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Chapter 1

Introduction

In this document, we propose PHOTON-Beetle, an authenticated encryption and hash family, that uses a
sponge-based mode Beetle with the P256 (used for the PHOTON hash [6]) being the underlying permutation.
We denote this permutation by PHOTON256. Based on the functionalities, PHOTON-Beetle can be classified into
two categories: a family of authenticated encryptions, dubbed as PHOTON-Beetle-AEAD and a family of hash
functions, dubbed as PHOTON-Beetle-Hash. Both these families are parameterized by r, the rate of message
absorption.

1.1 Notations

Here we introduce all the required notations. By {0, 1}∗ we denote the set of all strings, and by {0, 1}n the
set of strings of length n. |A| denotes the number of the bits in the string A. We use the notation ⊕ and
� to refer the binary addition and matrix multiplication respectively. For A,B ∈ {0, 1}∗, A‖B to denotes

the concatenation of A and B. We use the notation V1‖ · · · ‖Vv
(a1,...,av)←−−−−−− V to denote parsing of the string

V into v vectors of size a1, . . . , av respectively. When a1 = · · · = av−1 = a and av ≤ a, we simply use

V1‖ · · · ‖Vv a←− V . B ≫ k denotes k bit right-rotation of the bit string B. The expression E? a : b evaluates
to a if E holds and b otherwise. Similarly, (E1 and E2)? a : b : c : d evaluates to a if both E1 and E2 holds, b if
only E1 holds, c if only E2 holds and d otherwise. Trunc(V, i) is a function that returns the most significant i
bits of the V and Ozs is the function that applies 10? padding on r bits, i.e. Ozsr(V ) = V ‖1‖0r−|V |−1 when
|V | < r. For any two integers m and n, we use m| n to denote that m divides n. and For any matrix X,
we use the notation X[i, j] to denote the element at i-th row and j-th column of X. We represent a serial
matrix Serial[a0, a1, a2, a3, a4, a5, a6, a7] by

Serial[a0, a1, a2, a3, a4, a5, a6, a7] :=



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

a0 a1 a2 a3 a4 a5 a6 a7


.

1.2 Organization

Here we provide a brief organization of this write-up. We revisit and provide a brief description of PHOTON256
that we will use in our mode as the underlying permutation in Chapter 2. We provide the complete formal
specification of PHOTON-Beetle family of authenticated encryption and hash family and the recommended
versions in Chapter 3. In Chapter 4, we provide the security claims of our proposals with proper justification.
Finally, we detail our design decisions in Chapter 5.
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Chapter 2

PHOTON256 Permutation

We use PHOTON256 [6] as the underlying 256-bit permutation in our mode. It is applied on a state of 64
elements of 4 bits each, which is represented as a (8 × 8) matrix X. PHOTON256 is composed of 12 rounds,
each containing four layers AddConstant, SubCells, ShiftRows and MixColumnSerial. Informally, AddConstant
adds fixed constants to the cells of the internal state. SubCells applies an 4-bit S-Box (see Table. 2.1) to
each of the 64 4-bit cells. ShiftRows rotates the position of the cells in each of the rows and MixColumnSerial
linearly mixes all the columns independently using a serial matrix multiplication. The multiplication with
the coefficients in the matrix is in GF (24) with x4 + x+ 1 being the irreducible polynomial.

Table 2.1: The PHOTON S-box

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S-box C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Formal description of all these operations are given in Fig. 2.1.

PHOTON256(X)

1 : for i = 0 to 11 :

2 : X ← AddConstant(X, i);

3 : X ← SubCells(X);

4 : X ← ShiftRows(X);

5 : X ← MixColumnSerial(X);

return X;

AddConstant(X, k)

1 : RC[12]← {1, 3, 7, 14, 13, 11, 6, 12, 9, 2, 5, 10};
2 : IC[8]← {0, 1, 3, 7, 15, 14, 12, 8};
3 : for i = 0 to 7 :

4 : X[i, 0]← X[i, 0]⊕RC[k]⊕ IC[i];

return X;

SubCells(X)

1 : for i = 0 to 7, j = 0 to 7 :

2 : X[i, j]← S-Box(X[i, j]);

return X;

ShiftRows(X)

1 : for i = 0 to 7, j = 0 to 7 :

2 : X ′[i, j]← X[i, (j + i)%8]);

return X ′;

MixColumnSerial(X)

1 : M ← Serial[2, 4, 2, 11, 2, 8, 5, 6];

2 : X ←M8 �X;

return X;

Figure 2.1: PHOTON256 Permutation.
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Chapter 3

Specification of PHOTON-Beetle Family

In this chapter, we provide a formal specification of PHOTON-Beetle that includes a family of authenticated
encryption PHOTON-Beetle-AEAD and a family of hash functions PHOTON-Beetle-Hash. Before going into the
details, we first introduce a mathematical component that we will use.

