will be suggested:

A. All AES implementations must include all algorithms.

B. All AES implementations must include one primary algorithm, and a choice of
secondary algorithms (possibly also ranked in order). Implementations will include
secondary algorithms if it is to their advantage.

C. Given a set of N algorithms, an AES implementation must include at least
N/2+1 algorithms from that set - this ensures any two implementations have at least
one algorithm in common. Implementations will choose the subset of algorithms that
best fulfils their requirements.

Theoretical Security / Implementation Security
Properly managed, multiple algorithm choice should enhance security. Should one
algorithm fall to cryptanalysis, a second choice will already be available to provide
backup. Also, given a choice, an developer will be able to pick the algorithm which best
resists implementation attacks in the available technology.

Improperly managed, multiple algorithm choice will detract from security. If the choice
of algorithm can be subverted in a given protocol, an attacker will be able to pick the
easiest target.

Approach A is the most robust; two communicating parties can negotiate the
‘strongest’ algorithm and it will be used. Should an algorithm be broken, it is simply
removed and the next best is selected.

Approach B allows implementers to choose to implement the secondary algorithms if
they require a fallback. If secondary algorithms are broken first, all systems can revert to
the primary algorithm, but if this is broken, some systems may not have an alternative.
This scheme is therefore as resilient as approach A, except where systems omit the
secondary algorithms due to cost considerations. In this approach, it would be prudent
to choose a primary algorithm with a good security ‘safety margin’.

Approach C, would in theory allow implementers to implement their choice of the
‘strongest’ algorithms, and two communicating parties would agree on at least one they
considered secure. However, should any algorithm subsequently be broken, some
combinations of communicating parties will be left unable to communicate. Also, this
relies on the implementers holding opinions about algorithm security, which is contrary
to the spirit of a security standard.

In practice, this makes approach C less secure than a single-algorithm selection.



The beneficial effect of an Advanced Encryption Standard concentrating cryptanalytic
efforts will be diluted if too many algorithms are chosen. Approach B will present a
primary target for research, and is best in this regard.

Cost of implementation
Any approach that mandates more than one algorithm to be implemented will raise
the development costs proportionally. Approach A particularly, and to a lesser extent
C, have the most impact. Where development costs are the overriding concern,
approach B is as good as a single-algorithm selection.

The cost of implementation can be reduced dramatically, however, given good
reference materials to accompany the standard. It is to be hoped that the various
software implementations made available during the selection process will also be
available to accompany the standard itself. This will strongly reduce the cost of
producing a correct implementation.

It may be necessary to rewrite the descriptions of one or more algorithms to use a
consistent set of terminology - particularly, for instance, with respect to bit-numbering
and byte-ordering conventions.

Architectural implications
Multiple algorithms, and the process required to select one, will undoubtedly add to
the architectural changes required for the new standard. In many situations, where a
negotiation of cipher suite is already part of the protocol, this will have minimal
additional impact.

Approaches A and B allow the selection to be made fixed, but approach C
necessitates some form of negotiation, and this may be impossible in some
circumstances.

The issue of additional algorithm parameters needs careful consideration. The table
below gives some potential variation in parameters for each of the current AES
candidates:

Cipher Variations
MARS Key size 4-39 32-bit words
RC6 Word size w ,  no. of rounds r, key size 0-255 bytes
Rijndael Block length of 128, 192 or 256 bits
Serpent Key size 0..256 bits
Twofish Key size 0..32 bytes

All block ciphers can accommodate a 128-bit block, and 128, 192 and 256-bit keys as
per the AES requirements, but beyond this the functionality differs substantially. In fact
no two candidates have exactly the same set of allowed keys. It is poor software
engineering practice to expose this to the user of the cipher; any variant in algorithm
should exactly match the functional interface of the other, including rejecting the same
set of invalid keys.

Similarly, if any variations in the number of rounds is proposed to allow a
speed/security trade-off to be chosen by the user, it is poor design to let the user



choose the number of rounds directly. Apart from the dangerous possibility of a
round-by-round attack, it requires the user to know ‘good’ and ‘bad’ values for each
algorithm. An acceptable solution would be to allow, say, three security levels -
‘minimum’, ‘medium’, and ‘maximum’, which is translated to a number of rounds
appropriate to the algorithm in use.

Any AES which recommends more than one algorithm must address these issues, to
remove ambiguity and promote interoperability.

Legal Issues
Clearly, multiple algorithms may increase the legal complications for a developer. In an
ideal case, any algorithm offered as an option in the final AES will be free for use
without restriction. As a minimum, sufficient  algorithms should be available to
construct a conforming implementation, without any patent or similar restriction.

Approach A requires all algorithms to have no restrictions; approach C requires the
majority to have no restrictions, and approach B requires the primary algorithm alone
to have no restrictions.

Performance - ideal case
Multiple algorithms give the best opportunity to maximise absolute speed, especially as
evolving technology changes the balance between operations in different algorithms.

Approach A is good for this; the communicating parties will negotiate the fastest
algorithm, and this is guaranteed to be available.

Approach B has some merit; the primary algorithm may not be the fastest on the
chosen platform, but the implementer can add the secondary algorithms if they
improve speed. In the ideal case, both communicating parties will do this and speed is
maximised.

Approach C also allows implementers to choose the subset of algorithms which are
most efficient on the chosen platform. Two communicating parties should then be able
to pick their mutually fastest choice.

Performance - best worst-case
This benefits greatly from a choice of algorithms. Most worst-cases will be a particular
feature of an algorithm which behaves poorly on a particular platform, and often any
alternative will help.

The same strategy for choosing algorithms can be adopted as in the ‘ideal case’
scenario, with similar results. The worst case in Approach B is when the primary
algorithm has poor performance on a given platform, and one of the communicating
parties does not support any secondary algorithms. This is still an improvement,
however, because it will only occur in those few cases where there is an overwhelming
need for cost saving.

Minimum size requirements
This is impeded by the requirement for multiple algorithms; any standard which
mandates more than one to be implemented will severely impact costs for low-end
system developers.



To a certain extent this can be mitigated where two algorithms share common large
functional blocks, or memory requirements which can be overlaid. To demonstrate
this, the table below summarises the major functional requirements for each AES
candidate. For comparison, triple-DES is also listed.

The table sizes given are ‘minimum’ requirements, with a 128-bit key, and will not be
for the most efficient possible implementation; the RAM size given does not include
that required for working purposes. The ROM size may be misleading as it does not
include code size, which is in some cases traded off against lookup table size.

Candidate ALU Operations Table size (bytes)
logic
/
fixed
shift

add/s
ub

data-
dep
shift

GF
(2p)
ops

mult ROM
(S-boxes, etc.)

RAM
(key schedule,
etc.)

MARS X X X X 2048 160
RC6 X X X X none 176
Rijndael X X 512 16
Serpent X 128 32
Twofish X X X 64 24
Triple-DES X 256 24

So it can be seen, for instance, that adding RC6 to a chip designed to implement
MARS would have relatively little impact, but adding it to one optimised for Rijndael
might be difficult.

Approach A is the worst of all worlds for minimum-size implementations. Approach C
is better (only the smallest algorithms should be selected) but would still be typically
double the best-case cost. Approach B allows very resource-limited implementations
to implement solely the primary algorithm, and is as good as the single-algorithm case.

Summary of results
The effect of the various possibilities for a multiple-algorithm standard can be
summarised in the table below, where “++” indicates the most positive impact, “0”
indicates no impact compared to a single-algorithm standard, and “--“ is the most
negative impact.

Category A B C Notes
Security ++ + -- 1
Impl. Cost -- 0 - 2
Architecture - - -- 2
Legal issues -- 0 - 2
Best-case speed ++ ++ ++
Worst-case speed ++ + ++
Minimum size -- 0 -

Notes:

1. Based on the ability of the standard to continue given failure of a cipher.
2. Can be mitigated by a good standardisation process.



Conclusions
A number of approaches to specifying multiple algorithms have been presented. This
suggests that approach B - to specify a required ‘primary’ algorithm and one or more
optional ‘secondary’ algorithms - has advantages over other approaches, and allows
potential speed and security improvements over a single algorithm selection.

This approach means that outright performance can be eliminated from the criteria for
primary algorithm selection - this can be left for the secondary algorithm. Security (or
in practice, safety margin and conservative design) should be the primary algorithm’s
main requirement, followed by a modest resource requirement for minimum-size
implementations.

Similarly, resource requirements can be ignored when making the secondary algorithm
selection; implementers seeking a lowest-cost solution can simply omit these. An
algorithm more aggressively optimised for performance is ideal here.

Provided that the legal and functional differences between the algorithms are mitigated
by a well-written standard, there is no reason that this approach should not offer the
best of all worlds.
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1.  Introduction

 This report describes our evaluation results
of implementing hardware of the AES
finalists, concentrating on 128-bit key
version, using Mitsubishi Electric’s 0.35
micron CMOS ASIC design library. Our goal
is to estimate the “critical path length” of
data encryption /decryption logic and key
setup time of key scheduling logic for each
algorithm, which corresponds to the fastest
possible encryption speed in feedback modes
of operation such as CBC etc. To achieve this,
we wrote fully loop-unrolled codes in Verilog-
HDL language without introducing pipeline
structure that blocks the feedback.

 We first tried to investigate the evaluation
environments to be used in NSA, especially
the hardware design library, since NSA is
expected to join the Round Two hardware
analysis as has been shown in the NIST AES
homepage [NIST (1998)]. However, after
communicating NIST and MOSIS, we found
that the library is an internal 0.5 micron
standard cell library that is not available
outside NSA, and a non-proprietary version
of the library has not been developed. We
therefore decided to analyze the AES finalists
using Mitsubishi Electric’s CMOS ASIC
design library, whose information is publicly
available in [MITSUBISHI (1997)].

 Our simulation results show that Rjindael is
the fastest as expected and it is even faster
than DES, and Serpent is the next. Twofish,
Mars and RC6 are slower than Triple-DES.
We should note that since we used a general

ECA (embedded cell array) library without
applying special performance optimization
techniques, these algorithms that heavily use
arithmetic operations could be much faster if
we introduce more expensive semi- or full-
custom designs. However our analysis also
indicates that even such designs are not
expected to give a significant impact to
change the ranking of the critical path
length.

2.  The AES Finalists

NIST announced the five AES finalists, in
August 1999. This section briefly summarizes
these algorithms, mainly data encryption
operations, from hardware viewpoint.

2.1  Mars
  Mars supports 128-bit blocks and a variable
key size from 128 bits to 448 bits. It is
designed to take advantage of the powerful
operations supported on today's computers
[Burwick et. al. (1999)].
  The encryption part of Mars, which is
composed of four kinds of round functions, is
performed as follows. We have also listed
major components that have an impact in
hardware performance.

-The initial key addition
   4 additions mod 232.
-The unkeyed forward mixing (8 rounds)
   2 additions mod 232, and 4 look-up tables
   with 8bit-input/32bit-output.
-The keyed forward transformation (8 rounds)
   6 additions and 2 multiplications mod 232,
   and 4 data-dependent rotations.
-The keyed backwards transformation (8 rounds)
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   6 additions and 2 multiplications mod 232,
   and 4 data-dependent rotations.
-The unkeyed backwards mixing (8 rounds)

2 subtractions mod 232, and 4 look-up
tables with 8bit-input/32bit-output.

-The final key addition
   4 subtractions mod 232.

 It seems that the heavy use of arithmetic
operations, especially multiplications and
additions mod 232, makes hardware slower
and larger unless they are specially designed
in a transistor level.

2.2  RC6
 RC6 has three variable parameters, i.e., the
number of rounds, the data block size, and
the key size up to 2040 bits. The proposed
version in AES has 20 rounds with a total of 4
additions (subtractions) mod 232 before and after
the round functions [Rivest (1998)], [RSA (1998)].
The major hardware components in the round
function are as follows:

  2 additions and 2 multiplications mod 232,
  2 data-dependent rotations.

 These operations are well supported and fast
on modern microprocessors, but expensive in
hardware, especially multiplications and
additions mod 232, make hardware slower and
larger unless they are specially designed in a
transistor level.

2.3  Rijndael
 Rijndael also has a variable block length and
a variable key length. The block length and
the key length can be independently specified
to 128, 192 or 256 bits. The proposed number
of rounds in AES is 10, 12 and 14 when the
key length is 128 bits, 192 bits and 256 bits,
respectively [J.Daemen and V.Rijmen (1998)].
 The round function of Rijndael in 128-bit
blocks is composed of four distinct invertible
transformations as follows:

-The ByteSub transformation
   16 lookup tables with 8bit-input/output.
-The ShiftRow transformation
   no hardware operations.
-The MixColumn transformation
   logical AND and XOR operations.
-The AddRoundKey transformation

   logical XOR operations.

 Before the first round, the AddRoundKey
transformation is also performed, and in the
final round, the MixColumn transformation is
omitted.
 The basic components of Rijndael are logical
operations and lookup tables; the latter is
actually a composite function of an inversion
over GF(28) with an affine mapping. Hence
the structure of Rijndael is expected to be
suitable for hardware implementation.

2.4  Serpent
  Serpent has a 32-round SP-network
structure with initial and final permutations,
whose round function consists of 32 lookup
tables with 4-bit input/output, logical and
rotate shifts, and XOR operations [Anderson,
Biham and Knudsen (1998)], [ Biham (1997)].
 These components are suitable for hardware
implementation; particularly the small table
size is expected to make hardware
sufficiently small and fast.

2.5  Twofish
 Twofish has a 16-round Feistel-like structure
with an additional whitening of the input and
output that consists of XOR operations. The
major hardware components of the round
function are as follows:

  n lookup tables with 8-bit input/ output,
  4 additions mod 232,
  logical AND and XOR operations,

 The lookup tables can be also generated from
another smaller 8 lookup tables with 4-bit
input/output, and n is 12, 16 or 20 when the
key length is 128, 192 and 256, respectively.
 Twofish is not using particularly heavy
operations in hardware, but its critical path
is not short because, for instance, the number
of cascaded 8x8 lookup tables is 48, where
that for Rijndael is 10 when the key length is
128 [B.Schneier et. al. (1998)].

3. Design Policy

 Our purpose is to evaluate the fastest
possible encryption speed of the AES finalists
using the existing hardware library under



fair conditions. To achieve this and also to
complete the analysis in our limited time
scale and resources, we designed the 128-bit
key version for each candidate on the basis of
the following criteria and conditions:

1. We fully unrolled the loop in the
encryption and decryption logic and the
key scheduling logic to achieve the fastest

possible speed (throughput). In practice,
the loop structure is commonly used in
order to reduce hardware size, but
generally makes the hardware slower
because additional setup -time and hold-
time is required for the loop registers,
which is usually not negligible. Note that
we therefore did not take a special effort to
reduce hardware size.

2. We assume that all subkey bits are stored
in subkey registers before an encryption
operation begins. Also we have inserted
another 128-bit resister to hold a block of
ciphertext as shown in Figure 3.1, where
we define the critical encryption and
decryption path as the time required for all
output bits of the encryption and
decryption logic to reach the output
registers under the fixed (sub)key value.

3. We did not introduce pipeline architecture;
i.e., we did not insert any additional

intermediate registers in the encryption
and decryption logic. This is because the
pipeline architecture makes the ECB mode
faster but also blocks feedback modes of
operations such as CBC. In other words,
our hardware model encrypts one block
plaintext data in one cycle.

4. We did not use a special optimization

technique to design lookup tables in
hardware. This means that the
performance of the lookup tables heavily
depends on optimization capability of the
logic synthesis tool. In practice, as will be
shown in the next section, the output of the
synthesis tool seems to have reasonably
optimized the lookup tables (not very slow).

5. Our design environment is as follows:

  language:  Verilog-HDL
  simulator:  Verilog-XL
  design library:  Mitsubishi 0.35micron
                  CMOS ASIC Library
  logic synthesis: Synopsys Design Compiler
                 version 1998.08

 For arithmetic operations such as additions,
subtractions and multiplications, we used
faster ones in the library of Synopsys Design
Ware Basic Library [Synopsys (1998)].
 Also, we adopted the WORST case hardware
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conditions for evaluation. The worst case
speed is a guaranteed speed of a given circuit,
which is commonly used in real products. We
think that the TYPICAL case evaluation is
too optimistic to apply to a real ASIC
hardware.

4. Evaluation Results

 The results of our hardware evaluation of the
five finalists are presented in Table 4.1. The
fastest algorithm in terms of the critical path
between plaintext and ciphertext is Rijndael,
which is an only algorithm faster than DES.
The second fastest algorithm is Serpent,
which is twice faster than triple-DES but still
much slower than Rijndael (approximately
half). The speed of Twofish is almost the
same as that of triple-DES, but Mars and
RC6 are further slower; Rijndael is
approximately ten times faster than RC6.

 On the other hand, for the key setup time,
Twofish is fastest, consuming only 5% of the
critical path of its encryption procedure. Note
however that the key setup time of DES and
Triple-DES is almost nothing in hardware.
Rijndael and Serpent have approximately
85%, while the key scheduling logic of Mars
and RC6 is more than three times slower
than their encryption.

 Figures 4.1 and 4.2 show more detailed
breakdowns of hardware components on the
critical path of each algorithm, where the
horizontal line of Figure 4.2 is normalized to
show proportion of each component .

 Mars has 16 multiplications, 26 additions/
subtractions, 15 lookup tables (specifically 11
S0’s and 4 S1’s) and 9 data-dependent
rotations on its critical path, where all
arithmetic operations are taken on mod 232.
As shown in the figures, the multiplications
occupy 63% of the critical path, 13% for
additions/subtractions, and 9% for the lookup
tables.

 RC6 has 20 multiplications, 21 additions and
20 data-dependent rotations on its critical
path, where all arithmetic operations are also
taken on mod 232 As shown in the figures, the
multiplications occupy 77% of the critical

path, 13% for additions/subtractions, and 8%
for the data dependent rotations.

