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Chapter 1

Hash Function Algorithm - GAGE

1.1 Specification

GAGE is a family of sponge-based hash functions [2] with states between 232 and 576 bits

and rates for injecting message blocks of 8, 16, 32 and 64 bits. The sponge permutation

has an SPN structure with one very light 4-to-2 bits s-box and a cheap hardware wiring

i.e., bit-shuffling layer.

1.1.1 Round permutation

The round permutation consists of two parts: a nonlinear substitution part and a bit-

shuffling part.

Nonlinear substitution part

The nonlinear substitution part uses one 4-to-2 bits s-box Q that is applied in an in-

terleaved way on the state of b bits. Interleaved application means that the set of state

bits is split in 2-bit subsets, and they enter the s-boxes in two different roles: as two left

most bits and as two rightmost bits. The s-box is applied in parallel. This interleaved

application makes the substitution layer as one big s-box with pb ` 2q-to-b bits. For

transforming the two left most bits of the state, a two bit round constant l1 “ pl0,1, l1,1q

is used. A graphical presentation of the substitution layer is given in Figure 1.1.

The 4-to-2 bits s-box Q can be represented in a usual manner as one table with 24

elements, where the elements are from the set t0, 1, 2, 3u (given in Table 1.1).

4
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Figure 1.1: A graphical presentation of the nonlinear part in GAGE.

Table 1.1: The 4-to-2 bits s-box Q.

Input: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Output: 1 0 3 2 0 2 1 3 2 3 0 1 3 1 2 0

It can be also represented as in expression (1.1) as a 4 ˆ 4 multiplication table for a

binary operation ˚ over the set Q “ t0, 1, 2, 3u (Note: here we abuse and overload the

use of the symbol Q both as a symbol for the s-box and for a set.) More details about

the algebraic structure pQ, ˚q and two mutually inverse bijective transformations called

e-transformation and d-transformation are given in the design rationale Section 1.5.

˚ 0 1 2 3

0 1 0 3 2

1 0 2 1 3

2 2 3 0 1

3 3 1 2 0

(1.1)

Finally, the s-box Q can be represented in ANF form as a vector-valued Boolean

function that receives 4 input variables x1, x2, x3, x4 and outputs two Boolean functions:

Qpx1, x2, x3, x3q “ pf1px1, x2, x3, x3q, f2px1, x2, x3, x3qq given with the expression (1.2).
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Operations of addition and multiplication are in the finite filed GF p2q.

Qpx1, x2, x3, x4q “ px1 ` x3 ` x2x3 ` x2x4, 1` x1 ` x2 ` x2x3 ` x4 ` x2x4q (1.2)

We describe the nonlinear substitution part using the algebraic structure pQ, ˚q. For

this, a state of b bits that is subject of transformation is represented as an array A “

ta0, . . . , ab{2´1u of two bit elements. The notation x ˚ y “ z means Qpx, yq “ z.

Algorithm 1 Nonlinear substitution of A “ ta0, . . . , ab{2´1u with pQ, ˚q and a leader l.

1: procedure d-transformation(l, A “ ta0, . . . , ab{2´1u )
2: ldr Ð l
3: for i “ 0 to b{2´ 1 do
4: nextldr Ð ai
5: ai Ð ldr ˚ nextldr
6: ldr Ð nextldr
7: endfor

Bit-shuffling part

The linear layer is just a procedure that shuffles the bits of the state. Let us represent

a state of b bits S “ ps0, s1, . . . , sb´1q as an array of b{8 bytes A “ ta0, . . . , ab{8´1u,

where a0 “ ps0, . . . , s7q ” rsj, j “ 0, . . . , 7s, a1 “ ps8, . . . , s15q ” rsj, j “ 8, . . . , 15s, . . .,

ab{8´1 “ psb´8, . . . , sb´1q ” rsj, j “ b ´ 8, . . . , b ´ 1s. Let us also denote by airjs the j-th

bit of the byte ai where the counting starts from j “ 0 from the leftmost bit in ai. Then

every byte for the new state A1 “ ta10, . . . , a
1
b{8´1u is described as follows:

a1i “ π8prapi`jqmod b{8r7´ js, j “ 0, . . . 7sq, i “ 0, . . . , b{8´ 1 (1.3)

The function π8pq is the following permutation of 8 elements:

π8 “

˜

1 2 3 4 5 6 7 8

1 3 5 8 7 6 2 4

¸

(1.4)

The bit-shuffling part is graphically presented in Figure 1.2.
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rr
r

Figure 1.2: Bit-shuffling in GAGE, for a state of 232 bits i.e. 29 bytes.
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1.1.2 SPN permutation

The complete permutation is a composition of alternating application of the substitution

part and the bit-shuffling part for a number of rounds ROUNDS. For calling the substitution

part we need to define an array of constants Leaders “ tl0, . . . , lROUNDS´1u. They are given

in Table 1.2.

Algorithm 2 SPN permutation of A “ ta0, . . . , ab{2´1u with ROUNDS rounds and with
Leaders “ tl0, . . . , lROUNDS´1u.

1: procedure qpermutation(A “ ta0, . . . , ab{2´1u, ROUNDS )
2: d-transformation(l0, A)
3: for i “ 1 to ROUNDS do
4: bit-shuffling(A)
5: d-transformation(li, A)

6: endfor

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

li 0 3 0 3 0 1 2 3 2 1 2 3 2 1 2 3

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

li 0 1 2 3 2 3 0 3 2 3 2 3 2 1 2 1

Table 1.2: The list of 32 constant leaders. There is another longer list of 255 leaders
given in Design Rationale.

1.1.3 Message padding

We give an algorithmic description of the message padding in Algorithm 3. Input pa-

rameters for the padding procedure are the message M , its length mlen in bytes and the

rate r. The output is a padded message Mpad and the length of the padded message µ

expressed as a number of blocks of length r{8 bytes.

Algorithm 3 Message padding

1: procedure Padd(M “ tm0, . . . ,mlen´1u,mlen, r)

2: Mpad “M ||0x80||p0x00qppmlen`1q mod r
8
q

3: µ “ rmlen`1
r{8

s
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1.1.4 GAGE sponge

Table 1.3 gives all necessary information for building GAGE as a typical sponge-based

hash function.

Component Notation Relations/functions Comment

Message M |M | “ 8ˆmlen

M is long
8 ˆ mlen bits
i.e. mlen bytes,
where mlen
is always an
integer.

State S
|S| “ b,

S “ Sr||Sc

State is split in
two parts: rate
part Sr and ca-
pacity part Sc; b
is always a mul-
tiple of 8.

Rate r b “ r ` c r is always mul-
tiple of 8.

Capacity c b “ r ` c

Padded

message
Mpad

Mpad “M ||0x80||p0x00qpmlen`1q mod r
8 ,

Mpad ”M1 || . . . || Mµ

Mpad is split
in µ blocks,
where every
block is long
r{8 bytes and
µ “ rmlen`1

r{8 s.

Initialization
S Ð 0

All bits in the
state are set to
0.

Absorbing

1: for i “ 1 to µ do
2: S Ð pSr XOR Miq || Sc
3: S Ð qpermutation(S, ROUNDS)
4: endfor

Squeezing Hash

1: H Ð ε
2: for i “ 1 to |Hash|

r do
3: S Ð qpermutation(S, ROUNDS)
4: H Ð H || Sr0, . . . , r ´ 1s
5: endfor
6: HashÐ H

The output is
the string Hash.
Symbol ε de-
notes the empty
string.

Table 1.3: Components in GAGE sponge construction and their relations. Here, 0x80 denotes
the byte with the value 128 i.e. a byte where all its bits are set to 0, except the leftmost i.e.
the most significant bit which is set to 1, and 0x00 denotes the byte with the value 0.
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1.2 Security Goals

Table 1.4 gives all instances of GAGE with security strengths for finding preimages,

second preimages and collisions. The values for the security strengths are generic ones

given in [1].

The highlighted row in Table 1.4 is our main proposal for the lightweight hash

function: GAGE256 with a hash value of n “ 256 bits, with an internal state of b “ 232

bits, capacity of c “ 224 bits and a rate r “ 8 bits. It has a preimage security of 223

bits, a second preimage security of 112 bits and a collision security of 112 bits.

