
SHA3
Past, Present, and Future

John Kelsey	

NIST

CHES 2013

 
 
 
 

Overview	

• Before the compePPon

• The compePPon	

• Standardizing Keccak as SHA3

• What’s next?

Before the CompePPon

3

 

 

 

 
 

 

Origins

►Hash funcPons appeared as an important	
 idea	
 at the
dawn of modern public crypto.

►Many ideas floaPng around to build hash funcPons
from block ciphers (DES) or mathemaPcal problems.

►Ways to build hash funcPons from compression
funcPons
►Merkle-­‐Damgaard

►Ways to build compression funcPons from block
ciphers	

►Davies-­‐Meyer, MMO, etc.

4

 
 

Merkle-­‐Damgaard

► Used in all widespread hash funcPons before 2004
► MD4, MD5, RIPE-­‐MD, RIPE-­‐MD160, SHA0, SHA1, SHA2

Image fromWikipedia

5

 
 
 

 

 
 

 

The MD4 Family

► Rivest published MD4 in 1990
► 128-­‐bit	
 output	

► Built	
 on 32-­‐bit	
 word

operaPons
► Add, Rotate, XOR, bitwise

logical operaPons
► Fast	

► First	
 widely used dedicated

hash funcPon

►48 steps = 3 passes
over msg

Image fromWikipedia	
 MD4 ArPcle

6

 

 

 
 
 

 
 

 

MD5

►	 Several researchers came up
with aRacks on weakened
versions of MD4

►	 Rivest created stronger
funcPon in 1992

►	 SPll very fast	

►	 Same output	
 size
►	 Some a?acks known

► Den	
 Boer/Bosselaers
► Dobber>n

► 64 steps = 4 passes over
msg

Image fromWikipedia	
 MD5 ArPcle

7

 
 

 
 
 

 

 

 

 

SHA-­‐0 and SHA-­‐1

►	 SHA-­‐0 published in 1993
►	 160-­‐bit	
 output	

► (80 bit	
 security)
►	 NSA	
 design
►	 Revised in 1995 to SHA-­‐1

► Round funcPon (pictured) is
same

► Message schedule more
complicated

►	 Crypto ‘98 Chabaud/Joux
a?ack on SHA-­‐0

►	 80 steps = 5 passes
over msg Image fromWikipedia	
 SHA1 ArPcle

8

 
 

 
 

 
 

 

 

 

SHA-­‐2

► Published 2001
► Three output	
 sizes

► 256, 384, 512
► 224 added in 2004

► Very different	
 design
► Complicated message

schedule

► S>ll looks strong

►256 bit	
 output: 64
steps = 4 passes

►512 bit	
 output: 80
steps = 5 passes Image fromWikipedia	
 SHA2 ArPcle

9

 

 

 
 
 
 

As of 2004, we thought	
 we knew
what	
 we were doing.

► MD4 was known to be broken by DobberPn, but	
 sPll saw
occasional use

► MD5 was known to have theorePcal weaknesses from Den
Boer/Bosselaers and DobberPn, but	
 sPll in wide use.

► SHA-­‐0 was known to have weaknesses and wasn’t used.
► SHA-­‐1 was thought	
 to be very strong.
► SHA-­‐2 looked like the future, with security up to 256 bits
► Merkle-­‐Damgaard was normal way to build hashes

10

 Crypto 2004: The Sky Falls

 
 

 
 

 
 
 
 

 

Crypto 2004
• Conference:
►Joux shows a surprising property in Merkle-­‐Damgaard hashes

► MulPcollisions
► Cascaded hashes don’t help security much

►Biham/Chen aRack SHA-­‐0 (neutral bits)
• Rump Session:
►Joux shows aRack on SHA-­‐0

►Wang shows aRacks on MD4, MD5, RIPEMD, some Haval
variants, and SHA-­‐0
► Much beRer techniques used for these aRacks

12

 
 
 

 
 
 
 

We found out	
 we didn’t	
 know
much about	
 hash funcPons

► Wang’s techniques quickly extended

► BeRer aRacks on MD5 by many people
► Claimed aRacks on SHA-­‐1 (2005)

► Joux’s mulPcollisions extended and applied widely
► Second	
 preimages and herding
► MulPcollisions even for mulPple passes of hash
► Much more

13

 
 
 

 

 
 
 

What	
 to do next?

