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Chapter 1

Introduction

Authenticated encryption (AE) is a symmetric-key cryptographic primitive for
providing both confidentiality and authenticity. Due to the recent rise in com-
munication networks operated on small devices, the era of the so-called Internet
of Things, AE is expected to play a key role in securing these networks.

This document describes GIFT-COFB authenticated, which instantiates the
COFB (COmbined FeedBack) block cipher based AEAD mode with the GIFT
block cipher. COFB primarily focuses on the hardware implementation size.
Here, we consider the overhead in size, thus the state memory size beyond the
underlying block cipher itself (including the key schedule) is the criteria we want
to minimize, which is particularly relevant for hardware implementation.

An initial version of COFB was presented in [5] and this latest version of
COFB is a minor modification over the original COFB mode.

This version supports all the desirable properties mentioned in the NIST
lightweight cryptography portfolio [9], and it is efficient for lightweight imple-
mentations as well.

There are many approaches of designing a secure and lightweight block cipher
based AEAD. We focus on using a lightweight, well analyzed block cipher and
minimizing the total encryption/decryption state size. We deploy a hardware
optimized block cipher GIFT-128 [2]. In addition to that, we use combined
feedback over the block cipher output and the data blocks along with a tweak
dependent secret masking (as used in XEX [11]). This combination helps us to
minimize the amount of masking by a factor of 2 from [11].

The COFB mode achieves several interesting features. It achieves a high value
for rate which is 1 (i.e, needs only one block cipher call for one input block).
The mode is inverse-free, i.e., it does not need a block cipher inverse during
decryption. In addition to these features, this mode has a quite small state size,
namely 1.5n+k bits, in case the underlying block cipher has an n-bit block and
k-bit keys.
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Chapter 2

Specification

2.1 Notation

• For any X ∈ {0, 1}∗, where {0, 1}∗ is the set of all finite bit strings (in-
cluding the empty string ε), we denote the number of bits of X by |X|.
Note that |ε| = 0.

• For a string X and an integer t ≤ |X|, Trunct(X) is the first t bits of X.

• Throughout this document, n represents the block size in bits of the un-
derlying block cipher EK . Typically, we consider n = 128 and GIFT-128
is the underlying block cipher, where K is the 128-bit GIFT-128 key.

• For two bit strings X and Y , X‖Y denotes the concatenation of X and
Y .

• A bit string X is called a complete (or incomplete) block if |X| = n (or
|X| < n respectively). We write the set of all complete (or incomplete)
blocks as B (or B< respectively). Note that, ε is considered as an incom-
plete block and ε ∈ B<.

• Given non-empty Z ∈ {0, 1}∗, we define the parsing of Z into n-bit blocks
as

(Z[1], Z[2], . . . , Z[z])
n←− Z,

where z = d|Z|/ne, |Z[i]| = n for all i < z and 1 ≤ |Z[z]| ≤ n such that
Z = (Z[1] ‖Z[2] ‖ · · · ‖Z[z]). If Z = ε, we let z = 1 and Z[1] = ε. We
write ||Z|| = z (number of blocks present in Z).

• Given any sequence Z = (Z[1], . . . , Z[s]) and 1 ≤ a ≤ b ≤ s, we represent
the sub sequence (Z[a], . . . , Z[b]) by Z[a..b].

• For integers a ≤ b, we write [a..b] for the set {a, a+ 1, . . . , b}.

2



2.1.1 Underlying Finite Field F2n

Let F2s denote the binary Galois field of size 2s, for a positive integer s. Field
addition and multiplication between a, b ∈ F2s are represented by a⊕ b (or a+ b
whenever understood) and a · b respectively. Any field element a ∈ F2s can be
represented by any of the following equivalent ways for a0, a1, . . . , as−1 ∈ {0, 1}.

• An s-bit string as−1 · · · a0 ∈ {0, 1}s.

• A polynomial a(x) = a0 + a1x+ · · ·+ as−1x
s−1 of degree at most (s− 1).

2.1.2 Choice of Primitive Polynomials

In our construction, the primitive polynomial [1] used to represent the field F264

is
p64(x) = x64 + x4 + x3 + x+ 1.

We denote the primitive element 0s−210 ∈ F2s by αs, (here s = 64). We use
α to mean αs for notational simplicity.

64-bit String Polynomial

06210 α

06211 α+ 1

061100 α2

Table 2.1: Various representations of some elements in F264

Thus, the field multiplication a(x) · b(x) is the polynomial r(x) of degree at
most (s− 1) such that a(x)b(x) ≡ r(x) mod ps(x).