3.1 Mathematical Component ρ and ρ−1

ρ is a linear function that receives as input a state S ∈ {0, 1}r and an input data U ∈ {0, 1}≤r. It produces
an output data V ∈ {0, 1}|U | using the simple xor operation of the shuffled state and the input data (padded
with zeros to an r bit block), and then updates the state S by xoring it with the input data. By shuffled
state, we mean shuffling of the state bits in some order such that both S → Shuffle(S) and S → Shuffle(S)⊕S
are linear functions with rank r and r− 1 respectively. ρ−1 is the inverse function of ρ, which takes the state
S and the output data V to reproduce the input data U and update the state. Formal description of ρ and
ρ−1 can be found in Fig. 2.1.

ρ(S,U)

1 : V ← Trunc(Shuffle(S), |U |)⊕ U ;

2 : S ← S ⊕ Ozsr(U);

return (S, V );

ρ−1(S, V )

1 : U ← Trunc(Shuffle(S), |V |)⊕ V ;

2 : S ← S ⊕ Ozsr(U);

return (S,U);

Shuffle(S)

1 : S1‖S2
r/2←−− S;

return S2‖(S1 ≫ 1);

Figure 3.1: Mathematical Component: ρ and ρ−1.

3.2 PHOTON-Beetle-AEAD Authenticated Encryption

PHOTON-Beetle-AEAD.ENC[r] authenticated encryption takes an encryption key K ∈ {0, 1}128, a nonce N ∈
{0, 1}128, an associated data A ∈ {0, 1}∗ and a message M ∈ {0, 1}∗ as inputs and returns a ciphertext
C ∈ {0, 1}|M | and a tag T ∈ {0, 1}128. Corresponding decryption algorithm PHOTON-Beetle-AEAD.DEC[r]
takes a key K ∈ {0, 1}128, a nonce N ∈ {0, 1}128, an associated data A ∈ {0, 1}∗, a ciphertext C ∈ {0, 1}∗
and a tag T ∈ {0, 1}128 as inputs and returns the plaintext M ∈ {0, 1}|C| corresponding to C if the tag T is
verified. The parameter r signifies the rate of message absorption.

In PHOTON-Beetle-AEAD.ENC[r], first an initial state is generated by simple concatenation of the nonce N
and the key K. Next we process the associated data A identically to the original sponge mode i.e. at each
step the state is updated using PHOTON256 and the first r bits (i.e. the rate part) of the permutation output is
xored with the next associated data block to define the rate part of the next input for the next permutation
call.

After A is processed, we process M in a similar way. To generate the ciphertext block, we shuffle the rate
part of the permutation output and then xor it with the corresponding message block. This step differentiates
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Figure 3.2: PHOTON-Beetle-AEAD.ENC with a AD blocks and m message blocks.
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Figure 3.3: PHOTON-Beetle-AEAD.ENC with empty AD and m message blocks.
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Figure 3.4: PHOTON-Beetle-AEAD.ENC Construction with a AD blocks and empty message.
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Figure 3.5: PHOTON-Beetle-AEAD.ENC Construction with empty AD and empty message.

our mode from the Sponge Duplex where the rate part of the next input to the permutation itself is released
as the ciphertext block. This state update and the ciphertext generation during the message processing
is captured by the function ρ. During decryption, the state update and the message block computation
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PHOTON-Beetle-AEAD.ENC[r](K,N,A,M)

1 : IV← N‖K; C ← λ;

2 : if A = λ,M = λ :

3 : T ← TAG128(IV⊕ 1); return (λ, T );

4 : c0 ← (M 6= λ and r| |A|)? 1 : 2 : 3 : 4

5 : c1 ← (A 6= λ and r| |M |)? 1 : 2 : 5 : 6

6 : if A 6= λ :

7 : IV← HASHr(IV, A, c0);

8 : if M 6= λ :

9 : M1‖ · · · ‖Mm
r←−M ;

10 : for i = 1 to m :

