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Introduction

This document specifies TGIF, an authenticated encryption with associated data (AEAD) scheme
based on a tweakable block cipher (TBC) TGIF-TBC. TGIF consists of two families, a nonce-based
AE (NAE) TGIF-N and a nonce misuse-resistant AE (MRAE) TGIF-M. TGIF aims at lightweight,
efficient, and highly-secure NAE and MRAE schemes, based on a TBC.

As the underlying TBC, we propose TGIF-TBC, a new lightweight TBC strongly inspired from
GIFT cipher [2]. More precisely, TGIF-TBC can be seen as an improvement over the 128-bit version
of GIFT cipher, by providing improved performances, improved security guarantees, and enabling
tweak capabilities. We end up with an extremely efficient cipher, from very constrained hardware
to high-end software.

The operating mode used in TGIF is taken from the Remus submission [18], which is derived
from another submission Romulus [19]. Remus strongly minimizes the area overhead on top of
the internal TBC while having good throughput thanks to rate-1 operation. Here, the internal
TBC is not directly instantiated by TGIF-TBC, instead there is a mode called ICE applied to
TGIF-TBC (by taking it as a block cipher) to implement a TBC. This enables to reduce the size
of the overall scheme, at the cost of security proof relying on the ideal-cipher model. It provides
classical n/2-bit security to full n-bit security and can very easily switch from nonce-respecting
mode to nonce-misuse resistant mode.

We specify a set of members for TGIF that have different TBC (ICE) instantiations based on a
block cipher (taking TGIF-TBC as a block cipher) in order to provide security-efficiency tread-offs.

The overall structure of TGIF-N shares similarity in part with a (TBC-based variant of)
block cipher mode COFB [10,12], yet, we make numerous refinements to achieve our design goal.
Consequently, as a mode of TBC ICE, TGIF-N achieves a significantly smaller state size than
ΘCB3 [25], the typical choice for TBC-based AE mode, while keeping the equivalent efficiency (i.e.,
the same number of TBC calls). Also TGIF-N is inverse-free (i.e., no TBC decryption routine is
needed) unlike ΘCB3. For security, it allows either classical n/2-bit security or full n-bit security
depending on the variant of ICE, for n = 128 being the block size of TGIF-TBC. The difference
in ICE gives a security-area tread off, and 128-bit secure variant (TGIF-N2) has the bit security
equivalent to ΘCB3.

To see the superior performance of TGIF-N, let us compare n-bit secure TGIF-N2 with other
size-oriented and n-bit secure AE schemes, such as conventional permutation-based AEs using
3n-bit permutation with n-bit rate. Both have 3n state bits and process n-bit message per primitive
call. However, the cryptographic primitive for TGIF-N2 is expected to be much more lightweight
and/or faster because of smaller output size (3n vs n bits). Moreover, our primitive has only n-bit
tweakey, hence it is even smaller than the members of Romulus; they are n-bit secure and using
tweakey state of 2n or 3n bits. Both permutation-based schemes and TGIF rely on non-standard
models (random permutation or ideal-cipher), and we emphasize that the security of TGIF-TBC
inside TGIF has been comprehensively evaluated, not only for the single-key related-tweak setting
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but also related-tweakey setting, which suggests strong reliability to be used as the ideal-cipher.

An additional feature of TGIF is that it offers a very flexible security/size tread-off without
changing the throughput. In more detail, TGIF contains n/2-bit secure variants (TGIF-N1 and
TGIF-M1) and n-bit secure variants (TGIF-N2 and TGIF-M2). Their difference is only in the
existence of the second (block) mask, which increases the state size. If the latter is too big and
n-bit security is overkill, it is possible to derive an intermediate variant by truncating the second
mask to (say) n/2 bits. It will be (n+ n/2)/2 = 3n/4-bit secure. For simplicity, we did not include
such variants in the official members of TGIF, however, this flexibility would be useful in practice.

TGIF-M follows the general construction of MRAE called SIV [39]. TGIF-M reuses the components
of TGIF-N as much as possible, and TGIF-M is simply obtained by processing message twice by
TGIF-N. TGIF-M has an efficiency advantage over misuse-resistant variants of Romulus (Romulus-M).
In particular, the high-security variant (TGIF-M2) achieves n-bit security against nonce-respecting
adversaries and n/2-bit security against nonce-misusing adversaries, which shows an equivalent level
of security of Romulus-M to SCT [35]. Thanks to the shared components, most of the advantages of
TGIF-N mentioned above also hold for TGIF-M.

We present a detailed comparison of TGIF with other AE candidates in Section 6.

Organization of the document. In Section 2, we first introduce the basic notations and the
notion of tweakable block cipher, followed by the list of parameters for TGIF, the recommended
parameter sets, and the specification of TBC TGIF-TBC. In the last part of Section 2, we specify
two families of TGIF, TGIF-N and TGIF-M. We present our security claims in Section 3 and show our
security analysis of TGIF-TBC in Section 4. In Section 5, we describe the desirable features of TGIF.
The design rationale under our schemes, including some details of modes and choice of the TBC, is
presented in Section 6. Finally, we show some implementation aspects of TGIF in Section 7.

3



Specification

2.1 Notations

Let {0, 1}∗ be the set of all finite bit strings, including the empty string ε. For X ∈ {0, 1}∗, let |X|
denote its bit length. Here |ε| = 0. For integer n ≥ 0, let {0, 1}n be the set of n-bit strings, and let
{0, 1}≤n =

⋃
i=0,...,n{0, 1}i, where {0, 1}0 = {ε}. Let JnK = {1, . . . , n} and JnK0 = {0, 1, . . . , n− 1}.

For two bit strings X and Y , X ‖Y is their concatenation. We also write this as XY if it is
clear from the context. Let 0i be the string of i zero bits, and for instance we write 10i for 1 ‖ 0i.
We denote msbx(X) (resp. lsbx(X)) the truncation of X to its x most (resp. least) significant bits.
See“Endian” paragraph below. Bitwise XOR of two variables X and Y is denoted by X ⊕Y , where
|X| = |Y | = c for some integer c. By convention, if one of X or Y is represented as an integer in
J2cK0 we assume a standard integer-to-binary encoding: for example X ⊕ 1 denotes X ⊕ 0c−11.

Padding. For X ∈ {0, 1}≤l of length multiple of 8 (i.e., byte string),

padl(X) =

{
X if |X| = l,

X ‖ 0l−|X|−8 ‖ len8(X), if 0 ≤ |X| < l,

where len8(X) denotes the one-byte encoding of the byte-length of X. Here, padl(ε) = 0l. When
l = 128, len8(X) has 16 variations (i.e., byte length 0 to 15), and we encode it to the last 4 bits of
len8(X) (for example, len8(11) = 00001011). The case l = 64 is similarly treated, by using the
last 3 bits.

Parsing. For X ∈ {0, 1}∗, let |X|n = max{1, d|X|/ne}. Let (X[1], . . . , X[x])
n← X be the parsing

of X into n-bit blocks. Here X[1] ‖X[2] ‖ . . . ‖X[x] = X and x = |X|n. When X = ε we have
X[1]

n← X and X[1] = ε. Note in particular that |ε|n = 1.

Galois Field. An element a in the Galois field GF(2n) will be interchangeably represented as an
n-bit string an−1 . . . a1a0, a formal polynomial an−1x

n−1 + · · ·+ a1x + a0, or an integer
∑n−1

i=0 ai2
i.

Matrix. Let G be an n× n binary matrix defined over GF(2). For X ∈ {0, 1}n, let G(X) denote
the matrix-vector multiplication over GF(2), where X is interpreted as a column vector. We may
write G ·X instead of G(X).
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Endian. We employ little endian for byte ordering: an n-bit string X is received as

X7X6 . . . X0 ‖X15X14 . . . X8 ‖ . . . ‖Xn−1Xn−2 . . . Xn−8,

where Xi denotes the (i+ 1)-st bit of X (for i ∈ JnK0). Therefore, when c is a multiple of 8 and
X is a byte string, msbc(X) and lsbc(X) denote the last (rightmost) c bytes of X and the first
(leftmost) c bytes of X, respectively. For example, lsb16(X) = (X7X6 . . . X0 ‖X15X14 . . . X8) and
msb8(X) = (Xn−1Xn−2 . . . Xn−8) with the above X. Since our specification is defined over byte
strings, we only consider the above case for msb and lsb functions (i.e., the subscript c is always a
multiple of 8).