Multiplication by Primitive Element α. We first see an example how we
can multiply by α64. Multiplying an element b := b63b62 · · · b0 ∈ F264 by the
primitive element α64 of F264 can be done very efficiently as follows:

b · α64 =

{
b� 1, if a63 = 0

(b� 1)⊕ 05911011, else,

where � r denotes left shift by r bits. Throughout this document, we use α to
denote α64. For, b ∈ F264 , we use 2 · b (or 2m · b) and 3 · b (or 3m · b) to denote
α · b (or αm · b) and (1 + α) · b (or (1 + α)m · b) respectively.

2.2 Recommended Parameter Choice

We propose a construction GIFT-COFB with the underlying block cipher as the
only parameter. The block cipher can be chosen by the following recommenda-
tion.
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1. n: Length of the block cipher state in bits. The recommended choice is
n = 128.

2. τ : Length of the tag in bits. The recommended choice is τ = 128.

3. EK : The recommended choice of EK is the block cipher GIFT-128.

2.3 Input and Output Data

To encrypt a message M with associated data A and nonce N , one needs to
provide the information given below.

The encryption algorithm takes as input

• An encryption key K ∈ {0, 1}128.

• A nonce N ∈ {0, 1}128. This can include the counter to make the nonce
non-repeating.

• Associated data and message A,M ∈ {0, 1}∗.

It generates the following output data:

• Ciphertext C ∈ {0, 1}|M |.

• Tag T ∈ {0, 1}128

To decrypt (with verification) a ciphertext-tag pair (C, T ) with associated
data A and nonce N , one needs to provide the information given below.

• An encryption key K ∈ {0, 1}128.

• A nonce N ∈ {0, 1}128.

• Associated data and ciphertext A,C ∈ {0, 1}∗.

• Tag T ∈ {0, 1}128

It generates the following output data:

• Message M ∈ {0, 1}|C| ∪{⊥}, where ⊥ is a special symbol denoting rejec-
tion.

2.4 Mathematical Components

2.4.1 Block cipher GIFT-128

GIFT-128 is an 128-bit Substitution-Permutation network (SPN) based block
cipher with a key length of 128-bit. It is a 40-round iterative block cipher with
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identical round function. There are two versions of GIFT, namely GIFT-64 and
GIFT-128. But since we are focusing only on GIFT-128 in this document, we use
GIFT and GIFT-128 interchangeably. For the rest of this document, we take the
full version of GIFT paper [3] as reference.

There are different ways to perceive GIFT-128, the more pictorial description
is detailed in Section 2 of [3], which looks like a larger version of PRESENT cipher
with 32 4-bit S-boxes and an 128-bit bit permutation (see Figure 2.1). In this
document, we will be using bitslice description which is similar to Appendix A
of [3].

Round function

Each round of GIFT consists of 3 steps: SubCells, PermBits, and AddRoundKey.

Initialization. The 128-bit plaintext is loaded into the cipher state S which will
be expressed as 4 32-bit segments. In the perspective of a 2-dimensional
array, the bit ordering is from top-down, then right to left.

S =


S0

S1

S2

S3

←

b124 · · · b8 b4 b0

b125 · · · b9 b5 b1

b126 · · · b10 b6 b2

b127 · · · b11 b7 b3

 .
The 128-bit secret key is loaded into the key state KS partitioned into 8
16-bit words. In the perspective of a 2-dimensional array, the bit ordering
is from right to left, then bottom-up.

KS =


W0 ‖ W1

W2 ‖ W3

W4 ‖ W5

W6 ‖ W7

←

b127 · · · b112 ‖ b111 · · · b98 b97 b96

b95 · · · b80 ‖ b79 · · · b66 b65 b64

b63 · · · b48 ‖ b47 · · · b34 b33 b32

b31 · · · b16 ‖ b15 · · · b2 b1 b0


Refer to Section 2.4.2 for details of the arriving data.

SubCells. Update the cipher state with the following instructions:

S1 ← S1 ⊕ (S0 & S2)

S0 ← S0 ⊕ (S1 & S3)

S2 ← S2 ⊕ (S0 | S1)

S3 ← S3 ⊕ S2

S1 ← S1 ⊕ S3

S3 ← ∼ S3

S2 ← S2 ⊕ (S0 & S1)

{S0, S1, S2, S3} ← {S3, S1, S2, S0},
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where &, | and ∼ are AND, OR and NOT operation respectively.

PermBits. Different 32-bit bit permutations are applied to each Si indepen-
dently.

Table 2.2: Specifications of GIFT-128 bit permutation.