 The critical path of Rijndael is not in the
encryption but in the decryption procedure
since the InvMixColumn function, which is
an inverse of the MixColumn function, is a bit
slower than the MixColumn function due to
more complex constant values. On the critical
path, a total of 10 InvByteSub functions
(table lookups) occupy 48% of the entire
decryption time, and a total of 9
InvMixColumn functions have 43%.

 It is easy to see that the critical path of
Serpent has 32 lookup tables and 31 linear
transformations (XOR’s and shifts). Our
analysis shows that the linear
transformations of Serpent are more
expensive than its lookup tables; the former
is 36% while the latter is 45%. In a logical
sense, the lookup tables and the linear
transformations must exhaust the critical
path; however Figure 4.2 exhibits other
factors that occupy a total of 19%. This is
mainly because the design compiler has
automatically inserted driver gates in order
to supply sufficient fan-out counts, which
reflects the fact that an output bit of a lookup
table of Serpent has many “branches” that
reach many different lookup tables in the
next round. This is part of design criteria of
Serpent.

 It is also easily seen that the critical path of
Twofish have 48 lookup tables --- specifically
16 q0’s and 32 q1’s, which is not a trivial fact
---, 16 MDS’s (linear transformations) and 32
additions mod 232. The dominant part is the
lookup tables, which occupy 53%, but also
time for additions is not negligible (28%).

5. Discussions and
Conclusions

 The performance of Mars and RC6 heavily
depends on the speed of the multiplication
circuits mod 232. Our evaluation results show
that the average time for the multiplication is
around 23ns, which is six to eight times
slower than the addition circuit mod 232,
which takes around 3ns.



 This also shows that by using highly
optimized multiplication circuits in a
transistor level, these algorithms are
expected to be much faster. For this topic, see
[Hagi (1998)] for instance. Now as an example,
let us assume, in Mars and RC6, the 32-bit
multiplication can work at the same speed as
the 32-bit addition. We see that still the
critical path of (the modified) Mars and RC6
is approximately 250 and 200ns, respectively.
Also, we should notice that a full-custom
solution is generally process-dependent and
hence is not an inexpensive solution in
practice.

 Another speeding-up possibility is to
optimize a lookup table. The average time for
one lookup table for each algorithm is 3.2ns
for Rijndael (8x8), 1.5ns for Serpent (4x4),
3.5ns for Twofish (8x8) and 3.5ns for Mars
(8x32), respectively. Twofish will be most
rewarded for the efforts of optimizing the
lookup tables. However, the optimization will
not lead to a significant impact to affect the
ranking of the five finalists.

 In this paper, we did not take efforts to
reduce the size (area) of each algorithm since
we adopted a full loop unrolling in order to
evaluate the fastest possible encryption
speed. Appendices 1 and 2 show the
information of the size of each algorithm with
the detailed breakdowns, which we will not
discuss here. How to reduce the gate size is
another practical topic to be pursued.
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Table4.1  Hardware evaluation results

Encryption &
Decryption

Key Schedule Total

DES 42,204 12,201 54,405 - 55.11 1161.31
Triple-DES 124,888 23,207 148,147 - 157.09 407.4

MARS 690,654 2,245,096 2,935,754 1740.99 567.49 225.55
RC6 741,641 901,382 1,643,037 2112.26 627.57 203.96

Rijndael 518,508 93,708 612,834 57.39 65.64 1950.03
Serpent 298,533 205,096 503,770 114.07 137.4 931.58
Twofish 200,165 231,682 431,857 16.38 324.8 394.08

Throughput
[Mbps]

Algorithm name
area [Gate]

Key setup
time[ns]

Critical-
path[ns]



Appendix 1: Area Size of the Finalists(1)
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Hardware Performance Simulations of Round 2 Advanced
Encryption Standard Algorithms
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1 Abstract
The National Security Agency (NSA) is providing hardware simulation support and performance measurements to
aid NIST in their selection of the AES algorithm. Although much of the Round 1 analysis focused on software,
much more attention will be directed towards hardware implementation issues in the Round 2 analysis. As NIST has
stated, a common set of assumptions will be essential in comparing the hardware efficiency of the finalists. This
paper presents a technical overview of the methods and approaches used to analyze the Round 2 candidate
algorithms (MARS, RC6, RIJNDAEL, SERPENT and TWOFISH) in CMOS-based hardware. Both design
procedures and architectures will be presented to provide an overview of each of the algorithms and the methods
used. To cover a wide range of potential hardware applications, two distinct architectures will be targeted for
comparison, specifically a medium speed, small area iterated version and a high speed, large area pipelined version.
The standard design approach will consist of creating hardware models using VHDL and an underlying library of
cryptographic components to completely describe each algorithm. Once generated, the model can be verified for
correctness through simulation and comparison to test vectors, and synthesized to a common CMOS hardware
library for performance analysis. Hardware performance data will be collected for a variety of design constraints for
each of the algorithms to ensure a wide range of measured data. A summary report of the findings will be presented
to demonstrate algorithm performance across a wide range of metrics, such as speed, area, and throughput. This
report will provide a common baseline of information, which will enable NIST and the community to compare the
hardware performance of the algorithms relative to one another.

2 Introduction
The National Security Agency (NSA) agreed to provide technical support to the National Institute of Standards and
Technology (NIST) in the form of an analysis of the hardware performance of the Round 2 Advanced Encryption
Standard (AES) algorithm submissions. This analysis consisted of the design, coding, simulation and synthesis of
the five algorithms using the procedure outlined below. Throughout this evaluation, NSA has taken care to assure
that best design practices were used and that all algorithms received equal treatment. No attempt was made to
optimize any particular design, but care was taken to find the best configuration for each algorithm. Cross-validation
measures during design and simulation were used to overcome the subjective effects of the design process and to
ensure that all designs receive the same amount of attention. The results of this analysis should provide an accurate
measure of the hardware performance of each algorithm relative to the others. Undoubtedly more optimized (and
hence better performing) implementations of these algorithms can be designed, so the individual score of any
particular algorithm is not very valuable outside the context of this environment. The point of this analysis is to
provide a controlled setting in which a meaningful comparison can be made.

Based on a mathematical description of the Round 2 algorithms, and C code reference models when necessary for
clarification, NSA designers fully described each of the algorithm submissions in a hardware modeling language.  A
review by a team of design engineers followed the initial design stage to reduce the effects of coding style on
performance. Using commercially available analysis, simulation and synthesis tools, NSA design engineers have
performed simulations to produce performance estimates based on each of the hardware models. In order to provide
a wider perspective on the performance of the algorithms, two different architectures or applications were simulated
for each algorithm: an iterative version to provide a medium speed operation at minimal area/transistor count, and a
pipelined version to provide optimum speed operation, but at the cost of a larger area. This report is a summary of
the performance of the Round 2 AES candidate algorithms, and will compare and contrast the results of the analysis.
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3 Hardware Design Background

3.1 Design Guidelines
For this analysis effort, one of the main goals was to provide an unbiased comparison of the algorithms in hardware,
specifically in Application Specific Integrated Circuits (ASICs). To that end, the overhead found in typical hardware
implementations, such as a robust user-interface, was minimized to reduce the impact on the overall performance of
the algorithms. The user-interface is the Input/Output (I/O) connections and logic needed to take the plaintext and
key and present them to the algorithm, and take the output ciphertext and present it off the chip. All inputs and
control signals were registered in a common interface in order to provide uniformity across all of the algorithms,
with fixed setup and hold times identical for all algorithms. A wide variety of architectures could be used to
implement a given algorithm. In order to restrict all possible choices and yet capture valuable data points, two
fundamental architectures were chosen: iterative and pipelined. All algorithms were designed in each architecture
style. There are several variations on these approaches, including multiple copies of an iterative implementation for
parallel processing, a partially pipelined implementation, or a combination of these hybrids (multiple copies of a
partially pipelined implementation). The approach chosen will depend on the needs of the system, but these
variations will likely result in performance within the ranges given by the iterative and fully pipelined
implementations. However, these optimizations were beyond the scope of this study.

3.1.1 Target Applications

3.1.2 Iterative Architecture
The iterated approach to implementing the algorithm focuses on providing a medium to low speed version of the
algorithm, with efforts placed on limiting the physical size of the hardware. In this instance of the algorithm, one
step is performed per clock period, with the output of the previous step being used as the input to the next step. Data
is only placed on the output after the required number of algorithm rounds has been completed.

3.1.3 Pipelined Architecture
The pipelined approach to implementing an algorithm centers on providing the highest throughput to the design,
sacrificing area to obtain the level of performance needed. In the case of pipelining, all of the steps in computing the
algorithm are cascaded into a single design, with each stage feeding the next stage. The latency remains the same as
in the iterated case, but the throughput is increased significantly as new data is placed on the output on every clock
cycle. Pipelining has been shown to be an effective method of dramatically increasing the throughput capabilities of
a given algorithm. However, it comes at the expense of limiting the number of cryptographic modes that can be
supported at the maximum throughput rate. For example, since the latency of an encryption cycle remains the same
as an iterative case, there is no throughput advantage when using feedback modes such as Cipher Block Chaining
(CBC). High performance applications, such as high speed network encryption, will require the increase in
throughput, and as a result, often focus on a non-feedback mode of operation such as counter mode to obtain
performance.1

3.2 Parameter Description
There are many design parameters that can be reported for each design implementation. Some parameters will have
much more significance in a given application or environment than others. This evaluation reports on these
parameters as a method of comparison among the five algorithms, and does not claim that any single parameter has
been fully optimized. The following is a description of the parameters being reported. Some have a direct impact or
relation to performance metrics (e.g. throughput) and some are simply a function of the algorithm itself (e.g., I/O
requirements). Algorithm performance in each of the evaluation categories will be documented for each algorithm
submission.

3.2.1 Area
As an estimate based on an available MOSIS library, the results of the synthesis area reporting will consist of pre-
layout area estimates of the algorithm. Although potentially different from a post-layout estimate, the area reported
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by Synopsys will provide a relative comparison of each of the algorithm submissions. Generally, the two varieties of
architectures-– iterative and pipeline -– will be on the extremes of area with the iterative being the smallest, and the
pipelined being the largest.

3.2.2 Throughput
In most cases, throughput is directly proportional to area; as area decreases, throughput decreases. As with area, the
iterative and pipelined architectures will report the extremes of throughput. Iterative architectures will have much
lower throughput rates since there is a minimum amount of hardware, and it is re-used on multiple clock cycles of
execution. Thus, the throughput is limited by the amount of hardware reuse. More specifically, it is limited by the
number of rounds in a codebook algorithm. On the other hand, a pipelined architecture dedicates hardware for
performing all calculations in any given clock cycle. This maximizes throughput by allowing data to be written and
read from the device on every clock. In this case, throughput is a function of the worst-case delay in any one given
stage of the algorithm. Throughput will be reported for both iterative and pipelined architectures.

3.2.3 Transistor Count
Transistor count is a more specific measure than area and is often more useful. While transistor count is somewhat
dependent on the design library being used, it is a useful method of comparing the algorithms since they were
compiled using the same library. In addition, the transistor count will be a more useful figure than area when
estimating programmable logic implementations since these devices typically report the number of useable gates
(which is also directly related to transistor count). Based on the synthesized netlist (from Synopsys), an additional
report describing the number of transistors required to implement the algorithm will be provided.

3.2.4 Input/Outputs (I/O) Required
With the goal of consistency among algorithms, the I/O was fixed identically for all algorithms. However, since this
parameter is highly useful to hardware designs, it will still be reported.

3.2.5 Key Setup Time
The key setup time refers to the amount of time required before subkey expansion is ready to execute. Some
algorithms use the user-supplied key directly in the subkey expansion thereby reducing the key setup time to zero.
Others require some pre-calculation or translation of the key prior to subkey expansion steps. Key setup times will
be examined to assess the overhead of each algorithm in establishing a usable key.

3.2.6 Algorithm Setup Time
Similar to key setup time, the algorithm setup time reports the minimum amount of time before an algorithm is
ready to process data. Time to create look-up tables, etc. will fall in this category. None of the evaluated algorithms
contained an algorithm setup time greater than zero.

3.2.7 Time to Encrypt One Block
This paramter will address minimum latency times for each of the algorithm submissions. The time to encrypt one
block, measured in nanoseconds, is a function of two parameters: the worst-case path delay between any two
registers, and the number of rounds in the algorithm.

3.2.8 Time to Decrypt One Block
As above, this parameter will address minimum latency times for each of the algorithm submissions. Decryption
does not always require identical processing as encryption. Therefore, the time required to decrypt one block is
reported.

3.2.9 Time to Switch Keys
Originally, this parameter was included as a measure to encompass both key setup time and algorithm setup time
overhead. However, since none of the evaluated algorithms contained an algorithm setup time, this parameter is
identical to key setup time. Therefore, it will not be reported further in this document.
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4 Methodology

4.1 Standard Design Flow
The design process followed a common methodology used by ASIC designers. The process started with the
documentation supplied by the algorithm authors and was completed with a gate-level schematic, which included
the performance metrics data. A complete ASIC development would require physical layout and fabrication. These
steps were beyond the scope of this effort. However, the performance metrics data obtained here closely matches
that which would be found from actual fabrication and testing. Previous efforts using these tools have correlated
estimated performance from the schematic to the actual testing. Figure 1 shows the steps in the design flow.

Algorithm
Specification

VHDL
Model

Functional
Simulation

Synthesis Data Extraction

Figure 1 Standard Design Flow

4.1.1 VHDL code generation
VHSIC Hardware Description Language (VHDL)
VHDL modeling is analogous to programming simulations in C code and follows much of the same syntax.
However, unlike a behavioral description of the algorithm, VHDL (IEEE 1076) specifies how the algorithm will be
implemented in hardware. Using this hardware language, NSA designers fully described the hardware necessary to
implement each of the algorithm submissions. Performance metrics, such as speed, area, etc. (see below) can be
estimated from the hardware description using available analysis and computer aided design (CAD) tools.
There are different styles in which to code VHDL models, offering various levels of abstraction. For this evaluation,
the designers used the register transfer logic (RTL) coding style. For this style, the placement of registers and
corresponding logic between registers is chosen by the designer and is determined at the VHDL code level. There
are many different methods for identifying an optimized placement of registers. Ideally, there would be an equal
amount of logic delay between registers for all stages of the design. However, in order to simplify the design cycle
and to be consistent among all algorithms, the designers chose a common placement of registers, even if this
placement is not fully optimized. Specifically, the output of each “round” (as defined by the algorithm authors) is
registered for both a key schedule round and an algorithm round.

4.1.2 Simulation and Verification
NSA followed the design phase with a functional VHDL simulation of the designs using the Synopsys VHDL
System Simulator (VSS) to verify the correct operation of the algorithm. The test vectors submitted to NIST for each
algorithm were applied to assure that the design was working as intended. Specifically, the Variable Key and
Variable Text tests were performed for each algorithm implementation and mode (e.g., iterative encrypt, pipelined
decrypt, etc.). The modeled algorithm output was also compared with the C code model supplied to provide an
added assurance that the simulation was operating as expected.

4.1.3 Code review
NSA had one or more engineers design the VHDL for each algorithm submitted. Initial hardware designs were
straightforward implementations of the core algorithm. Following completion of each initial design, an informal
group of engineers met to review and provide feedback for the design. Improvements and alternatives to the initial
design were examined to determine potential benefits from differing architecture approaches (area compression,
pipelining, etc.). Variants of the design that improve the performance of the algorithm were then programmed for
comparison.
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4.1.4 Synthesis
Gate-level synthesis of the algorithm utilized the Synopsys Design Compiler to produce a functionally equivalent
schematic in hardware.  A MOSIS-specific technology library was used to generate a gate-level schematic of the
design and provide more accurate area and timing estimates, as if the design were to be implemented in an
integrated circuit (IC). The MOSIS library is based on a publicly available fabrication facility’s model of a specific
CMOS process, thus giving real performance metrics for an available ASIC line. The VHDL model can be re-
targeted to any supported hardware or field programmable gate array (FPGA) design libraries.

The synthesis process can generate a wide range of implementations depending on the constraints provided to the
synthesis tool. For example, one implementation may minimize area while another may minimize delay time. In
hardware synthesis, the two fundamental parameters are time and area. These parameters are directly related. As
delay time decreases, area increases. Timing and area curves that further illustrate this point are shown in subsequent
sections. The constraints provided for each algorithm synthesis routine were maintained consistently. Therefore,
differences among algorithm synthesis results will be a function of the logic required (algorithm specific) and the
synthesis tool’s ability to meet the given constraints.

4.1.5 Documentation
In addition to a summary report containing performance data, both design notebooks and VHDL documentation will
be provided to NIST for evaluation. The design notebooks will contain reporting information for all of the hardware
data that was collected, with all algorithms, designs, and architectures represented. The VHDL models and their
testbenches (for simulation verification) will also be included.

4.2 Synthesis Analysis

4.2.1 Function Characterization
Although the hardware design of the algorithms followed a top-down approach, the synthesis portion of the analysis
proceeded from the bottom of the design up through the hierarchy. In order to obtain an accurate picture of the
performance of the sub-blocks and functions in this type of analysis, a sweep was performed on each of the
functional blocks to graphically depict performance versus design constraints. Specifically, the timing constraints,
such as output delay and clock frequency, of each of the blocks were varied to observe the performance output of the
block. The results of the sweep make up the characterization for that particular block. All subsequent blocks of the
hierarchy will be analyzed using these methods.

4.2.2 Cryptographic Library
With characterization curves for each of the sub-blocks complete, five speed grade implementations were selected to
cover the performance range of the block. A variety of key performance points were selected to reflect requirements
for both high speed and small area. Figure 2 shows typical timing and area curves following a sweep of maximum
delay time constraints. These curves allow design engineers to select specific implementations of a given function.
Specifically, five implementations, or speed grades, were chosen for each function. In this example, the five selected
implementations are noted in the figure, and they represent one minimum time delay, one minimum area, and three
other points that have desired characteristics such as large area savings for a small increase in delay time.
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Figure 2 Sample Function Sweep
The five implementations were selected only for the functions of each of the algorithms, and then assembled into a
cryptographic library. Each library contained implementations of all the functions required to build the given
algorithms.