(Tweakable) Block Cipher. A tweakable block cipher (TBC) is a keyed function Ẽ : K×TW ×
M→M, where K is the key space, TW is the tweak space, and M = {0, 1}n is the message space,
such that for any (K,Tw) ∈ K × TW , Ẽ(K,Tw, ·) is a permutation over M. We interchangeably
write Ẽ(K,Tw,M) or ẼK(Tw,M) or ẼTwK (M). When TW is singleton, it is essentially a block cipher
and is simply written as E : K ×M→M.

2.2 Parameters

TGIF has the following parameters:

• Nonce length nl = 128.

• Key length k = 128.

• Message and AD block length n = 128.

• Mode to convert a block cipher into a TBC, ICmode ∈ {ICE1, ICE2}.
• Counter bit length d = 128. Counter refers the part of the tweakey that changes after each

TBC call, for the same (N,K) pair. Each variants of TGIF has 2d − 1 possible counter values
for each (N,K) pair.

• Tag length τ = n.

The block cipher E : K×M→M withM = {0, 1}128 and K = {0, 1}128. Here, E is TGIF-TBC,
by seeing the whole tweakey space as the key space, and assuming certain tweakey encodings
specified in Section 2.4.

While our submission fixes τ = n, a tag for NAE schemes can be truncated if needed (not for
MRAE), at the cost of decreased security against forgery. See Section 4.

NAE and MRAE families. TGIF has two families, TGIF-N and TGIF-M, and each family
consists of two members (the sets of parameters). The former implements nonce-based AE (NAE)
secure against Nonce-respecting adversaries, and the latter implements nonce Misuse-resistant AE
(MRAE) introduced by Rogaway and Shrimpton [39]. The name TGIF stands for the set of two
families.

2.3 Recommended Parameter Sets

We present our members (parameters) in Table 2.1. The primary member of our submission is
TGIF-N1. All members conform to the requirements of NIST call for proposal with respect to key
length, nonce length, and maximum input length.
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Table 2.1: Members of TGIF.

Family Name E ICmode k nl n d τ

TGIF-N
TGIF-N1 TGIF-TBC ICE1 128 128 128 128 128

TGIF-N2 TGIF-TBC ICE2 128 128 128 128 128

TGIF-M
TGIF-M1 TGIF-TBC ICE1 128 128 128 128 128

TGIF-M2 TGIF-TBC ICE2 128 128 128 128 128

2.4 The Tweakable Block Cipher TGIF-TBC

In this section, we describe our tweakable block-cipher TGIF-TBC. It has a single version: the
tweakey state is 128 bits, while the plaintext/ciphertext is also 128 bits. We omit the description
of its inverse as all its component are trivial to invert.

TGIF-TBC is an iterative Substitution-Permutation Network (SPN) based TBC, composed of
18 steps. It is largely inspired by GIFT-64 and GIFT-128 ciphers [2]. Indeed, TGIF-TBC will reuse 4
rounds of GIFTb as a black box, while GIFTb is a slight variation of GIFT-64 where the data arrives
in bitslice form (the (twea)key schedule is also changed). There are different ways to perceive
GIFT-64, but the more pictorial description is detailed in the GIFT paper, which looks like a larger
version of PRESENT cipher with 32 4-bit S-boxes and a 128-bit permutation (see Figure 1 of [2]).

Initialisation

The 128-bit state of TGIF-TBC is thus viewed as two words L and R of 64-bit each, each of these
words seen in turn as four 16-bit words L0, L1, L2, L3, R0, R1, R2 and R3. We load the incoming
plaintext bytes B0, . . . , B15 in L0 first, then L1, etc., finishing with R3.

L =


L0 = B1||B0

L1 = B3||B2

L2 = B5||B4

L3 = B7||B6

R =


R0 = B9 || B8

R1 = B11||B10

R2 = B13||B12

R3 = B15||B14

The 128-bit tweakey state KS is viewed as four words TK0, TK1, TK2 and TK3 of 32-bit each.
We load the incoming tweakey bytes K0, . . . ,K15 in TK0 first, then TK1, etc., finishing with TK3.

TK =


TK0 = K3 ||K2 ||K1 ||K0

TK1 = K7 ||K6 ||K5 ||K4

TK2 = K11||K10||K9 ||B8

TK3 = K15||K14||K13||K12

Round function of GIFTb

TGIF-TBC will use 4 rounds of a bitslice version of GIFT-64 as black box (that is, GIFT-64 with
the data arriving in bitslice mode instead, we denote this cipher GIFTb), denoted GIFTb4(S, TK)
where S is a 64-bit state composed of four 16-bit words S0, S1, S2 and S3, and where TK is the
128-bit tweakey state. Each round of GIFT-64 consists of 4 steps: AddRoundTweakey, AddConstant,
SubCells and PermBits. We use a new bitslice representation to
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Table 2.2: Constants used in TGIF-TBC

Step
Constants

round 0 round 1 round 2 round 3

0 - 3 01,02,04,08 10,20,40,03 06,0c,18,30 60,43,05,0a

4 - 7 14,28,50,23 46,0f,1e,3c 78,73,65,49 11,22,44,0b

8 - 11 16,2c,58,33 66,4f,1d,3a 74,6b,55,29 52,27,4e,1f

12 - 15 3e,7c,7b,75 69,51,21,42 07,0e,1c,38 70,63,45,09

16 - 17 12,24,48,13 26,4c,1b,36

AddRoundTweakey. This step consists of adding the subtweakey word TK0 to S0 and to S1:
S0 = S0 ⊕ TK0 and S1 = S1 ⊕ (TK0) >> 16. Then the tweakey schedule function is applied
to the tweakey state (see description below).

AddConstant. This step consists of XORing the least significant bits of state S3 with 7-bit round
dependant constants ci (given in Table 2.2) and swapping the most significant bit of S3 :
S3 = S3 ⊕ ci ⊕ 0x8000. These constants have been generated with a 7-bit maximum-length
LFSR initialised to 1. Let x6, x5, x4, x3, x2, x1, x0 be the input seven bits (x0 being the LSB),
then after clocking the LFSR we obtain: x5, x4, x3, x2, x1, x0 ⊕ x6, x6.

SubCells. Update the cipher state with the following instructions:

S1 ← S1 ⊕ (S0 & S2)

S0 ← S0 ⊕ (S1 & S3)

S2 ← S2 ⊕ (S0 | S1)

S3 ← S3 ⊕ S2

S1 ← S1 ⊕ S3

S3 ← ∼ S3

S2 ← S2 ⊕ (S0 & S1)

{S0, S1, S2, S3} ← {S3, S1, S2, S0},

where &, | and ∼ are 16-bit wise AND, OR and NOT operations respectively.

PermBits. Different 16-bit bit permutations are applied to each Si independently.