Index 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

S0 29 25 21 17 13 9 5 1 30 26 22 18 14 10 6 2

S1 30 26 22 18 14 10 6 2 31 27 23 19 15 11 7 3

S2 31 27 23 19 15 11 7 3 28 24 20 16 12 8 4 0

S3 28 24 20 16 12 8 4 0 29 25 21 17 13 9 5 1

Index 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S0 31 27 23 19 15 11 7 3 28 24 20 16 12 8 4 0

S1 28 24 20 16 12 8 4 0 29 25 21 17 13 9 5 1

S2 29 25 21 17 13 9 5 1 30 26 22 18 14 10 6 2

S3 30 26 22 18 14 10 6 2 31 27 23 19 15 11 7 3

In Table 2.2, the row “Index” shows the indexing of the 32 bits in all Si’s
and the row “Si” shows the ending position of the bits. For example, bit
1 (the 2nd rightmost bit) of S1 is shifted 1 position to the right, to the
initial position of bit 0, while bit 0 is shifted 8 positions to the left.

AddRoundKey. This step consists of adding the round key and round constant.
Two 32-bit segments U, V are extracted from the key state as the round
key.

RK = U‖V.

For the addition of round key, U and V are XORed to S2 and S1 of the
cipher state respectively.

S2 ← S2 ⊕ U,
S1 ← S1 ⊕ V.

For the addition of round constant, S3 is updated as follows,

S3 ← S3 ⊕ 0x800000XY,

where the byte XY = 00c5c4c3c2c1c0.
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Key schedule and round constants

A round key is first extracted from the key state before the key state update.
Four 16-bit words of the key state are extracted as the round key RK = U‖V .

U ←W2‖W3, V ←W6‖W7.

The key state is then updated as follows,
W0 ‖ W1

W2 ‖ W3

W4 ‖ W5

W6 ‖ W7

←

W6 ≫ 2 ‖ W7 ≫ 12

W0 ‖ W1

W2 ‖ W3

W4 ‖ W5

 ,
where ≫ i is an i bits right rotation within a 16-bit word.

The round constants are generated using the a 6-bit affine LFSR, whose state
is denoted as c5c4c3c2c1c0. Its update function is defined as:

c5‖c4‖c3‖c2‖c1‖c0 ← c4‖c3‖c2‖c1‖c0‖c5 ⊕ c4 ⊕ 1.

The six bits are initialized to zero, and updated before being used in a given
round. The values of the constants for each round are given in the table below,
encoded to byte values for each round, with c0 being the least significant bit.

Rounds Constants

1 - 16 01,03,07,0F,1F,3E,3D,3B,37,2F,1E,3C,39,33,27,0E

17 - 32 1D,3A,35,2B,16,2C,18,30,21,02,05,0B,17,2E,1C,38

33 - 48 31,23,06,0D,1B,36,2D,1A,34,29,12,24,08,11,22,04

Decryption of GIFT-128

We omit the description of the inverse of GIFT-128 as it is not required for
GIFT-COFB.

2.4.2 Format of Incoming Data

As seen in the “Initialization” phase, the loading of the data (plaintext) bits is
column-wise. Typically, that would require additional instructions to rearrange
and pack the incoming data into the Si’s, and unpack them back to the initial
data format after the encryption. Such practice, however, is merely a matter
of perspective and does not affect the security. In fact, it costs additional clock
cycles in software implementation to pack them into the desired format. To save
on this unnecessary overhead, we regard the incoming data and key as having
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the desired format and load them into the states in the most natural manner.

S =


S0

S1

S2

S3

←

B0 ‖ B1 ‖ B2 ‖ B3

B4 ‖ B5 ‖ B6 ‖ B7

B8 ‖ B9 ‖ B10 ‖ B11

B12 ‖ B13 ‖ B14 ‖ B15

 ,

KS =


W0 ‖ W1

W2 ‖ W3

W4 ‖ W5

W6 ‖ W7

←

B0‖B1 ‖ B2‖B3

B4‖B5 ‖ B6‖B7

B8‖B9 ‖ B10‖B11

B12‖B13 ‖ B14‖B15

 ,
where Bi are the arriving bytes.

Relation to GIFT-128 LUT based implementation

An alternative implementation of GIFT is using look-up table (LUT) for the
SubCells operation. Such implementation prefers having the data in the con-
ventional format, i.e. B0B1 · · ·B15 = b127b126 · · · b1b0.

The conversion from an LUT implementation to our bitslice implementation
is simple: Note that we perceive the incoming data as bitslice format,

B0 ‖ B1 ‖ B2 ‖ B3

B4 ‖ B5 ‖ B6 ‖ B7

B8 ‖ B9 ‖ B10 ‖ B11

B12 ‖ B13 ‖ B14 ‖ B15



=


b124b120b116 · · · b96 ‖ b92 · · · b64 ‖ b60 · · · b32 ‖ b28 · · · b0
b125b121b117 · · · b97 ‖ b93 · · · b65 ‖ b61 · · · b33 ‖ b29 · · · b1
b126b122b118 · · · b98 ‖ b94 · · · b66 ‖ b62 · · · b34 ‖ b30 · · · b2
b127b123b119 · · · b99 ‖ b95 · · · b67 ‖ b63 · · · b35 ‖ b31 · · · b3

 .
First, unpack the data into the conventional format. Next, perform the LUT
implementation of GIFT. Finally, pack the output data back to the bitslice
format. No additional packing/unpacking is required for the key. This yields
the exact same bitslice implementation as we described in the Section 2.4.1.