11 : Y ‖Z (r,256−r)←−−−−−−− PHOTON256(IV);

12 : (W,Ci)← ρ(Y,Mi);

13 : IV←W‖Z;
14 : IV← IV⊕ c1;
15 : C ← C1‖ · · · ‖Cm;

16 : T ← TAG128(IV);

return (C, T );

PHOTON-Beetle-Hash[r](M)

1 : if M = λ :

2 : IV← 0‖0;
3 : T ← TAG256(IV⊕ 1); return T ;

4 : if |M | ≤ 128 :

5 : c0 ← (|M | < 128)? 1 : 2

6 : IV← Ozs128(M)‖0;
7 : T ← TAG256(IV⊕ c0); return T ;

8 : M1‖M ′
(128,|M|−128)←−−−−−−−−−M ;

9 : c0 ← (r| |M ′|)? 1 : 2

10 : IV←M1‖0
11 : IV← HASHr(IV,M

′, c0);

12 : T ← TAG256(IV);

return T ;

PHOTON-Beetle-AEAD.DEC[r](K,N,A,C, T )

1 : IV← N‖K; M ← λ;

2 : if A = λ,C = λ :

3 : T ? ← TAG128(IV⊕ 1);

4 : return (T = T ?)? λ : ⊥;
5 : c0 ← (C 6= λ and r| |A|)? 1 : 2 : 3 : 4

6 : c1 ← (A 6= λ and r| |C|)? 1 : 2 : 5 : 6

7 : if A 6= λ :

8 : IV← HASHr(IV, A, c0);

9 : if C 6= λ :

10 : C1‖ · · · ‖Cm
r←− C;

11 : for i = 1 to m :

12 : Y ‖Z (r,256−r)←−−−−−−− PHOTON256(IV);

13 : (W,Mi)← ρ−1(Y,Ci);

14 : IV←W‖Z;
15 : IV← IV⊕ c1;
16 : M ←M1‖ · · · ‖Mm;

17 : T ? ← TAG128(IV);

return (T = T ?)? M : ⊥;

HASHr(IV, D, c0)

1 : D1‖ · · · ‖Dd
r←− Ozsr(D);

2 : for i = 1 to d :

3 : Y ‖Z (r,256−r)←−−−−−−− PHOTON256(IV);

4 : W ← Y ⊕Di;
5 : IV←W‖Z;
6 : IV← IV⊕ c0;
return IV;

TAGτ (T0)

1 : for i = 1 to dτ/128e :
2 : Ti ← PHOTON256(Ti−1);

3 : T ← Trunc(T1, 128) ‖ · · · ‖ Trunc(Tτ/128, 128);

return T ;

Figure 3.6: Formal Specification of PHOTON-Beetle-AEAD [r] := (PHOTON-Beetle-AEAD.ENC [r], PHOTON-Beetle-
AEAD.DEC [r]) authenticated encryption and PHOTON-Beetle-Hash[r] hash mode.

using the ciphertext blocks is captured by ρ−1. 3-bit constants are added in the capacity part after the
associated data and message processing for domain separation. A proper usage of these constants ensure
that the algorithm allows empty associated data and/or empty message processing without any additional
permutation calls. Formal specification PHOTON-Beetle-AEAD.ENC is given in Fig. 3.6. Corresponding figures
can be found in Fig. 3.2− 3.5. In the figure f denotes the permutation PHOTON256.
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3.3 PHOTON-Beetle-Hash Hash function

PHOTON-Beetle-Hash takes a message M ∈ {0, 1}∗ and generates a tag T ∈ {0, 1}256. We first parse the
message into 128-bit block (the first block) followed by r-bit blocks. In this algorithm, the output of each
permutation is xored with the next r-bit message block concatenated with zeros to compute the input to the
next permutation call. We initialize the state by the first 128 bit block of the message concatenated with
the required number of zeros and this initial state is the input to the first permutation call. When the final
message block is processed, we xor a small constant in the capacity part depending on whether the final
block is full or partial. This is done for domain separation. The 256-bit tag is squeezed into 2 parts of 128
bits each. The description of PHOTON-Beetle-Hash is given in Fig. 3.6.

M1

0

f f f f f

⊕

M2

· · ·
⊕

⊕

Mm

1/2

T ?
1 T ?