In the first round, we apply to Si a right rotation of i positions inside each 4-bit subwords
(note that S0 is thus not modified):

S0 : (15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0) 7→ (15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)

S1 : (15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0) 7→ (12, 15, 14, 13, 8, 11, 10, 9, 4, 7, 6, 5, 0, 3, 2, 1)

S2 : (15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0) 7→ (13, 12, 15, 14, 9, 8, 11, 10, 5, 4, 7, 6, 1, 0, 3, 2)

S3 : (15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0) 7→ (14, 13, 12, 15, 10, 9, 8, 11, 6, 5, 4, 7, 2, 1, 0, 3)

In the second round, we apply to Si a right rotation of 4i positions inside the entire 16-bit
word (note that S0 is thus not modified):

S0 : (15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0) 7→ (15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)

S1 : (15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0) 7→ (3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4)

S2 : (15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0) 7→ (7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8)

S3 : (15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0) 7→ (11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12)
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In the third round, we apply to Si a left rotation of i positions inside each 4-bit subwords
(note that S0 is thus not modified):

S0 : (15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0) 7→ (15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)

S1 : (15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0) 7→ (14, 13, 12, 15, 10, 9, 8, 11, 6, 5, 4, 7, 2, 1, 0, 3)

S2 : (15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0) 7→ (13, 12, 15, 14, 9, 8, 11, 10, 5, 4, 7, 6, 1, 0, 3, 2)

S3 : (15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0) 7→ (12, 15, 14, 13, 8, 11, 10, 9, 4, 7, 6, 5, 0, 3, 2, 1)

In the fourth round, we apply to Si a left rotation of 4i positions inside the entire 16-bit word
(note that S0 is thus not modified):

S0 : (15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0) 7→ (15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)

S1 : (15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0) 7→ (11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12)

S2 : (15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0) 7→ (7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8)

S3 : (15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0) 7→ (3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4)

There is an interesting property that after these 4 rounds of permutations, the bits in each Si
returns to its initial position. E.g. For S1, applying the 4 rounds of operation, we get

S1 : (15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0) 7→ (12, 15, 14, 13, 8, 11, 10, 9, 4, 7, 6, 5, 0, 3, 2, 1)

7→ (0, 3, 2, 1, 12, 15, 14, 13, 8, 11, 10, 9, 4, 7, 6, 5)

7→ (3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4)

7→ (15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)

Step function of TGIF-TBC

The step function applies iteratively a MISTY structure [29]. Let L and R be the two 64-bit left
and right internal states, then each step of TGIF-TBC will perform:

{
L′ = GIFTb4(R, TK)⊕ (L≪ 55)

R′ = L

L′ R′

≪ 55

G
I
F
T
b 4

L R

TK

Figure 2.1: The step function of TGIF-TBC.

where TK is the current tweakey state. We recall that the tweakey state is updated every round
inside GIFTb4 with the tweakey schedule.

Tweakey schedule of TGIF-TBC

The tweakey state, decomposed as TK = TK0||TK1||TK2||TK3 is updated as follows:
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TK ′0 = TK1

TK ′1 = TK2

TK ′2 = TK3

TK ′3 = TK0 ⊕ TK1 ⊕ ((TK3 ⊕ 1) ≪ 8)⊕ 1

TK0 TK1 TK2 TK3

TK ′
0 TK ′

1 TK ′
2 TK ′

3

≪ 8

0x1

Figure 2.2: The TGIF-TBC tweakey schedule

This is basically a simple generalised Feistel construction with a linear update function. It has
the special property to cycle every 24 calls, and will thus cycle at the end of the cipher (every 72
rounds, or 18 steps). In other words, the first and last key states are identical.

Finalisation

The final value of the internal state array provides the ciphertext with cells being unpacked in the
same way as the packing during initialization. Test vectors for TGIF-TBC are provided below.

Key : 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
Pla in t ex t : 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
Ciphertext : F6 1B 94 03 28 C7 58 B6 90 A6 5A B1 03 4B 9B B7

Key : 3A E8 AF 4B C5 88 01 5C 24 C6 48 BC 2C 1C CD E5
Pla in t ex t : AC 3B C6 DC 0D 10 08 1E CE 8C B4 E3 28 B2 DD D5
Ciphertext : 2E A6 0D BE F6 38 09 F9 80 34 F4 AF 3A DE 28 D9

2.5 The Authenticated Encryption TGIF

2.5.1 Block Counters and Domain Separation

Domain separation. We will use a domain separation byte B to ensure appropriate inde-
pendence between the tweakable block cipher calls and the various versions of TGIF. Let B =
(b7‖b6‖b5‖b4‖b3‖b2‖b1‖b0) be the bitwise representation of this byte, where b7 is the MSB and b0 is
the LSB (see also Figure 2.3). Then, we have the following:

- b6b5 will specify the parameter sets. They are fixed to: 00 for TGIF-N1, 01 for TGIF-M1, 10
for TGIF-N2, 11 for TGIF-M2. Note that all nonce-respecting modes have b5 = 0 and all
nonce-misuse resistant modes have b5 = 1.

- b7 and b4 are set to 0.

- b3 is set to 1 once we have handled the last block of data (AD and message chains are treated
separately), to 0 otherwise.

- b2 is set to 1 when we are performing the authentication phase of the operating mode (i.e., when
no ciphertext data is produced), to 0 otherwise. In the special case where b5 = 1 and b4 = 1
(i.e., last block for the nonce-misuse mode), b3 will instead denote if the number of message
blocks is even (b5 = 1 if that is the case, 0 otherwise).
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- b1 is set to 1 when we are handling a message block, to 0 otherwise. Note that in the case of
the misuse-resistant modes, the message blocks will be used during authentication phase (in
which case we will have b3 = 1 and b2 = 1). In the special case where b5 = 1 and b4 = 1 (i.e.,
last block for the nonce-misuse mode), b3 will instead denote if the number of message blocks
is even (b5 = 1 if that is the case, 0 otherwise).

- b0 is set to 1 when we are handling a padded block (associated data or message), to 0 otherwise.

The reader can refer to Table 8.1 in the Appendix to obtain the exact specifications of the
domain separation values depending on the various cases.

b7 b6 b5 b4 b3 b2 b1 b0

message block

auth.

parameter

sets

00

last block

padded

Figure 2.3: Domain separation when using the tweakable block cipher

Doubling over a Finite Field. For any positive integer c, we assume GF(2c) is defined over
the lexicographically-first polynomial among the irreducible degree c polynomials of a minimum
number of coefficients. We use single field: GF(2c) for c = 128. The primitive polynomial is:

x128 + x7 + x2 + x + 1 for c = 128.

Let Z = (zc−1zc−2 . . . z1z0) for zi ∈ {0, 1}, i ∈ JcK0 be an element of GF(2c). A multiplication
of Z by the generator (polynomial x) is called doubling and written as 2Z [37]. An i-times doubling
of Z is written as 2iZ, and is efficiently computed from 2i−1Z (see below). Here, 20Z = Z for any
Z. When Z = 0n, i.e., zero entity in the field, then 2iZ = 0n for any i ≥ 0.

To avoid confusion, we may write D (in particular when it appears in a part of tweak) in
order to emphasize that this is indeed a doubling-based counter, i.e., 2DX for some key-dependent
variable X. One can interpret D as 2D (but in that case it is a part of tweakey state or a coefficient
of mask, and not a part of input of ICE).

On bit-level, doubling Z → 2Z over GF(2c) for c = 128 is defined as

zi ← zi−1 for i ∈ J128K0 \ {7, 2, 1, 0},
z7 ← z6 ⊕ z127,

z2 ← z1 ⊕ z127,

z1 ← z0 ⊕ z127,

z0 ← z127.

2.5.2 The TBC ICE

In the specification of TGIF, TGIF-TBC is not directly used as a TBC. Instead, we use TGIF-TBC :
K ×M → M as a building block (as a block cipher rather than TBC) to build another TBC
: K × T ×M →M, where K = {0, 1}k is the key space, M = {0, 1}n is the message space, and
T = N ×D×B is the tweak space. The tweak space T consists of the nonce space N = {0, 1}nl, the

10



Algorithm ICEncD,BL,V (M)

1. S ← 2DV ⊕M
2. TK ← encode(L,D,B)
3. S ← ETK (S)
4. C ← 2DV ⊕ S
5. return C

Figure 2.4: Definition of ICEnc, the core encryption routine of ICE. ICEnc is common to all two
variants of ICE, ICE1 and ICE2 except the definition of encode. Note that ICE1 fixes V = 0n, hence
effectively S ←M (line 1) and C ← S (line 4). Variables L and V are assumed to be derived from
the corresponding KDF taking (N,K), as a pre-processing.

counter space D = J2d−1K, and the domain separation byte B = J256K0 as described in Section 2.5.1.
We call this TBC ICE (for Ideal-Cipher Encryption). There are two variants, ICE1 and ICE2.