Test Vectors

Key : 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

Plaintext : 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

Ciphertext : A9 4A F7 F9 BA 18 1D F9 B2 B0 0E B7 DB FA 93 DF

Key : E0 84 1F 8F B9 07 83 13 6A A8 B7 F1 92 F5 C4 74

Plaintext : E4 91 C6 65 52 20 31 CF 03 3B F7 1B 99 89 EC B3

Ciphertext : 33 31 EF C3 A6 60 4F 95 99 ED 42 B7 DB C0 2A 38
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2.5 COFB Authenticated Encryption Mode

In this section, we present our proposed mode, COFB in Fig. 2.3. We first
specify the basic building blocks and parameters used in our construction.

Key and Block cipher. The underlying cryptographic primitive is an n-bit
block cipher, EK . We assume that n is a multiple of 4. The key of the scheme
is the key of the block cipher, i.e. K.

Padding Function. For x ∈ {0, 1}∗, we define padding function Pad as

Pad(x) =

{
x if x 6= ε and |x| mod n = 0

x‖10(n−(|x| mod n)−1) otherwise.
(2.1)

Feedback Function. Let Y ∈ {0, 1}n and (Y [1], Y [2])
n/2←−− Y , where Y [i] ∈

{0, 1}n/2. We define G : B → B as

G(Y ) = (Y [2], Y [1] ≪ 1),

where for a string X, X ≪ r is the left rotation of X by r bits. We also view G
as the n× n non-singular matrix, so we write G(Y ) and G · Y interchangeably.
For M ∈ B and Y ∈ B, we define ρ1(Y,M) = G ·Y ⊕M . The feedback function
ρ and its corresponding ρ′ are defined as

ρ(Y,M) = (ρ1(Y,M), Y ⊕M),

ρ′(Y,C) = (ρ1(Y, Y ⊕C), Y ⊕C).

Note that when (X,M) = ρ′(Y,C) then X = (G ⊕ I) · Y⊕C, where I is the
n×n identity matrix. Our choice of G ensures that G⊕I has rank n−1. When
Y is chosen randomly for both computations of X (through ρ and ρ′), X also
behaves randomly. We need this property when we bound probability of bad
events later.

We present the specifications of COFB in Fig. 2.3, where α and (1 + α) are
written as 2 and 3. See also Fig. 2.2. The encryption and decryption algorithms
are denoted by COFB-EK and COFB-DK . We remark that the nonce length is
n bits, which is enough for the security up to the birthday bound. The nonce is
processed as EK(N) to yield the first internal chaining value. The encryption
algorithm takes A and M , and outputs C and T such that |C| = |M | and
|T | = n. The decryption algorithm takes (N,A,C, T ) and outputs M or ⊥.
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Figure 2.2: Encryption of COFB. In the rightmost figure, the case of encryption
for empty M (hence a MAC for (N,A)) can be highlighted as T = Truncτ (Y [a])
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Algorithm COFB-EK(N,A,M)

1. Y [0]← EK(N), L← Truncn/2(Y [0])

2. (A[1], . . . , A[a])
n←− Pad(A)

3. if M 6= ε then

4. (M [1], . . . ,M [m])
n←− Pad(M)

5. for i = 1 to a− 1

6. L← 2 · L
7. X[i]← A[i]⊕G · Y [i− 1]⊕ L‖0n/2

8. Y [i]← EK(X[i])

9. if |A| mod n = 0 and A 6= ε then L← 3 · L
10. else L← 32 · L
11. if M = ε then L← 32 · L
12. X[a]← A[a]⊕G · Y [a− 1]⊕ L‖0n/2

13. Y [a]← EK(X[a])

14. for i = 1 to m− 1

15. L← 2 · L
16. C[i]←M [i]⊕ Y [i+ a− 1]

17. X[i+ a]←M [i]⊕G · Y [i+ a− 1]⊕L‖0n/2

18. Y [i+ a]← EK(X[i+ a])

19. if M 6= ε then

20. if |M | mod n = 0 then L← 3 · L
21. else L← 32 · L
22. C[m]←M [m]⊕ Y [a+m− 1]

23. X[a+m]←M [m]⊕G·Y [a+m−1]⊕L‖0n/2

24. Y [a+m]← EK(X[a+m])

25. C ← Trunc|M |(C[1]|| . . . ||C[m])

26. T ← Truncτ (Y [a+m])

27. else C ← ε, T ← Truncτ (Y [a])

28. return (C, T )

Algorithm COFB-DK(N,A,C, T )