2

T1 T2

Figure 3.7: PHOTON-Beetle-Hash with m message blocks. Here |M1| = 128, |Mi| = r, for i = 2, . . . ,m− 1 and
|Mm| ≤ r. The tag T is computed as T ?1 ‖T ?2 , where T ?i = Trunc(Ti, 128).

3.4 Recommended Versions

3.4.1 Authenticated Encryption Family

Our recommended versions for authenticated encryption with associated data are:

1. PHOTON-Beetle-AEAD[128]. This is our primary AEAD member. This design aims to be implemented
with low hardware footprint yet with high throughput. Here we keep the rate of absorption of this
cipher to be r = 128.

2. PHOTON-Beetle-AEAD[32]. This is another AEAD member that aims to be implemented with extremely
low hardware footprint without giving much importance to the throughput. Hence, we keep the rate
of absorption of this cipher to only r = 32.

3.4.2 Hash Function Family

Our recommended version for hash function is:

1. PHOTON-Beetle-Hash[32]. This is our only recommended Hash. The hash function absorbs the first 128
bits of plaintext as the initial vector and successive rate of absorption is kept to r = 32 bits. This
design also aims to be implemented with extremely low hardware footprint and it is in particular has
excellent throughput and energy efficiency for smaller messages. Note that, for any plaintext of size
less than or equal to 128 bits, the hash function requires only 1 primitive call to process the message
along with the two additional calls require to generate the hash value.

3.4.3 Combined AEAD and Hash Function Family

Based on our recommendations, we pair the following that provide both AEAD and hashing functionality.

1. PHOTON-Beetle-AEAD[32] + PHOTON-Beetle-Hash[32]. Both these AEAD and Hash operate on a 256-bit
state, follow the sponge mode and use PHOTON256 as the underlying permutation with the same rate of
data absorption (i.e. r = 32). The associated data process phase in PHOTON-Beetle-AEAD[32] is exactly
the same as the message process phase of PHOTON-Beetle-Hash[32]. PHOTON-Beetle-Hash[32] with input
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X := X1‖X ′, where X1 ∈ {0, 1}128, functions exactly in the similar way as PHOTON-Beetle-AEAD[32]
with N = X1, K = 0128, A = X ′ and M = λ except the fact that PHOTON-Beetle-Hash[32] makes an ad-
ditional call to PHOTON to generate 256 bit tag (in contrast with 128 bit tags in PHOTON-Beetle-AEAD[32]).
Hence, in a combined PHOTON-Beetle-AEAD[32], PHOTON-Beetle-Hash[32] implementation, the implemen-
tation of PHOTON-Beetle-Hash[32] comes at a free of cost.

2. PHOTON-Beetle-AEAD[128] + PHOTON-Beetle-Hash[32]. In this version, the state size, mode and the un-
derlying permutation remain same. However, the rate of absorption is different for the AEAD and the
hash. From the functional point of view, the main design components remain same.
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Chapter 4

Security

The security claims for PHOTON-Beetle-AEAD and PHOTON-Beetle-Hash is given in Table 4.1 and 4.2 respectively.
To achieve these bounds, we assume all the nonces used in the encryption are distinct.

Table 4.1: Security of Authenticated Encryption Family.

Mode Security Data complexity Time complexity
Model security (in bits) security (in bits)

PHOTON-Beetle-AEAD[128] IND-CPA 128 128
PHOTON-Beetle-AEAD[128] INT-CTXT 121 121
PHOTON-Beetle-AEAD[32] IND-CPA 128 128
PHOTON-Beetle-AEAD[32] INT-CTXT 128 121

Table 4.2: Security of Hash Function Family.

Mode Security Time complexity security (in bits)
PHOTON-Beetle-Hash[32] Collision 112
PHOTON-Beetle-Hash[32] Pre-image 128

4.1 IND-CPA Security of PHOTON-Beetle-AEAD[r]

To attack against the privacy of PHOTON-Beetle-AEAD, we assume that an adversary makes at most q encryp-
tion queries (also known as on-line queries) (Ni, Ai,Mi)i=1..q to PHOTON-Beetle-AEAD[r] with an aggregate of
total σ many blocks and qp many off-line or direct permutation queries (Qi)i=1..qp to PHOTON256 or PHOTON−1256.
The adversary can distinguish the construction from a random function with the same domain and range if
it finds a state collision (i) among the internal states of two on-line queries or (ii) among one online query
internal state and an offline query output. As the adversary uses distinct nonces for each encryption, this is a
possible way to mount a distinguishing attack. It is easy to see that the probability of a collision for case (i)

can be bounded by σ2

2256 . For case (ii), there are two sub-cases: (a) the initial state of an on-line query collides
with the input of an offline query and (b) an intermediate state for an on-lne query collides with the output
of an off-line query. The first sub-case can occur with the probability at most σ