Each variant consists of two main components, the key derivation function KDF : K×N → L×V ,
and the “core” encryption function ICEnc : (L × V)× (D × B)×M→M. Here, L = K = {0, 1}k
and V =M = {0, 1}n. The algorithm of ICEnc is shown in Figure 2.4 for all variants. In addition,
there is a tweakey encode function encode : L ×D × B → K inside ICEnc. For convenience, KDF
for ICE1 may also be referred as KDF1. KDF2 is defined analogously.

An encryption of ICE is performed as follows. Given a tweak T = (N,D,B) ∈ T , key K ∈ K,
and plaintext M ∈ M, first, KDF(N,K) → (L, V ) derives the nonce-dependent mask values
(L, V ), and then ICEnc encrypts M as ICEnc(L, V,D,B,M) → C, using the key of the internal
E determined by encode(L,D,B). Here, ICEnc(L, V,D,B, ∗) is a permutation over M for any
(L, V,D,B).

Each variant is defined as follows. The matrix G is defined at Section 2.5.3. For all variants,
k = 128.

1. ICE1: n = 128, nl = 128, d = 128 and it uses TGIF-TBC as its building block E.

(a) KDF(N,K) = (L, V ) where L = G(EK(N)), V = 0n using the matrix G.

(b) encode(L,D,B) = 2DL⊕ (0120 ‖B).

2. ICE2: n = 128, nl = 128, d = 128 and it uses TGIF-TBC as its building block E.

(a) KDF(N,K) = (L, V ) where L′ = EK(N), V ′ = EK⊕1(L′), and L = G(L′) and V =
G(V ′).

(b) encode(L,D,B) = 2DL⊕ (0120 ‖B).

Note that ICE1 and ICE2 are only different in the second mask V derived by their KDFs.

When ICE is working inside TGIF, the corresponding KDF is performed only once as an
initialization. For ICE1 or ICE2, KDF involves one or two calls of E and matrix multiplications
by G (see above). For each input block, ICE applies doubling to the derived mask values. Since

doubling is a sequential operation, computing ICEncD+1,B
L,V (M) after ICEncD,B

′

L,V (M ′) is easy and does
not need any additional memory.

11



2.5.3 State Update Function

Let G be an n×n binary matrix defined as an n/8×n/8 diagonal matrix of 8×8 binary sub-matrices:

G =



Gs 0 0 . . . 0

0 Gs 0 . . . 0
...

. . .
...

0 . . . 0 Gs 0

0 . . . 0 0 Gs


,

where 0 here represents the 8× 8 zero matrix, and Gs is an 8× 8 binary matrix, defined as

Gs =



0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 1


.

Alternatively, let X ∈ {0, 1}n, where n is a multiple of 8, then the matrix-vector multiplication
G ·X can be represented as

G ·X = (Gs ·X[0], Gs ·X[1], Gs ·X[2], . . . , Gs ·X[n/8− 1]),

where

Gs ·X[i] = (X[i][1], X[i][2], X[i][3], X[i][4], X[i][5], X[i][6], X[i][7], X[i][7]⊕X[i][0])

for all i ∈ Jn/8K0, such that (X[0], . . . , X[n/8− 1])
8← X and (X[i][0], . . . , X[i][7])

1← X[i], for all
i ∈ Jn/8K0.

The state update function ρ : {0, 1}n × {0, 1}n → {0, 1}n × {0, 1}n and its inverse ρ−1 :
{0, 1}n × {0, 1}n → {0, 1}n × {0, 1}n are defined as

ρ(S,M) = (S′, C),

where C = M ⊕G(S) and S′ = S ⊕M . Similarly,

ρ−1(S,C) = (S′,M),

where M = C ⊕G(S) and S′ = S ⊕M . We note that we abuse the notation by writing ρ−1 as this
function is only the invert of ρ according to its second parameter. For any (S,M) ∈ {0, 1}n×{0, 1}n,
if ρ(S,M) = (S′, C) holds then ρ−1(S,C) = (S′,M). Besides, we remark that ρ(S, 0n) = (S,G(S))
holds.

2.5.4 TGIF-N nonce-based AE mode

The specification of TGIF-N is shown in Figure 2.5. Figures 2.6 and 2.7 show encryption of TGIF-N.
For completeness, the definition of ρ is also included.

2.5.5 TGIF-M misuse-resistant AE mode

The specification of TGIF-M is shown in Figure 2.8. Figures 2.9 and 2.10 show encryption of TGIF-M.
For completeness, the definition of ρ is also included.
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Algorithm TGIF-N.EncK(N,A,M)
1. (L, V )←KDF(N,K)
2. S ← 0n

3. (A[1], . . . , A[a])
n← A

4. (M [1], . . . ,M [m])
n←M

5. if |A[a]| < n then wA ← 13 else 12
6. if |M [m]| < n then wM ← 11 else 10
7. A[a]← padn(A[a])
8. for i = 1 to a− 1
9. (S, η)← ρ(S,A[i])

10. S ← ICEnci,4L,V (S)
11. end for
12. (S, η)← ρ(S,A[a])
13. S ← ICEnca,wA

L,V (S)
14. for i = 1 to m− 1
15. (S,C[i])← ρ(S,M [i])

16. S ← ICEnca+i,2
L,V (S)

17. end for
18. M ′[m]← padn(M [m])
19. (S,C ′[m])← ρ(S,M ′[m])

20. S ← ICEnca+m,wM
L,V (S)

21. C[m]← lsb|M [m]|(C
′[m])

22. (η, T )← ρ(S, 0n)
23. C ← C[1] ‖C[2] ‖ . . . ‖C[m]
24. return (C, T )

Algorithm TGIF-N.DecK(N,A,C, T )
1. (L, V )←KDF(N,K)
2. S ← 0n

3. (A[1], . . . , A[a])
n← A

4. (C[1], . . . , C[m])
n← C

5. if |A[a]| < n then wA ← 13 else 12
6. if |C[m]| < n then wC ← 11 else 10
7. A[a]← padn(A[a])
8. for i = 1 to a− 1
9. (S, η)← ρ(S,A[i])

10. S ← ICEnci,4L,V (S)
11. end for
12. (S, η)← ρ(S,A[a])
13. S ← ICEnca,wA

L,V (S)
14. for i = 1 to m− 1
15. (S,M [i])← ρ−1(S,C[i])

16. S ← ICEnca+i,2
L,V (S)

17. end for
18. S̃ ← (0|C[m]| ‖ msbn−|C[m]|(G(S)))

19. C ′[m]← padn(C[m])⊕ S̃
20. (S,M ′[m])← ρ−1(S,C ′[m])
21. M [m]← lsb|C[m]|(M

′[m])

22. S ← ICEnca+m,wC
L,V (S)

23. (η, T ∗)← ρ(S, 0n)
24. M ←M [1] ‖M [2] ‖ . . . ‖M [m]
25. if T ∗ = T then return M else ⊥

Algorithm ρ(S,M)
1. C ←M ⊕G(S)
2. S′ ← S ⊕M
3. return (S′, C)

Algorithm ρ−1(S,C)
1. M ← C ⊕G(S)
2. S′ ← S ⊕M
3. return (S′,M)

Figure 2.5: Encryption and decryption of TGIF-N. It uses TBC ICE consisting of KDF and ICEnc.
Lines of [if (statement) then X ← x else x′] are shorthand for [if (statement) then X ← x
else X ← x′]. The dummy variable η is always discarded. TGIF-N1 is used as a working example.
For TGIF-N2 version, the values of the bit b6 in the domain separation need to be set to 1, alongside
with using the appropriate ICE and KDF variants.
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Figure 2.6: TGIF-N with ICE1 (TGIF-N1). (Top) Key derivation. (Middle) Processing of AD
(Bottom) Encryption. The domain separation B being of 8 bits only, ⊕B is to be interpreted as
⊕ 0120||B.
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Figure 2.7: TGIF-N with ICE2 (TGIF-N2). (Top) Key derivation. (Middle) Processing of AD
(Bottom) Encryption. The domain separation B being of 8 bits only, ⊕B is to be interpreted as
⊕ 0120||B.
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Algorithm TGIF-M.EncK(N,A,M)
1. (L, V )←KDF(N,K)
2. S ← 0n