The message size limit in our proposal is set to 264 bytes. It is the same length of the

unsigned long long parameter set in the API interface. The input size (as a power of

2 bytes) can theoretically go up to the collision resistance value.

Nr. |Hash| “ n b c r

Preimage

minpn, c´1q

2nd

preimage

minpn, c2q

Collision
minpn,cq

2

Message

size limit

(power of 2

bytes)

1. 256 232 224 8 223 112 112 64

2. 256 240 224 16 223 112 112 64

3. 256 256 224 32 223 112 112 64

4. 256 288 224 64 223 112 112 64

5. 256 272 256 16 256 128 128 64

6. 256 288 256 32 256 128 128 64

7. 256 320 256 64 256 128 128 64

8. 256 384 256 128 256 128 128 64

9. 256 544 512 32 256 256 128 64

10. 256 576 512 64 256 256 128 64

Table 1.4: All instances of GAGE proposed in this documentation.

1.3 Security analysis

We first analyze the differential characteristics of the smallest nonlinear component in

GAGE, its 4-to-2 s-box Q.
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1.3.1 Differential characteristics of GAGE nonlinear layer

As an isolated component, the s-box Q has very weak differential characteristics. It is

given in Table 1.5. As we can see in cells highlighted in light red, there are 4 differentials in

the table with probabilities of 100%. Let us represent the values of the input differentials

(highlighted with light cyan color) for those 4 cells in binary with 4 bits: ∆max1 “

t0, 0, 0, 0u, ∆max2 “ t0, 0, 1, 1u, ∆max3 “ t1, 0, 0, 0u and ∆max4 “ t1, 0, 1, 1u.

∆out

0 1 2 3

0 16 0 0 0

1 0 8 8 0

2 0 8 8 0

3 0 0 0 16

4 0 8 8 0

5 8 0 0 8

6 8 0 0 8

∆in 7 0 8 8 0

8 0 0 0 16

9 0 8 8 0

10 0 8 8 0

11 16 0 0 0

12 0 8 8 0

13 8 0 0 8

14 8 0 0 8

15 0 8 8 0

Table 1.5: Differential characteristics of the s-box Q.

In Algorithm 1 the s-box Q in GAGE is used in an interleaved manner and it builds a

huge s-box of size (b` 2)-to-(b) bits. It is natural to check the differential characteristics

of those s-boxes. In Table 1.6 we give a part of a differential distribution table for an

6-to-4 bits s-box obtained by the Algorithm 1 when the input length is 6 bits (2 bits for
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the leading constant, and 2 2-bit letters in the array A “ ta0, a1u). If we represent again

the values of the input differentials (highlighted with light cyan color) for those 4 cells

in binary (now with 6 bits) we get: ∆max1 “ t0, 0, 0, 0, 0, 0u, ∆max2 “ t0, 0, 0, 0, 1, 1u,

∆max3 “ t1, 0, 0, 0, 0, 0u and ∆max4 “ t1, 0, 0, 0, 1, 1u.
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Output

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 32 32 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 32 32 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 64 0 0 0 0 0 0 0 0 0 0 0 0

I 4 0 0 0 0 0 16 16 0 0 16 16 0 0 0 0 0

5 0 0 0 0 16 0 0 16 16 0 0 16 0 0 0 0

6 0 0 0 0 16 0 0 16 16 0 0 16 0 0 0 0

7 0 0 0 0 0 16 16 0 0 16 16 0 0 0 0 0

8 0 0 0 0 0 0 0 32 0 0 0 32 0 0 0 0
... ¨ ¨ ¨ ¨ ¨ ¨ ¨

28 0 0 0 0 0 16 16 0 0 16 16 0 0 0 0 0

29 0 0 0 0 16 0 0 16 16 0 0 16 0 0 0 0

30 0 0 0 0 16 0 0 16 16 0 0 16 0 0 0 0

n 31 0 0 0 0 0 16 16 0 0 16 16 0 0 0 0 0

32 0 0 0 0 0 0 0 0 0 0 0 0 64 0 0 0

33 0 0 0 0 0 0 0 0 0 0 0 0 0 32 32 0

p 34 0 0 0 0 0 0 0 0 0 0 0 0 0 32 32 0

35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 64

36 0 0 0 0 0 16 16 0 0 16 16 0 0 0 0 0

u 37 0 0 0 0 16 0 0 16 16 0 0 16 0 0 0 0

38 0 0 0 0 16 0 0 16 16 0 0 16 0 0 0 0

39 0 0 0 0 0 16 16 0 0 16 16 0 0 0 0 0
... ¨ ¨ ¨ ¨ ¨ ¨ ¨

56 0 0 0 32 0 0 0 0 0 0 0 0 0 0 0 32

57 0 16 16 0 0 0 0 0 0 0 0 0 0 16 16 0

58 0 16 16 0 0 0 0 0 0 0 0 0 0 16 16 0

59 32 0 0 0 0 0 0 0 0 0 0 0 32 0 0 0

t 60 0 0 0 0 0 16 16 0 0 16 16 0 0 0 0 0

61 0 0 0 0 16 0 0 16 16 0 0 16 0 0 0 0

62 0 0 0 0 16 0 0 16 16 0 0 16 0 0 0 0

63 0 0 0 0 0 16 16 0 0 16 16 0 0 0 0 0

Table 1.6: Differential characteristics of an 6-to-4 bits s-box obtained by the d-
transformation Q.
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Proposition 1. There are exactly four cells with probabilities of 100% in the differential

distribution table for an pb`2q-to-b bits s-box obtained by the Algorithm 1 when the input

length is pb ` 2q bits (2 bits for the leading constant, and b{2 2-bit letters in the array

A “ ta0, . . . , ab{2´1u). The values of the input differentials for those 4 cells represented as

integers as well as in binary with b`2 bits are: ∆max1 “ 0 “ t0, 0, . . . , 0, 0
looooomooooon

b`2

u, ∆max2 “ 3 “

t0, . . . , 0
loomoon

b

, 1, 1u, ∆max3 “ 2b`1 “ t1, 0, . . . , 0
loomoon

b`1

u and ∆max4 “ 2b`1`3 “ t1, 0, . . . , 0
loomoon

b´1

, 1, 1u.

While the first differential ∆max1 “ 0 is a trivial one and not interesting for further

analysis, the other three differentials for the sponge design of GAGE are impossible. More

concretely, for ∆max2 “ 3 “ t0, . . . , 0
loomoon

b

, 1, 1u the nonzero bits are far away from the zone

of rate bits that can be controlled by the attacker, and for ∆max3 “ 2b`1 “ t1, 0, . . . , 0
loomoon

b`1

u

and ∆max4 “ 2b`1 ` 3 “ t1, 0, . . . , 0
loomoon

b´1

, 1, 1u the list of 32 constant leaders given in Table

1.2 are such that the XOR difference between any consecutive round leaders is not t1, 0u.

A generating procedure that generates a longer list of 255 leading constants is given in

Appendix 1. We summarize this discussion with the following Proposition.

Proposition 2. For the sponge design GAGE, with constant leaders given in Table 1.2,

the differentials ∆max2 “ 3 “ t0, . . . , 0
loomoon

b

, 1, 1u, ∆max3 “ 2b`1 “ t1, 0, . . . , 0
loomoon

b`1

u and ∆max4 “

2b`1 ` 3 “ t1, 0, . . . , 0
loomoon

b´1

, 1, 1u are impossible differentials.

The simple and systematic design of big pb ` 2q-to-b bits s-box obtained by the Al-

gorithm 1 offers a possibility to completely describe the distribution and the number of

cells in its corresponding differential distribution table, regardless of its exponential size.

Lemma 1. For a state of b bits, the Algorithm 1 produces a differential distribution table

where the number Np“2´i of input differentials that have an output differential with a

probability of p∆out “ 2´i, i “ 0, 1, . . . , b
2

is given by the following expression:

Np“2´i “ 4ˆ 3i ˆ

ˆ

b{2

i

˙

, for i “ 0, 1, . . . ,
b

2
. (1.5)
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It is clear that the first part of Proposition 1 about the number of cells with proba-

bilities of 100% in the differential distribution table, follows from Lemma 1 for i “ 0.