2256−r as having such a collision
implies guessing the key. As different nonces are used for the on-line queries, an adversary can not control
the rate part of any intermediate states of the on-line queries one can bound the probability of a collision
between the internal state of one encryption query and input (or output) of an off-line query to

qpσ
2256 . Hence,

the privacy or IND-CPA advantage of PHOTON-Beetle-AEAD [r] can be bounded by O( σ2

2256 +
qp

2256−r +
q.qp
2256 ).

4.2 INT-CTXT Security of PHOTON-Beetle-AEAD[r]

On the other hand, to attack against the integrity of PHOTON-Beetle-AEAD, assume that an adversary makes
at most q encryption queries (also known as on-line queries) (Ni, Ai,Mi)i=1..q to PHOTON-Beetle-AEAD[r] with
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an aggregate of total σ many blocks and qp many off-line queries (Qi)i=1..qf to PHOTON256 or PHOTON−1256 and
attempt to forge with (N ′i , A

′
i, C
′
i, T
′
i )i..q′ with an aggregate of σ′ blocks. The trivial solution for forging is

to guess the key or the tag which can be bounded by q+q′

2128 . Also, if an adversary can obtain a state collision
among the input/output of a permutation query with the state of an encryption query or decryption query,
it can use the fact to mount an forgery attack. The probability of having such a collision can be bounded by

(
qp(q+q

′)
2256 +

rqp
2128 ). Another possible (non-trivial) direction for the adversary is to construct an off-line query

chain (X1, C2, . . . , Ck, T ) such that ∃Z1, . . . , Zk and c ∈ {1, . . . , 6} with

f(X1‖Z1) = Y1‖Z2, Shuffle(Y1)⊕ C2 = X2,

f(X2‖Z2) = Y2‖Z3, Shuffle(Y2)⊕ C3 = X3,

...

f(Xk−1‖Zk−1) = Yk−1‖Zk, Shuffle(Yk−1)⊕ Ck = Xk,

f(Xk‖(Zk ⊕ c)) = T‖?

and use this chain for forging. Here we claim that, if no r-multicollision occurs in the upper 128-bit outputs
of the off-line queries, then the number of Z1 for which this offline chain occurs can be at most (` + 1).r

and the probability of forging in this case can be bounded by rσ′

2c . This is due to the properties of the
ρ function. Now, one can easily bound the probability of r-multicollision in the upper 128-bit outputs by

(qp
r )

2128.(r−1) . Combining everything together, we claim that the INT-CTXT advantage of PHOTON-Beetle-AEAD

[r] can be bounded by O(
qp(q+q

′)
2256 +

rqp
2128 +

qrp
2128.(r−1) + rσ′

2256−r ). Details of the security claim can be found in
[3].

4.3 Collision Security of PHOTON-Beetle-Hash[r]

To mount a collision attack on PHOTON-Beetle-Hash [r], suppose an adversary can make q many permutation
calls. Suppose all the states reachable from the initial state (we define the initial state as 0256) using the
permutation calls are called reachable states. The adversary can set up the queries in an adaptive way to
make all the query inputs (and hence query outputs) reachable states. Now, if there is a collision in the
capacity part of the output of two permutation calls, it can adjust the message in the rate part to force a
state collision, which in turn can be used to make a collision in the hash. The probability of this event can

be bounded by q2

2256−r .

4.4 Preimage Security of PHOTON-Beetle-Hash[r]

In PHOTON-Beetle-Hash[r] we set the tag size as 256 bits and the tag squeeze rate as 128 bits. Now, to find a
pre-image of a hash value say T1‖T2, an adversary needs to find a Z such that PHOTON256(T1‖Z1) = T2‖? or
PHOTON−1256(T2‖Z) = T1. It is easy to see that the probability of this event can be bounded by q

2128 .