3. (A[1], . . . , A[a])
n← A

4. (M [1], . . . ,M [m])
n←M

5. if |A[a]| < n then wA ← 45 else 44
6. if |M [m]| < n then wM ← 47 else 46
7. A[a]← padn(A[a])
8. for i = 1 to a− 1
9. (S, η)← ρ(S,A[i])

10. S ← ICEnci,36
L,V (S)

11. end for
12. (S, η)← ρ(S,A[a])
13. S ← ICEnca,wA

L,V (S)
14. for i = 1 to m− 1
15. (S, η)← ρ(S,M [i])

16. S ← ICEnca+i,38
L,V (S)

17. end for
18. M ′[m]← padn(M [m])
19. (S, η)← ρ(S,M ′[m])

20. S ← ICEnca+m,wM
L,V (S)

21. (η, T )← ρ(S, 0n)
22. if M = ε then return (ε, T )
23. S ← T
24. for i = 1 to m− 1
25. S ← ICEnci−1,34

L,V (S)
26. (S,C[i])← ρ(S,M [i])
27. end for
28. S ← ICEncm−1,34

L,V (S)
29. (η, C ′[m])← ρ(S,M ′[m])
30. C[m]← lsb|M [m]|(C

′[m])
31. C ← C[1] ‖C[2] ‖ . . . ‖C[m]
32. return (C, T )

Algorithm TGIF-M.DecK(N,A,C, T )
1. (L, V )←KDF(N,K)
2. if C = ε then M ← ε
3. else
4. S ← T
5. (C[1], . . . , C[m])

n← C
6. z ← |C[m]|
7. C[m]← padn(C[m])
8. for i = 1 to m
9. S ← ICEnci−1,34

L,V (S)

10. (S,M [i])← ρ−1(S,C[i])
11. end for
12. M [m]← lsbz(M [m])
13. M ←M [1] ‖ . . . ‖M [m]
14. S ← 0n

15. (A[1], . . . , A[a])
n← A

16. if |A[a]| < n then wA ← 45 else 44
17. if |M [m]| < n then wM ← 47 else 46
18. A[a]← padn(A[a])
19. for i = 1 to a− 1
20. (S, η)← ρ(S,A[i])

21. S ← ICEnci,36
L,V (S)

22. end for
23. (S, η)← ρ(S,A[a])
24. S ← ICEnca,wA

L,V (S)
25. for i = 1 to m− 1
26. (S, η)← ρ(S,M [i])

27. S ← ICEnca+i,38
L,V (S)

28. end for
29. M ′[m]← padn(M [m])
30. (S, η)← ρ(S,M ′[m])

31. S ← ICEnca+m,wM
L,V (S)

32. (η, T ∗)← ρ(S, 0n)
33. if T ∗ = T then return M else ⊥

Algorithm ρ(S,M)
1. C ←M ⊕G(S)
2. S′ ← S ⊕M
3. return (S′, C)

Algorithm ρ−1(S,C)
1. M ← C ⊕G(S)
2. S′ ← S ⊕M
3. return (S′,M)

Figure 2.8: TGIF-M using ICE. TGIF-M1 is used as a working example. For TGIF-M2 version,
the values of the bit b6 in the domain separation need to be set to 1, alongside with using the
appropriate ICE and KDF variants.
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Figure 2.10: TGIF-M with ICE2 (TGIF-M2). (Top) Key derivation. (Middle-Top) Processing of
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Security Claims

Attack Models. We consider two models of adversaries: nonce-respecting (NR) and nonce-
misusing (NM)1. In the former model, nonce values in encryption queries (the tuples (N,A,M))
may be chosen by the adversary but they must be distinct. In the latter, nonce values in encryption
queries can repeat. Basically, an NM adversary can arbitrarily repeat a nonce, hence even using the
same nonce for all queries is possible. We can further specify NM by the distribution of a nonce,
such as the maximum number of repetition of a nonce in the encryption queries. For both models,
adversaries can use any nonce values in decryption queries (the tuples (N,A,C, T )): it can collide
with a nonce in an encryption query or with other decryption queries.

Security Claims. Our security claims are summarized in Table 3.1. The variables in the table
denote the required workload, in terms of online and offline query complexities (corresponding to
data complexity and time complexity), of an adversary to break the cipher, in logarithm base 2. In
more detail, an integer x in the table means an attack possibly breaks the scheme with online query
complexity Qonline and offline query complexity Qoffline if max{Qonline, Qoffline} = 2x. For simplicity,
small constant factors, which are determined from the concrete security bounds, are neglected in
these tables. A more detailed analysis is given in Section 4.

We claim these numbers under the Ideal-Cipher Model (ICM), that is, the model that assumes
TGIF-TBC is sampled uniformly over all the ciphers (see Section 4 for the definition). Intuitively, this
corresponds to model that TGIF-TBC behaves ideally, though ICM cannot be instantiated (as a key
of E is also a part of queries to ICM, and outputs must be random). ICM has been acknowledged
as a meaningful security proof model, especially in the field of hash function constructions.

We can also obtain standard model proofs for TGIF, by assuming the intermediate TBC ICE
as a keyed primitive called tweakable pseudorandom permutation (TPRP). The standard model
proofs are actually a part of ICM proofs. Specifically, the security bounds under this standard
model will appear in the hybrid argument of ICM proofs. A similar technique appeared in some
permutation-based schemes [13, 32, 34], where the keyed primitive is a variant of Even-Mansour
cipher. We warn that assuming ICE as TPRP does not imply its perfect security: there are generic
attacks which work even if TGIF-TBC is an ideal-cipher. Therefore, the expected bit security levels
are identical for both ICM and this standard model analyses. Therefore, Section 4 only presents
the security bounds under ICM.

For TGIF-N1, Table 3.1 shows n/2-bit security for both privacy and authenticity against NR
adversary. For TGIF-N2, Table 3.1 shows full n-bit security for both privacy and authenticity
against NR adversary.

For TGIF-M1, Table 3.1 shows n/2-bit security for both privacy and authenticity against NR
and NM adversaries. For TGIF-M2, Table 3.1 shows n-bit security for both privacy and authenticity

1Also known as Nonce Repeating or Nonce Ignoring. We chose “Nonce Misuse” for notational convenience of
using acronyms, NR for nonce-respecting and NM for nonce-misuse.
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against NR adversary and in addition, n/2-bit security for both privacy and authenticity against
NM adversary. The n/2-bit security assumes that the NM adversary has full control over the
nonce, but in practice, the nonce repetition can happen accidentally, and it is conceivable that the
nonce is repeated only a few times. As we present in Section 4, the security bounds of TGIF-M2
show the notable property of graceful security degradation with respect to the number of nonce
repetition [35]. This property is similar to SCT, and if the number of nonce repetition is limited,
the actual security bound is close to the full n-bit security.

Table 3.1: Security claims of TGIF. NR denotes Nonce-Respecting adversary and NM denotes
Nonce-Misusing adversary.

Parameter NR-Priv NR-Auth NM-Priv NM-Auth

TGIF-N1 64 64 – –

TGIF-N2 128 128 – –

TGIF-M1 64 64 64 64

TGIF-M2 128 128 64 ∼ 128 64 ∼ 128

We claim these numbers under the Ideal-Cipher Model (ICM), that is, the model that assumes
TGIF-TBC is sampled uniformly over all the ciphers (see Section 4 for the definition). Intuitively, this
corresponds to model that TGIF-TBC behaves ideally, though ICM cannot be instantiated (as a key
of E is also a part of queries to ICM, and outputs must be random). ICM has been acknowledged
as a meaningful security proof model, especially in the field of hash function constructions.