1. Y [0]← EK(N), L← Truncn/2(Y [0])

2. (A[1], . . . , A[a])
n←− Pad(A)

3. if C 6= ε then

4. (C[1], . . . , C[c])
n←− Pad(C)

5. for i = 1 to a− 1

6. L← 2 · L
7. X[i]← A[i]⊕G · Y [i− 1]⊕ L‖0n/2

8. Y [i]← EK(X[i])

9. if |A| mod n = 0 and A 6= ε then L← 3 · L
10. else L← 32 · L
11. if C = ε then L← 32 · L
12. X[a]← A[a]⊕G · Y [a− 1]⊕ L‖0n/2

13. Y [a]← EK(X[a])

14. for i = 1 to c− 1

15. L← 2 · L
16. M [i]← Y [i+ a− 1]⊕ C[i]

17. X[i+ a]←M [i]⊕G · Y [i+ a− 1]⊕ L‖0n/2

18. Y [i+ a]← EK(X[i+ a])

19. if C 6= ε then

20. if |C| mod n = 0 then

21. L← 3 · L
22. M [c]← Y [a+ c− 1]⊕ C[c]

23. else

24. L← 32 · L, c′ ← |C| mod n

25. M [c]← Truncc′(Y [a+c−1]⊕C[c])‖10n−c
′−1

26. X[a+ c]←M [c]⊕G · Y [a+ c− 1]⊕ L‖0n/2

27. Y [a+ c]← EK(X[a+ c])

28. M ← Trunc|C|(M [1]|| . . . ||M [c])

29. T ′ ← Truncτ (Y [a+ c])

30. else M ← ε, T ′ ← Truncτ (Y [a])

31. if T ′ = T then return M , else return ⊥

Figure 2.3: The encryption and decryption algorithms of COFB
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Chapter 3

Performance

3.1 Hardware Performance

The COFB mode was designed with rate 1, that is every message block is pro-
cessed only once. Such designs are not only beneficial for throughput, but also
energy consumption. However the design does need to maintain an additional 64
bit state, which requires a 64-bit register to additionally included in any hard-
ware circuit that implements it. Although this might not be energy efficient
for short messages, in the long run COFB performs excellently with respect to
energy consumption. The GIFT block cipher was designed with a motivation for
good performance on lightweight platforms. The roundkey additon for the ci-
pher is over only half the state and the keyschedule being only a bit permutation
does not require logic gates. These characteristics make the GIFT well suited
for lightweight applications. In fact as reported in [2], among the block ciphers
defined for 128-bit block size GIFT-128 has the lowest hardware footprint and
very low energy consumption. Thus GIFT-COFB combines the best of both the
advantages of the design ideologies.

Figure 3.1 details the hardware circuit for round based GIFT-COFB. The mode
is designed to require one additional 64-bit state apart from the ones used in the
block cipher circuit. Thus the design requires an additional 64-bit register. The
initial nonce (denoted by Nonce in the above figure) to the encryption routine,
and other control signals are generated centrally depending on the length of the
plaintext and associated data. Depending on the phase of operation the state
register may need to feed either the nonce, the output of the GIFT-128 round
function, which is the sum of the encryption output, associated data/plaintext
and the additional state Delta.

The state Delta is updated by multiplying with suitable filed elements of the
form γ = αx(1+α)y with x+y ≤ 4. Thus we allocate 4 clock cycles to compute
the potential Delta update signal. Depending on the value of γ, we update
the Delta register by either doubling, tripling or the identity operation. For
example if γ = α2, we execute doubling for 2 cycles and the identity operation
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Figure 3.1: Hardware circuit for round based GIFT-COFB
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GIFT- COFB (3927 GE)

Key Register (652 GE)
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Figure 3.2: Component-wise breakup of the GIFT-COFB circuit

for 2 more cycles. Thus in addition to the field operation, the circuit requires a
3:1 multiplexer controlled by a Sel signal generated centrally.

3.1.1 Timing

The GIFT-128 block cipher takes E = 40 cycles to complete one encryption
function. This is the number of clock cycles required in the encryption of the
nonce. Each block of associated data would take E cycles to process. Before
each block of associated data or plaintext is processed we spend Du = 4 cycles
to update the Delta. Thus if na, nm are the total number of associated data/
message blocks an encryption pass requires T = E + (na + nm)(E +Du) cycles
to compute.

3.1.2 Performance

We present the synthesis results for the design. The following design flow was
used: first the design was implemented in VHDL. Then, a functional verifi-
cation was first done using Mentor Graphics Modelsim software. The designs
were synthesized using the standard cell library of the 90nm logic process of
STM (CORE90GPHVT v2.1.a) with the Synopsys Design Compiler, with the
compiler being specifically instructed to optimize the circuit for area. A timing
simulation was done on the synthesized netlist. The switching activity of each
gate of the circuit was collected while running post-synthesis simulation. The
average power was obtained using Synopsys Power Compiler, using the back
annotated switching activity.