4.5 Security of PHOTON256 and Existing Analysis

The basic security analysis for PHOTON256 has been provided explicitly in the original paper [6]. It has been
there for several years now (ISO standard as well) and still remains with a comfortable security margin.
Here we briefly discuss all the existing analysis on PHOTON256. In [6], the authors mentioned a rebound-like
attack that allows one to distinguish 8 rounds of PHOTON256 from an ideal permutation of the same size
with time complexity 216 and memory complexity of 28. Later, [8] extended the previous result to further
decrease the time complexity from 216 to 210.8. In [7] Jean et al. presented a distinguisher for 9 round
PHOTON256 with time complexity of 2184 and memory complexity of 232. In 2017, [5] presented a statistical
Integral distinguisher that mounts an attack on 10 round PHOTON256 with time complexity of 296.59 and data
complexity of 270.46. Recently, Wang et al. [9] presented the first full round distinguishers on PHOTON256
based on zero-sum partitions of size 2184. We believe these distinguishers have no impact on the security
of PHOTON-Beetle as these attacks are much more costlier than the security target we are aiming, and these
attacks are basically unusable in the mode.
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Chapter 5

Design Rationale

5.1 Choice of Beetle

Sponge is a well-known mode of operations typically used for light-weight applications. The main novelty
behind Beetle sponge mode (the generic mode) is the combined feedback of the permutation output and the
ciphertext block to generate the next permutation input. Recall that, in the simple Duplex Sponge [2], the
ciphertext block itself is used as the rate part of the next permutation input. This technique actually resists
the attacker to control the input block and the next blockcipher input simultaneously. This in turn uplifts the
security level and helps us to reduce the state size and eventually come up with a low state implementation.
In fact, this security upgrade ensures that we meet the security requirements of NIST even with a state size
of 256 bits only.

5.2 Choice of ρ

Recall the definition of ρ(S,U) := (S ← S ⊕ U, Y ← Shuffle(S) ⊕ U). We need the ρ function such that,
S → Shuffle(S) should have full rank. Moreover, the rank of S → Shuffle(S)⊕ S must be almost full. The ρ
function ensures rank r and (r − 1) for the above two cases respectively. It is easy to see that our choice of
Shuffle function only requires 1-bit right rotation of a string of r/2 bits, which is even cheaper than an xor
operation of r/2 bits (as was used in the original Beetle). Moreover, the choice of ρ ensures uniform state
update for associated data and message and identical to the state update of the duplex sponge.

5.3 Choice of PHOTON

Given that we have a good light-weight AEAD and hash mode based on public permutation, we now need
a light-weight permutation with 256-bit state. Among the existing 256-bit permutations, PHOTON256 [6] is
considered as one of the lightest design in the literature. It can be implemented with a very low number of
GE because all its components have been chosen with low-area in mind. In particular, the diffusion matrix is
very lightweight in the sense that it can be serialised very easily and efficiently. Additionally, the constants
are also chosen in such a manner that they can be generated on the fly with a very lightweight LFSR, without
killing the performance. PHOTON promises much increased efficiency (both lighter and faster) over most of
the existing designs and it has been well studied and well analysized. PHOTON is also a part of ISO-IEC:
29192-5 standard, which deal specifically with light-weight cryptography. Finally, PHOTON is not only of the
smallest hash function (mainly due to the underlying permutation), it also achieves excellent area/throughput
trade-offs and it even achieves very acceptable performances with simple software implementations.

Overall, a combination of PHOTON and Beetle can be considered as one of the best AEAD design in terms of
state size and hardware area. We would like to point out that this design also deals with empty associated
data and/or empty messages, which was missing in the original paper [4]. We employ the constant addition
strategy for the domain separation. Also, we increase the size of the tag and the number of the tag bits
squeezed per permutation call. This is to reduce the number of permutation invocations to make it more
enegy efficient.
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Chapter 6

Performance and Implementation
Costs

6.1 Hardware Implementations

An advantage of PHOTON-Beetle is that the area of the hardware implementations of its members can be
very small. The mode Beetle costs little on top of the costs of the underlying permutation PHOTON256. The
underlying permutation PHOTON256 is one of the most compact among primitives with the same dimension.
It can be implemented with a very low number of GE because all its components have been chosen with
low-area in mind. In particular, the diffusion matrix is lightweight in the sense that it can be serialized very
easily and efficiently.