Corollary 1.
b{2
ÿ

i“0

Np“2´i “ 2b`2. (1.6)

Corollary 2. For the b bits state in GAGE, the number of cells with probabilities of

2´1 “ 0.5 in its differential distribution table is

N2´1 “ 6ˆ b. (1.7)

Having Lemma 1 and Corollaries 1 and 2 gives us idea to define a discrete probability

mass function for randomly selected input differences ∆in.

Definition 1. Let the number of state bits is b bits, and let T be a differential distribution

table produced for the pb ` 2q-to-b bits s-box obtained by the Algorithm 1. Let ∆in is a

random variable describing a randomly selected input difference. The probability mass

function f∆in
piq “ Prt∆in has probability 2´i of ∆out in T u is given by the following

expression:

f∆in
piq “ fpiq “

Np“2´i

2b`2
. (1.8)

In order to track differentials over several consecutive rounds of GAGE, we define a

right skewed distribution confidence intervals as follows

Definition 2. Let b and r represent the number of state bits and rate in GAGE, and let

f∆in
piq is its corresponding probability mass function for its differential distribution table.

A maximal right skewed distribution confidence interval Imax “ I1´2´2r “ rjmin,
b
2
s is the

interval such that

jmin´1
ÿ

j“0

fpjq ă
1

22r
(1.9)

and
jmin
ÿ

j“0

fpjq ě
1

22r
. (1.10)
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The goal of the attacker using differential cryptanalysis is to find input differentials

with as big as possible probability in the differential distribution table. For the sponge

designs, the attacker has control over the rate bits in the first round, but does not

have control over the next consecutive rounds. In order to set an upper bound of the

probability of a differential over several consecutive rounds we use the following plausible

assumption:

Assumption 1. For GAGE instances that have b state bits and r rate bits, the input dif-

ferentials for all rounds except the first round fall in the maximal right skewed distribution

confidence interval Imax.

Lemma 2. Let S be a state of b bits, r is the rate, Imax “ rjmin,
b
2
s is its maximal

right skewed distribution confidence interval and let R is the number of rounds for calling

the procedure qpermutationpS,Rq of GAGE. Let P∆maxpRq denotes the upper bound of

input traced differentials for R rounds. Under Assumption 1 it holds that

P∆maxpRq “ maxt2´pR´1qˆjmin´1, 2´pb`2q
u. (1.11)

Traced differentials for R “ 1, 2, 3

b r jmin P∆maxp1q P∆maxp2q P∆maxp3q

232 8 67 2´1 2´68 2´135

240 16 59 2´1 2´60 2´119

256 32 48 2´1 2´49 2´97

288 64 34 2´1 2´35 2´69

272 16 69 2´1 2´70 2´139

288 32 57 2´1 2´58 2´115

320 64 42 2´1 2´43 2´85

384 128 23 2´1 2´24 2´47

544 32 135 2´1 2´136 2´271

576 64 112 2´1 2´113 2´225

Table 1.7: Upper bounds of traced differentials for the first 3 rounds of GAGE for all
proposed instances in this documentation.

We summarize findings from this section in Table 1.7, where we trace the upper
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bounds of the input differential probabilities for the first 3 rounds of GAGE. Finally, for

b “ 232 and r “ 8 in Figure 1.3 we plot the probability mass function f∆in
piq and its

maximal right skewed distribution confidence interval. Note that the values on vertical

axis for f∆in
piq are presented in log2 scale.

Figure 1.3: Log plot with base 2 of f∆in
piq for b “ 232 and r “ 8.

1.3.2 Linear characteristics of GAGE

Similar to the differential characteristics, as an isolated component, the s-box Q has very

weak linear characteristics. It is given in Table 1.8. As we can see in cell highlighted in

light red, there is one sum in the table in the row with index 7 which has the maximal

extreme value -8.
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Output sum

0 1 2 3

0 8 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

I 4 0 0 0 0

n 5 0 0 0 0

p 6 0 0 0 0

u 7 0 0 0 -8

t 8 0 0 0 0

9 0 -4 4 0

s 10 0 4 4 0

u 11 0 0 0 0

m 12 0 0 0 0

13 0 -4 -4 0

14 0 -4 4 0

15 0 0 0 0

Table 1.8: Linear approximation table for the s-box Q.

As we already mentioned in the previous section the Algorithm 1 uses the s-box

Q in GAGE in an interleaved manner and it builds a huge s-box of size (b ` 2)-to-(b)

bits. A direct production of a linear approximation table for that s-box is infeasible,

but using the constant leaders defined in Table 1.2 it is possible to produce some linear

approximation tables. Thus, in Table 1.9 we give a linear approximation table for an

4-to-4 s-box obtained from Q, the Algorithm 1 and the leader l0 “ 0. As we can see,

there are seven extreme values (-8 and 8) highlighted in light red.
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Output sum

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 -4 4 0 0 4 4 0

2 0 0 0 0 0 0 0 0 0 4 4 0 0 4 -4 0

3 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0

I 4 0 0 0 0 -8 0 0 0 0 0 0 0 0 0 0 0

n 5 0 0 0 0 0 0 0 0 0 -4 -4 0 0 4 -4 0

p 6 0 0 0 0 0 0 0 0 0 -4 4 0 0 -4 -4 0

u 7 0 0 0 -8 0 0 0 0 0 0 0 0 0 0 0 0

t 8 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0

9 0 -4 4 0 0 4 4 0 0 0 0 0 0 0 0 0

s 10 0 4 4 0 0 4 -4 0 0 0 0 0 0 0 0 0

u 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8

m 12 0 0 0 0 0 0 0 0 0 0 0 0 -8 0 0 0

13 0 -4 -4 0 0 4 -4 0 0 0 0 0 0 0 0 0

14 0 -4 4 0 0 -4 -4 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 -8 0 0 0 0

Table 1.9: Linear approximation table for an 4-to-4 s-box obtained from Q, the Algorithm
1 and leader l0 “ 0.

Having so many extreme values in these small linear approximation tables can give

impression that there is some catastrophic weakness in the design of GAGE that is using

the small s-box Q. However, these examples are not using the linear layer of GAGE.

Since it is infeasible to work with the whole state of b bits, and in order to analyze the

linear characteristics of GAGE, we simulated a production of 8-to-8 s-boxes. For that

purpose the state had b “ 8 bits, we invoked the Algorithm 1 for different number of

rounds using the leaders defined in Table 1.2 and we used one simple linear layer that

rotates the bits in the state for one position to the right.
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Figure 1.4: Comparative Log2 plots of distribution of sums in a linear approximation
tables for an 8-to-8 s-box obtained by Algorithm 1 with number of rounds from 1 to 8
(blue dots) and one randomly generated 8-to-8 s-box (red dots). The p value is from
comparing the distributions with two-sample Kolmogorov-Smirnov test.

We compared the linear characteristics of obtained simulated 8-to-8 s-boxes after

different number of rounds to one linear approximation table for a randomly generated
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8-to-8 s-box. The comparison is presented in Figures 1.4 and 1.5. We also show a p value

from a two-sample Kolmogorov-Smirnov test. Apparently, for small number of rounds,

p “ 0.0, but as we can see from the figures, the two distributions are getting close to

each other as the number of rounds is increasing. For number of rounds more than 7 the

statistical test gives a p value which is not distinguishing the two samples.

Figure 1.5: Comparative Log2 plots with number of rounds from 7 to 10.

We want to stress that the tests we performed analyzing and comparing the linear

characteristics of s-boxes coming from GAGE and a randomly generated s-box with the

same size is not the ultimate proof of GAGE’s resistance to linear cryptanalysis, but it

certainly increases our confidence in the design, having in mind that the recommended

number or rounds is ROUNDS “ 32.
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1.4 Features

1. GAGE is a sponge based cryptographic hash function with a state S of b bits,

b “ r ` c where r is the rate and c is capacity. b is even number.

2. For the goal to be a lightweight crypto design, GAGE uses:

• very small 4-to-2 bits s-box;

• 2-bit round constants.