Our implementation of GIFT-COFB occupied 3927 GE. A component-wise
breakup of the circuit is given in Figure 3.2. The power consumed at an operat-
ing frequency is 156.3 µW. The energy consumption figures for various lengths
of data inputs are given in Table 3.1.
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Block Cipher Area (GE) Power(µW) Energy(nJ)

AD PT AD PT AD PT

0B 16B 16B 16B 16B 32B

GIFT-128 3927 156.3 1.31 2.00 2.69

Table 3.1: Implementation results for GIFT-COFB. (Power reported at 10 MHz)

3.1.3 Performance in FPGA

A comprehensive study of implementation of the GIFT cipher on various FPGA
platforms (of the Spartan 6 and Artix 7 families) was done in [8]. The authors
reported three possible architectures of GIFT: round-based, and two types of
serial architectures that operates using different widths of datapaths. The first
serial architecture (referred to as Serial-1) uses 8-bit input/output ports for
data loading/unloading and has a serialized application of the substitution layer
based on two 4-bit S-boxes. Thus the substitution layer of GIFT-128 would
take 128/8=16 cycles in Serial-1. The permutation layer and key addition is
performed in the 17th clock cycle much like the PRESENT architecture in [12],
resulting in an encryption latency of 16 + 40 ∗ 17 + 16 = 712 cycles.

The second serial architecture (referred to as Serial-2) uses 32-bit input/output
ports for data loading/unloading and has a serialized application of the substi-
tution layer based on eight 4-bit. S-boxes. Thus 4 clock cycles are required for
the substitution layer. This implementation takes advantage of the fact that the
GIFT-128 permutation function can be written as the composition of a colum-
nwise permutation and a transposition function. The strategy therefore is to
compute at the same time the columnwise S-box, key addition and permutation
functions in the 4 cycles allotted for the substitution function. The 5-th cycle
is used for the matrix transposition operation, resulting in a 5-cycle round and
a total latency of 4 + 5 ∗ 40 + 4 = 208 cycles.

In this submission we have tweaked slightly the format of the incoming data,
and thus the implementations reported in [8] needs to be tweaked slightly, only
for the Serial-1 and Serial-2 architectures. Namely we will need to spend one
extra cycle per round to permute the arrangement of bits of the incoming bitslice
format to the conventional format before applying round function operations.
This incurs only a 40 cycle penalty in the encryption latency.

3.1.4 Threshold Implementation

The algebraic degree of the GIFT S-box is 3 (same as PRESENT) and as such
constructing threshold circuits is slightly more difficult than for quadratic S-
boxes. However threshold implementations of the round-based GIFT-128 circuit
has been extensively studied in [6]. Since the S-box is cubic, the number of
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direct shares it must be decomposed to needs to be at least 4. However, the
authors in [6] report three philosophies.

The first decomposes the S-box as the composition F ◦ G of two quadratic
S-boxes F, G, and implements each decomposed S-box using 3 shares with a
register separating the two shared implementations, as in [10]. The shares of
both G,F being algebraically similar to each other, and differing only in the
order of input bits, the authors further apply an optimization due to [7], that
reduces the area of the circuit by implementing the shares over 3 cycles, using
a multiplexer to permute the order of bits each time.

The second is a direct sharing approach using 4 shares, and a third approach
proposed by them uses only 3 shares for strictly resource-constrained platforms.
In total the authors propose 9 different threshold circuits for GIFT-128, depend-
ing on whether the key is shared or not, and the type of circuit optimization
used. The circuits were synthesized using the TSMC low power 65 nm standard
cell library. The smallest implementation uses 3 shares and 256 random bits and
occupies around 13349 GE and is around 5.38 times the size of the unprotected
circuit. The largest implementation uses 4 direct shares for both the key and
datapath and occupies around 94 kGE. For more results, we refer the reader to
[6].
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Chapter 4

Security of GIFT-COFB

Our security claims are summarized in Table 4.1.

Construction State Size(bits) IND-CPA(bits) INT-CTXT(bits)

GIFT-COFB 192 (excluding the key state) 64 58

Table 4.1: IND-CPA and INT-CTXT security of GIFT-COFB under the nonce
respecting scenario

4.1 IND-CPA Security of GIFT-COFB

To attack against the privacy of GIFT-COFB, we assume that an adversary
runs in time t and makes at most qe encryption queries (Ni, Ai,Mi)i=1...qe to
GIFT-COFB with an aggregate of total σe many blocks. In return the adversary
receives (Ci, Ti)i=1...qe . In this interaction, the adversary tries to distinguish the
construction from a random function with the same domain and range.