4.2.3 Block Level Characterization
Continuing with the bottom up approach, the higher level blocks underwent the same performance sweep as
described for the function level. The design constraints were varied across the entire range of the block to fully
describe the performance curve of the block. At each iteration of the synthesis process, components (e.g., functions)
were selected from the cryptographic library based on the required speed and performance. Performance curves at
the block level encompassed components of several different speed grades depending on design constraints. At the
top level, the characterization curve reflected the performance of the entire design across a wide range of design
constraints.

5 General Architecture Approach

5.1 Top Level Architecture
The design of each algorithm started with a common top level architecture that is well suited for virtually any
codebook algorithm. The generalized top level architecture consists of an Interface, an Algorithm block, a Key
Schedule block and a Controller. Figure 3 shows a block diagram of the architecture.
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Figure 3 Top Level Architecture

The Interface serves to register all data inputs. This is consistent with the hardware design methodology of placing
registers at the chip boundary, thus minimizing strict setup-and-hold timing requirements. In some cases, the
interface also provides minimum functionality, such as padding keys when appropriate. The Key Schedule performs
the generation of subkeys to be used in by the Algorithm block. This includes any required key setup as well as the
expansion itself. The Algorithm performs the actual encryption or decryption of data provided from the Interface
using the subkeys from the Key Schedule. For iterative implementations, the Algorithm and Key Schedule blocks
implement a single round with internal feedback datapaths; whereas the pipelined implementations expand these
sections to include as many implementations of a round as required by the particular algorithm. Finally, the
Controller provides any necessary control signals for maintaining proper synchronization among the various blocks.

6 Algorithm Evaluation
For each of the algorithms, a description of how it was architected for both the pipelined and iterated cases is given.
Any nuances of how the rounds were simulated and the key schedule implemented are also given along with specific
examples of approaches to reduce redundancy or streamline the design. Each algorithm section then provides block
level results of timing constraints versus both chip area and timing in both the iterative and pipelined cases. A table
of performance parameters is then provided for four different key sizes, 128 bit key, 192 bit key, 256 bit key, and a
hybrid that combines all three key sizes in one key schedule that can be controlled for any particular key size. In
some cases, the combined three-in-one key schedule must make compromises to achieve the greater degree of
flexibility. Each of the performance parameters is described in more detail in Section 7, along with comparisons
across the five algorithms.

Following the architecture for each of the algorithms, each section will provide a summary of the results of the
hardware analysis for the individual algorithm. In an effort to save space, the timing and area graphs will be
presented for only the combined case which contains all three key sizes in one implementation. Both pipelined and
iterated cases will be covered. However, the complete report and design workbooks will contain graphs for all key
sizes and contains a much more complete data set. The corresponding tables will capture key performance data
points for all key size implementations. *

* Note: At time of publication, not all information was available for every parameter and for every algorithm. Due to
some unforeseen difficulties in the amount of time for simulation, some information on area, transistor count and
key setup times was not available. This was especially true for simulating the larger blocks in the pipelined cases
and for the various key sizes. In addition, certain information for MARS and RC6 was being finalized at time of
publication, so is not included in this version. Incomplete data in the following sections are indicated with asterisks.
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Complete data for the performance curves and tables of key parameters will be provided on the NIST web site and at
the conference.

6.1 MARS

6.1.1 Architecture
The MARS algorithm requires several different types of rounds2. Specifically, there are unkeyed forward mixing,
keyed forward transformation, keyed backwards transformation and unkeyed backwards mixing rounds, as well as
pre-addition and post-subtraction. The mixture of keyed and unkeyed rounds resulted in the requirement for
complex control and data flow operations between the Key Schedule and Algorithm blocks. Specifically, a complex
control situation results from the fact that subkeys are required immediately for the pre-addition stage, whereas the
next subkeys are not required until the eight unkeyed forward mixing rounds are completed. This architecture
presented some unique timing and data synchronization issues.

6.1.1.1 Pipelined Key Schedule
As with all pipelined implementations, the subkey from each round must be registered. However, for MARS, the
subkeys are not utilized on consecutive clock cycles. Therefore, additional pipelined storage is necessary. The
updated key schedule of MARS following AES Round 1 allowed for separating the 40 subkeys into groups of 10.
The VHDL model takes advantage of this operation by adding pipelined storage for groups of 10 subkeys, only as
long as necessary, rather than creating pipelined storage for all 40 subkeys. This reduced the total number of
registers required. Additionally, the pipelined registers are controlled by a latch signal rather than updating on every
clock. Again, this reduced the number of registers by removing redundancy.

6.1.1.2 Pipelined Algorithm
Relative to the intricacies of the key schedule, the pipelined algorithm implementation is straightforward. It consists
of six different types of rounds, each one with its own registered output: one key addition, eight unkeyed forward
mixings, eight keyed forward transformations, eight keyed backwards transformations, eight unkeyed backwards
mixings and one key subtraction. This makes a total of 34 rounds to complete the algorithm.

6.1.1.3 Iterative Key Schedule
The MARS algorithm key schedule generates 10 subkeys at a time. Therefore, the traditional iterative methodology
of a single round implementation for generating a single subkey (or set of subkeys as required by a single algorithm
round) did not apply. Instead, a single round implementation per 10 subkeys was generated resulting in a key
expansion round iterated four times for one encryption cycle. This presents some additional logic overhead for
iterative applications in that a “round” generates 10 subkeys simultaneously rather than the exact amount needed by
the algorithm at a given stage. (In the case of MARS, two 32-bit subkeys are required per keyed round in the
cryptographic core.) In addition to the subkey expansion overhead, there is a storage overhead for the remaining
subkeys. Also, decryption requires a full expansion of subkeys prior to beginning data processing. Therefore, the full
set of 40 subkeys is stored in registers.

6.1.1.4 Iterative A lgorithm
The iterative algorithm is consistent with the pipelined algorithm in its relative simplicity when compared to the key
schedule. There is a single register for all rounds. The input to the register depends on the round number. For
example, the input for the first round of encryption is the key addition round result; for the second round it is the
unkeyed forward mixing round result and so on.

Subkeys are presented to the algorithm block as an array of all 40 subkeys. This differs from other iterative
algorithm implementations that present only one subkey at a time. The rationale for this design was to eliminate
duplicate logic in both the Key Schedule block and Algorithm block. Due to the timing gaps in the application of
subkeys and the fact that all 40 subkeys are generated prior to decryption processing, it was considered
advantageous to allow a 40 element bus to connect the two blocks.
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6.1.2 MARS Top Level Results

6.1.2.1 Timing and Area

MARS Iterative Performance Curve
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MARS Pipelined Performance Curve
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6.1.2.2 Key Parameters

Min. Max. Min. Max.
Area (um2) * * * *
Transistor Count * * * *
Input/Outputs Required 520 520 520 520
Throughput (Mbps) * * * *
Key Setup Time Encrypt (ns) * * * *
Key Setup Time Decrypt (ns) * * * *
Algorithm Setup Time (ns) 0 0 0 0
Time to Encrypt One Block (ns) * * * *
Time to Decrypt One Block(ns) * * * *

Parameter
Iterative 3in1 Pipelined 3in1

Table 1 MARS Summary

6.2 RC6

6.2.1 Architecture
The following provides a high level description of the major blocks in the RC6 algorithm. Details of the
components, sweeps, and their implementations can be found in the design workbook3.

6.2.1.1 Pipelined Key Schedule
The RC6 key schedule is pipelined using a slightly different method than the other algorithms. Since a significant
number of computations for the key schedule are required before any expanded keys are generated, the architecture
takes advantage of the run-up by performing the expansion at the start of the pipeline. Only a single copy of the
expansion hardware is required, but additional registering is needed to maintain the keys on a time dependent basis,
discarding keys from previous stages (i.e., the keys have already been used). Keys are then passed from register to
register to follow the data in the pipeline.

6.2.1.2 Pipelined Algorithm
The algorithm “unrolls” the stages of the algorithm into a pipeline, following the algorithm description for function
ordering and naming conventions. Combination functions are used to perform cases where distinct operations need
to be performed in encrypt and decrypt. For example, the pre-add will contain both addition and subtraction to
accommodate both cases. A similar condition exists in the algorithm round function, with slightly different functions
needed for encrypt and decrypt. However, synthesis optimization can take advantage of common operations, such as
the multiply, to reduce the total number of operators needed.

6.2.1.3 Iterative Key Schedule
The iterative key schedule is designed to perform a single round of expansion per clock. Expanded keys are fed to
the algorithm block after the controller initiates a start signal. However, the key setup has been designed to compute
single or multiple steps of the run-up in a single clock, depending on the performance needed by the rest of the
system. A load cryptovariable (i.e., load key) signal from the controller will initiate the key setup. Once complete,
the expansion can be started.

6.2.1.4 Iterative A lgorithm
The RC6 iterative algorithm closely reflects the pipelined version. The same round instance is called repeatedly to
process input data. The encrypt and decrypt are symmetrical with respect to operations performed in a similar
manner (e.g., pre-add, round, post-add), so the same block can be called without additional overhead.
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6.2.2 RC6 Top Level Results

6.2.2.1 Timing and Area

RC6 Iterative Performance Curve
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RC6 Pipelined Performance Curve
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6.2.2.2 Key Parameters

Min. Max. Min. Max.
Area (um2) * * * *
Transistor Count * * * *
Input/Outputs Required 520 520 520 520
Throughput (Mbps) * * 1192.00 2171.00
Key Setup Time Encrypt (ns) * * * *
Key Setup Time Decrypt (ns) * * * *
Algorithm Setup Time (ns) 0 0 0 0
Time to Encrypt One Block (ns) * * 1179.2 2146.8
Time to Decrypt One Block(ns) * * 1179.2 2146.8

Parameter
Iterative 3in1 Pipelined 3in1

Table 2 RC6 Summary

6.3 RIJNDAEL

6.3.1 Architecture
The following provides a high level description of the major blocks in the RIJNDAEL algorithm. Details of the
components, sweeps, and their implementations can be found in the design workbook4.

6.3.1.1 Pipelined Key Schedule
The RIJNDAEL key schedule is based on a sliding window approach as described in the algorithm specification.
Multiple key sizes are based on the n-1 element and the n-k element (32 bit word organized), where k is 4,6, or 8,
depending on key size. The key expansion is a linear combination of the elements, so a similar function can be used
on the decrypt function to “unexpand” the keys in a reverse direction. Such an approach allows for an increase in the
key agility without sacrificing significant amounts of area to store all of the expanded keys.
The encryption expansion can start immediately, with the first words of the initial key being used as expanded key.
The setup time for this case is zero. During the decryption, the key is expanded to the last key, stored, and then the
pipeline is run to create the previous expanded key until the last decrypt key is generated, which is the initial key.
Keys are generated at a rate of four 32 bit words per round, regardless of key size, to keep up with the requirements
of the algorithm block. Additional registers are used to maintain sufficient previous keys to generate the next four
words of expanded key.
Keys are pulled from the bank of registers which make up the sliding window. S-Boxes are re-used, without a
performance penalty, to minimize the size impact of having additional S-Boxes.

6.3.1.2 Pipelined Algorithm
The RIJNDAEL algorithm pipeline consists of a sequential mapping of the steps of the algorithm to registered
stages in hardware. Each stage reflects a single round of the algorithm. The primary advantage to pipelining in this
manner is the significant increase in throughput. RIJNDAEL was architected such that both the encrypt and decrypt
functions could be performed with the same pipeline. This approach needed a static pipeline that could perform both
functions, so the algorithm round functions contained in the package will serve a dual role by providing cases for
encrypt and decrypt within the same function. The pipeline structure reflects changes in direction, such as requiring
a pre-add on the encryption (first round) versus decryption requiring a post-add on the last round.

6.3.1.3 Iterative Key Schedule
The iterative version of the key schedule focuses on reducing the area of the key expansion, so only a single copy of
the expansion is maintained. For encryption, as in the pipelined case, the expansion starts immediately, with no key
setup required. The keys are expanded every round, producing the four 32 bit words of key required. As each new
key is created and stored, the old key is overwritten.
In the case of decryption, the algorithm requires a setup time to effectively run the algorithm to the last key. This
serves as the starting point for all decryptions using that key. This value will also be stored so it can be referenced on
each new decryption to eliminate key setup for every new decryption.
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6.3.1.4 Iterative A lgorithm
The algorithm block uses the same functionality as described in the pipeline but does not re-use some of the
combination functions used to construct the pipeline. Instead, the function calls are made explicitly, depending on
encryption/decryption to provide the widest possible range of hardware re-use. The function calls in the encrypt and
decrypt directions are not symmetrical. The algorithm processes the state data on each round, performing only one
step of the algorithm per round.

6.3.2 RIJNDAEL Top Level Results

6.3.2.1 Timing and Area

RIJNDAEL Iterative Performance Curve
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RIJNDAEL Pipelined Performance Curve
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6.3.2.2 Key Parameters

Min. Max. Min. Max.
Area (um2) 37034346.00 81661400.00 * *
Transistor Count * * * *
Input/Outputs Required 520 520 520 520
Throughput (Mbps) 371.06 519.48 4060.00 5163.00
Key Setup Time Encrypt (ns) 0.00 0.00 0.00 0.00
Key Setup Time Decrypt (ns) 246.4 344.96 0 277.92
Algorithm Setup Time (ns) 0 0 0 0
Time to Encrypt One Block (ns) 493.8 346.36 247.4 346.36

Parameter
Iterative 3in1 Pipelined 3in1

Table 3 RIJNDAEL Summary

6.4 SERPENT

6.4.1 Architecture
The following provides a high level description of the major blocks in the SERPENT algorithm. Details of the
components, sweeps, and their implementations can be found in the design workbook5.

6.4.1.1 Pipelined Key Schedule
The SERPENT algorithm implements a simple expansion function for the key scheduling. The exclusive-or based
function allows for quick computation and does not require key setup in the encrypt direction. Pipelining is
maximized as this approach utilizes a sliding window approach, where only a small number of previous expanded
keys are needed to compute the next sub-keys. However, for decryption, a key setup time is required to compute the
starting point for the key expansion, which is the last set of W registers. The decrypt pipeline computes the previous
set of W registers based on the current set, as the exclusive-or based expansion can be reversed easily. To save
storage in this design, the keys are computed at each stage, with the decrypt case requiring a block of logic at the
beginning to find the last subkeys.
The SERPENT pipelined key schedule provides two successive keys to each round of the algorithm on expansion.
The algorithm will select the correct key based on the current encryption/decryption mode. The additional key
allows for the rounds that require two keys to operate.

6.4.1.2 Pipelined Algorithm
The pipelined SERPENT algorithm block contains a structural model of the unraveled rounds of the algorithm. Four
distinct functions are needed to implement both the encrypt and decrypt operations. The core algorithm round
functions are the same for 30 rounds of the algorithm, with an internal mux/demux to select the encrypt or decrypt
mode. The first two rounds of encrypt and last two rounds of decrypt distinguish the cases where the pipeline is re-
routed. The encrypt will bypass the two special rounds of the decrypt while the decrypt will bypass the two special
rounds of encrypt. The latency will remain the same as no extra rounds are added. The pipeline will select and re-
route based on the current mode of encryption or decryption.

6.4.1.3 Iterative Key Schedule
The SERPENT iterative key schedule uses a single copy of the expansion function to generate the sub-keys, one at a
time. Area can be significantly reduced using the same hardware repeatedly. Additional key setup will be required in
the decrypt direction to allow for the run-up to the last key of the expansion.

6.4.1.4 Iterative A lgorithm
The iterative algorithm uses the same functions as the pipeline, with the same round instance referenced repeatedly
to perform the main processing of the algorithm. The special case rounds are selected by the state machine within
the iterative block to determine encrypt/decrypt direction, and consequently, which pre/post add functions to
perform.
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6.4.2 SERPENT Top Level Results

6.4.2.1 Timing and Area

SERPENT Iterative Performance Curve
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SERPENT Pipelined Performance Curve
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6.4.2.2 Key Parameters

Min. Max. Min. Max.
Area (um2) * * * *
Transistor Count * * * *
Input/Outputs Required 520 520 520 520
Throughput (Mbps) * 202.33 5298.01 8030.11
Key Setup Time Encrypt (ns) 19.77 * 6.74 11.76
Key Setup Time Decrypt (ns) 672.18 * 212.55 365.58
Algorithm Setup Time (ns) 0 0 0 0
Time to Encrypt One Block (ns) 632.64 * 510.08 773.12
Time to Decrypt One Block(ns) 632.64 * 510.08 773.12

Parameter
Iterative 3in1 Pipelined 3in1

Table 4 SERPENT Summary

6.5 TWOFISH
The following provides a high level description of the major blocks in the TWOFISH algorithm. Details of the
components, sweeps, and their implementations can be found in the design workbook6.

6.5.1 Architecture
A useful property of the TWOFISH architecture was the relatively large amount of re-use of design blocks. Both the
Key Schedule and Algorithm utilized many of the same functions. While this does not result directly in a direct
increase in performance, since key expansion and encryption are performed in parallel, it does simplify the hardware
coding process. As stated, common coding techniques and processes were used for developing each algorithm
design resulting in areas available for improvement in a more highly optimized design. In the case of TWOFISH, a
smaller design could be created by taking advantage of the function re-use. However, as with most hardware trade-
offs, this area optimization would come at the expense of performance and complex control mechanisms.
Another feature of TWOFISH is the lack of initial key runup prior to subkey expansion. In addition, the key
schedule is not a feed-forward design. Each round of key schedule is independent of the previous round. This unique
characteristic allowed for a Key Schedule that does not require a setup time for either encryption or decryption.
In the TWOFISH algorithm, the first step of encryption is a pre-whiten function, In hardware, this is simply an
exclusive-OR. The pre-whiten step is performed during the same clock cycle as the first subkey expansion which
generates the pre-whiten subkey. This was possible because the XOR function did not create a critical path concern
since the main algorithm rounds incorporate an integer addition that is more complex. The result was the ability to
load data and key in the same clock cycle, thereby reducing the overall time for encryption by one clock cycle.