► All widely used hash funcPons called into quesPon
► MD5 and SHA1 were very widespread
► SHA-­‐2 and RIPE-­‐MD160, neither one aRacked, were not	

widely	
 used.

► At	
 same Pme, NIST was pushing to move from 80-­‐ to
112-­‐bit	
 security level
► Required switching from SHA-­‐1 to SHA-­‐2

► QuesPons about	
 the exisPng crop of hash funcPons
► SHA-­‐1 was aRacked, why not	
 SHA-­‐2?

14

 

 

 
 
 
 

Pressure for a CompePPon

► We started hearing from people who wanted a hash
compePPon

► AES compePPon had happened a few years earlier,
and had been a big success

► This would	
 give us:
► Lots of public research on hash funcPons
► A new hash standard from the public crypto community
► Everything done out	
 in the open

15

 
 

 
 

 

Hash Workshops

►Gaithersburg 2005
►UCSB	
 2006

►Encouragement	
 to have compePPon
►Lots of ideas/feedback about	
 how compePPon
should work.	

►Somewhere in here, we decided to have a
compePPon.

16

 

 
 
 
 

2007: Call for Proposals

►We spent	
 a lot	
 of Pme geSng call for
proposals nailed down:
►Algorithm spec
►Security arguments or proofs
►Preliminary analysis
►Tunable security parameter(s)

17

 
 

 
 
 
 

 

 
 

Security Requirements

► Drop-­‐in replacement	
 for SHA-­‐2
► or even SHA-­‐1 or MD5 with truncaPon

► Security for N-­‐bit	
 Hash
► N/2 bit	
 collision resistance
► N bit	
 preimage resistance
► N-­‐K bit	
 second preimage resistance

►K = lg(target	
 message length)

► Eliminate length-­‐extension property!
► Tunable security/performance tradeoffs.

18

 The Competition

Hash CompePPon Timetable

Date

 Event
 Candidates
Left

11/2/2007

10/31/2008

12/10/2008

2/25/2009

7/24/2009

8/23/2010

12/9/2010

3/22/2012

Call for Proposals published, competition began

SHA3 submission deadline
 64

First-round candidates announced
 51

First SHA3 workshop in Leuven, Belgium
 51

Second-round candidates announced
 14

Second SHA3 workshop in Santa Barbara, CA
 14

SHA3 finalists announced
 5

Third SHA3 workshop in Washington, DC
 5

10/2/2012
 Keccak announced as the SHA3 winner
 1

20

 

 

 

 

64à 51

►We started with 64 submissions (10/08)

►51 were complete and fit	
 our guidelines

►We published those 51 on December 2008

►Huge diversity of designs

21

 
 
 
 

51à 14

►About	
 a year and a half—published July 2009
►2009 Hash Workshop in Leuven
►Many algorithms broken or seriously dented.
►AES compePPon had 15 submissions; we took a year
to get	
 down to 14.

BLAKE BMW Cubehash Echo Fugue Grostl Hamsi
JH Keccak Luffa SHABAL SHAVite SIMD Skein

22

 
 
 
 
 

14à 5

►About	
 a year and a half—announced Dec 2010
►Second SHA3 Workshop at Santa	
 Barbara	

►Much harder decisions

►CryptanalyPc results were harder to interpret	

►OAen disPnguishers of no apparent	
 relevance

BLAKE Grostl JH Keccak Skein

23

 
 
 
 

5à 1

►About	
 two years—final decision Oct	
 2012
►Third SHA3 Workshop in Washington, DC
►Very tough decisions
►Security, Performance, ComplemenPng SHA3

Keccak

24

 
 
 
 
 
 

 

Security

►	 Nobody knocked out	
 by cryptanalysis
►	 Different	
 algorithms got	
 different	
 depth of cryptanalysis
►	 Keccak and Blake had best	
 security margins
►	 Domain extenders (aka	
 chaining modes) had security proofs
►	 Grostl had a very big tweak, Skein a significant	
 one

►	 ARX	
 vs non-­‐ARX	
 designs

•	 Keccak looks very strong, and had been analyzed in sufficient	

depth to give us confidence.