If we use a hybrid argument, then we first make a transition by using an n-bit
(uniform) random permutation P instead of the underlying block cipher GIFTK ,
and then to use an n-bit (uniform) random function R instead of P. This two-step
transition requires the first two terms of our bound, from the standard PRP-
PRF switching lemma and from the computation to the information security
reduction (e.g., see [18]). Then what we need is a bound for COFB using R,
denoted by COFB[R].

The adversary can distinguish COFB[R] construction from a random function
with the same domain and range if it finds a state collision among the internal
states (block cipher inputs) of two encryption queries. It is easy to see that the

probability of a collision is bounded by
(σe2 )
2128 . This holds as for any two of the σe

block cipher inputs (corresponding to σe input data blocks) are equal with the
probability 2−128 (from the randomness of the previous block cipher outputs).
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Hence, the privacy or IND-CPA advantage of GIFT-COFB can be bounded by

Advprp
GIFT(qe, t) +

(qe2 )
2128 +

(σe2 )
2128 .

4.2 IND-CTXT Security of GIFT-COFB

On the other hand, to attack against the integrity of GIFT-COFB, assume that an
adversary makes at most qe encryption queries (Ni, Ai,Mi)i=1...qe to COFB−EK
with an aggregate of total σe many blocks. In return the adversary receives
(Ci, Ti)i=1...qe . The adversary also tries to forge with qf decryption queries
(N∗j , A

∗
j , C

∗
j , T

∗
j )j=1...qf with a total number of σf blocks to COFB − DK and

receives M∗j or ⊥. Let q = qe + qf + σe + σf . The trivial solution for forging

is to guess the tag which can be bounded by
qf
2128 (One of the qf forged tags is

valid).
A bad case B1 occurs if an adversary can obtain an intermediate block cipher

input state collision between an encryption query and a decryption query or
between two decryption queries. The probability of this event is bounded by
(qe+σe+2σf )σf

2128 +
64qf
264 (Actually the last term is

0.5nqf
264 and here n = 128).

To bound the probability of B1, we assume the following bad events do not
hold. The bad events are as follows.

• B2: Multicollision of size more than n/2 (with n = 128) on the right half
of the intermediate block cipher inputs for the encryption queries do not
occur. This event is bounded by a negligible probability 2σe

264 .

• B3: Let Xi[j] be the jth block cipher input in the ith encryption query
and X∗i [j] be the jth block cipher input in the ith decryption query. For
each of the decryption queries, after the prefix pi (defined in footnote1),
we define the following event B3 as

X∗i [pi + 1] = Nj and X∗i [pi + 2] = Xi′ [j
′], for some i, j, i′, j′.

This event is bounded by a negligible probability
qf
264 +

qf (qe−1)
2128 .

The part
(qe+σe+2σf )σf

2128 in B1 occurs for block cipher input state collision be-
tween an encryption and an decryption query or between two decryption queries.
Here, the number of such bad pairs is bounded by (qe + σe + 2σf )σf .

The part
64qf
264 in B1 occurs for block cipher input state collision between an

encryption query and a decryption query. The probability bound comes from
the fact that for the ith decryption query, the (pi + 1)st block cipher input is
fresh with high probability due to fact that B2, B3 do not hold. The (pi + 1)st

1A prefix for a decryption query is defined as the common prefix blocks between the
decryption query input string and an encryption query output string. The length of the
common prefix for the ith decryption query is denoted as pi. Note that, if the decryption
query uses a fresh nonce, then the decryption query input string does not share any common
prefix with any of the encryption query output strings and we set pi = −1.
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block cipher input is not fresh with probability bounded by 64
264 . It comes from

the fact that no multi-collision of size more than 64 occurs.
Forging event should imply one of the bad events. Hence the INT-CTXT

advantage of GIFT-COFB is bounded by

qf
2128

+
2σe
264

+
qf
264

+
qf (qe − 1)

2128
+

(qe + σe + 2σf )σf
2128

+
64qf
264

=
3σe + qf

264
+

(qe + σe + 2σf )σf + qf + (qe − 1)qf
2128

+
64qf
264

.

4.3 Security Analysis of GIFT (Extract)

The security analysis of GIFT-128 is provided in Section 4 of [3]. Here we
highlight several important features.

Differential cryptanalysis. Zhu et al. applied the mixed-integer-linear-programming
based differential characteristic search method for GIFT-128 and found
an 18-round differential characteristic with probability 2−109 [14], which
was further extended to a 23-round key recovery attack with complex-
ity (Data, T ime,Memory) = (2120, 2120, 280). We expect that full (40)
rounds are secure against differential cryptanalysis.

Linear cryptanalysis. GIFT-128 has a 9-round linear hull effect of 2−45.99, which
means that we would need around 27 rounds to achieve correlation poten-
tially lower than 2−128. Therefore, we expect that 40-round GIFT-128 is
enough to resist against linear cryptanalysis.