6.5.1.1 Pipelined Key Schedule
In order to allow for either encryption or decryption, both pre-add and post-add subkeys are generated during the
first pipeline stage. The post-add key is buffered through a pipelined delay until needed in the final processing step.
Also, since one of the input parameters is the round number which is fixed for a given pipelined round there is an
optimization or pre-calculation in each pipelined round.

6.5.1.2 Pipelined Algorithm
The algorithm is an efficient unrolling of stages because encryption and decryption are nearly identical. In addition,
the symmetry allows for similar processing in both the encrypt and decrypt directions.

6.5.1.3 Iterative Key Schedule
As in the pipelined key schedule, the iterative design requires buffering of the post-add subkey until it is needed in
the final processing step. However, this buffering is not required to be implemented in pipelined stages. The key
schedule round is generalized such that the round number is not a fixed constant as in the pipelined case. This does
not allow synthesis optimization of each round, but does save area since only one hardware block is instantiated.

6.5.1.4 Iterative A lgorithm
The differences between encryption and decryption are minor such that the additional hardware to support either
process in a single round adds minimal area.
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6.5.2 TWOFISH Top Level Results

6.5.2.1 Timing and Area

TWOFISH Iterative Performance Curve
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TWOFISH Pipelined Performance Curve

0

5

10

15

20

25

30

1 6 11 16 21 26 31 36 41 46 51 56 61

Delay Constraint (ns)

A
ct

ua
l T

im
in

g 
(n

s)

0

10000000

20000000

30000000

40000000

50000000

60000000

A
ct

ua
l A

re
a

 (
sq

 u
m

) Algorithm Timing

Key Schedule Timing

Algorithm Area

Key Schedule Area

Figure 13



18

6.5.2.2 Key Parameters

Min. Max. Min. Max.
Area (um2) 91686840 158300076 * *
Transistor Count * * * *
Input/Outputs Required 520 520 520 520
Throughput (Mbps) 38.29 79.00 * 1445.55
Key Setup Time Encrypt (ns) 0 0 0 0
Key Setup Time Decrypt (ns) 0 0 0 0
Algorithm Setup Time (ns) 0 0 0 0
Time to Encrypt One Block (ns) 1620.18 3342.6 1593.9 *
Time to Decrypt One Block(ns) 1620.18 3342.6 1593.9 *

Parameter
Iterative 3in1 Pipelined 3in1

Table 5 TWOFISH Summary

7 Performance Results
A table summarizing the results and performance metrics is given below for algorithm comparison. These
comparison values are given only for the combined key size implementation, which implements a selectable 128 bit,
192 bit, and 256 bit key in the same implementation.

MARS RIJNDAEL RC6 SERPENT TWOFISH
Area (um2) * * * * *
Transistor Count * * * * *
Input/Outputs Required 520 520 520 520 520
Throughput (Mbps) * 519 * 202 79
Key Setup Time (ns) * * * * *
Algorithm Setup Time (ns) 0 0 0 0 0
Time to Encrypt One Block (ns) * 494 * 633 1620
Time to Decrypt One Block(ns) * 494 * 633 1620

Algorithm
Parameter

Table 6 Iterated Summary

MARS RIJNDAEL RC6 SERPENT TWOFISH
Area (um2) * * * * *
Transistor Count * * * * *
Input/Outputs Required 520 520 520 520 520
Throughput (Mbps) * 5163 2171 8030 1445
Key Setup Time (ns) * * * * *
Algorithm Setup Time (ns) 0 0 0 0 0
Time to Encrypt One Block (ns) * 247 1179 510 1594
Time to Decrypt One Block(ns) * 247 1179 510 1594

Algorithm
Parameter

Table 7 Pipelined Summary

8 Summary
This paper has presented an overview of the methods and architectures used for the AES hardware comparison. The
primary characteristics used for design tradeoffs in hardware engineering are area and timing. As such, each
algorithm was examined from the standpoint of minimum area (iterative architecture) and maximum throughput
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(pipelined architecture). Further, statistics and data based on area and timing were emphasized and illustrated for
each algorithm.
The results (in Section 7) show vital parameters for both the iterative and pipelined architectures of each algorithm
that can be used to evaluate relative performance. The designs were not optimized for any one parameter, but rather
they serve as a good testbench scoring of all the algorithms relative to one another, given the same commonly used
hardware design practices and procedures. Key performance data points to highlight are minimum transistor count
and maximum throughput. *
It should be emphasized that any data point based on a single parameter (e.g. transistor count or throughput) is a
relatively narrow view of the algorithm’s overall performance or rating. For this reason, there was no attempt to rank
algorithms in order. Rather, it is left to the cryptographic community to establish a consensus of the most important
parameters – in combination or alone – and to draw appropriate conclusions from the data provided herein.

* Note: Because incomplete information was available at publication time, additional results will be updated and
provided to the community through NIST as the parameter information is filled in for all algorithms.
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Abstract.  High-speed MARS encryption/decryption hardware was developed using a 0.18µm IBM CMOS 

technology.  In order to boost performance, a special adder and multiplier was designed by optimizing the adder 

block structure and interconnections between adder cells using signal delay profiles.  A description of the 

hardware including block diagrams and data flow diagrams is presented.  One of the most critical portions of 

the design is the special adder and multiplier.  The design philosophy and tradeoffs used in these pieces are 

discussed.  Finally, performance and size estimates are presented along with the rationale behind them.  The 

design achieves 677Mbit/s data rate for encryption when using cipher block chaining and 1.28Gbit/s for 

decryption and other encryption modes in 13.8Kgates + 2.25Kbyte SRAM. 

1. Introduction 

MARS [1] is a symmetric-key block cipher, supporting 128-bit blocks and a variable key size.  It is designed to 

take advantage of the powerful operations supported by today’s computers, resulting in a much improved 

security/performance tradeoff over existing ciphers.  We developed high-speed MARS hardware for use when 

additional performance or security is required over a software implementation.  Since MARS uses 32-bit 

multiplications and additions in conjunction with S-box lookups, it is essential for MARS hardware to have a 

high-speed multiplier and adder.  The key to realizing high-speed arithmetic circuits is to first break one operation 

into parallel sub-operation blocks, then precisely adjust and control the number of signal delays from each block.  

We developed an automatic circuit generation program, which optimizes the parallel block structure and the 

wiring interconnection by using the signal delay profiles.  A high-speed adder with the combination of carry-skip 

[2] and carry-select [3] techniques designed for an RSA encryption LSI [4] was implemented in the final stage of 

the multiplier.  These arithmetic circuits boost the speed of MARS hardware while maintaining compact silicon 

area. 

In this paper, we first show the data path level design of the MARS hardware with an overview of the MARS 

algorithm and how encryption and decryption are performed.  Next, we discuss the techniques that apply to the 

adders and multipliers to realize the high-speed MARS computation.  Finally, we give estimated performance 

results and the size of the MARS hardware. 

2. MARS Algorithm and Hardware Architecture 

2.1. Hardware Block Diagram 

We designed the MARS hardware entirely from the gate level to the chip level, so that it is ready for chip 

fabrication.  Figure 1 shows the block diagram of the hardware.  It has a chip external bus, which consists of a 

32-bit data bus, a 10-bit address bus, four control signals, and a clock, to interface with external logic, such as a 

CPU.  Through the bus, the external logic will read and write message data and the key.  The hardware has a 

forward/backward mixer, a cryptographic core for MARS encryption/decryption, and a key expander for key setup.  

During those operations, two S-boxes and key storage are accessed.  Each S-box is a 32-bit × 256-word SRAM.  

The key storage is a 32-bit × 64-word SRAM. 



2  

Chip interface and
controller

Forward/backward
mixer

Cryptographic core

Key expander Key storage

S-box 0

S-box 1

32bit

32bit    2×
128bit

128bit

32bit

Data

MARS Hardware

Address
Control
Clock

32bit
 

Figure 1.  Block diagram of MARS hardware. 

2.2. Encryption Procedure 

The MARS encryption procedure has three phases: 8-round “forward mixing,” 16-round “cryptographic core,” 

and 8-round “backward mixing,” as shown in Figure 2.  Figure 3 shows the type-3 Feistel network structure of 

MARS.  A 128-bit plain text block is divided into four 32-bit data words M0, M1, M2, M3, and encrypted as four 

words D0, D1, D2 and D3.  In the figure, ⊕ denotes XOR, “<<<n” and “>>>n” denote n-bit cyclic left and right 

rotations, respectively.  The lower 32 bits of the results of addition, subtraction and multiplication are used; the 

higher bits are discarded.  MARS uses S-box (32-bit × 512-word table) lookups in the key setup, encryption, and 

decryption procedures.  The S-box is composed of two 256-entry tables S0 (the first 256 words) and S1 (the last 

256 words), used in the forward and backward mixing phases.  The decryption procedure is the inverse of the 

encryption operation, and all circuits shown in this paper are used for both procedures by switching selectors in the 

data paths. 

                              

* S is the concatenation
   of S0 and S1

Cryptographic Core

For i = 0 to 15 do {    
R = ((D0<<<13) × K2i+5) <<< 10

    
M = (D0 + K2i+4) <<< (low 5 bits of (R>>>5))
L = (S[low 9bits of M] ⊕ (R>>>5) ⊕ R) <<< (low 5bits of R)

1 = D1 + L (if i < 8) ⊕ R (if i ≥ 8)
D2 = D2 + M
D3 = D3 ⊕ R (if i < 8) + L (if i ≥ 8)
(D0, D1, D2, D3) = (D1, D2, D3, D0<<<13)

}

D

(D0, D1, D2, D3) = (M0, M1, M2, M3) + (K0, K1, K2, K3)
For i = 0 to 7 do {

1 = (D1 ⊕ S0[1st byte of D0]) + S1[2nd byte of D0]
D2 = D2 + S0[3rd byte of D0]
D3 = D3 ⊕ S1[4th byte of D0]

0 = D0 + D1 (if i = 1,5) + D3 (if i = 0,4)
    (D0, D1, D2, D3) = (D1, D2, D3, D0)}

D

D

Forward Mixing

For i = 0 to 7 do {

0 = D  -0 D1 (if i = 3,7) - D3 (if i = 2,6)

1 = D1 ⊕ S1[1st byte of D0]
D2 = D2- S0[4th byte of D0]
D3 = (D3 - S1[3rd byte of D0]) ⊕ S0[2nd byte of D0]
(D0, D1, D2, D3) = (D1, D2, D3, D0<<<24)

}
(D0, D1, D2, D3) = (D0, D1, D2, D3) - (K36, K37, K38, K 39)

D
D

Backward Mixing

M0  M1  M2  M3

D0  D1 D2 D3

Four 32-bit words

 

Figure 2.  MARS encryption procedure. 
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Figure 3.  Type-3 Feistel network structure. 
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Figure 4.  Forward / backward mixing data paths. 

Figure 4 shows the circuit block diagram of the forward and backward mixing data paths.  This circuit is also 

shared by the encryption and decryption procedures.  Switching the selectors changes the order of the operations.  

The S-boxes, S0 and S1, are implemented by three-port SRAMs, one port for the write and two ports for the read 

operations.  The thick lines show the critical path for the backward mixing process, which contains subtraction, 

S-box, subtraction, and XOR operations in order.  Two sets of key registers K0-3 and K36-39 are dedicated to this 

mixing operation, and eight key words are copied from the 32-bit × 40-word expanded keys stored in SRAM “K”.  
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This circuit block is used 9 times in the forward mixing mode, then one cycle is required to add the sub-keys K0-3 to 

the data D0-3, and then 8 times in the rounds of mixing operation.  The backward mixing operation takes 9 cycles. 

Figure 5 is the block diagram of the cryptographic core (Feistel network) data path.  The thick lines specify the 

critical path.  It consists of a multiplier, two XORs, a conditional rotator, an adder and a selector.  The S-box read 

operation is executed in parallel with the multiplication, so that the memory access time does not affect the critical 

path.  The S-box shares the SRAM used for the forward and backward phases shown in Figure 4.  The 

cryptographic core operation uses this circuit in the 8-round keyed forward transformation followed by the 8-round 

keyed backward transformation.  The cryptographic core requires 16 cycles for each 128-bit block encryption. 
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Figure 5.  Cryptographic core data path. 

The cryptographic core and the forward/backward mixer can operate simultaneously on separate 128-bit blocks 

when four-port (one for write and three for read) SRAM is used as the S-box.  A 128-bit bus connection can swap 

data between these two circuits without additional cycles.  If we share the circuits of Figure 4 with forward and 

backward mixing operations to save hardware resources, 18 cycles are required for one set of encryption 

procedures.  A timing chart for this case, which is suitable for electronic codebook (ECB) encryption mode and all 

decryption modes, is given in Figure 6 (a).  The data throughput of this architecture is 128 bits / 18 cycles.  For 

cipher block chaining (CBC) encryption mode, the encrypted data D in the previous cycle is required before 

starting the current encryption of block M.  In this case, the mixing phases cannot be pipelined with the 

cryptographic core.  CBC operations require 34 cycles, with the throughput becoming 128 bits / 34 cycles.  The 

timing chart for cipher block chaining encryption mode is shown in Figure 6 (b). 
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 Bkwd-Mix

9CLKs CLKs9

CLKs18

M

D

M M

D D

CLKs16

Fwd-Mix

Crypto-Core

 Bkwd-Mix

Crypto-Core

Fwd-Mix

 Bkwd-Mix

CLKs34

D

M M

D9CLKs CLKs 9CLKs16

(a) Piplined Operation

(b) Non-Piplined Operation

Crypto-Core

 

Figure 6.  Timing chart of MARS encryption. 
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2.3. Key Expansion 

The key expansion procedure, shown in Figure 7, expands the user-supplied key array, k0, …, kn-1, into a 40-word 

internal key array, K0, …, K39.  The range of n is from 4 to 14 32 bit words, that is, MARS supports user key 

lengths from 128 bits to 448 bits.  In the figure, bit-wise OR and AND are denoted by ∨ and ∧, respectively.  The 

block diagram of the key expander data paths is shown in Figure 8.  The major components of the key expansion 

circuit are a barrel rotator, two registers, an adder, and multiplexers.  The key storage “K” is implemented using a 

three-port SRAM.  It is capable of one write and two read operations in parallel.  We designed the key expander 

with a small number of latches in order to keep it small in size.  The temporary storage T, which is used during the 

key expansion procedure, is implemented in the SRAM.  For this reason, the key storage has 64 entries of 32 bits 

data.  Key expansion takes 752 to 848 cycles depending on the value of the key. 

    

} } }

Initialization

k0 1 n-1

K0 1 39

(T0, ..., Tn-1) = (k 0, ..., kn-1)
Tn = n
(Tn+1, ..., T14) = (0, ..., 0)

For j = 0 to 3 do{

Linear Key-Word Expansion

For i = 0 to 14 do {

}

Repeat 4 times {
For i =  0 to 14 do { 

 
For i = 0 to 9 do {

 K10j+i = T4i mod 15

Ti = T ⊕ ((Ti-7 mod 15 i-2 mod 15) <<< 3) (4i+j)i T⊕ ⊕

T  = (Ti + S[low 9 bits of Ti-1 mod 15]) <<< 9i

k k

    S-box Based Stirring of Key-Words

}

Modifying Multiplication Key-Words

B = {0xa4a8d57b; 0x5b5d193b; 0xc8a8309b; 0x73f9a978}
For i = 5 to 35 step 2 do {

     

j = LSB of Ki

M = 0

jth bit of M = 1
if jth bit of w belongs to a sequence of 10 consecutive
0’s or 1’s, and equals to (j-1)th and (j+1)th bit of w

r = least five bits of Ki-1
p = Bj <<< r
K i = w    (p    M)

}

For j = 2 to 30 do {

}

K K

T0 1 14T T

K0 1 39      K K

⊕ ∧

w = K i   "0...011"∨

 

Figure 7.  Key expansion procedure.  
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Figure 8.  Key expander data path. 
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3. High-Speed Adder and Multiplier 

3.1. High-Speed Adder 

In this section, we first explain the design of a high-speed adder employing a combination of carry-skip [2] and 

carry-select [3] techniques used in the RSA encryption LSI [4].  This adder is used in the E-function and in the last 

stage of the multiplier.  It is one of the most critical parts affecting MARS hardware performance. 

Figure 9 shows the basic structure of the adder.  It consists of ripple-carry adder blocks where each successive 

block is one bit longer than the block immediately below along with a carry-skip path jumping over each adder 

block.  The delays in the ripple-carry adders and the carry-skip path are well balanced so that every carry 

propagates from the LSB to the MSB without waiting for the results from the other blocks.  To simplify the figure, 

a full adder cell FA is used in the first bit of each adder block.  It can be replaced by a half adder cell in the actual 

implementation. 
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Figure 9.  High-speed adder. 

If two or more bits of xi, yi and gi are ‘1’ in the i-th full-adder cell, carry gi+1 = 1 is generated and fed to the next cell.  

The cell never generates a carry if both xi and yi are ‘0’, regardless of the input gi.  If gi+1 = 0, either xi or yi is ‘0’ and 

the other is ‘1’, it will generate a carry if carry Cj = 1 comes up from the lower ripple-carry adder block j-1.  For 

example, when (x3, x4, x5) = (1, 1, 1) and (y3, y4, y5) = (0, 0, 0), block 2 does not generate carries g4, g5, g6 (= G2).  

However, if the carry C2 = 1 reached the block, the carry output C3 immediately becomes ‘1.’  This means that the 

carry Cj can skip over the blocks one after another by pre-calculating a condition between xi and yi in each adder 

block j.  The condition is defined by 

 XOR.iswhere,1
 

⊕=⊕= ∏i iij yxP  

By making the adder block size bigger toward the MSB side, the propagation time of Pj and Cj are equalized, and 

therefore the total delay time is minimized.  Output zi initially holds a sum as if the block carry Cj is 0, and is 

inverted by the XOR gate if Cj = 1 comes up later. 