For TGIF-N1, Table 3.1 shows n/2-bit security for both privacy and authenticity against NR
adversary. For TGIF-N2, Table 3.1 shows full n-bit security for both privacy and authenticity against
NR adversary. For TGIF-M1, Table 3.1 shows n/2-bit security for both privacy and authenticity
against NR and NM adversaries. For TGIF-M2, Table 3.1 shows n-bit security for both privacy
and authenticity against NR adversary and in addition, n/2-bit security for both privacy and
authenticity against NM adversary. The n/2-bit security assumes that the NM adversary has full
control over the nonce, but in practice, the nonce repetition can happen accidentally, and it is
conceivable that the nonce is repeated only a few times. As we present in Section 4, the security
bounds of TGIF-M2 show the notable property of graceful security degradation with respect to
the number of nonce repetition [35]. This property is similar to SCT, and if the number of nonce
repetition is limited, the actual security bound is close to the full n-bit security.

Key Recovery Security. For key recovery, the adversary needs to find the k = 128-bit key used
in KDF with 2k offline queries (computations). See Table 3.2. Therefore, all members of TGIF have
k = 128-bit security against key recovery under the single-key setting.

Table 3.2: Security claims of TGIF against key recovery.

Parameter Key Recovery

TGIF-N1 128

TGIF-N2 128

TGIF-M1 128

TGIF-M2 128

20



Security Analysis

4.1 Security of the mode

4.1.1 Security Notions

Security Notions for NAE. We consider the standard security notions for nonce-based AE [3,
4, 38]. Let Π denote an NAE scheme consisting of an encryption procedure Π.EK and a decryption

procedure Π.DK , for secret key K uniform over set K (denoted as K
$← K). For plaintext M

with nonce N and associated data A, Π.EK takes (N,A,M) and returns ciphertext C (typically
|C| = |M |) and tag T . For decryption, Π.DK takes (N,A,C, T ) and returns a decrypted plaintext
M if authentication check is successful, and otherwise an error symbol, ⊥. We assume Π is based
on the ideal block cipher E : K ×M→M, which is uniformly distributed over all block ciphers
of key space K and message space M, and we allow the adversary to query E while attacking Π.
Specifically, the adversary can query Y ← E(K ′, X) for any (K ′, X) ∈ K×M or X ← E−1(K ′, Y )

for any (K ′, Y ) ∈ K×M. We remark that K ′ here is a part of query and not the secret key K
$← K.

Such a query is called an offline query or a primitive query. In contrast, a query to Π.EK or Π.DK
is called an online query or a construction query.

The privacy notion is the indistinguishability of encryption oracle Π.EK from the random-bit
oracle $ which returns random |M | + τ bits for any query (N,A,M), with access to the ideal
cipher E for both worlds ($ oracle and E oracle are independent). The adversary is assumed to be
nonce-respecting. We define the privacy advantage as

Adv
priv
Π (A)

def
= Pr

[
K

$← K : AΠ.EK(·,·,·),(E,E−1) ⇒ 1
]
− Pr

[
A$(·,·,·),(E,E−1) ⇒ 1

]
which measures the hardness of breaking the privacy notion for A.

The authenticity notion is the probability of successful forgery via queries to Π.EK and Π.DK or-
acles. As in the case of the privacy notion, the adversary has access to E. We define the authenticity
advantage as

Advauth
Π (A)

def
= Pr

[
K

$← K : AΠ.EK(·,·,·),Π.DK(·,·,·,·),(E,E−1) forges
]
,

where A forges if it receives a value M ′ 6= ⊥ from Π.DK . Here, to prevent trivial wins, if
(C, T )← Π.EK(N,A,M) is obtained earlier, A cannot query (N,A,C, T ) to Π.DK . The adversary
is assumed to be nonce-respecting for encryption queries.

Security Notions for MRAE. We adopt the security notions of MRAE following the same
security definitions as above, with the exception that the adversary can now repeat nonces. We
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write the corresponding privacy advantage as

Adv
nm-priv
Π (A)

def
= Pr

[
K

$← K : AΠ.EK(·,·,·),(E,E−1) ⇒ 1
]
− Pr

[
A$(·,·,·),(E,E−1) ⇒ 1

]
,

and the authenticity advantage as

Advnm-auth
Π (A)

def
= Pr

[
K

$← K : AΠ.EK(·,·,·),Π.DK(·,·,·,·),(E,E−1) forges
]
.

We note that while adversaries can repeat nonces, we without loss of generality assume that they
do not repeat the same query. See also [39] for reference.

4.1.2 Security of TGIF-N

For A ∈ {0, 1}∗, we say A has a AD blocks if |A|n = a. Similarly for plaintext M ∈ {0, 1}∗ we say
M has m message blocks if |M |n = m. The same holds for the ciphertext C. For encryption query
(N,A,M) or decryption query (N,A,C, T ) of a AD blocks and m message blocks, the number of
total TBC calls is at most a+m, which is called the number of effective blocks of a query.

Let A be a nonce-respecting adversary against TGIF-N using qc encryption (online/construction)
queries and qp offline/primitive queries with total number of effective blocks in encryption queries
σpriv. We have the following privacy bounds:

Adv
priv
TGIF-N1(A) ≤

9σ2
priv + 4σpriv · qp

2n
+

2qp
2n

,

Adv
priv
TGIF-N2(A) ≤

9σ2
priv + 4σpriv · qp

22n
+

2qp
2n

.

For authenticity bounds, let B be a nonce-respecting adversary using qc encryption queries and qd
decryption queries (both are online/construction queries), with total number of effective blocks for
encryption and decryption queries σauth, and qp offline/primitive queries. Also we define ` as the
maximum effective block length of a plaintext among qc encryption queries. Then we have

Advauth
TGIF-N1(B) ≤ 9σ2

auth + 4σauth · qp
2n

+
2qp
2n

+
2`qd
2n

+
2qd
2τ
,

Advauth
TGIF-N2(B) ≤ 9σ2

auth + 4σauth · qp
22n

+
2qp
2n

+
2`qd
2n

+
2qd
2τ
.

Note that tag length τ is set to n for all members of TGIF-N, however, if 1 ≤ τ < n (which is not a
part of our submission), it still maintains n-bit privacy and τ -bit authenticity. While the term 2`qd

2n

is present, this term is very likely not tight and can be improved to σdec/2
n with total effective

blocks in decryption queries σdec.

The security of TGIF-N crucially relies on the n× n matrix G defined over GF(2). Let G(i) be
an n × n matrix that is equal to G except the (i + 1)-st to n-th rows, which are set to all zero.
Here, G(0) is the zero matrix and G(n) = G, and for X ∈ {0, 1}n, G(i)(X) = lsbi(G(X))‖0n−i for
all i = 0, 8, 16, . . . , n; note that all variables are byte strings, and lsbi(X) is the leftmost i/8 bytes
(Section 2). Let I denote the n× n identity matrix. We say G is sound if (1) G is regular and (2)
G(i) + I is regular for all i = 8, 16, . . . , n. The above security bounds hold as long as G is sound.
The proofs are similar to those for iCOFB [12]. We have verified the soundness of our G, for a range
of n including n = 64 and n = 128, by a computer program.

4.1.3 Security of TGIF-M

For encryption query (N,A,M) or decryption query (N,A,C, T ) of a AD blocks and m message
blocks, the number of total TBC calls is at most a+ 2m, which is called the number of effective
blocks of a query.
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Let A be an adversary against TGIF-N using qc encryption (online/construction) queries and qp
offline/primitive queries with total number of effective blocks in encryption queries σpriv. In the
NR case, we have the following privacy bounds:

Adv
priv
TGIF-M1(A) ≤

9σ2
priv + 4σpriv · qp

2n
+

2qp
2n

,

Adv
priv
TGIF-M2(A) ≤

9σ2
priv + 4σpriv · qp

22n
+

2qp
2n

.

In the NM case, we have the following privacy bounds:

Adv
nm-priv
TGIF-M1(A) ≤

9σ2
priv + 4σpriv · qp

2n
+

2qp
2n

+
4rσpriv

2n
,

Adv
nm-priv
TGIF-M2(A) ≤

9σ2
priv + 4σpriv · qp

22n
+

2qp
2n

+
4rσpriv

2n
.

Here, the adversary can repeat a nonce at most r times.