Integral attacks. The lightweight 4-bit S-box in GIFT may allow efficient inte-
gral attacks. The bit-based division property is evaluated against GIFT-
128 by the designers, which detected a 11-round integral distinguisher.

Meet-in-the-middle attacks. Meet-in-the-middle attack exploits the property
that a part of key does not appear during a certain number of rounds.
The designers and the follow-up work by Sasaki [13] showed the attack
against 15-rounds of GIFT-64 and mentioned the difficulty of applying it
to GIFT-128 because of the larger ratio of the number of subkey bits to
the entire key bits per round; each round uses 32 bits and 64 bits of keys
per round in GIFT-64 and GIFT-128, respectively, while the entire key size
is 128 bits for both.
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Chapter 5

Design Rationale

5.1 AEAD Scheme: GIFT-COFB

COFB is a block cipher based authenticated encryption mode that uses GIFT-
128 as the underlying block cipher and GIFT-COFB can be viewed as an efficient
integration of the COFB and GIFT-128. GIFT-128 maintains an 128-bit state and
128-bit key. To be precise, GIFT is a family of block ciphers parametrized by
the state size and the key size and all the members of this family are lightweight
and can be efficiently deployed on lightweight applications. COFB mode on the
other hand, computes of ”COmbined FeedBack” (of block cipher output and
data block) to uplift the security level. This actually helps us to design a mode
with low state size and eventually to have a low state implementation. This
technique actually resist the attacker to control the input block and next block
cipher input simultaneously. Overall, a combination of GIFT and COFB can be
considered to be one of the most efficient lightweight, low state block cipher
based AEAD construction.

5.2 Block Cipher Primitive: GIFT-128

GIFT is considered to be one of the lightest design existing in the literature. It
is denoted as ”Small PRESENT” as the design rationale of GIFT follows that of
PRESENT [4]. However, GIFT has got rid of several well known weaknesses ex-
isting in PRESENT with regards to linear cryptanalysis. Overall GIFT promises
much increased efficiency (both lighter and faster) over PRESENT. GIFT is a
very simple design that outperforms even SIMON and SKINNY for round based
implementations. It consists of very simple operations such that the total hard-
ware footprint is almost consumed by the underlying and the cipher storage.
The design is somewhat ”optimal” as a weaker S-box (than GIFT S-box) would
lead to a weaker design. The linear layer is completely free for a round-based
implementation in hardware (consisting of simply bit-wiring) and the constants
are generated thanks to a very lightweight LFSR. The key schedule is also very
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light, simply consisting of shifts. The presented security analysis details and
hardware implementation results also support the claims made by the design-
ers.

Although there is almost no impact on hardware implementation, there are
several motivations for using bitslice implementation (non-LUT based) instead
of LUT based implementation of GIFT-128 when we consider software imple-
mentation. Here, we will state the 3 most obvious benefits relating to its 3 steps
in a round function.

Firstly for the non-linear layer, for LUT based implementation, we can con-
sider updating 2 GIFT S-boxes (1 byte) in a single memory call with a reasonable
256 entries LUT. This would require 16 lookups and it takes approximately 16
to 64 cycles to do all S-boxes in a round, assuming a few cycles to access the
RAM. Using bitslice implementation, it requires just 11 basic operations (or
10 with XNOR operation) to compute all the S-boxes in parallel. And more
importantly, using bitslice implementation has the nice feature that it doesn’t
need any RAM and that it is constant time, mitigating potential timing attacks.

Secondly for the linear layer, while it is basically free on hardware, for software
implementation it is extremely slow and complex to implement. This effect can
be reduced by doing several blocks in parallel using none other than bitslice
implementation. Even for a single block encryption, bitslice implementation is
still more efficient that LUT based implementation because of the way the bits
are packed.

Third and lastly the key addition, for LUT based implementation, the subkeys
need to be XORed to bit positions that are 3 bits apart, making the key addition
tedious and non-trivial. An option is to precompute the subkeys, but even so the
key addition would require several XOR operations to update the 128-bit state.
Using bitslice, the bits that were once 3 bits apart are now packed together in
32-bit words, making the key addition as simple as just 2 XOR operations.

5.3 Authenticated Encryption Mode: COFB

COFB is a lightweight AEAD mode. The mode presented in this write up differs
slightly with the original proposal. They are as follows.

• We change the nonce to be 128 bit.

• We change the feedback (more precisely the G matrix) to make it more
hardware efficient.

• We now deal with empty data. We change the mask update function for
the purpose.

• We change the padding for the associated data. To be precise, if the
associated data is empty, then padding the associated data will yield the
constant block 10n−1 (n: block cipher state size).
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We observed that, the updates make the design more lightweight and more
efficient to deal with short data inputs. However, this updates does not have
impact on the security of the mode (only a nominal 1-bit security degradation).
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