3.2. High-Speed Multiplier 

A standard n-bit × n-bit multiplier gives a 2n-bit result by repeatedly summing up the n-bit partial product rows.  

The multiplier used in MARS is not required to calculate the higher half of the result, as shown in Figure 10, so it 

is faster and smaller than standard multipliers.  The high-speed techniques described in this section, however, can 

be applied to any multiplier.  Figure 11 shows a Wallace tree [5], which is an adder cell array commonly used in a 

multiplier to reduce the number of partial product rows. The tree takes three rows and produces one carry row and 
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one sum row, so the full adder cell, FA, is called “3:2 compressor.”  This reduction is repeated until there are only 

two partial product rows, which are added together with a high-speed carry-propagation adder. Several tree 

architectures, which use 4:2, 6:2 and 9:2 compressors, were proposed [6][7] to optimize the critical path of this tree, 

but these compressors basically consist of 3:2 compressors.  Booth encoding [8] is widely used to reduce the 

number of partial products, but it is a kind of 4:2 compression technique and does not change the tree structure.  

Oklobdzija et al [9] suggested that not all inputs and outputs from a compressor contribute equally to the delay, and 

the difference in using 4:2 and higher order compressors is not in the structure of the compressor but in the way 

they are interconnected. 

Multiplicator

Multiplicant

Partial Products

Result

(a) Normal Multiplier (b) MARS Multiplier

 

Figure 10.  Partial products in MARS multiplier (n = 8). 

In Figure 11, the input signals x and y of the full adder FA pass through two XORs to the output s, but the input ci 

goes through only one XOR gate.  The full-adder FA and half-adder HA located at the later stage of the tree are 

shaded in the figure.  The delay profile of the tree is shown with the same shading.  Here, all the XOR, NAND and 

AND gates are assumed to have the same propagation delay.  The two signals fed into the adder at the bit-5 

location come from the third-stage half adders marked with ‘*,’ but the right signal arrives earlier than the left one.  

In addition, the propagation delay from an input to an output varies with the types of gate and input pin locations.  

For example, AND usually operates faster than XOR, and NAND is faster than AND.  For that reason, we 

developed an optimal Wallace tree generation program in consideration of six delay propagation paths of a full 

adder (combination of the three inputs to two outputs) and four paths of a half adder, based on a 0.18µm IBM 

CMOS standard cell library. 
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Figure 11.  MARS multiplier using Wallace tree and its delay profile (n = 8). 
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Since the delay of the final carry-propagation adder is an addendum to the Wallace tree delay, the adder should 

have the optimized carry-propagation path for the tree delay profile.  At the same time, we should consider the 

adder structure to determine the tree interconnection.  Figure 12 shows the carry-propagation path in high-speed 

adders with equal and non-equal input signal arrival profiles.  Both adders are identical to the one shown in Figure 

9.  The adder exhibits the best performance for the equal input profile (a).  In case (b), the carry skipping over the 

adder blocks, though carry generator CGEN, has to wait until the carries propagates from the ripple-carry adder 

blocks. This is due to the slow input signals.  In other words, an adder which is faster than the input delay slope is 

not needed.  A simple ripple-carry adder can run fast enough in this case.  The input signals at bit 4, 8 and 9 arrive 

very quickly, but these fast inputs also waste time waiting for the carry propagation from the next adder cells.  To 

optimize performance of the multiplier, we have to make the positive delay slope gentle, and make the top of the 

hill as low as possible in the Wallace tree. This is achieved by optimizing the connection between the full adder 

and half adder gates according to their pin-to-pin internal delay profiles. 

HA HA

FA FA

CG
1

0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

(a) Equal arrival time

(b) Non-equal arrival time

2
FA

CG
3

HA

FA

FA

CG
4

FA
1

3

2

1 1

2

3

4

0 0 00

0 1 2 3 4 5 6 7 8 9

0

0

HA

FA

CG
1

1

3
2

2

HA

FA

3

1

FA

CG
6

4

5

4

7

5

6

HA

FA

FA

CG
10

FA
8

9

7

7

4 4

5

11

Delay

Bit

FA
1

FA
0 Input Delay Profile

FA

CG

HA

Carry Generator

Full Adder

Half Adder

 

Figure 12.  Carry propagation in high-speed adder on equal and non-equal input signal arrival profiles. 
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Figure 13.  Adder selection over input delay profile. 

Figure 13 shows an example adder structure with a positive delay slope profile.  From bits 0 to 2, the slope is 

steeper than one FA delay, so a ripple carry adder is chosen for this part.  A carry skip adder with bit blocks 1-1-2-3 

is used after bit 3, in example (a).  The operation of one half adder HA with a carry generator CGEN is identical to 

that of one full adder FA, so they are replaced in example (b) to simplify the structure. 
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In Figures 12 and 13, the input delay time in each bit location is defined by a multiple of one adder cell delay, thus 

it is not difficult to optimize the adder structure.  Actually, as shown in Figure 14(a), there is slack time between the 

input signals C and P into CGEN at the 9th bit.  In case (a), C is generated earlier than P, and waits for the arrival of 

P at CGEN.  When we move the location of CGEN one bit left (to bit 8) so that the carry C does not waste time, the 

signal P has to wait instead.  It is not clear which choice is better until the final adder cell is placed, and we have to 

choose the right combination of bit locations where CGENs are placed.  In case (a), the output signal delay from the 

CGEN is longer than that of case (b), but the carry C reaches a higher bit.  We should keep the slope of the carry path 

over the adder blocks as gentle as possible.  Therefore, the Wallace tree generator should employ a structure that 

has smaller value of delay/bit shown as the slope of triangles in the figure.  If the structures (a) and (b) have the 

same slope, then we chose the former because it has higher probability to have fewer CGEN cells. 

FA

FA

HA
HA

FA

FA
FA

HA
HA

HA

(a)

(b)

C

P

C

P

FA FA

HAHA HA

C

P

FA

FA

HAHA

FA

C

P

bit

delay

FA

FA

HA
HA

FA

C

P

FA
FA

HA
HA

HA

C

P

<Example>

<Example>

5 6 7 8 9 5 6 7 8 95 6 7 8 9

5 6 7 8 9 5 6 7 8 95 6 7 8 9

bit

delay

bit

delay
slack

slack
CG

CG

CG

CG

CG

CG

CG

CG

CG

CGCG

CG

 

Figure 14.  Carry propagation block design. 

Figure 15 shows the actual delay profile of the MARS multiplier using 0.18µm IBM copper CMOS technology 

under nominal (VDD=1.8V, Temp=25°C and Leff=0.11µm) and worst case (VDD=1.65V, Temp=125°C and 

Leff=0.14µm) conditions.  The output delay from the Wallace tree has an almost perfect gentle positive slope.  The 

delay line that looks like a saw blade shows the ripple carry adder blocks.  The carry skips over them smoothly.  As 

a result, using the techniques described in this chapter realize a 2.32ns (nominal) to 3.41ns (worst) operation for the 

32-bit MARS multiplier with a compact size of 3.2Kgates. 
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Figure 15.  Actual delay profile of the MARS multiplier. 
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4. Performance Evaluation 

We designed MARS hardware including an external interface, the control logic, and the calculation core.  All the 

design files are written in VHDL 93.  We synthesized the design using a 0.18µm IBM copper CMOS standard cell 

technology and evaluated its performance and size. 

Table 1 shows the gate size of the logic where one gate is the size of a 2-input NAND.  The memory area for the 

key register and S-box is shown in Table 2.  We get data throughputs of 128bits / 34cycles for CBC encryption and 

128bits / 18cycles for all decryption and other encryption modes, assuming a four-port SRAM implementation.  

However, the area of a four-port SRAM becomes larger than that of the logic part.  If we do not need the high data 

rate, the area can be greatly reduced by using fewer-port SRAMs and a mask ROM.  A two-port SRAM (one for 

read and one for write) for the key register halves the memory area while adding only one additional cycle for one 

128-byte block encryption process.  If the S-box is implemented with a single-port memory or a ROM, the cycles 

for the forward/backward mixing increase to 34, then the throughput of all encryption and decryption modes 

becomes 128 bits / 50 cycles. 

The critical path delays in the forward/backward mixer and the cryptographic core under nominal and worst case 

conditions are shown in Figure 16.  The longer delay of the cryptographic core, 5.57ns, determines the operation 

frequency of 180MHz (= 1 / 5.57ns) (122MHz worst case).  As a result, we get a maximum data throughput of 

677Mbit/s (459Mbits/s worst case) for CBC encryption and 1.28Gbit/s (867Mbits/s worst case) for other modes.  

All decryption modes achieve maximum throughput of 1.28Gbit/s (867Mbits/s worst case).  The throughput and 

gate sizes for other memory implementations are summarized in Table 3.   

Table 1.  Logic area 

Circuit Block Gate Size 

Key Expansion   2.2K 
Enc/Dec Controller   4.5K 
Enc/Dec Data path   6.1K 
Interface + Memory Controller   1.0K 
Total 13.8K 

Table 2.  Memory area 

Function Type  Gate Size 

3-port SRAM   6.8K Key Register 
(256bytes) 2-prot SRAM   4.8K 

4-port SRAM 46.2K 
3-port SRAM 30.8K 
1-port SRAM 15.4K 

S-box 
(2Kbytes) 

ROM   6.3K 

Table 3.  Performance of each implementation 

Memory Type Throughput 

CBC Encryption 
Other Encryption and  
All Decryption Modes Key S-box 

Total Gate Size 
(Mem+Logic) 

Nominal Case Worst Case Nominal Case Worst Case 

3-port 4-port 66.8K 677Mbit/s (34cycles) 459Mbit/s 1.28Gbit/s (18cycles) 867Mbit/s 
3-port 3-port 51.4K 677Mbit/s (34cycles) 459Mbit/s 677Mbit/s (34cycles) 459Mbit/s 
3-port 1-port 36.0K 460Mbit/s (50cycles) 312Mbit/s 460Mbit/s (50cycles) 312Mbit/s 
2-port 1-port 34.0K 451Mbit/s (51cycles) 306Mbit/s 451Mbit/s (51cycles) 306Mbit/s 
2-port ROM* 24.9K 263Mbit/s (51cycles) 263Mbit/s 263Mbit/s (51cycles) 263Mbit/s 

* 105MHz operation limited by ROM performance 
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selector+latch
1.70

adder1
1.10

S-box
1.22

adder2
1.29

selector+latch
       1.16

adder1
1.10

rotator
0.99

multiplyer
2.32

(a) Forward/Backword Mixer

Total
5.31ns

Total
5.57ns

2.501.62 1.801.90

1.62 1.453.41

Total
7.61ns

Total
8.18ns

1.70    

(Worst Case)

(Nominal Case)

(Worst Case)

(Nominal Case)

(b) Cryptographic Core

 

Figure 16.  Critical path delay. 

The technology chosen for the above estimations is a low cost copper CMOS technology several generations 

behind the state of the art CMOS technology.  As such the performance cannot be directly compared with that of 

software running on today’s high performance microprocessors.  If built using a newer CMOS technology the 

performance can be expected to improve by approximately 60%.  

5. Conclusion 

We designed MARS hardware and estimated its size and performance.  Since the MARS algorithm uses 32-bit 

additions and multiplications, its performance is highly dependent on the hardware design of the adder and 

multiplier.  We designed multipliers and adders, which fully take into account the carry propagation delay.   This 

work demonstrates that MARS can be implemented efficiently in hardware, both in terms of area and performance.  

We believe the design point chosen is a reasonable tradeoff of area vs. performance.  We do not claim that this is 

the highest performance MARS design possible.  Other tradeoffs may yield faster hardware implementations.  

Considering the size and performance in both hardware and software along with the very high security, we believe 

MARS is well suited to serve as the Advanced Encryption Standard algorithm. 
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Speeding up Serpent

Dag Arne Osvik �

March 15, 2000

Abstract

We present a method for �nding e�cient instruction sequences for the

Serpent S-boxes. Current implementations need many registers to store
temporary variables, yet the common x86 processors only have 8 registers,
of which even fewer are available for computations. The instructions are

also destructive, replacing one input with the output. Alternative versions
of the S-box instructions are presented, requiring only 5 registers and also
utilizing parallelism. Speedup of C language implementations of 24% is

shown on the Pentium Pro Processor, and 42% on the Pentium, both
compared to the previously fastest known implementation of Serpent.

1 Introduction

The main aspect of the �nalists for the Advanced Encryption Standard is the
security level they provide, especially against already known attack methods.
Another aspect is the encryption speed they allow in di�erent applications.
The goal of this work has been to �nd ways to improve the execution speed of
the Serpent algorithm on the x86 processors, including use of two-way parallel
execution.

Serpent[1], being an SP-network (it consists of substitutions and permuta-
tions), has two major parts; the S-boxes and the linear transformation. The
latter has a simple structure, and is well suited for manual optimization. The
S-boxes are 16-element permutations, and are performed in a bit parallel (also
known as bitslice) style by simple boolean operations.

2 The problem

The x86 processors, which can be found in nearly every personal computer, have
some clearly distinguishing features when compared to more modern architec-
tures. One of these is the small number of registers, only 8. Another is the
instruction set, where almost all instructions always modify one of their input
registers.

�University of Bergen, Department of Informatics, N-5020 Bergen, Norway. Email address:

osvik@ii.uib.no

1



3 Previous work

Other e�orts on optimizing Serpent have centered on the more purely mathe-
matical problem of lowering the number of boolean operations needed to express
the S-boxes [2]. Thus those essential properties of the x86 processors have been
ignored. The result is a high so-called 'register pressure', meaning compilers
have to put temporary variables in memory, issuing load and store instructions
in addition to the actual computation. The compiler also gets the job of copying
values when needed. One note is appropriate here, though; lowering the number
of operations is a much better approach for RISC processors than it is for x86,
as RISC instructions don't have to destroy an input value, and those processors
typically have 32 registers, making register pressure a non-issue. A comparison
of my results to those others (on x86) is given in a later section.

4 Our approach

One possible approach to solving a computational problem is to consider all
possible computations, ordered by their length. Searching to the depth needed
to �nd complete solutions in the case of Serpent S-boxes is infeasible using this
simple approach, so we need substantial improvements.

4.1 Serpent S-boxes

The Serpent S-boxes are 16-element permutations, implying that they belong
to a somewhat special subset of functions in fZ16 ! Z16g. Now, every number
from 0 to 15 can be represented by a 4-digit binary number, so these functions
map 4 input bits to 4 output bits. They can also be split into 4 functions
mapping 4 input bits to 1 output bit, just like any 4-bit number may be split
into 4 separate bits. Now recall that any function can be uniquely speci�ed by
telling its output value for every allowed input value. In the case of 4-to-1 bit
functions this is simply a list of 16 binary digits, given some ordering of the
input values.

4.2 Finding solutions

We need some way to transform any 4 input bits into the corresponding 4 output
bits using only those instructions available in the x86 instruction set, and in a
bit parallel way. We'll use S2 as an example:

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S2(x) 8 6 7 9 3 12 10 15 13 1 14 4 0 11 5 2

Now rewrite x and S2(x) in binary:
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x3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
x2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
x1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
x0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

S2;3 1 0 0 1 0 1 1 1 1 0 1 0 0 1 0 0
S2;2 0 1 1 0 0 1 0 1 1 0 1 1 0 0 1 0
S2;1 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1
S2;0 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 0

Each column in this table contains the bits of some value for x, as well as
the bits of the corresponding S2(x). The set of all columns contains all possible
values for x. The number of columns is thus determined by the number of
possible inputs, and is not related to the word length of any processor.

If we �nd a way of combining the xi rows by boolean operations so that we
get the S2;i rows, then applying those operations to the bits of an input value x

is equivalent to looking up S2(x). To see how this is actually done, we will look
at the execution of an instruction sequence for S2.

The x86 instructions usable for the S-boxes are these:

Instruction E�ect C expression

and a, b a := a � b a &= b
or a,b a := a+ b a |= b
xor a,b a := a� b a �= b
not a a := a� 1 a = �a
mov a, b a := b a = b

Suppose we have 5 registers, named r0; : : : ; r4, available for our computa-
tions, and 4 of them initially contain our 4 input bits (ri contains xi, 0 � i � 3).
As r4 is not an input register, we just ignore its previous contents. Thus we
have this initial state:

r4
r3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
r2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
r1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
r0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

The instruction sequence found by the search program (with two-way par-
allelism shown) is this:
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mov r4, r0 and r0, r2
xor r0, r3 xor r2, r1
xor r2, r0 or r3, r4
xor r3, r1 xor r4, r2
mov r1, r3 or r3, r4
xor r3, r0 and r0, r1
xor r4, r0 xor r1, r3
xor r1, r4 not r4

Executing the �rst line of instructions makes the modi�cations r4 := r0;
r0 := r0 � r2, giving us this new state:

r4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
r3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
r2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
r1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
r0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1

Next, we perform r0 := r0 � r3; r2 := r2 � r1.

r4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
r3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
r2 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
r1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
r0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 1 0

Now things get more interesting. Notice the values in the r2 row after
r2 := r2 � r0; r3 := r3 + r4.

r4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
r3 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1
r2 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 0
r1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
r0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 1 0

r2 is now the same as S2;0, one of our wanted output bits.
Executing the next three lines of instruction pairs, we reach this state:

r4 0 1 1 0 1 1 0 0 1 0 0 1 0 0 1 1
r3 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1
r2 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 0
r1 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0
r0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0

Now r3 is the same as S2;1. The next two lines complete the work:
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r4 = S2;3 1 0 0 1 0 1 1 1 1 0 1 0 0 1 0 0
r3 = S2;1 0 1 1 0 1 0 1 1 0 0 1 0 0 1 0 1
r2 = S2;0 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 0
r1 = S2;2 0 1 1 0 0 1 0 1 1 0 1 1 0 0 1 0
r0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0

Thus we have a way of applying the function S2, using only boolean oper-
ations with 1-bit input values. Now remember that the columns were initially
just a list of possible input values. So the operations performed are actually
independent of the number and contents of the columns. So we may now e.g.
extend our table to 32 columns and allow any contents in each of the columns.
Then, when the operations are performed, they perform S2 32 times in parallel.
This is exactly what we do on a processor with 32-bit registers.