3. In most SPN crypto designs, substitution layers split the input bits in disjunctive

subsets. Then those subsets are transformed in parallel by applying certain number

of s-boxes. In GAGE, the set of input bits are split in 4-bit subsets, they are

transformed in parallel by the s-box, but those subsets are interleaved in such

a way that pairs of bits belong to two subsets. That makes the substitution layer

to act as one huge s-box with an input of b` 2 bits, and b bits of output.

4. The state S in GAGE, can be represented either as:

• a sequence of
b

2
, 2-bit cells (for very light hardware implementations);

• a sequence of
b

4
, 4-bit cells (for unconventional 4-bit MCUs);

• a sequence of
b

8
, 8-bit cells (for very small 8-bit MCUs);

• a sequence of
b

16
, 16-bit cells (for small 16-bit MCUs);

• a sequence of
b

32
, 32-bit cells (for 32-bit MCUs and CPUs);

• a sequence of
b

64
, 64-bit cells (for 64-bit CPUs);

• a b-bit sequence (for modern CPUs that have wide SIMD registers of 128, 256

or 512 bits).

For all those representations with their different smallest basic cell (register), there

exist operations over those cells that transform the state in equivalent manner. The

nonlinear operations can be realized either as reading from small lookup tables or

as register operations that perform only SHIFT, XOR, AND and NOT operations.
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5. Its simple and systematic design offers a possibility to completely describe the

distribution and the number of cells in the differential distribution table for the big

pb` 2q-to-b bits s-box, regardless of the size of b.

6. GAGE can use two lines of developed protection techniques against side channel

attacks:

• If it is implemented using the small s-box Q then the masking techniques for

reading from look-up tables should be used [4]. The small size of the s-box

enables to efficiently produce higher order masking look-up tables.

• If it is implemented using the register operations of SHIFT, XOR, AND and NOT,

then the Boolean masking techniques used for Keccak can be used also for

GAGE.

1.5 Design rationale

We had several goals when designing GAGE: to design an ultra lightweight cryptographic

hash function suitable for implementation in very low number of GEs in ASIC, in very

low number of slices in FPGAs, in tiniest MCUs (even on 4-bit MCUs), but also to be

competitively fast (if not faster) than other cryptographic hash functions on big CPUs.

Since we wanted the design to share a lot of components with an AEAD cipher, the

choice for the sponge design principles was natural.

The components in GAGE permutation, that by the way is built upon the SPN

concept, are as simple and as with small hardware footprint as possible (if not the smallest

possible):

1. the nonlinear substitution layer is using one 4-to-2 bits s-box in an interleaved mode

of operation (named d-transformation) over the whole state.

2. the linear layer is just rewiring i.e. bit-shuffling. It is constructed in such a way

that a full diffusion of an influence from one bit to all bits in the state is achieved in

at least 9 rounds. It is also chosen to avoid early cyclic i.e. self-similarity repetition

of the whole or any initial part of the sponge state that is longer than two bits.

3. the round constants are just 2-bit constants that form a non-repetitive sequence.

In conjunction with the concept of a big pb` 2q-to-b bits s-box they are chosen to
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prevent slide attacks, rotational or self-similarity attacks. They are also chosen to

harden the design against differential cryptanalysis.

1.5.1 The nonlinear layer and the choice of the S-box

In the past we have designed the lightweight stream cipher Edon80 [7] that participated

in Phase 3 of eSTREAM project. It uses four similar s-boxes, but the mode of operation

in GAGE is different. We give here a brief overview of the mathematical properties for

the chosen s-box in GAGE and the mode of operation for using that s-box.

Definition 3. A quasigroup pQ, ˚q is a groupoid satisfying the law

p@u, v P QqpD! x, y P Qq u ˚ x “ v & y ˚ u “ v. (1.12)

What is characteristic for quasigroups is that equations of the type: a ˚ x “ b or

x˚a “ b have unique solutions. The binary operation ˚ induces another binary operation

on Q, called left conjugate or left parastrophe, defined as x “ az˚b iff a ˚ x “ b. It is

obvious that pQ, z˚q is a quasigroup and that the algebra pQ, ˚, z˚q satisfies the identities

xz˚px ˚ yq “ y, x ˚ pxz˚yq “ y. (1.13)

Consider an alphabet (i.e., a finite set) Q. By Q` we denote the set of all nonempty

words (i.e., finite strings) formed by the elements of Q. Depending on the context, we

use two notations for elements of Q`: a1a2 . . . an and pa1, a2, . . . , anq, where ai P Q.

Definition 4. Let pQ, ˚q be a quasigroup and M “ a1a2 . . . an P Q
` For each l P Q we

define two functions el,˚, dl,˚ : Q` ÝÑ Q` as follows:

el,˚pMq “ b1b2 . . . bn ðñ b1 “ l ˚ a1, b2 “ b1 ˚ a2, . . . , bn “ bn´1 ˚ an,

dl,˚pMq “ c1c2 . . . cn ðñ c1 “ l ˚ a1, c2 “ a1 ˚ a2, . . . , cn “ an´1 ˚ an,

The functions el,˚ and dl,˚ are called a quasigroup string e–transformation (or e–

transformation for short) and a quasigroup string d–transformation (or d–transformation

for short) of Q` based on the operation ˚ with leader l.

Graphical representations of e–transformation and d–transformation are shown in Fig.

1.6.
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a1 a2 . . . an´1 an

l b1 b2 . . . bn´1 bn
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l a1 a2 . . . an´1 an

c1 c2 . . . cn´1 cn

- - - - -

? ? ? ?

Figure 1.6: Graphical representations of the el,˚ and dl,˚ transformations

Using Definition 4 and the identities (1.13) it is easy to prove the following theorem.

Theorem 1. If pQ, ˚q is a finite quasigroup, then el,˚ and dl,z˚ are mutually inverse

permutations of Q`, i.e.,

dl,z˚pel,˚pMqq “M “ el,˚pdl,z˚pMqq

for each leader l P Q and for every string M P Q`.

In [6] we proved that some of the well known modes of operations of block ciphers

(such as CBC, OFB and CTR) are actually e–transformation or d–transformation. While

the e–transformation is in essence a sequential procedure (as it is the case with the CBC

encryption mode), the d–transformation is essentially a parallel procedure (a well known

fact also for the decryption of the CBC mode). In contrast to the design of the stream

cipher Edon80, the design of GAGE instead of the sequential e–transformation uses the

parallel d–transformation.

Similar to Edon80, GAGE uses a small quasigroup of order 4 given in expression (1.1)

or as a Boolean function in expression (1.2) and given here once more for the convenient

reading.

˚ 0 1 2 3

0 1 0 3 2

1 0 2 1 3

2 2 3 0 1

3 3 1 2 0

Qpx1, x2, x3, x4q “ px1 ` x3 ` x2x3 ` x2x4, 1` x1 ` x2 ` x2x3 ` x4 ` x2x4q

There are 576 quasigroups of order 4, and if we sort all of them in a lexicographic

order, in GAGE we are using the quasigroup Nr. 173. Here are the criteria for choosing
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this particular quasigroup:

1. The quasigroup and its left conjugate (left parastrophe) should be nonlinear Boolean

functions;

2. The quasigroup should not have fixed points;

3. The quasigroup should give as little as possible cells with 100% probability in its

differential distribution table and in differential distribution tables obtained from

its corresponding d–transformation.

1.5.2 Linear layer of GAGE permutation

Linear layers in SPN constructions can be as simple as just bit-shuffling, or can be

complex linear operations among the bits of the state. The advantage of having complex

linear operations in the linear layer is in faster diffusion of the influence that each bit of

the state has. However, more complex linear layer needs bigger hardware footprint when

implemented in hardware. If the goal is a lightweight hardware design, then the cheapest

linear layer for that purpose is just a simple rewiring of the bits i.e. bit-shuffling. That

is the design choice in GAGE.

Additionally, for the linear layer in GAGE we used the following four design criteria:

1. Bit-shuffling should be efficient also on small 8-bit MCUs; For this purpose every

new byte in the state is composed of bits that come from 8 different bytes in the

old state.