For authenticity bounds, let B be an adversary using qc encryption queries and qd decryption
queries (both are online/construction queries), with total number of effective blocks for encryption
and decryption queries σauth, and qp offline/primitive queries. Also we define ` as the maximum
effective block length among all the encryption and decryption queries. Then in the NR case, we
have

Advauth
TGIF-M1(B) ≤ 9σ2

auth + 4σauth · qp
2n

+
2qp
2n

+
2`qd
2n

,

Advauth
TGIF-M2(B) ≤ 9σ2

auth + 4σauth · qp
22n

+
2qp
2n

+
2`qd
2n

.

In the NM case, we have

Advnm-auth
TGIF-M1(B) ≤ 9σ2

auth + 4σauth · qp
2n

+
2qp
2n

+
2r`qd

2n
,

Advnm-auth
TGIF-M2(B) ≤ 9σ2

auth + 4σauth · qp
22n

+
2qp
2n

+
2r`qd

2n
.

In the above bounds, the adversary can repeat a nonce at most r times in encryption queries. The
term O( r`qd2n ) is likely not tight and we expect that it can be improved to O(rσdec/2

n) with total
effective blocks in decryption queries σdec.

4.2 Security of TGIF-TBC

4.2.1 Differential and Linear Cryptanalysis

Evaluating the security of block cipher against differential cryptanalysis (DC) [7] and linear
cryptanalysis (LC) [28] is the most common and fundamental procedure in the design and analysis
phase. The lower bound for the number of active Sboxes involved in a differential or linear
characteristic reflects the resistance of the cipher against these attacks to a certain degree.

In this work, we employ the automatic method based on the Boolean satisfiability problem
(SAT) [40] to compute the lower bound for the number of active Sboxes in differential and linear
trails for different numbers of rounds. The results are summarised in Table 4.1.
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Table 4.1: Lower bounds for the number of active Sboxes.

DC/LC/RK
Round

1 2 3 4 5 6 7

DC 0 5 10 19 28 37 44

LC 0 5 10 17 27 37 43

RK 0 2 9 19 > 25 - -

Differential cryptanalysis.

Since the Sbox of GIFT-64 has differential property 2−1.415, the number of active Sboxes only
provides a rough estimation for the security of TGIF-TBC against differential cryptanalysis. To
give a more accurate estimation, we revise the objective function of the automatic tool so that we
can find differential trails with the optimal probability. We obtain a 4-step trail with differential
probability 2−47.415. After fixing the input and output differences, we attempt to analyse the
differential effect of the corresponding differential. In other words, we manage to enumerate the
trails with the same input and output differences.

The search is conducted in a probability-first manner. Note that one differential characteristic
is useful only if its probability is higher than 21−n for an n-bit block cipher. We exhaustively find
trails with probability no less than 2−127 and take the summation of their probabilities. Note that
the probability of the second-best trail is 2−108 and the number of trails with probabilities higher
than 2−128 is 142. Thus, the probability of the 4-step differential equals 2−47.415, approximately.
On average, it is expected that the differential probability will be lower than 2−127 when we have
12 steps. Therefore, we believe that 18-step TGIF-TBC is enough to bear differential cryptanalysis.

Linear cryptanalysis.

Note that for an n-bit block cipher, a trail with correlation c is valid only when c fulfils c2 > 2−n.
The linear hull effect is related to multiples trails with the same input and output masks. The
potential of the linear hull can be computed by the following theorem.
Theorem 1 ( [14]). The square of a correlation (or correlation contribution) is called correlation
potential. The average correlation potential between an input and output selection pattern is the
sum of the correlation potentials of all linear trails between the input and output selection patterns.

Now, we replace the objection function focusing on the number of active Sboxes with the one
centred on the correlation of the linear approximation and obtain a 4-step trail with correlation
2−21. To study the linear hull effect, we fix the input and output masks and exhaustively search for
trails with the correlation more significant than 2−64. The results indicate that the correlation of
the second-best trail is 2−51, and the number of trails with c > 2−64 is 4606. Thus, for TGIF-TBC,
the 4-step linear hull has correlation potential 2−42, approximately. On average, it is expected to
require 13-step to make the correlation potential strictly lower than 2−128. Therefore, we believe
that 18-step TGIF-TBC is sufficient to provide resistance against linear cryptanalysis.

Related-key differential cryptanalysis.

The lower bound for the number of active Sboxes in a related-key (RK) differential characteristic
can be found in Table 4.1. For 2-step and 3-step encryptions, the lower bounds for the differential
probability are 2−4 and 2−22.83, respectively. Since the programs for the search of probability
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bounds for more than 3-step do not finish in a reasonable time, we use the average value to estimate
the security bound under related-key setting. Note that the 3-round differential trail with optimal
probability has 12 active Sboxes, the average probability for one Sbox is 2−1.9. To ensure the
probability to be lower than 2−128, we need 68 active Sboxes. Since the number of active Sboxes
for 5-step encryption is no less than 26, it is expected that 14-step of encryption will have more
than 68 active Sboxes on average. Thus, we believe that 18-step TGIF-TBC is enough to withstand
related-key differential cryptanalysis.

4.2.2 Integral Cryptanalysis

We use the automatic tool based on MILP method [44] to trace the propagation of the bit-based
division property [41,42] of TGIF-TBC. To obtain the longest integral distinguisher, we set only one
bit in the plaintext as constant, and the others are set as active. The maximum number of steps
that the integral distinguisher exists is six. When the unique constant bit is located at the left
branch of the input, all the 64 bits in the right branch satisfy zero-sum property after six steps of
encryption. In other words, we find 64 6-step integral distinguishers with data complexity being
2127 chosen plaintexts

(AiCA64−i−1, A64)→ (U64, B64), 0 6 i 6 63,

where ‘Ai’, ‘Bi’, and ‘U i’ respectively stands for i consecutive active, zero-sum, and unknown bits,
and ‘C’ represents a constant bit.

Then, we manage to reduce the data requirement of the 6-step distinguisher. We fix the first c
bits as constant and gradually increase the value of c until there is no zero-sum bit after six steps
of encryption. Finally, we obtain a 6-step integral distinguisher with data requirement being 2116,

(C12A52, A64)→ (U64, U4BU3BU6BU48).

Note that GIFT-64 achieves full diffusion in three rounds. If the 6-step distinguisher is utilised
in a key-recovery attack and the attacker wants to use at least one zero-sum bit to recover the
information about the subtweakeys, appending two steps after the distinguisher will make the full
tweakey state to be involved in the key-guessing phase. Thus, we claim that full steps of TGIF-TBC
are enough to resist the integral cryptanalysis.

4.2.3 Impossible Differential Cryptanalysis

Impossible differential cryptanalysis [6, 24] exploits the differential which never occurs. In the key
recovery attack, the attacker puts the impossible differential distinguisher (∆in,∆out) in the middle
of the objective cipher and appends several rounds before and after it. Given a pair of plaintexts
with input difference ∆P and output difference ∆C, the adversary guesses the subkeys involved in
the appended rounds and partially encrypts/decrypts the pair to obtain the intermediate differences
at the head and tail of the distinguisher. The subkeys that result in the impossible differential are
rejected.

We modify the automatic tool based on SAT method [40] to search for impossible differentials
with fixed input and output differences. The internal state is seen as 32 nibbles. We exhaustively
test the combinations of input and output differences satisfying the following conditions:

• the input difference has one active nibble;

• the output difference has one active nibble.
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The number of input/output difference satisfying the first/second condition is 32× 15 = 480. Thus,
we evaluate 480× 480 = 230400 pairs of input and output differences.

The search results indicate that all the 230400 differentials constitute 3-step impossible differen-
tial, while all of these differentials become possible ones after four steps of encryption. Since the
length of the impossible differential is very short, we think full steps of TGIF-TBC are sufficient to
resist the impossible differential attack.