The search for such solutions basically tries all possible instruction sequences
of a given length, looking for rows equal to those of the S-box wanted. Shorter
sequences are generally preferred, so we start with a small length, progressing to
longer ones when no solution is found. To search for sequences capable of parallel
execution, like the one above, we require that an instruction not read the output
of an earlier instruction on the same line. It may write to an input register of
an earlier instruction, though, as that will in no way a�ect the outcome of the
other instruction.

4.3 Optimizations

Below are short descriptions of the most important optimizations of the search
algorithm. Almost all of these avoid removing solutions without keeping an
equivalent solution.

� Recursion stops when the register contents can no longer generate a per-
mutation.

� When two instruction sequences are identi�ed as being equivalent, we
remove one of them from the search.

� No instruction other than mov may make a register contain a copy of the
value in another register.

� Unread registers may not be written to by the mov instruction.

� Negated registers (those last modi�ed by a not instruction) are marked as
such, and may not again be negated until they have been read.

� Lookahead functions e�ciently calculate a set containing all values reach-
able in one or two cycles.

� The search is narrowed by requiring an increasing number of result values
in the registers as the search goes deeper. This constraint is important for
deep searches, but its most strict variant (increasing the required number
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as soon as there is at least one sequence that reached it) often drops better
solutions, and should be relaxed by postponing the requirement by one or
two cycles.

� The instructions are limited to using only 5 registers.

First experiences using the search program with 7 registers available showed
most solutions using 6 of those, while others only used 5 registers. Further
testing always provided solutions using 5 registers whenever a 6 register solution
was found. Given the reduced complexity of the search, and the advantages of
having the S-boxes do all their computations in only 5 registers, I chose to limit
the search accordingly.

5 Results

The S-box functions chosen from the search results have the properties shown
in the table. Cycle count is for running these on processors like the Pentium,
with two integer execution units running in parallel.

Function Instructions Cycles Registers

S0 18 9 5
S1 18 10 5
S2 16 8 5
S3 19 10 5
S4 20 10 5
S5 19 10 5
S6 18 10 5
S7 20 11 5

S�1
0

19 11 5

S�1
1

19 11 5

S�1
2

19 10 5

S�1
3

18 10 5

S�1
4

20 11 5

S�1
5

19 10 5

S�1
6

17 9 5

S�1
7

19 10 5

The low register pressure of these functions makes their compiled code com-
pletely free from loads and stores. So we only load input data and round keys,
and store the result. Except for the round key loads, no memory operations are
issued during encryption. This is completely di�erent from the S-boxes used in
the AES submission package[1], as well as those found by Gladman and Simp-
son [2], which depend heavily on memory for storage during encryption. Also,
the memory footprint of the encryption routines themselves is much reduced; a
fully inlined encryption requires less than 4 kilobytes.
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6 Optimized implementations

Due to the problem of making C compilers schedule instructions properly for
the Pentium, the S-box instructions were also incorporated into assembly rou-
tines for Serpent encryption and decryption. The result was then manually
tuned for this processor (which may make it slower on other processors). The
implementation was made with these constraints:

� The stack pointer register is reserved for its normal use.

� Make the routines suitable as plug-in replacements for the C routines in
the AES submittal of Serpent, allowing easy testing.

� One register contains a pointer to the round key table.

Keeping the stack and key table pointers, instead of using them as general
purpose registers, allows multiple simultaneous use of the routines, such as in
multithreaded environments.

A new set of four round keys is loaded 33 times during an encryption or
decryption. Reserving a register to point to the key table avoids having to
reload the pointer every time. The ideal solution for performance is to put the
round keys on the stack or in a �xed location, as that would free up the key
pointer (round keys would be fetched using the stack pointer). But, since the
pointer to the round key table is a parameter to the routines we replace, it is
needed.

Given these limitations, we still have those �ve registers needed for the S-
boxes, plus one free for whatever use we might have for it, like early loading
of a round key. This gives the opportunity to exploit the parallelism of the
Pentium nearly to its full extent, thus usually executing two instructions per
cycle (some instructions can only execute one at a time). The bene�t of one
more free register, as could be gained by �xing the location of round keys, will
thus be minimal.

7 Performance comparison

Speed testing was done on these computers:

Processor Clock speed RAM size OS

486 SX 33 MHz 20 MB Linux 2.0
Pentium 100 MHz 64 MB Linux 2.0

(Dual) Celeron 333 MHz 256 MB Linux 2.2

The following tables give a comparison of the di�erent implementations of
Serpent on these computers. My speed �gures in Mbit/s are scaled to given
clock speeds, assuming all memory operations are performed in level 1 caches.
In the case of Pentium Pro, I compare against the best of Gladman's most
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recent numbers. On the others, numbers are compared to those reported by
Granboulan [3], using Gladman's code.

� 486 DX/2-50

Encryption Decryption
Implementation Mbit/s cycles Mbit/s cycles
Gladman's code 0.48 12900

Osvik 3.8 1650 3.8 1660

� Pentium 90

Encryption Decryption
Implementation Mbit/s cycles Mbit/s cycles

AES submission 7.17 1605 5.88 1956
Gladman's code 8.56 1290

Osvik 12.7 907 12.7 905
Osvik, asm 14.4 800

� Pentium Pro 200

Encryption Decryption Key setup
Implementation Mbit/s cycles Mbit/s cycles cycles

AES submission 21.8 1170 20.6 1301
Gladman 27.0 945 26.9 951 1290
Osvik 33.7 759 33.2 770 1106

The compiler used to compile both my own and the AES submission C
code is PentiumGCC version 2.95.2. For my own code, I used the options
�-O -mpentium -fPIC -fomit-frame-pointer� on Pentium and �-O2 -mpentium
-fPIC -fomit-frame-pointer� on PPro. For the AES submission code I used �-O
-mpentium�. Other optimization settings I tried reduced the speed achieved.
All times are measured including parameter passing, function call and return
from the function. Timings on the 486 are not nearly as accurate as the others,
as it does not have a cycle counter.

Note: the �gures quoted above are for Gladman's results in C using a static
array of round keys which frees up an extra register. This only allows multiple
concurrent encryptions when they all use the same key. His C++ code, which
does not have this limitation, shows a 3% performance reduction.

8 Future directions

� My implementations may be further tuned - actually, I expected the Pen-
tium assembly implementation to come close to 735 cycles for encryption.
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While trying to manually optimize the encryption, I found the Pentium
to be very touchy regarding tight dependencies involving rotation instruc-
tions. Given the Pentium processor's slowdown when executing such in-
struction sequences, 735 cycles seems to be unreachable. Still, faster S-
boxes might exist, as my search has not been exhaustive.

� The key setup function can generate the encryption code with round keys
embedded directly in the instructions, thus removing the load instructions
and saving upto 66 cycles on the Pentium. This will increase key setup
time, though.

� 3-way parallelism on x86 (AMD Athlon). This only requires a (theoret-
ically) simple extension of my current search program. The curious can
quite easily verify that S�1

6
and S�1

7
both can execute in 7 cycles with up to

3 instructions/cycle, as opposed to 9 and 10 cycles on Pentium/.../Pentium
III.

� Hardware implementations have a natural emphasis on parallelism. Pre-
liminary results in this area look extremely promising; given 3-input nand
and nor gates, and (at most) 2-input versions of other gates, all S-boxes
can be performed with a gate depth of only 3. Combined with a depth of
4 for the linear transformation and 1 for key mixing, this indicates that
several Gb/s should be possible in CBC mode with common technology.
If we can also add 3-input (n)xor, the gate depth of one round is reduced
to no more than 5.

� The instruction sets of RISC processors may be viewed as a set of gates
from which we can build wide S-box functions. Their lack of 3-input
logical operations raises the maximum gate depth needed to 4. That is,
given enough parallelism on a RISC (or EPIC) chip, all S-boxes have
solutions requiring no more than 4 cycles to execute. This hardware-style
RISC optimization will be further investigated in the near future.
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Appendix

Below are all the S-box functions selected from the search results. The functions
expect their input values to be in r0 .. r3, ordered from least to most signi�cant
bit. The contents of r4 are ignored. Output values are given in the registers
listed at the bottom of each table, again ordered from least to most signi�cant
bit.

S0 S�1
0

r3 �= r0 r4 = r1 r2 =� r2 r4 = r1
r1 &= r3 r4 �= r2 r1 |= r0 r4 =� r4
r1 �= r0 r0 |= r3 r1 �= r2 r2 |= r4
r0 �= r4 r4 �= r3 r1 �= r3 r0 �= r4
r3 �= r2 r2 |= r1 r2 �= r0 r0 &= r3
r2 �= r4 r4 =� r4 r4 �= r0 r0 |= r1
r4 |= r1 r1 �= r3 r0 �= r2 r3 �= r4
r1 �= r4 r3 |= r0 r2 �= r1 r3 �= r0
r1 �= r3 r4 �= r3 r3 �= r1

r2 &= r3
r4 �= r2

r1, r4, r2, r0 r0, r4, r1, r3
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S1 S�1
1

r0 =� r0 r2 =� r2 r4 = r1 r1 �= r3
r4 = r0 r0 &= r1 r3 &= r1 r4 �= r2
r2 �= r0 r0 |= r3 r3 �= r0 r0 |= r1
r3 �= r2 r1 �= r0 r2 �= r3 r0 �= r4
r0 �= r4 r4 |= r1 r0 |= r2 r1 �= r3
r1 �= r3 r2 |= r0 r0 �= r1 r1 |= r3
r2 &= r4 r0 �= r1 r1 �= r0 r4 =� r4
r1 &= r2 r4 �= r1 r1 |= r0
r1 �= r0 r0 &= r2 r1 �= r0
r0 �= r4 r1 |= r4

r3 �= r1
r2, r0, r3, r1 r4, r0, r3, r2

S2 S�1
2

r4 = r0 r0 &= r2 r2 �= r3 r3 �= r0
r0 �= r3 r2 �= r1 r4 = r3 r3 &= r2
r2 �= r0 r3 |= r4 r3 �= r1 r1 |= r2
r3 �= r1 r4 �= r2 r1 �= r4 r4 &= r3
r1 = r3 r3 |= r4 r2 �= r3 r4 &= r0
r3 �= r0 r0 &= r1 r4 �= r2 r2 &= r1
r4 �= r0 r1 �= r3 r2 |= r0 r3 =� r3
r1 �= r4 r4 =� r4 r2 �= r3 r0 �= r3

r0 &= r1 r3 �= r4
r3 �= r0

r2, r3, r1, r4 r1, r4, r2, r3

S3 S�1
3

r4 = r0 r0 |= r3 r4 = r2 r2 �= r1
r3 �= r1 r1 &= r4 r0 �= r2 r4 &= r2
r4 �= r2 r2 �= r3 r4 �= r0 r0 &= r1
r3 &= r0 r4 |= r1 r1 �= r3 r3 |= r4
r3 �= r4 r0 �= r1 r2 �= r3 r0 �= r3
r4 &= r0 r1 �= r3 r1 �= r4 r3 &= r2
r4 �= r2 r1 |= r0 r3 �= r1 r1 �= r0
r1 �= r2 r0 �= r3 r1 |= r2 r0 �= r3
r2 = r1 r1 |= r3 r1 �= r4
r1 �= r0 r0 �= r1

r1, r2, r3, r4 r2, r1, r3, r0
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S4 S�1
4

r1 �= r3 r3 =� r3 r4 = r2 r2 &= r3
r2 �= r3 r3 �= r0 r2 �= r1 r1 |= r3
r4 = r1 r1 &= r3 r1 &= r0 r4 �= r2
r1 �= r2 r4 �= r3 r4 �= r1 r1 &= r2
r0 �= r4 r2 &= r4 r0 =� r0 r3 �= r4
r2 �= r0 r0 &= r1 r1 �= r3 r3 &= r0
r3 �= r0 r4 |= r1 r3 �= r2 r0 �= r1
r4 �= r0 r0 |= r3 r2 &= r0 r3 �= r0
r0 �= r2 r2 &= r3 r2 �= r4
r0 =� r0 r4 �= r2 r2 |= r3 r3 �= r0

r2 �= r1
r1, r4, r0, r3 r0, r3, r2, r4

S5 S�1
5

r0 �= r1 r1 �= r3 r1 =� r1 r4 = r3
r3 =� r3 r4 = r1 r2 �= r1 r3 |= r0
r1 &= r0 r2 �= r3 r3 �= r2 r2 |= r1
r1 �= r2 r2 |= r4 r2 &= r0 r4 �= r3
r4 �= r3 r3 &= r1 r2 �= r4 r4 |= r0
r3 �= r0 r4 �= r1 r4 �= r1 r1 &= r2
r4 �= r2 r2 �= r0 r1 �= r3 r4 �= r2
r0 &= r3 r2 =� r2 r3 &= r4 r4 �= r1
r0 �= r4 r4 |= r3 r3 �= r4 r4 =� r4
r2 �= r4 r3 �= r0

r1, r3, r0, r2 r1, r4, r3, r2

S6 S�1
6

r2 =� r2 r4 = r3 r0 �= r2 r4 = r2
r3 &= r0 r0 �= r4 r2 &= r0 r4 �= r3
r3 �= r2 r2 |= r4 r2 =� r2 r3 �= r1
r1 �= r3 r2 �= r0 r2 �= r3 r4 |= r0
r0 |= r1 r2 �= r1 r0 �= r2 r3 �= r4
r4 �= r0 r0 |= r3 r4 �= r1 r1 &= r3
r0 �= r2 r4 �= r3 r1 �= r0 r0 �= r3
r4 �= r0 r3 =� r3 r0 |= r2 r3 �= r1
r2 &= r4 r4 �= r0
r2 �= r3

r0, r1, r4, r2 r1, r2, r4, r3
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S7 S�1
7

r4 = r1 r1 |= r2 r4 = r2 r2 �= r0
r1 �= r3 r4 �= r2 r0 &= r3 r4 |= r3
r2 �= r1 r3 |= r4 r2 =� r2 r3 �= r1
r3 &= r0 r4 �= r2 r1 |= r0 r0 �= r2
r3 �= r1 r1 |= r4 r2 &= r4 r3 &= r4
r1 �= r0 r0 |= r4 r1 �= r2 r2 �= r0
r0 �= r2 r1 �= r4 r0 |= r2 r4 �= r1
r2 �= r1 r1 &= r0 r0 �= r3 r3 �= r4
r1 �= r4 r2 =� r2 r4 |= r0 r3 �= r2
r2 |= r0 r4 �= r2
r4 �= r2

r4, r3, r1, r0 r3, r0, r1, r4
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Introduction:

All five of the AES finalist candidates are solid ciphers, with no known weaknesses. It seems likely that any
of the candidates would make a good standard. In this short paper, we summarize some qualitative and
objective comments on the finalists, and make recommendations for final selection.

General Comments on the Candidates

   MARS

MARS has one of the widest security margins, both in terms of number of rounds, and in
terms of diversity (as its security relies on a combination of several different "strong
operations" and on a heterogeneous structure). MARS is the only candidate with a
heterogeneous structure, which was a deliberate design feature to help resist unknown
attacks.  Also, the design of the round function in MARS lends itself to analysis. In
particular, a nearly complete characterization is known for the differential behavior of the
round function, and independent analysis has been published.

At the same time, MARS is also a very fast cipher. In fact, in some of the measurements,
MARS posted the fastest C and Java benchmarks. In Gladman's C benchmarks, MARS
average performance across all key sizes was second only to RC6.

One concern raised about MARS was that it was hard to implement on memory constrained
environments. In response to this criticism, the key schedule was tweaked prior to round 2,
significantly reducing memory requirements.

Another criticism raised about MARS concerned its complexity. We feel that this was partly
due to our extremely detailed presentation and analysis of the algorithm. We subsequently
released a simplified description including simplified pseudocode which fits on a single page,
(which is included later in this paper). In addition, using implementation lines as a
complexity measurement, MARS is less complex than Twofish, Rijndael, and Serpent.

   RC6

RC6 has a simple, elegant round function, and it is the fastest cipher in speed tests. A
possible concern about RC6 is that its round function may be "too simple". Specifically, the
combination of multiplications and rotation, although providing some excellent properties, is

1



a "single point of failure" in RC6 (as it does not use S−boxes). Also, RC6 seems to have the
lowest security margin of the candidates in terms of number of rounds.

   Rijndael

Rijndael is a fast cipher, which is very flexible for implementation. It is important to note
that its speed on 256 bit keys is lower than MARS or Twofish.

Rijndael has a round function which is hard to analyze, and a key schedule that makes it
easier to mount power attacks. Also, the fact that the round function can be expressed as only
a few simple algebraic operations makes one wary of potential algebraic attacks against it.

The structure of Rijndael and Square is new, and not fully understood.  In "The Block
Cipher Square", Daemen, Knudsen, and Rijmen presented an attack unique to the Square
structure, which caused them to increase the number of rounds. The existence of attacks
unique to Square call into question Rijndael's long term resistance.

Rijndael's mode with only 10 rounds has a relatively low security margin.

   Serpent

Serpent has very wide security margins in terms of number of rounds, and very strong
mixing. On the down side, it is quite slow, and it also has a key schedule that makes power
attacks easier to mount. As there are other candidates with good security margins, and much
faster performance, we feel that Serpent is too slow.

   Twofish

Twofish is a flexible cipher in terms of implementation tradeoffs, and it is also one of the
fastest ciphers (except for its key−schedule). It has good security margins, and reasonable
complexity.

A concern about Twofish is that it is very hard to analyze its security. Its round function was
engineered to provide flexibility, rather than to facilitate analysis. Indeed, although a lot of
effort has already been invested in its analysis, it is safe to say that the exact properties of the
round function are not very well understood. Moreover, the reliance on key dependent
S−boxes which are not generated pseudorandomly, makes the analysis even harder.