2. Bit-shuffling should be one and same procedure for different sizes of the state;

No slight differences in constants (except the size of the state), no differences in

rotations or other operations that perform the linear layer bit-shuffling;

3. Bit-shuffling should be such that there is no early cyclic repetition of the state after

few rounds of the SPN design;

4. Bit-shuffling should be such that in combination with the nonlinear layer, the dif-

fusion in the state is as fast as possible.
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Having design criteria Nr. 1 we found the following bit-shuffling procedure (already

given in (1.3) and (1.4)) and repeated here for convenient reading. Every byte for the

new state A1 “ ta10, . . . , a
1
b{8´1u is described as follows:

a1i “ π8prapi`jqmod b{8r7´ js, j “ 0, . . . 7sq, i “ 0, . . . , b{8´ 1

The function π8pq is the following permutation of 8 elements:

π8 “

˜

1 2 3 4 5 6 7 8

1 3 5 8 7 6 2 4

¸

Definition 5. Let S “ ps0, s1, . . . , sb´1q be a state of b bits and let πS ” π is a permu-

tation of b elements. Let PairingpSq “ Spairs “ tts0, s1u, ts2, s3u, . . . , tsb´2, sb´1uu be a

procedure that splits the state S in disjunctive union of neighboring two-elements subsets.

We say that πS has a pair-matching period f if there is a pair ts2ν , s2ν`1u such that

ts2ν , s2ν`1u P Pairingpπpπp. . . πpSqqq
looooooomooooooon

f

q. (1.14)

Definition 6. For a state S of b bits, a maximal pair-matching permutation is a permu-

tation π on b elements that has a pair-matching period
b

2
.

About the design criteria Nr. 3 we searched for a bit-shuffling permutation πS such

that it is a maximal pair-matching permutation.

About the design criteria Nr. 4, in Table 1.10 we give a list of number of rounds for

every instance proposed in this documentation. Having in mind that d–transformation in

Algorithm 1 combines always quartets of bits as input to the s-box Q it is an expectable

phenomena to need more rounds, as the size of the state increases, in order to achieve a

full diffusion.
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b c r
Nr of rounds for

full diffusion

232 224 8 9

240 224 16 9

256 224 32 10

288 224 64 10

272 256 16 10

288 256 32 10

320 256 64 11

384 256 128 12

544 512 32 16

576 512 64 16

Table 1.10: Number of rounds for different sizes of the state, for achieving a full diffusion

1.5.3 Round constants in GAGE

For generating the 2-bit round constants in GAGE we used an 8-bit LFSR defined by the

irreducible polynomial x8`x6`x5`x4` 1. Generating a bit sequence from an LFSR is

out of the scope of this document (and can be found in any basic textbook for LFSRs),

but for our purposes we refer to two LFSR procedures:

1. Procedure InitLFSR(LFSRState) initializes the 8-bit register with some state LFSRState;

2. Procedure LFSR(&LFSRState) returns the current value of the least significant bit

of the state, and then updates the state acording to the rules of the LFSR.

Using LFSR with 8-bit state can produce a non-repeating sequence of 255 bits. We used

the output from the LFSR in Algorithm 4 to generate 255 2-bit constants from the set

t0, 1, 2, 3u. While we need only 32 constants, we generated the full set of 255 values for

any further use. The list of constants are generated in such a way that their values are

chosen in an alternating way: If the previous constant was chosen from the set t0, 2u,

then the current constant (indexed by an index i) will be chosen from the set t1, 3u

depending on the output bit from the LFSR.
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Algorithm 4 Generating constants in GAGE.

1: LFSRStateÐ 0xAA

2: InitLFSR(LFSRState)
3: iÐ 0
4: jumpÐ 0
5: do
6: bitÐ LFSR(&LFSRState)
7: if jump ““ 0 then
8: if bit ““ 0 then
9: leader[i``] Ð 0

10: else
11: leader[i``] Ð 2

jumpÐ 1
12: else
13: if bit ““ 0 then
14: leader[i``] Ð 1
15: else
16: leader[i``] Ð 3

jumpÐ 0

17: while LFSRState ‰ 0xAA

Note that we start from an LFSR state that generates the first leader l0 “ 0. The

reasons for choosing constants either from t0, 2u or from t1, 3u come from our analysis of

differential distribution tables of s-boxes obtained by Algorithm 1.

First, let us give the following simple Corollary:

Corollary 3. If x P t0, 2u and y P t1, 3u then px XOR yq P t1, 3u.

Next, recall four differentials with 100% probabilities: ∆max1 “ 0 “ t0, 0, . . . , 0, 0
looooomooooon

b`2

u,

∆max2 “ 3 “ t0, . . . , 0
loomoon

b

, 1, 1u, ∆max3 “ 2b`1 “ t1, 0, . . . , 0
loomoon

b`1

u and ∆max4 “ 2b`1 ` 3 “

t1, 0, . . . , 0
loomoon

b´1

, 1, 1u.

By starting with leader l0 “ 0 we make the differential ∆max2 “ t0, . . . , 0
loomoon

b

, 1, 1u im-

possible since the two nonzero bits are far away from the left-most zone of rate bits.

In such case, also the differentials ∆max3 and ∆max4 are impossible. But after the first

initial round where the attacker has some limited control over the input bits, in the sub-

sequent rounds we would like the XOR difference in the first two bits to never be 0 or 2.
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There comes the Corollary 3, and the reasons why we generate the leader constants in

an alternating manner as described in Algorithm 4.

Finally in Table 1.11 we give the list of all 255 leader constants generated by Algorithm

4.

i li

0 0 3 0 3 0 1 2 3 2 1 2 3 2 1 2 3

16 0 1 2 3 2 3 0 3 2 3 2 3 2 1 2 1

32 0 3 2 1 0 3 2 1 2 1 2 1 0 1 2 3

48 0 1 0 1 0 3 2 3 0 3 0 3 0 3 0 3

64 2 3 2 3 0 1 2 1 2 1 0 1 0 3 0 1

80 2 3 2 3 2 3 2 3 0 1 0 1 2 1 2 3

96 2 3 0 1 0 3 2 1 2 1 0 1 0 1 0 1

112 2 1 0 1 2 3 2 1 0 1 2 1 0 3 0 3

128 2 3 0 1 0 1 0 1 2 3 0 1 2 1 0 3

144 0 1 2 3 0 3 2 3 0 1 2 1 0 1 0 1

160 2 1 2 1 2 3 0 3 2 1 2 1 2 3 0 1

176 2 1 2 3 0 1 0 1 2 3 2 3 2 1 2 3

192 0 3 2 3 2 1 2 1 2 3 2 1 2 1 0 1

208 2 1 0 1 0 3 2 1 2 3 0 1 0 3 2 3

224 2 1 0 3 2 3 0 1 2 3 0 1 0 3 0 3

240 2 1 2 1 0 3 0 1 0 3 0 3 0 1 2

Table 1.11: A list of 255 leaders produced by Algorithm 4.



Chapter 2

AEAD Algorithm - InGAGE

InGAGE is a sponge-based family of authenticated ciphers with associated data built

over the lightweight cryptographic hash function GAGE. InGAGE mode of operation is

similar to Ascon family of authenticated ciphers [5] (which is similar to MonkeyDuplex

modes of operation [3]). Still, InGAGE has several differences with Ascon both in its

mode of operation and in used parameters.

2.1 Specification

InGAGE uses the standard 4-parameter AEAD interface discussed in [11] and in [10].

Its encryption function is described as

EpK,N,A, P q “ pC, T q

where K is a secret key, N is a nonce, A is an associated data, P is a plaintext, C

is a ciphertext with same length as the plaintext and T is an authentication tag. Its

decryption function is described as

DpK,N,A,C, T q “ P or Invalid

The modes of encryption and decryption of InGAGE are given in Figures 2.1 and 2.2.

The invocation of the sponge permutation qpermutation() in InGAGE is done with

the following two values: r1 “ ROUNDS and r2 “ ROUNDS{2 where the value ROUNDS is

defined for the hash function GAGE (in this submission has value 32).