25

 
 

 
 

 

 

Performance

►All five finalists have acceptable performance
►ARX	
 designs (BLAKE and Skein) are excellent	
 on high-­‐end
soAware implementaPons

►JH	
 and Grostl fairly slow in soAware

►Keccak is very hardware friendly
► High throughput	
 per area	

• Keccak performs well everywhere, and very well in hardware.

26

 

 
 
 

 
 

 

ComplemenPng SHA2

►SHA3 will be deployed into a world full of SHA2
implementaPons

►SHA2 sPll looks strong

►We expect	
 the standards to coexist.
►SHA3 should complement SHA2.

► Good in different	
 environments
► SuscepPble to different	
 analyPcal insights

• Keccak is fundamentally different	
 from	
 SHA2. Its performance
proper>es and implementa>on tradeoffs have li?le in common
with SHA2.

27

 
 
 
 
 
 
 

Wrapup on SelecPng a Winner

►Keccak won because of:
►High security margin
►High quality analysis
►Elegant, clean design
►Excellent	
 hardware performance
►Good overall performance
►Design diversity from SHA2

28

 

 

 
 
 
 
 
 

 

How Did It Work Out?

► The compePPon brought	
 forth a huge amount	
 of effort	
 by
people outside NIST

► The cryptographic community did the overwhelming majority
of the work:
► Submissions	

► Analysis
► Proofs
► Reviews of papers for conferences/journals
► Performance benchmarks
► ImplementaPons

► NIST's main job was to understand that	
 work and make
decisions based on it.

29

x

Keccak looks nothing like MD4

y z z

Images from Keccak submission

Keccak as SHA3

 
 
 

 
 
 

What	
 Will SHA3 Standardize?

• Hash funcPons (fixed output	
 length)
–SHA3-­‐224 SHA3-­‐256

–SHA3-­‐384 SHA3-­‐512

• Sponge funcPons (variable output	
 length)
–SHAKE256
–SHAKE512

 
 
 

SHA3 Fixed-­‐Length Hash FuncPons

• Drop in replacements for SHA2
• SHA3-­‐224, SHA3-­‐256, SHA3-­‐384, SHA3-­‐512
• Different	
 output	
 lengths are unrelated

SHA3-224(X) = ABCDEFG

SHA3-256(X) = HIJKLMNO

Almost the same security claims as SHA2.

 
 
 
 

SHAKE256 and SHAKE512

• “Sponge funcPons”	

• Variable length output	

• SHA + Keccak

• Different	
 output	
 lengths give related hashes

SHAKE256(X,224) = ABCDEFG
SHAKE256(X,256) = ABCDEFGH

 
 

 

 
 
 

Variable-­‐length output	
 is useful

• Lots of protocols and applicaPons need this
–OAEP, most	
 KDFs, Fix for Vaudenay’s DSA aRack

• BeRer to have it	
 as part	
 of hash definiPon

• But	
 may be tricky to use correctly:
–SHAKE256(X,112) = K1 K2
–SHAKE256(X,168) = K1 K2 K3

SHAKE256 and SHAKE512

Image from Rene Peralta	

 
 
 

 
 
 

Under the hood, they’re all sponges

• Hash funcPons: (SHA3-­‐x)
–Restricted to fixed length

–Padding: different	
 outputs for different	
 lengths
• Sponge funcPons: (SHAKE-­‐c)
–Variable length

–We don’t	
 know output	
 length Pll output’s done

From Keccak to SHA3:
Preliminaries

 
 

 
 
 

 

Collision and Preimage Resistance

• Collision:
–Find X, Y so that	

hash(X) == hash(Y)
2n/2
–n-­‐bit	
 output	
 à collisions with work

• Preimage:	

–Given Y, find X so that	

hash(X) == Y
–n-­‐bit	
 output	
 à preimages with 2n work

 

 

 
 
 

Security Levels

• Convenient	
 to assign each algorithm a security
level	

• Algorithm with 128-­‐bit	
 security level promises
to resist	
 aRacks up to about	
 2128
computaPons.

• SHA256: 128-­‐bit	
 security level
2256–But	
 claims no preimages up to work!	

–Natural—that’s the limit	
 for n-­‐bit	
 hash funcPons

 

 
 

Capacity and Security

►A sponge has collision and preimage resistance
of C/2 bits.