Another drawback of the key dependent S−boxes is that they are inherently more costly. In
Twofish this extra cost can be shifted between the key−setup and the cipher, but nonetheless
it is always there. Finally, the key schedule of Twofish makes power attacks easier, since the
entire key can be deduced from only the initial whitening key.

2



Complexity/Size of the Candidates

As mentioned earlier, MARS is actually not a complex algorithm.  One way to measure complexity is to
count lines needed to implement the cipher.  Here are some measurements of Gladman's C code
implementations, which can be used to compare complexity:

   Cipher     Lines  LOC    Statements

   RC6        116     71     86
   MARS       424    298    249
   Twofish    496    346    224
   Rijndael   449    282    212
   Serpent    623    479    620

(Lines counts the lines in the implementation, including comments and blanks; LOC (lines of code) counts
only lines with statements, and statements counts the number of C statements.)  As expected, RC6 is
significantly simpler. Surprisingly, Serpent is significantly more complex to implement. MARS, Twofish,
and Rijndael fall in the middle, with comparable complexity.  In addition, to show the conceptual simplicity
of MARS, here is the entire pseudocode for MARS encryption in 30 lines, (counting comments and blank
lines).

// Forward Mixing
(A,B,C,D) = (A,B,C,D) + (K0,K1,K2,K3)
For i = 0 to 7 {
  B = (B ^ S0[A]) + S1[A>>>8]
  C = C + S0[A>>>16]
  D = D ^ S1[A>>>24]
  A = (A>>>24) + B(if i=1,5) + D(if i=0,4)
 (A,B,C,D) = (B,C,D,A)
}

// Keyed Transformation and E−Function
For i = 0 to 15 {
  R = ((A<<<13) * K[2i+5]) <<< 10
  M = (A + K[2i+4]) <<< (low 5 bits of (R>>>5))
  L = (S[M] ^ (R>>>5) ^ R) <<< (low 5 bits of R)
  B = B + L(if i<8) ^ R(if i>=8)
  C = C + M
  D = D ^R(if i<8) + L(if i>=8)
 (A,B,C,D) = (B,C,D,A<<<13)
}

// Backward Mixing
For i = 0 to 7 {
  A = A − B(if i=3,7) − D(if i=2,6)
  B = B ^ S1[A]
  C = C − S0[A<<<8]
  D = (D − S1[A<<<16]) ^ S0[A<<<24]
 (A,B,C,D) = (B,C,D,A<<<24)
}
(A,B,C,D) = (A,B,C,D) − (K36,K37,K38,K39)

3



Performance, Complexity, and Relative Security Margin

In this section we have collected and summarized some measurements of performance, and complexity, and
estimates of security margin. For performance, we use Gladman's C code results [1]. Note that Rijndael's
performance varies based on key size. While other papers have analyzed the candidates on other platforms,
only performance on the NIST selected reference platform has received adequate analysis and review, so we
use those numbers here.

As a simple complexity measurement, we count lines in Gladman's C implementations [2]. As these have all
been written by the same person to the same API, with the same style, the line counts indicate relative
complexity.  For security margin, we use Biham's analysis [3] of rounds divided by minimum secure rounds,
to get a ratio, in which large numbers represent higher (better) margins.

   Cipher    Speed(Mb/sec)  Setup(Clocks)   Lines  Security Margin

   RC6       94.2           1875            116    1.0
   Mars      69.4           2134            424    1.6
   Twofish   68.8           8493−15616      496    1.6
   Rijndael  50.5−70.3      207−1983        449    1.3−1.8
   Serpent   26.7           1296            623    1.9

In this table, we have highlighted values that are less competitive compared to the other candidates. This
table makes clear the tradeoffs between speed and margins. RC6 is fastest, with the lowest margin. Serpent is
slowest with the highest margin. The Serpent code is surprisingly more complex than the others, while RC6
is, as expected, the simplest code, with the others comparable between the extremes.

Recommendation Summary

RC6 is an elegant, fast, and well analyzed cipher, and would normally be considered the obvious best
candidate, but for a standard that is supposed to last twenty years, its security margin is perhaps a bit too
close to the edge. If only one candidate is chosen, RC6 is perhaps a bit risky.

Of the other ciphers, Serpent is too slow.  Rijndael's structure is new and less well understood, and it has a
slight disadvantage in performance with large keys. The security of Twofish is difficult to analyze, given its
key dependent S−box, and it has a slight disadvantage in key setup performance.  Since MARS has well
understood and analyzed components, has a solid security margin, is fast, and does not have the large key or
key setup performance problems, it is the best choice.

Should two candidates be selected, we feel that RC6 would be the obvious second choice, since the risk from
its low margin would be much less of an issue, given the existence of the other cipher to fall back on. Its
simplicity and tiny size make it very easy to add as a second cipher to any implementation.

References:

1. http://www.btinternet.com/~brian.gladman/cryptography_technology/aes2/ index.html
2. http://www.btinternet.com/~brian.gladman/cryptography_technology/aes2/aes.r2.algs.zip
3. http://www.cs.technion.ac.il/~biham/Reports/aes−comparing−revised.ps.gz
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Introduction

After more than a year of design and nearly two years of scrutiny, the process
to choose the Advanced Encryption Standard is drawing to a close. We are
now left with �ve designs that would each be a good choice as the �nal AES.
These �ve ciphers have radically di�erent design philosophies and they have very
di�erent security and performance properties. No one cipher sticks out as being
the natural choice in all respects.

During the design of RC6 our pragmatic aim was to satisfy as many goals
as possible while keeping the cipher simple. Only by keeping a cipher simple
can one achieve a well-understood level of security, good performance, and a
versatility of design that makes the cipher highly adaptable to future demands.

We believe that we have been successful in this approach and developments
over the last two years have only served to strengthen our views. We believe that
RC6 would make an excellent choice as the �nal AES.

Security through simplicity

Despite the talk of \margins for security" and \fair" or \minimal" round as-
sessments, the most important measure of the likely security of a cipher is quite
simply the amount of scrutiny it has received. Yet it is not clear how much
attention the di�erent ciphers have received. Cryptanalysts have full-time jobs
teaching in a university or working on a range of unrelated industry projects.
Very few, if any, will have looked at more than two �nalists in any depth, let
alone all �ve.

A simple cipher is one that is easily described and readily remembered. It will,
as a direct result, be analyzed and scrutinized widely [2, 4, 5, 8, 11]. Not only will
it receive the greatest quantity of analysis - it will also receive the most accurate
analysis. During the design of RC6 we performed what we believe to be one of
the most accurate assessments of the security of any of the AES �nalists [4]. RC6
is not so complicated that approximating models have to be introduced (as with
MARS [3] and Two�sh [17]). Instead we were able to get a remarkably accurate
view of the strength o�ered by RC6 using direct analysis4. In this way we were

4 Since it is easy to de�ne simpli�ed and small block-size variants of RC6, the crypt-

analyst can perform far more extensive analysis and experimentation.



able to make a careful decision on how many rounds RC6 should have so that
we delivered good performance once our security goals had been attained. In the
case of some �nalists new attacks have improved on the work of the designers.
Yet it is a vindication of our approach that when other techniques are applied,
as was done by Knudsen and Meier [11] (and also Baudron et al. [2]), they give
surprisingly similar results to those provided by our own analysis. This isn't a
\small margin for security". Rather it is a carefully assessed, and remarkably
accurate margin for security.

As well as being earned, some faith in a cipher can be inherited. The time for
assessment of the �nalists throughout the AES process has been a little less than
two years. By building on the knowledge of earlier ciphers we gain insight into
the security of a new cipher. Clearly RC6 was designed in the light of experience
gained with perhaps the most studied modern cipher, RC5 [14]. And not only
with regards to the structure of the round function. We decided to choose a key
schedule for RC6 that was identical to that for RC5. No other AES �nalist uses
a key schedule that has been open to public analysis for nearly six years. Given
the problems some �nalists have in the key schedule, either with key separation
in the case of Two�sh [12] or with related-key attacks in the case of Rijndael [7],
this is a very important attribute.

The AES e�ort is so important that we should not be relying on crude and
subjective metrics for our decisions. The process of subtracting some arbitrary
number of rounds from the number of proposed rounds - arbitrary numbers that
might in one case be taken from the designers documentation and in another
from direct independent analysis - can be a misleading way of comparing the
AES �nalists. To quote [18]: \These comparisons are fundamentally awed, be-
cause they unfairly bene�t algorithms that have been cryptanalyzed the least."
Instead, the true security of a cipher depends on

{ the amount of cryptanalytic scrutiny received,
{ the accuracy of existing cryptanalysis,
{ the ease with which verifying experiments can be conducted on a cipher,
{ the amount of earlier cryptanalytic analytic work that can be used in the
assessment of the cipher, and,

{ the accuracy of the designers initial estimates.

We believe that on all counts RC6 is most suited to be chosen as the AES.

Performance through simplicity

Most of today's high-end computing base is deployed in PC's either in the work-
place or at home, and these are 32-bit machines. Here RC6 typically o�ers ex-
emplary performance. Some restricted devices that are currently quite widely
deployed are 8-bit based. These might include a relatively insigni�cant fraction
of mobile devices, but would most likely be smart cards. However, when we
couple the needs of greater processing power with the inevitable drop in prices
of 32-bit processors, it is very clear that the mobile computing device market,



including smart card applications, will inevitably shift to a 32-bit oriented pro-
cessor base. This trend may take a few years to come to fruition, but its results
are likely to be with us for the 20 or 30 years that might be required for the
AES.

With regards to very cheap smart-cards with old 8-bit processors, it has
already been observed [9] that such very cheap smart-cards are vulnerable to
system attacks and are inherently insecure. Such insecurities would apply to any
of the AES �nalists. As a result we should be careful that we do not place too
much weight on the performance of a cipher in an environment that is both
insecure now and obsolete (perhaps even non-existent) in a few years time. Nev-
ertheless such processors are currently deployed and the AES may well be desired
in such applications. The �rst question we should ask is whether performance is
an important issue in such situations? What applications are going to be used
on such cheap 8-bit smart cards? Certainly they won't require bulk encryption
- at most a few blocks of data will be processed. So, the performance of any of
the �ve AES �nalists is going to be adequate.

On a separate issue it is repeatedly claimed (almost to the point of folklore
and most surprisingly in [18]) that an implementation of RC6 requires at least
176 bytes of RAM. Yet Keating [10] has already shown that this is not the case
and that RC6 can be implemented in around 120 bytes of RAM. So we can
conclude that all the AES �nalists can be implemented, and can be expected to
o�er adequate performance, on cheap (insecure) low-end smart cards.

Looking to future architectures, �ne-grained estimates today of performance
on future architectures really don't seem to be terribly useful. Technology evolves
in unpredictable ways (for instance the growing signi�cance of DSPs) and it
seems likely that technology will evolve to best support whichever of the AES
�nalists is chosen. Instead, experience in the area of 32-bit processors shows that
there is nothing intrinsically unsuitable about any of the �ve �nalists for future
architectures and future designs can be expected to devote signi�cant support
to providing the best possible performance from the �nal AES.

We provide some additional observations.

{ Hand-optimized assembly code will o�er the best algorithm performance on
any processor. Yet often, developers will use portable code in a higher-level
language and compile it for the environment of use. Under such circum-
stances the simplicity of a cipher is very important since it allows a compiler
to produce well-optimized code. This means that good performance can be
achieved without time-consuming and costly hand optimizations or lengthy
code that tries to choose among a dozen di�erent optimization strategies.

{ The simplicity of a cipher is most acutely reected in the Java performance
of a cipher. This is in terms of code-size, performance, and potentially most
critically, the amount of dynamic RAM used during the encryption process.
With the increased importance of the Internet and its extension to mobile
devices, the performance of the �nalist in Java could well be vital. While
there may well be many small processors in the coming years [18] many of
them will in fact be Java-based, for instance in set-top boxes.



{ One possible future trend is the growth of the market [13] for DSPs and/or
microprocessors with DSP capability. RC6 not only performs very well on
processors of this type [19], but gains its impressive performance without
look-up tables which provide additional burdens on memory requirements.

We believe that excellent performance of RC6 on 32-bit processors, the close
convergence in performance between simple compiled code and hand-optimized
assembly, and outstanding performance in Java and in DSP environments, all
make RC6 ideally suited to be chosen as the AES.

Versatility through simplicity

One of the early stated aims of the AES process was that the �nal cipher be
\simple and versatile". For RC6 these were design goals.

RC6 is fully parameterized; the number of encryption rounds, the size of the
encryption key (not just the three must-support values of 128, 192, and 256 bits),
and the block-size can all be easily and readily changed. This kind of exibility
is an integral design feature. For most of the other �nalists it is not at all clear
how a change to the block size, or the use of an extremely long encryption key,
would be accommodated.

These could be important considerations. For some applications, a developer
may wish to call on a 64-bit block cipher perhaps as a drop-in replacement
to DES. With RC6 as the AES, such a variant is readily described. At the
other extreme, it is possible that in the near future a 256-bit hash value will be
preferred. The most natural way to do this when using an AES candidate as the
basis for a hash function would be to change the block-size.

As another example of the exibility of RC6, the key schedule allows for
very long keys (for example up to 1024 bits) to be used without a compromise
to performance. This is not that important for encryption, but it does provide
extraordinary improvements to the performance of the Davies-Meyer hashing
mode [16]; potentially to the point of providing hashing performance comparable
to that o�ered by dedicated hash functions.

Simplicity and versatility go hand-in-hand. Once again, we believe that RC6
would be the most suited �nalist to become the AES.

Conclusions

The three most important attributes of the �nal AES are security, performance,
and versatility. With RC6 we achieve all three goals. RC6 is so simple that the
full details of the cipher can be recalled at will. Through simplicity we have
developed a truly versatile cipher. We have also developed a cipher that o�ers
exceptional performance, and gives the best all-round suitability in Java with
all the implications this holds for future applications. Most importantly, though,
existing analysis on RC6 is not only by far the most extensive of any of the
�nalists, it is also the most accurate and the most detailed.

For these reasons we believe that RC6 is ideally suited to be the �nal AES.
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1. Introduction
In this document we give a short overview of the reasons why Rijndael should be selected as
the AES. We have divided our arguments into four categories:

• Security: Rijndael has the same objective security level as the other finalists, and
can easily be implemented in a secure way.

• Efficiency: Rijndael has a large "performance margin" compared to the other
candidates.

• Design philosophy: The clear design has many advantages: easy implementable
on a wide range of platforms, easy to get confidence in the claimed security level, ...

• Extensions: Rijndael is easily extendable to other key and block lengths.

Finally, we discuss the issue of multiple AES algorithms.

2. Security

2.1 Objectively demonstrable security

Until now, for none of the 5 AES finalists, an attack has been published that demonstrates a
weakness inherent in the design. Hence, from a cryptanalytical point of view, all 5 ciphers are
equivalent.

2.2 Suitability for secure implementation

In software, Rijndael can be implemented using the operations bitwise XOR, table-lookup and
8-bit shifts. Serpent requires no table-lookups but more general shifts and rotations and bitwise
boolean operations.

Twofish additionally requires 32-bit addition and both MARS and RC6 even require 32-bit
multiplication and shifts over data-dependent off-sets. The presence of these operations
makes the latter three algorithms harder to implement in a secure way on smart cards
[DaRi99].

2.3 Adding rounds

For all well-designed block cipher, the complexity of published cryptanalytic attacks increases
with the number of rounds in the cipher. This has already been taken into account in the
Rijndael design: the increasing number of rounds for increasing key lengths assures a growing
security marging against cryptanalytic attacks.

In fact, the number of rounds is a parameter that can be increased further, without a need for
any additional specifications. In applications where the confidence in Rijndael’s security
doesn’t match the importance of the confidentiality/integrity, or in the hypothetical case that an
effective attack on Rijndael would be published, a Rijndael version with an increased number
of rounds can be used.
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3. Relative efficiency
The relative efficiency of the different finalists can be shown by comparing optimal
implementations on several platforms. Given the fact that the different design teams have
taken different security margins, the question rises how to compare the algorithms on equal
footing. One approach is to determine a minimum number of rounds that has to be used in
order to resist currently known attacks, and to add some rounds extra [Bi99]. Unfortunately,
not all ciphers have been subjected to the same amount of study. Furthermore, there is no
consensus on how many rounds one should add to get an adequate security margin. For
instance, how should the added security of an extra round of a (generalised) Feistel cipher be
compared with a round of an S-P-network ?

On the other hand, the performance of all the algorithms has been evaluated on many
different platforms, and all algorithms got their fair share of attention. Therefore we propose to
compare the other AES finalists to Rijndael variants with an adapted number of rounds, such
that both algorithms execute in the same time. In Table 1 we list for each AES finalist the
number of Rijndael rounds (including the implied round key generation) that can be executed
in the same time. Nominally, Rijndael has 10 rounds (for 128-bit keys).

We consider the following platforms:

• Pentium II/Pro: representative processor for PCs today;

• Motorola 6805: representative processor for smart cards today.

Moreover, we give numbers for different amounts of data treated with the same key:

• many blocks: indicative if the same key is used for a considerable amount of data
(say at least some Kbytes).

• 4 blocks:  indicative if AES is used to secure a small amount of data. In most
financial transactions the amount of data that is subject to a MAC is indeed below 64
bytes. This includes electronic purse, debit/credit and ticketing transactions that will
be used in timing-critical applications such as public transport and toll-road payment
automation.

• 1 block: relevant if AES is used as the compression function of a hash function, for
PIN code encipherment/decipherment or for session/instance key derivation (in
smart card, terminal and/or Host security module) typical for payment systems.

Processor # blocks  source DES*** MARS RC6 Serpent Twofish

Pentium II/Pro many [Li00] - 13 9 38 12*

4 [Co99] - 28 15 33 27

1 [Co99] - 46 22 36 25

Motorola 6805** many [Ke99] 30 30 28 110 23

4 [Ke99] 32 52 45 107 23

1 [Ke99] 37 114 91 100 22

Table 1 Number of rounds in Rijndael, given the same number of cycles
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* The Twofish design team measures the performance of Twofish with code that has the used key
compiled into the executable. We use the code by Aoki and Lipmaa, slightly slower than the self-
modifying (!) code by the Twofish team.