31



2.1 Specification 32

pr1 N || K || 0* b

r

c

0|N| || K || 0* 

A1 

pr2 

As=…0*1 

c
pr2 

r

P1 C1 

pr2 

c

Pt-1 Ct-1 

pr1 pr2 

c

Pt Ct 

r
tlen 

T 

Initialization Associated data Absorb Plaintext & produce Ciphertext Finalization 

c

0*|| 1 0*|| 2 

Figure 2.1: A graphical presentation of InGAGE encryption mode of operation.
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Figure 2.2: A graphical presentation of InGAGE decryption mode of operation.

In algorithmic form InGAGE encryption and decryption are given in Algorithm 5 and

6. Note that the names of the variables for some of the InGAGE parameters are common

and shared with the hash function GAGE (such as the state S which is split in the rate

and in the capacity part i.e. S “ Sr||Sc or the parameter ROUNDS) while the other names

are changed or new are added due to the nature of the encryption algorithm i.e. instead

of an input message M we have plaintext message P . Also we have a ciphertext message

C, and the authentication tag T has length of tlen bits. The notation Srr, . . . r`tlen´1s

means that we take the first tlen bits of capacity part Sc of the state S (right after the

first r bits that belong to the rate part Sr) when it is represented as sequences of bits.
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Algorithm 5 InGAGE authenticated encryption EpK,N,A, P q.

Input: secret key K, nonce N , associated data A, plaintext P

Output: ciphertext C, authentication tag T of tlen bits

Initialize state S

1: S Ð N ||K||0˚

2: S Ð qpermutation(S, ROUNDS)

3: S Ð 0||K||0˚

Absorb associated data A

1: tApad, µu Ð PaddpA, alen, rq

2: Aµ Ð Aµ XOR p0˚||0x01q

3: for i “ 1 to µ do

4: S Ð pSr XOR Aiq || Sc

5: S Ð qpermutation(S, ROUNDS/2)

6: endfor

7: S Ð S XOR p0˚||0x01q

Absorb and encrypt the plaintext P

1: tPpad, µu Ð PaddpP, plen, rq

2: for i “ 1 to µ do

3: Ci Ð pSr XOR Piq

4: S Ð Ci || Sc

5: S Ð qpermutation(S, ROUNDS/2)

6: endfor

7: S Ð S XOR p0˚||0x02q

Finalization

1: S Ð qpermutation(S, ROUNDS)

2: T Ð Srr, . . . , r ` tlen´ 1s
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Algorithm 6 InGAGE verified decryption DpK,N,A,C, T q.

Input: secret key K, nonce N , associated data A, ciphertext C, tag T of tlen bits

Output: plaintext P or Invalid

Initialize state S

1: S Ð N ||K||0˚

2: S Ð qpermutation(S, ROUNDS)

3: S Ð 0||K||0˚

Absorb associated data A

1: tApad, µu Ð PaddpA, alen, rq

2: Aµ Ð Aµ XOR p0˚||0x01q

3: for i “ 1 to µ do

4: S Ð pSr XOR Aiq || Sc

5: S Ð qpermutation(S, ROUNDS/2)

6: endfor

7: S Ð S XOR p0˚||0x01q

Process the ciphertext C

1: tCpad, µu Ð PaddpC, clen, rq

2: for i “ 1 to µ do

3: Pi Ð pSr XOR Ciq

4: S Ð Ci || Sc

5: S Ð qpermutation(S, ROUNDS/2)

6: endfor

7: S Ð S XOR p0˚||0x02q

Finalization

1: S Ð qpermutation(S, ROUNDS)

2: T 1 Ð Srr, . . . , r ` tlen´ 1s

3: if T ““ T 1 then

4: Return P

5: else

6: Return Invalid
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2.2 Security Goals

Table 2.1 gives all proposed instances of InGAGE with their security goals. The values

for the security strengths are generic ones given in [1].

The highlighted row in Table 2.1 is our main proposal for the lightweight AEAD

function: a key of |K| “ 128 bits, a nonce of |N | “ 96 bits, a tag length of |T | “ 128,

with an internal state of b “ 232 bits, capacity of c “ 224 bits and a rate r “ 8 bits. It

has a confidentiality of plaintext security of 128 bits, integrity of plaintext of 128 bits and

integrity of associated data security of 128 bits. It is not designed to work with nonce

reusing.

The message size limit in our proposal is set to 264 bytes. It is the same length of the

unsigned long long parameter set in the API interface. The input size (as a power of

2 bytes) can theoretically go up to the collision resistance value.

Nr. |K| |N | |T | b c r

Confiden-

tiality of

P

Integri-

ty of P

Integri-

ty of A
Nonce

reuse

Message

size limit

(power of 2

bytes)

1. 128 96 128 232 224 8 116 128 128 No 64

2. 128 96 128 240 224 16 120 128 128 No 64

3. 128 96 128 256 224 32 128 128 128 No 64

4. 128 128 128 320 256 64 128 128 128 No 64

5. 256 96 128 512 448 64 256 128 128 No 64

6. 256 128 128 512 448 64 256 128 128 No 64

Table 2.1: All instances of InGAGE proposed in this documentation.

2.3 Security analysis

InGAGE security utterly rely on the security of the cryptographic function GAGE (dis-

cussed in the first part of this documentation), as well as the security of MonkeyDuplex

modes of operation [3], Ascon mode of operation [5] and the analysis of sponge based

AEAD that offers security beyond 2c{2 as described in [9].
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2.3.1 Security loss of a reused nonce in InGAGE

Let K be a secret key, A be an associated data, and N be a nonce that will be misused

for two or more plaintexts. While the recovery of the secret key K is not feasible due

to the used MonkeyDuplex and à la Ascon modes of operation, there is a security loss

of a reused nonce N in InGAGE. That security loss is completely described in Rogaway

et al., paper [8] with the trivial attack described in Section 1 of that paper and with

the CPSS (chosen-prefix, secret-sufix) attack in Section 3 of that paper. In any case the

security loss of missused nonces in InGAGE can be summarized as follows:

• (trivial attack in [8]) For InGAGE with a rate parameter r, having a ciphertext

C “ C1C2 . . . CtT , and having an access to the encryption oracle EpK,N,A, P q, it

is possible to recover the corresponding plaintext P with a complexity Opp2r´ 1qtq

queries.

• (CPSS attack in [8]) For InGAGE with a rate parameter r, recovering messages of

a format M “ P ||S, where P part is a known prefix controlled by the adversary,

and S is not known by the adversary, has a complexity Op2r|S|{rq queries.

• It is not feasible to recover the key K by reused nonce in InGAGE.

2.3.2 Summary of the relevant attacks on InGAGE

Impossible differentials and related key attacks

Differentials of the form ∆max2 “ 3 “ t0, . . . , 0
loomoon

b

, 1, 1u have probability of 100%. Thus, the

attacker that has control over the inputs of the last two bits of the state can use these

differentials to launch a related key attack scenario. In order to render these differentials

as impossible in InGAGE the initialization of the state is defined as: S Ð N ||K||0˚.

Traced differentials for all proposed instances of InGAGE

Based on the security analysis of traced differentials for the hash function GAGE, we

give here a Table 2.2 of upper bounds of traced differentials for the first 3 rounds of all

proposed instances of InGAGE.
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Traced differentials for R “ 1, 2, 3

b r jmin P∆maxp1q P∆maxp2q P∆maxp3q

232 8 67 2´1 2´68 2´135

240 16 59 2´1 2´60 2´119

256 32 48 2´1 2´49 2´97

320 64 42 2´1 2´43 2´85

512 64 94 2´1 2´95 2´189

Table 2.2: Upper bounds of traced differentials for the first 3 rounds of all proposed
instances of InGAGE.