Concretely, the area of the hardware implementations of all members in PHOTON-Beetle can be estimated
using that of the hash function PHOTON-224/32/32, which also uses PHOTON256 as its underlying permutation.
PHOTON-224/32/32 adopts Sponge construction with in-/output bit-rate 32/32. Considering that the Sponge
construction also costs little on top of the costs of the underlying permutation, it is reasonable to use the area
of the hardware implementation of PHOTON-224/32/32 to estimate that of PHOTON-Beetle. According to [6], as
for serial ASIC implementation of PHOTON-224/32/32 using the standard cell library UMCL18G212T3 (with
data path s = 4, which is the size of cells in the state), when target at minimizing area, it costs 1736 GEs
and the latency of the underlying permutation is 1716 clock cycles; when target at minimizing latency, it
costs 2786 GEs and the latency of the underlying permutation is 204 clock cycles.

Comparing implementations of the members of PHOTON-Beetle with that of PHOTON-224/32/32, additional
costs of area may comes from the storage for key, nonce and larger message block (and the XOR gates for
larger bit-rate). However, since key bits and nonce bits are used to initialize the state without schedule and
will not be used after the initialization, such local storage can be reused and thus costs no additional area
on top of the underlying permutation. In serial implementations with data path s = 4, larger bit-rate do not
cause additional XOR gates because the XOR-ings are serialized. Hence, we estimate that for all members
of PHOTON-Beetle, the area cost will be close to that cost by PHOTON-224/32/32.

6.2 Software Implementations

PHOTON-Beetle is primarily targeted for the constrained devices, and we mainly focus on the software imple-
mentation and performance of PHOTON-Beetle on micro-controllers.

On 8-bit AVR devices, all members of PHOTON-Beetle are expected to have small code size (ROM) and
RAM requirement.

We implemented PHOTON-Beetle in assembly with AVR ATmega128 as the targeted device. Our bit-sliced
implementation (bit-slicing within a single state, thus do not restrict to process multiple messages) of the
underlying permutation PHOTON256 requires 604 bytes ROM (556 for code and 48 for data, including the
codes for bit-slicing) and 32 bytes RAM (exclude those used for key/nonce/messages/outputs). The ROM
and RAM requirements for all members of PHOTON-Beetle can be seen from Table 6.1, which includes the
costs for the two combined AEAD and Hash fucntion families. From Table 6.1, for PHOTON-Beetle, supporting
Hash functionality on top of AEAD costs very limited additional resources.
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PHOTON-Beetle-
AEAD[128]

PHOTON-Beetle-
AEAD[32]

PHOTON-Beetle-
Hash[32]

PHOTON-Beetle-
AEAD[128]+Hash[32]

PHOTON-Beetle-
AEAD[32]+Hash[32]

ROM 1122 1120 850 1218 1216

RAM 64 40 36 64 40

ROM are measured excluding the codes for generating test vectors (used to verify the correctness). RAM
are measured excluding those used for storing test vectors (key/nonce/messages/outputs).

Table 6.1: Implementation costs in AVR 8-bit processors (memory costs in bytes)

Besides, there are also third party implementations for PHOTON-256/32/32 and PHOTON-160/36/36 in AVR
devices. According to a report on the implementation and performance evaluation of Hash functions in ATtiny
devices [1], the code size of PHOTON-256/32/32 (which uses PHOTON288 as its underlying permutation with the 8-
bit S-box of AES) is 1244 bytes, the SRAM requirement is 78 bytes. The code size of PHOTON-160/36/36 (which
uses PHOTON196 as its underlying permutation with the 4-bit S-box of PRESENT, which is the same as the
one used in PHOTON-224/32/32) is 764 bytes, the RAM requirement is 50 bytes. Considering the performance
of PHOTON256 should lie in-between that of these two primitives, when following the implementation methods
in [1], the code size for PHOTON256 should be at the range of 764 ∼ 1244 bytes, and the SRAM requirement
should be at the range of 50 ∼ 78 bytes.

On general purpose processors, the software performance of PHOTON-224/32/32 is about 227 cycles per
byte for long messages in an Intel(R) Core(TM) i7 CPU. Considering all members in PHOTON-Beetle family
have larger output bit rate (128 bit) than PHOTON-224/32/32, the performance of them is expected to be much
better. Besides, for PHOTON-Beetle-AEAD[128], the messages are processed 128-bit per call of the underlying
permutation, which is 4 times the rate in PHOTON-224/32/32, we expect the member PHOTON-Beetle-AEAD[128]
in PHOTON-Beetle family performs significantly better (227/4 = 56.75 cycles per byte) in general purpose
processors. For small messages, PHOTON-Beetle-Hash[32] also performs much better than PHOTON-224/32/32
due to absorption of 128-bits message in the initialization.
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