►Finding a collision or preimage is equally hard
►Bigger C = slower hashing

41

 
 
 

 
 
 

Sponges	
 vs Merkle-­‐Damgaard

• Most	
 MD hashes: n bit	
 output	
 means
–n bits preimage resistance

–n/2 bits collision resistance

• Sponges: C bit	
 capacity means
–C/2 bit	
 security level
–Variable output	
 size

From Keccak to SHA3

 

 
 

 

 

 

Keccak SHA3 Submission

• Had four versions, each with a different	

capacity
–Keccak-­‐224, -­‐256, -­‐384, -­‐512
–Hard to see why we needed four

• Guaranteed n-­‐bit	
 preimage resistance by
making capacity huge.

• Suffered big performance hit	
 to get	
 this
preimage resistance.
–Hard to see why this made sense.

 
 
 

 
 
 

One security level for each funcPon
Only two capaciPes in SHA3

• SHA3-­‐224*	
 } 128 bits of security

• SHA3-­‐256 } against	
 everything

• SHAKE256 } (C = 256)

• SHA3-­‐384*	
 } 256 bits of security

• SHA3-­‐512 } against	
 everything

• SHAKE512 } (C = 512)

 

 
 

Capacity and Security

►A sponge has collision and preimage resistance
of C/2 bits.

►Finding a collision or preimage is equally hard
►Bigger C = slower hashing

46

 
 
 
 

 
 
 
 

Security level determined by hash
funcPon internals, not	
 output	
 size

►128-­‐bit	
 security level
►SHA3-­‐224
►SHA3-­‐256
►SHAKE256

►256-­‐bit	
 security level
►SHA3-­‐384
►SHA3-­‐512
►SHAKE512

47

 
 
 
 

 
 
 

 

Summary of Keccak à SHA3 Changes

• Changed padding scheme
–Sakura	
 scheme from Keccak designers	

–Supports fixed-­‐length hashes and sponges
–Supports tree hashing

• Only two capaciPes (256 and 512)
• Preimage strength = collision strength
–Using tunable parameter to make performance/
security tradeoff

–But	
 this is a preRy big change from the submission

What	
 next?

 
 

 

 

GeSng the FIPS Out	

• This should be FIPS 202

• DraA for public comment	
 around end of
October 2013.

• The FIPS process can be slow
…and a lot	
 of it	
 is outside our control
–The final FIPS document	
 goes to the Secretary of
Commerce for approval

 

 

 

AuthenPcated EncrypPon

• Keccak specified a duplex mode for
authenPcated encrypPon

• We plan to standardize this in a special
publicaPon

• Hope to have draA for public comment	
 next	

year

 
 
 

 

 

PRF

• Keccak specifies a dedicated PRF
–Can be used in place of HMAC

–Perhaps also for randomized hashing

• We also plan to standardize this in a special
publicaPon.

• Hope to have a draA out	
 next	
 year.

 

 

 
 

Tree Hashing

• We are also working on a standard for tree
hashing
–Will incorporate Keccak team’s Sakura	
 padding
scheme where possible

–Will support	
 tree-­‐hashing with SHA3 and SHA2

• Hope to have a draA out	
 next	
 year.

 

 

 

Random Number GeneraPon

• Keccak Duplex mode can be used for
cryptographic random number generaPon

• We are considering adding another DRBG for
SP 800-­‐90A based on SHA3 in duplex mode

• No Pmetable or commitment	
 to this yet	

 

 
 

 
 

Further in the Future

• We are interested in analysis of Keccak with
smaller permutaPon sizes
–Could be really nice for constrained devices
–Currently not	
 a lot	
 of published analysis

• What	
 else can be done with sponge funcPons?

• What	
 else can be done with duplex mode?

 
 

 
 
 
 
 
 

2014 NIST Hash Workshop

• Colocated with Crypto 2014
– Friday and Saturday

• Workshop on all things SHA2 and SHA3
– Keccak with smaller permutaPons
– Cryptanalysis and differenPal/linear trail bounds
– Tree hashing

– Generic hash-­‐based authenPcated encrypPon

– Clever applicaPons for sponges or duplex mode
hRp://csrc.nist.gov/groups/ST/hash/sha-­‐3/Aug2014/index.html

 

 

 

 

Thank You!

• This whole thing would have been impossible
without	
 the help of the community

• The amount	
 of work done for free to choose a
new SHA3 was incredible

• We really appreciate it	

• QuesPons?