Collision attacks on MonkeyDuplex round reduced permutation

Since InGAGE is a sponge based AEAD with MonkeyDuplex mode of operation [3],

for the phases of associated data absorption and plaintext encryption it is using a round

reduced permutation with ROUNDS/2 rounds. One possible attack for this case is an attack

that is producing collisions in the capacity part Sc of the state. In that case, the attacker

by controlling the rate part Sr can produce forged authentication tags. To mitigate these

attacks, the parameter ROUNDS is set to 32, and thus ROUNDS/2 is 16. The full diffusion

of the influences of every bit of the state to every other bit of the state is given in Table

2.3, and we see that 16 rounds are more than enough for all instances of InGAGE to

achieve a full diffusion. Achieving a full diffusion after 16 rounds, in conjunction with

the differential and linear characteristics of the permutation function GAGE, means that

it is unlikely that there exist high probability differentials that will lead to collisions in

Sc.
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b c r
Nr of rounds for

full diffusion

232 224 8 9

240 224 16 9

256 224 32 10

320 256 64 11

512 448 64 15

Table 2.3: Number of rounds for different sizes of the state, for achieving a full diffusion
for all instances of InGAGE

Reused nonce in InGAGE

In case of reused nonce, InGAGE losses completely its security and an adversary can

recover the plaintext with a complexity Op2rq queries where r is the rate of the sponge

function used in InGAGE.

2.4 Features

1. InGAGE is a lightweight sponge based AEAD with a state S of b bits, b “ r ` c

where r is the rate and c is capacity (b is even number), nonces of 96 or 128 bits,

and secret keys of 128 or 256 bits.

2. For the goal to be a lightweight crypto design, InGAGE uses the lightweight sponge

based hash function GAGE.

3. InGAGE is nonce respecting cipher but a nonce misuse will not result in a catas-

trophic key recovery. This is due to its use of MonkeyDuplex and à la Ascon modes

of operation.

4. The state S in InGAGE, can be represented in different ways (from 2-bit cells up

to long SIMD registers) simmilar as GAGE.

5. For all those representations with their different smallest basic cell (register), there

exist operations over those cells that transform the state in equivalent manner.
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The nonlinear operations can be realized either as reading from small tables or as

register operations that perform only SHIFT, XOR, AND and NOT operations.

6. InGAGE can use two lines of developed protection techniques against side channel

attacks:

• If it is implemented using the small s-box Q then the masking techniques for

reading from look-up tables should be used [4]. The small size of the s-box

enables to efficiently produce higher order masking look-up tables.

• If it is implemented using the register operations of SHIFT, XOR, AND and NOT,

then the Boolean masking techniques used for Keccak can be used also for

InGAGE.

2.5 Design rationale

We decided to design a lightweight AEAD standing on the shoulders of the theoretical

and practical developments in the field of cryptographic sponge designs [1, 2, 3] in the last

decade. That is why we first designed a very light cryptographic hash function GAGE

and then we applied its permutation function in a similar manner as the elegant design

of Ascon and by considering the excellent theoretical results for the security of sponge

based AEAD beyond 2c{2, presented in [9].

The mode of InGAGE differs from Ascon mode in the following parts:

• It has state that has different sizes from 232 bits up to 512 bits, and it has different

rates (from 8 bits up to 64 bits).

• The initialization of the state is in the form S Ð N ||K||0˚. We especially wanted

to avoid injecting the key material at the rightmost bits of the state due to our

differential cryptanalysis of GAGE. If we would allow the key to be injected to

the rightmost part, then there would be one possibility of launching a key-related

attack to produce the differential ∆max2 “ 3 “ t0, . . . , 0
loomoon

b

, 1, 1u.

• Padding the associated data and padding the plaintext is different in InGAGE.

More concretely, after calling the padding procedure Paddpq, the rightmost byte

of the padded associated data is changed to end with the bit 1 (instead of the

situation for the plaintext where the padding end with the bit 0).
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• Absorption phases for the associated data and for the plaintext end with different

flipped bits in the state: For the associated data it is the rightmost bit of the state

that is flipped i.e. S Ð S XOR p0˚||0x01q, but for the plaintext it is the second to

the rightmost bit of the state that is flipped i.e. S Ð S XOR p0˚||0x02q.

• The finalization part without injecting the key K invokes the sponge permutation

with a full number of ROUNDS. Our rationale is that since the number of ROUNDS is

used for the cryptographic hash function GAGE, there is no extra security gain if

we inject the key material before invoking the sponge permutation.

• Tag is produced by extracting the leftmost bits of the capacity part of the state Sc.
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Reference Implementation for

GAGE and InGAGE

The reference implementations of GAGE and InGAGE are written in C programming

language (C99 version). They can be accessed via standard git interface from the follow-

ing URL link: https://c0de.pw/lwc-mipri/reference-c/tree/master/.

Here we basically give the same information as it is given in the README.md file

on the git repository.

3.1 Building/compiling the code

The package comes with a Makefile which is intended to be used with the make tool

under Linux or similar operating systems.

You can use make TARGET to build TARGET. The following targets are defined:

• all: build the reference implementations.

• kat: generate KAT (Known Answer Test) vectors.

• check: check generated KAT vectors against supplied checksums.

• UPDATE REFERENCE KAT VECTORS: update the reference checksums, this should be

only used if the specification changes.

• release: create zip files according to NIST requirements.

41

https://c0de.pw/lwc-mipri/reference-c/tree/master/


3.2 Directory structure 42

3.2 Directory structure

The release directory structure is shown on Figure 3.1.

Figure 3.1: Release directory structure

The directories for the Gage and InGage reference implementations are similarly

structured. They are structured in the following way:

1. First level distinguishes between hash functions in crypto hash and AEAD func-

tions in crypto aead.

2. Second level distinguishes the different members of each family.

3. Third level directories offer different implementation variants with ref being the

reference implementation.

Each directory name on the second level starts with the families name (gage or ingage)

followed by a version number and several parameters. Each parameter is indicated by a

single letter followed by a numeric value.



3.3 Paired Hash-AEAD proposals and shared programming code 43

Parameters for GAGE:

• hxnumy: xnumy is the number of bits of the resulting message digest

• cxnumy: xnumy is the value of the capacity parameter

• rxnumy: xnumy is the value of the rate parameter

Parameters for InGAGE:

• kxnumy: xnumy is the size of the key in bits

• nxnumy: xnumy is the size of the nonce in bits

• cxnumy: xnumy is the value of the capacity parameter

• rxnumy: xnumy is the value of the rate parameter

The structure of the reference implementation is shown on Figure 3.2.

3.3 Paired Hash-AEAD proposals and shared pro-

gramming code

In Table 3.1 we give a list of 4 paired Hash-AEAD proposals that share the same values

for b, c and r.

GAGE Nr. |Hash| “ n b c r |K| |N | |T | InGAGE Nr.

1. 256 232 224 8 128 96 128 1.

2. 256 240 224 16 128 96 128 2.

3. 256 256 224 32 128 96 128 3.

7. 256 320 256 64 128 128 128 4.

Table 3.1: All instances of paired GAGE - InGAGE proposals.

In addition, we would like to emphasize that reference implementations of GAGE

and InGAGE family members share a large amount of code. The members of GAGE
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Figure 3.2: Structure of the reference implementation

and InGAGE families differ only in their state size and how this size is split in rate and

capacity. Those values are defined for each implementation in parameters.h.

Since InGAGE also offers four different interfaces (k “ 128, n “ 96; k “ 128, n “

128; k “ 256, n “ 96; k “ 256, n “ 128), there are also four different variations of api.h

which define those parameters.

All implementations share:

• constants.c: this file defines the leaders or round constants and the s-box.

• constants.h: provides interfaces to the constants defined in constants.c and

defines the state structure.

All implementations of GAGE further share:

• hash.c: the core implementation of GAGE.

• api.h: defines the size of the message digest to 32 bytes.
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• crypto hash.h: provides a prototype for the crypto hashpq function.

• genkat hash.c: provides a main program to generate test vectors.

All implementations of InGAGE share:

• encrypt.c: the core implementation of InGAGE.

• crypto aead.h: provides a prototype for the crypto aead encryptpq

and crypto aead decryptpq functions.

• genkat aead.c: provides a main program to generate test vectors.
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Statements

4.1 Statement by Each Submitter

I, Danilo Gligoroski, of Department of Information Security and Communication Technology -

IIK, Norwegian University of Science and Technology - NTNU, Trondheim, Norway, currently

visiting: Department of Mathematics and Statistics, University of South Florida, USA, do

hereby declare that the cryptosystem, reference implementation, or optimized implementations

that I have submitted, known as GAGE/InGAGE, is my own original work, or if submitted

jointly with others, is the original work of the joint submitters.