** For Twofish, only the results of the designers are available. For MARS and RC6 we use the
implementations for smartcards with massive RAM available. For Rijndael, we average cipher and
inverse cipher speed.

*** For DES, the number of blocks is doubled as the block length is only 64 bits

4. Design philosophy
In the Rijndael design, we have tried to keep everything as simple as possible. Complexity has
been added only when necessary to thwart attacks. One example is the key schedule, that is
very simple and efficient compared to that of other AES finalists.

Other “simplicity” properties include:

• Symmetry in the round transformation and across the rounds,

• Orthogonality of components,

• Absence of arithmetic operations.

These properties lead to a number of advantages that are treated in the following sections.

MARS and Twofish, on the contrary, have both a very complex round function, with many
different operations. According to the documentation given by the respective design teams this
is partly due to the fact that during the design, whenever complexity could be added ‘at no
additional cost', it was added. ‘At no additional cost' should be understood as `no additional
cost on the Pentium Pro'. On other ‘unknown' platforms [Cl99], these extra operations could be
cheaply available, or not.

Serpent introduced asymmetry across the rounds by adopting 8 different S-boxes and
asymmetry in the round transformation by having shift (instead of cyclic shift) operations. RC6
has a reasonably symmetrical design. However, it still mixes XOR and arithmetic addication
operations and it uses 32-bit multiplication.

Another important advantage of Rijndael is that it was designed right from the start to support
128 bit block lengths. Twofish and RC6 on the other hand, are obviously upgrades from their
64-bit predecessors, respectively Blowfish and RC5, and this shows in the design.

4.1 Symmetry

There is only a single S-box, since until now, no advantage has been demonstrated for the use
of different S-boxes (as in Serpent, Twofish and MARS). This S-box is applied in parallel to all
state bytes. Similarly, the linear transformation and the round key addition treat all state bytes
in the same way and have rotational symmetry. The round function is the same for the
complete cipher execution (unlike Serpent and MARS) as the differences in the round keys are
considered to introduce sufficient asymmetry. This gives Rijndael the following advantages:

• Parallelism: among the finalists, Rijndael is by far the best suited to be implemented on
processors with a parallel architecture[Cl99], that is expected to be the architecture of the
future (Merced, McKinley, …). Moreover, a dedicated hardware implementation in which the
Rijndael round is fully hardwired can give very high speed thanks to its short critical
path[DaRi98].
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• Compactness: the single S-box and the simplicity of the linear transformation allow to code
Rijndael in a small number of bytes, relevant on smart cards. Moreover, a minimal dedicated
hardware implementation of Rijndael can be built by hardwiring a single S-box and a single
4-byte to 1-byte linear transform[DaRi98].

• Absence of arithmetic operations: the description of Rijndael does not make any (hidden)
assumptions on the coding of integers as a sequence of bits. One of the advantages of this
is that Rijndael is immune for so-called big endian/little endian confusion and conversion
problems.

4.2 Orthogonality of the components

In Rijndael, the round function is composed of a number of components each with their own
contribution: S-boxes for non-linearity, round key XORing for key dependence and asymmetry,
byte transposition for inter-word diffusion and an MDS transform for intra-word inter-byte
diffusion. This design feature allows to get more easily a view on the security of the algorithm.

We have provable lower bounds for linear and differential probabilities based on the
interaction of these components. These proofs make use of only a few macroscopic properties
of the components and leave a lot of freedom on how these properties are actually attained.
The advantage of this modular approach is that components may be replaced without affecting
these lower bounds as long as the macroscopic properties hold. For example, in the
hypothetical case that an attack would be launched that makes use of some specific property
of the current S-box, it could be replaced by another one without affecting the lower bounds.

For the other AES finalists, the interaction between the different components is intricate and
much harder to analyse and the act of replacing a single component turns a lot of the analysis
performed obsolete.

4.3 Confidence

As a consequence of its clarity of design and good performance results, Rijndael attracted by
far the most attention from cryptanalysts outside the design team. Although the other finalists
seem to have been analyzed quite thoroughly by their own designers, history has shown that
`friendly' cryptanalysis is not as effective. A number of attacks on reduced versions has been
published. We can conclude that Rijndael has a sufficient security margin, and do so with a
high level of confidence.

5. Extensions
Rijndael is the only AES finalist that supports other block lengths than 128 bits, namely 192
bits and 256 bits. Moreover, extensions are defined for all combination of block lengths and
key lengths between 128 and 256 bits in steps of 32 bits [DaRi98].

The added value of the longer block lenghts is that the cipher can be used as the compression
function of a collision-resistant iterated hash function. Note that a length of 128 bits was
considered to be insufficient for SHA-1.

6. Multiple algorithms
The technical reasons for having multiple algorithms for the AES would be the fact that a
single algorithm cannot be efficiently and securely implemented on all target platforms, or to
have a backup in case the primary algorithm has been broken.
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If Rijndael is chosen as the AES, there is no need for an alternative algorithm for the first
reason as Rijndael is very efficient on all target platforms. Of course, if MARS or RC6 would be
chosen, smart card application developers will see their performance and RAM availability go
down and will tend to stick to good old Triple-DES if no alternative AES is available.

In practice, “having a backup in case the primary algorithm is broken” is a very expensive and
cumbersome undertaking. It implies coding, testing and integrating both the primary and the
backup algorithms in all products and applications where this backup is really taken seriously.
If Rijndael is chosen as AES, the “backup” could be a Rijndael version with the number of
rounds doubled. In this respect it is worth while to consider the actual risk. For the current
standard DES, the most practical attack to date is exhaustive key search, an attack that was
already known before its publication. The more sophisticated attacks, such as linear and
differential cryptanalysis are very interesting and have learnt us a lot on how to design ciphers,
but are no threat in the real world. The design teams of the AES finalist algorithms know their
literature and have all used the experience obtained from analysing DES, FEAL, IDEA, … to
build their ciphers. Hence, although new attacks may always be found, we think it is unlikely
that they will be a security threat in real-world applications, whatever choice is made among
the finalists.
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The Case for Serpent

Ross Anderson, Eli Biham and Lars Knudsen

24th March 2000

Summary

Serpent should be chosen because it is the most secure of the AES finalists. Not
only does it have ample safety margin, but its simple structure enables us to
be sure that none of the currently known attacks will work. It is also simple to
check that an implementation is correct. Although Serpent is not as fast as the
other finalists on the 200 MHz Pentium machine used for round 1 benchmarking,
this disadvantage largely disappears when we consider the likely platforms and
applications of the 21st century. In hardware, for example, Serpent has easily
the best performance, while on IA64 it’s second.

1 Security

The most important requirement is stated succinctly in the AES announce-
ment [7]: ‘The security provided by an algorithm is the most important factor in
the evaluation.’

From the day in September 1997 when we started designing Serpent, we asked
ourselves what protection requirements we were trying to meet. We concluded
that AES needed to last for a useful service lifetime plus a human lifetime after
that. That means at least a century. So we like the AES motto of a ‘crypto
algorithm for the twenty-first century’. Also, if Moore’s Law runs out sometime
this century, then the AES might never be replaced. So the selectors should
consider how their choice will look in the twenty-second century and beyond.

1.1 Advances in mathematics

An algorithm may break if someone comes up with a powerful new theory. We
do not believe that the history of cryptanalysis is over. Although we have no real
idea what the next hundred (or five hundred) years of mathematics will bring,
there are three things we can do to future-proof a design.

First, a block cipher should be simple and easy to analyse. The DES algorithm
had such a complex description that until the late 1980’s no-one appears to have
tried seriously to attack it. When they did, differential [5] and then linear [9]
attacks were found – both of which can now be explained to bright students in
a single 50-minute lecture.

Second, a block cipher should have more rounds than are needed to block
today’s attacks. Improvements in cryptanalysis usually increase the number of
rounds required.



Third, a block cipher should use only well understood primitives. S-boxes
and SP-networks have been around for over a quarter of a century, so it is less
likely that surprising new attacks will be found on them.

Serpent was designed with all these considerations firmly in mind.

1.2 Engineering issues

Moore’s Law may be the most obvious interaction between crypto security and
engineering. But assurance is at least as important. If Moore’s law continues,
then 128-bit keys will be vulnerable in about a century; but many systems fail
right now because of design and implementation errors.

Complicated algorithms are hard to implement correctly, and it is harder still
to prove implementations to be correct. Serpent’s simple design makes verifica-
tion easier. It is so simple that it can be optimised in high level languages such
and C and Ada. So a developer can avoid many of the errors that creep into
assembly language routines.

Many secure systems are also vulnerable because of poor random number
generators, memory remanence or other engineering failures (e.g., [3]). These
risks provide an even more compelling argument for 256-bit keys than either
Moore’s Law or quantum computers. It would be nice if implementation failures
became less common over time, but experience suggests the contrary. As systems
get more complex, there are more things to go wrong.

1.3 Public confidence

Ciphers can also be damaged through erosion of public confidence.
Recall the effect which the invention of differential and then linear cryptanal-

ysis had on the standing of DES. Neither of these attacks is practical: there are
no DES applications known to us where an opponent might get hold of 240 texts.
Indeed, a prudent designer would normally never use any key for a 64-bit block
cipher to encipher more than 232 texts. Yet despite the discoverers’ strenuous
efforts to keep the story straight, differential and linear attacks became trans-
lated in the public mind to ‘DES has been broken’. It’s imprudent to expect
the public to distinguish between practical attacks and ‘certificational’ attacks
– attacks which require infeasibly large amounts of data or effort.

We have often been asked why, given that Serpent is secure today with at
most 16 rounds, we do not allow 16 rounds – at least for 128-bit keys. The an-
swer is this. Having experienced what happened to DES, we are concerned that,
in perhaps 50 years’ time, advances in mathematics will lead to a certificational
attack on 16-round Serpent. As the other AES finalists have no more margin
of safety than 16-round Serpent, they run a similar risk. (That is why we be-
lieve that they should have more rounds, rather than Serpent having less.) We
think such an attack on Serpent is unlikely. But ‘unlikely’ isn’t enough; the AES
algorithm should have the highest achievable level of design assurance.

So we believe that the Advanced Encryption Standard should be 32-round
Serpent with 256-bit keys. If people want to use less than 256 bits, or less than
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32 rounds, then they should do so only with good reason, and understand that
the two issues are orthogonal. The threats against 128-bit 32-round Serpent and
16-round 256-bit Serpent are different.

2 Performance

Many superficial analyses of the AES finalists have concluded that Serpent is
half the speed of the other candidates, because we used twice as many rounds
as we needed to. This is not accurate.

The three most important aspects of performance are hardware complex-
ity, software speed and memory cost. We have already discussed memory usage
extensively in [2]; this is the critical parameter for embedded and smartcard
applications. Serpent does extremely well here. We will spend the rest of this
section discussing hardware and software.

First, Serpent is the best of the AES finalists in hardware – even with the
full 32 rounds. An independent team produced implementations for the Xilinx
XCV1000 FPGA of RC6, Rijndael, Serpent and Twofish1. Serpent was the only
finalist for which a fully pipelined implementation could be fitted into a single
chip. Serpent was also by far the fastest, achieving a throughput of 5.04 Gbit/sec,
versus 2.40 Gbit/sec for RC6, 1.94 Gbit/sec for Rijndael and 1.71 Gbit/sec for
Twofish [6]. An NSA study of ASIC costs predicts 8.03 Gbit/sec for Serpent
versus 5.163 for Rijndael, 2.171 for RC6 and 1.445 for Twofish [12].

Second, several AES finalists are heavily optimised for encrypting very large
files on the Pentium II. But in most applications, key agility matters more, and
this isn’t likely to change any time soon.

Gigabit networks already demand encryption of ATM cell streams. This often
won’t be done in the end systems, as people rely increasingly on boundary control
devices such as firewalls or guards to create virtual private networks. This is likely
to mean changing the key every three blocks.

In low cost embedded systems, key changes are already common. In [2] we de-
scribed a typical fielded electronic purse system where each transaction involved
ten key set-ups and fourteen block cipher operations.

So we believe that most real applications will have one key change every 1–5
encryptions, and suggest for simplicity’s sake that the benchmark should be the
one natural in ATM networks, namely the average cost of one key change plus
three block cipher operations. On this benchmark, Serpent does not badly across
a wide range of platforms, especially the IA-64 architecture which will almost
certainly be the standard for the next generation of PCs. According to engineers
from Hewlett Packard, the relevant figures are [13]:

MARS RC6 Rijndael Serpent Twofish Serpent is:
IA64 2965 3051 504 2269 2991 2nd
PA-RISC 3409 2686 666 2415 3453 2nd

1 Although this team did not implement MARS, there seems no reason to suppose
that MARS would do any better than RC6
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The above figures are the average clock cycle costs, over encryption and
decryption, of one key setup plus three block cipher operations. Even on Pentium,
using this benchmark, Serpent is the third fastest algorithm when one combines
the published cycle count figures from Gladman [8] and Osvik [11], and fourth
fastest combining Worley et al [13] and Osvik. It’s second and third respectively
with Osvik’s latest figures (2531 cycles on a K7). We hope to have stable and
comparable figures by the May 15th deadline. NIST’s results also show Serpent
doing well on Ultrasparc II [4] (though unfortunately without clock cycle counts).

One of the main things to emerge from the extensive testing of round 2
finalists is that some algorithms achieve high throughput at the cost of slow
key setup, while others are reasonably key agile. We believe that very many
application designers will prefer the latter.

Another point is that some algorithms achieve high software throughput at
the cost of high hardware complexity. We believe that the AES should have a
simple hardware implementation.

We are not trying to claim that Serpent is the fastest algorithm. Speed was
not the primary goal of the AES competition, and we designed Serpent according
to the specification from NIST. What we do say is that Serpent’s security was
not bought at an unacceptable price in speed.

3 Miscellaneous

Much has been written recently about power analysis. One of us is currently
doing an implementation of all five finalists on an 8051-based smartcard with
no specific power analysis defences. As the bulk of the work is being done by
students, full results aren’t expected until the end of the academic year. But
from what’s known so far, we don’t expect that any one finalist will be much
superior to any other: just that the attack techniques will differ.

The likely solution to power analysis is hardware engineering, and a strong
contender is dual-rail logic in which the current drawn is independent of the
data. One of us is involved in such a project [10]. Dual-rail design is easier where
one only has to worry about the simple logical operations used in Serpent, rather
than operations with carry, and especially multiplications. So choosing Serpent
as the AES will make the smartcard designer’s job easier.

Finally, the claim that Serpent’s whole key schedule has to be worked out
in advance for decryption is incorrect. It is not necessary to apply the S-boxes
during the forward computation.

4 Conclusion

Serpent should be chosen as the Advanced Encryption Standard. It’s the fastest
algorithm in hardware, and the second fastest in software on the IA-64 archi-
tecture. Above all, Serpent should be chosen because it’s the most secure of the
candidates.
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1 Introduction

In 1996, the National Institute of Standards and Technology initiated a program to choose an Advanced
Encryption Standard (AES) to replace DES. Four years later, NIST is about to choose that standard. We,
the authors of the Two�sh algorithm, would like to express our continued support for Two�sh.

2 Two�sh

Two�sh is our submission to the AES process. Since �rst proposing the algorithm in 1998, we have continued
to perform extensive analysis of the cipher: both cryptanalysis and performance analysis. We believe that
Two�sh is the best AES candidate of the �ve �nalist algorithms.

Security: Two�sh was designed primarily with security in mind. To date the Two�sh round function has
proven to be the strongest round function of any of the �nalists, with the best known attack being on 6
rounds of Two�sh compared to at least 9 rounds for any of the other �nalists.

Performance: Two�sh is routinely one of the fastest AES candidates; it was designed to have good perfor-
mance on a variety of hardware and software platforms, instead of being optimized for a single platform.
Although Two�sh is not the easiest algorithm to implement or optimise, it is amongst the fastest algorithms
on virtually every platform when properly implemented.

Flexibility: Two�sh is unique in its implementation exibility. The algorithm can be optimized for bulk
encryption, key agility, low gate count, high gate count, or any combination of factors. All of these imple-
mentations are completely interoperable.

More interesting than these individual measures is the security/performance ratio of Two�sh. Looking at
the �ve algorithms in this manner|normalizing to the largest number of rounds cryptanalyzed is a good
metric|Two�sh far surpasses the other four �nalists.

3 Discussion

The AES process has worked even better than expected. Today we have �ve good algorithms, and any of
the designs would make a good AES standard. (We would recommend increasing the number of rounds for
RC6 from 20 to 32, and the number of rounds in Rijndael from 10/12/14 to 18, to get at least a 2x security

�Counterpane Internet Security, Inc., 3031 TischWay, 100 Plaza East, San Jose, CA 95128, USA; schneier@counterpane.com.
yCounterpane Internet Security, Inc. kelsey@counterpane.com.
zHi/fn, Inc., 5973 Avenida Encinas Suite 110, Carlsbad, CA 92008, USA; dwhiting@hifn.com.
xUniversity of California Berkeley, Soda Hall, Berkeley, CA 94720, USA; daw@cs.berkeley.edu.
{Counterpane Internet Security, Inc. niels@counterpane.com.
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margin|number of rounds greater than the maximum number of rounds that can be cryptanalyzed|as
recommended by Lars Knudsen.)

Two of the �nalists, MARS and RC6, are not well-suited certain applications, most notably small-memory
implementations (e.g., smart cards) and highly key-agile systems (e.g., IPsec). Any one of the other three
algorithms|Rijndael (with the extra rounds), Serpent, or Two�sh would make an excellent standard.

Of the �ve �nalists, Two�sh has the best speed/security-margin tradeo�, as well as the most exibility.
With security and speed being the most important criteria (certainly the most talked-about), we believe
that Two�sh is the best single �nalist.

4 More Information

More information on Two�sh can be found on the Two�sh Web site, at http://www.counterpane.com/

twofish.html.
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