I further declare that I do not hold and do not intend to hold any patent or patent appli-

cation with a claim which may cover the cryptosystem, reference implementation, or optimized

implementations.

I do hereby acknowledge and agree that my submitted cryptosystem will be provided to the

public for review and will be evaluated by NIST, and that it might not be selected for standard-

ization by NIST. I further acknowledge that I will not receive financial or other compensation

from the U.S. Government for my submission. I certify that, to the best of my knowledge,

I have fully disclosed all patents and patent applications which may cover my cryptosystem,

reference implementation or optimized implementations. I also acknowledge and agree that

the U.S. Government may, during the public review and the evaluation process, and, if my

submitted cryptosystem is selected for standardization, during the lifetime of the standard,

modify my submitted cryptosystems specifications (e.g., to protect against a newly discovered

vulnerability).

I acknowledge that NIST will announce any selected cryptosystem(s) and proceed to publish

the draft standards for public comment I do hereby agree to provide the statements required
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by Sections 2.4.2 and 2.4.3, below, for any patent or patent application identified to cover the

practice of my cryptosystem, reference implementation or optimized implementations and the

right to use such implementations for the purposes of the public review and evaluation process.

I acknowledge that, during the lightweight crypto evaluation process, NIST may remove my

cryptosystem from consideration for standardization. If my cryptosystem (or the derived cryp-

tosystem) is removed from consideration for standardization or withdrawn from consideration

by all submitter(s) and owner(s), I understand that rights granted and assurances made under

Sections 2.4.1, 2.4.2 and 2.4.3, including use rights of the reference and optimized implementa-

tions, may be withdrawn by the submitter(s) and owner(s), as appropriate.

Signed: Danilo Gligoroski

Title: Professor

Date: 25 February 2019

Place: Tampa, Florida, USA
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I, Hristina Mihajloska, of FCSE, ”Ss Cyril and Methodius” University, Skopje, Republic of

Macedonia, do hereby declare that the cryptosystem, reference implementation, or optimized

implementations that I have submitted, known as GAGE/InGAGE, is my own original work,

or if submitted jointly with others, is the original work of the joint submitters.

I further declare that I do not hold and do not intend to hold any patent or patent appli-

cation with a claim which may cover the cryptosystem, reference implementation, or optimized

implementations.

I do hereby acknowledge and agree that my submitted cryptosystem will be provided to the

public for review and will be evaluated by NIST, and that it might not be selected for standard-

ization by NIST. I further acknowledge that I will not receive financial or other compensation

from the U.S. Government for my submission. I certify that, to the best of my knowledge,

I have fully disclosed all patents and patent applications which may cover my cryptosystem,

reference implementation or optimized implementations. I also acknowledge and agree that

the U.S. Government may, during the public review and the evaluation process, and, if my

submitted cryptosystem is selected for standardization, during the lifetime of the standard,

modify my submitted cryptosystems specifications (e.g., to protect against a newly discovered

vulnerability).

I acknowledge that NIST will announce any selected cryptosystem(s) and proceed to publish

the draft standards for public comment I do hereby agree to provide the statements required

by Sections 2.4.2 and 2.4.3, below, for any patent or patent application identified to cover the

practice of my cryptosystem, reference implementation or optimized implementations and the

right to use such implementations for the purposes of the public review and evaluation process.

I acknowledge that, during the lightweight crypto evaluation process, NIST may remove my

cryptosystem from consideration for standardization. If my cryptosystem (or the derived cryp-

tosystem) is removed from consideration for standardization or withdrawn from consideration

by all submitter(s) and owner(s), I understand that rights granted and assurances made under

Sections 2.4.1, 2.4.2 and 2.4.3, including use rights of the reference and optimized implementa-

tions, may be withdrawn by the submitter(s) and owner(s), as appropriate.

Signed: Hristina Mihajloska

Title: Assistant Professor

Date: 25 February 2019

Place: Skopje, Macedonia
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I, Daniel Otte, of Ruhr University, Bochum, Germany, do hereby declare that the cryptosys-

tem, reference implementation, or optimized implementations that I have submitted, known as

GAGE/InGAGE, is my own original work, or if submitted jointly with others, is the original

work of the joint submitters.

I further declare that I do not hold and do not intend to hold any patent or patent appli-

cation with a claim which may cover the cryptosystem, reference implementation, or optimized

implementations.

I do hereby acknowledge and agree that my submitted cryptosystem will be provided to the

public for review and will be evaluated by NIST, and that it might not be selected for standard-

ization by NIST. I further acknowledge that I will not receive financial or other compensation

from the U.S. Government for my submission. I certify that, to the best of my knowledge,

I have fully disclosed all patents and patent applications which may cover my cryptosystem,

reference implementation or optimized implementations. I also acknowledge and agree that

the U.S. Government may, during the public review and the evaluation process, and, if my

submitted cryptosystem is selected for standardization, during the lifetime of the standard,

modify my submitted cryptosystems specifications (e.g., to protect against a newly discovered

vulnerability).

I acknowledge that NIST will announce any selected cryptosystem(s) and proceed to publish

the draft standards for public comment I do hereby agree to provide the statements required

by Sections 2.4.2 and 2.4.3, below, for any patent or patent application identified to cover the

practice of my cryptosystem, reference implementation or optimized implementations and the

right to use such implementations for the purposes of the public review and evaluation process.

I acknowledge that, during the lightweight crypto evaluation process, NIST may remove my

cryptosystem from consideration for standardization. If my cryptosystem (or the derived cryp-

tosystem) is removed from consideration for standardization or withdrawn from consideration

by all submitter(s) and owner(s), I understand that rights granted and assurances made under

Sections 2.4.1, 2.4.2 and 2.4.3, including use rights of the reference and optimized implementa-

tions, may be withdrawn by the submitter(s) and owner(s), as appropriate.

Signed: Daniel Otte

Title: Master student

Date: 25 February 2019

Place: Bochum, Germany
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4.2 Statement by Patent (and Patent Application)

Owner(s)

N/A
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4.3 Statement by Reference/Optimized/Additional

Implementations Owner(s)

I, Danilo Gligoroski, of Department of Information Security and Communication Tech-

nology - IIK, Norwegian University of Science and Technology - NTNU, Trondheim, Nor-

way, currently visiting: Department of Mathematics and Statistics, University of South

Florida, USA, am the owner of the submitted reference implementation, optimized and

additional implementations and hereby grant the U.S. Government and any interested

party the right to reproduce, prepare derivative works based upon, distribute copies of,

and display such implementations for the purposes of the lightweight cryptography public

review and evaluation process, and implementation if the corresponding cryptosystem is

selected for standardization and as a standard, notwithstanding that the implementations

may be copyrighted or copyrightable.

Signed: Danilo Gligoroski

Title: Professor

Date: 25 February 2019

Place: Tampa, Florida, USA
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I, Hristina Mihajloska, of FCSE, ”Ss Cyril and Methodius” University, Skopje, Re-

public of Macedonia, am the owner of the submitted reference implementation, optimized

and additional implementations and hereby grant the U.S. Government and any inter-

ested party the right to reproduce, prepare derivative works based upon, distribute copies

of, and display such implementations for the purposes of the lightweight cryptography

public review and evaluation process, and implementation if the corresponding cryp-

tosystem is selected for standardization and as a standard, notwithstanding that the

implementations may be copyrighted or copyrightable.

Signed: Hristina Mihajloska

Title: Assistant Professor

Date: 25 February 2019

Place: Skopje, Macedonia
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I, Daniel Otte, of Ruhr University, Bochum, Germany, am the owner of the submitted

reference implementation, optimized and additional implementations and hereby grant

the U.S. Government and any interested party the right to reproduce, prepare derivative

works based upon, distribute copies of, and display such implementations for the purposes

of the lightweight cryptography public review and evaluation process, and implementation

if the corresponding cryptosystem is selected for standardization and as a standard,

notwithstanding that the implementations may be copyrighted or copyrightable.

Signed: Daniel Otte

Title: Master student

Date: 25 February 2019

Place: Bochum, Germany
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[2] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak
sponge function family main document. Submission to NIST (Round 2), 3(30),
2009.
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