4.2.4 Zero-correlation Linear Cryptanalysis

Zero-correlation linear cryptanalysis [8] relies on linear approximations with correlation zero. We
also use the automatic tool based on SAT method [40] to realise the search of zero-correlation
distinguisher with fixed input and output masks. The internal state is regarded as 32 nibbles.
We check all the combinations of input and output masks with only one active nibble. The
optimal distinguisher in this setting achieves four steps, and the number of zero-correlation linear
approximations we found is 57580. All the 230400 combinations correspond to linear approximations
with non-zero correlation after five steps of encryption. Note that the length of the zero-correlation
linear approximation is very short, and we believe that full steps of TGIF-TBC are sufficient to
withstand this kind of attack.
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Features

The primary goal of TGIF is to provide a lightweight, yet highly-secure, highly-efficient AE based
on a new TBC named TGIF-TBC. TGIF has a number of desirable features. Below we detail some
representative ones:

• Performance of TBC. TGIF-TBC is an extremely efficient TBC, both in terms of area
and throughput, on a broad range of devices, from very constrained hardware to high-end
software platforms. It has the very interesting property that it can either been seen as a
classical SPN cipher (which makes it very easy to analyse its security and derive bounds
for differential/linear cryptanalysis) or as a bitslice-oriented cipher that allows very efficient
constant time bitslice implementations, even without parallel primitive calls. Its most efficient
implementation is straightforward and can be easily adapted to various architectures and to
enable area/throughput trade-offs. TGIF-TBC is even more efficient than the 128-bit version
of GIFT (one of the most lightweight block cipher to date), while providing stronger security
guarantees. It is as of today one of the 128-bit primitive that uses the smallest number of
basic boolean operations. Moreover, it has the special property that its key schedule naturally
brings back the key state to its original input value at the end of the cipher computation,
which will allow the designer to save area in the mode.

Table 5.1: Estimations for the hardware area and number of cycles (throughput) of round-based
implementations of GIFT, SKINNY, SIMON and our new cipher TGIF-TBC

Area Cycles

(GE)

TGIF-TBC 1592 72

TGIF-TBC 2096 36

TGIF-TBC 3105 18

GIFT-128 1997 41

SKINNY-128-128 2104 40

SIMON 128/128 2064 69

• Performance of Mode. TGIF-N mode is efficient: it encrypts an n-bit block by just one
call of n-bit-block primitive. Besides, it is smaller than ΘCB3 in that it does not need an
additional state beyond the internal TBC and it requires a smaller TBC (smaller tweakey).
Although TGIF is serial in nature, i.e., not parallelizable, it was shown during the CAESAR
competition that parallelizability does not lead to significant performance gains in hardware
performance [16,23,27]. Moreover, parallelizability is not considered crucial in lightweight
applications, so it is a small price for a simple, small and fast design.

• Security of TBC. The dual nature of TGIF-TBC (SPN/bitslice) allows us to study TGIF-TBC
as a classical SPN cipher, with enough structure so that automated tools (SAT, MILP, etc.)
can easily obtain bounds on the number of active boxes in a differential or linear attack. For
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Table 5.2: Total number of operations and theoretical performance of GIFT and various lightweight
block ciphers. N denotes a NOR gate, A denotes a AND gate, X denotes a XOR gate.

Cipher nb. of gate cost (per bit per round) nb. of op. nb. of op. round-based

rds int. cipher key sch. total w/o key sch. w/ key sch. impl. area

TGIF-TBC 72
0.5 N 0.5 N 1.37× 72 1.87× 72 0.5 + 2.67× 1.37

0.87 X 0.5 X 1.37 X = 99 = 135 = 4.17

GIFT
40

1 N 1 N 3.0× 40 3.0× 40 1 + 2.67× 2

-128-128 2 X 2 X = 120 = 120 = 6.34

SKINNY
40

1 N 1 N 3.25× 40 3.25× 40 1 + 2.67× 2.25

-128-128 2.25 X 2.25 X = 130 = 130 = 7.01

SIMON
68

0.5 A 0.5 A 2× 68 3× 68 0.67 + 2.67× 2.5

-128/128 1.5 X 1 X 2.5 X = 136 = 204 = 7.34

AES
10

4.25 A 1.06 A 5.31 A 20.25× 10 24.81× 10 7.06 + 2.67× 19.5

-128 16 X 3.5 X 19.5 X = 202.5 = 248.1 = 59.12

example, we can show that the best differential path for 4 steps of TGIF-TBC has probability
2−47.415.

• Security proofs for the mode. Both TGIF-N and TGIF-M have provable security in the
Ideal-Cipher Model (ICM), where TGIF-TBC is modeled as the ideal-cipher. This is very
important for high security confidence of TGIF and allows us to rely on the security of TGIF
to that of TGIF-TBC. As mentioned above, TGIF-TBC allows an extensive security analysis
on various metrics by using automated tools. Our provable security results are relying on
the model where TGIF-TBC behaves as the ideal-cipher. It tells us that unless we find a
structural weakness of TGIF-TBC, TGIF will be secure, as in the same way of reasoning for
(public) permutation-based schemes, such as Sponge.

• Beyond-birthday-bound security (TGIF-N2 and TGIF-M2). The security bounds of
TGIF-N2 shown in Section 4 are comparable to the state-of-the-art TBC modes of operation,
namely ΘCB3 for NAE and SCT for MRAE. In particular, TGIF-N2 and TGIF-M2 (under
NR adversary) achieve beyond-birthday-bound (BBB) security with respect to the block
length. This level of security is much stronger than the up-to-birthday-bound, n/2-bit security
achieved by conventional block cipher modes using n-bit block ciphers, e.g. GCM. We note that
the above comparison ignores the fact that ΘCB3 and SCT use a dedicated TBC while ours
use an (ideal) block cipher. This is simply because of the lack of BBB-secure NAE/MRAE
schemes based on the ideal-cipher: combining known ICM-to-TBC results [21, 31, 43] and
TBC-based modes would be possible, however, the performance will be quite poor unless the
tweak-dependent key derivation is very carefully considered, which is exactly the point we
carefully elaborated in our design.

• Misuse resistance. TGIF-M is an MRAE mode which is secure against misuse (repeat) of
nonces in encryption queries. More formally, it provides the best-possible security against
nonce repeat in that ciphertexts do not give any information as long as the uniqueness of the
input tuple (N,A,M) is maintained. In contrast to this, popular nonce-based AE modes are
often vulnerable against nonce repeat, even one repetition can be significant. For example,
the famous nonce repeat attack against GCM [17, 22] reveals its authentication key.

• Small messages. The variants of TGIF are efficient for small-message scenario. For example,
TGIF-N1 and TGIF-N2 require 3 and 4 TBC calls, respectively, for processing 1 block of AD
and 1 block of message.

• Simplicity/Small footprint. TGIF has a quite small footprint. Especially for TGIF-N, we
essentially need what is needed to implement the TBC TGIF-TBC itself, and one-block mask
exclusively used by TGIF-N2 and TGIF-M2. We remark that this becomes possible thanks
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to the permutation-based structure of TGIF-TBC’s tweakey schedule, which allows to share
the state registers used for storing input variable and for deriving round-key values. Thus,
this feature is specific to our use of TGIF-TBC, though one can expect a similar effect with
TBC using a simple tweak(ey) schedule. We do not need the inverse circuit for TGIF-TBC
which was needed for ΘCB3. A comparison in Section 6 (Table 6.1) shows that TGIF-N is
quite small and especially efficient in terms of a combined metric of size and speed, compared
with other schemes.

TGIF-M also has a small footprint due to the shared structure with TGIF-N.

• Flexibility. TGIF has a large flexibility. Generally, it is defined as a generic mode for TBCs,
and the security proofs under ICM contribute to a high confidence of the scheme when
combined with a secure TBC under related-tweakey model. In fact, all mode versions of TGIF
(and some others) are used in the Remus design [?] with a different underlying TBC.

• Side channels. TGIF does not inherently guarantee security against Side Channel Analysis
and Fault Attacks. However, standard countermeasures are easily adaptable for TGIF, e.g.
Fresh Rekeying [30], Masking [33], etc. Moreover, powerful fault attacks that require a
small number of faults and pairs of faulty and non-faulty ciphertexts, such as DFA, are not
applicable to TGIF-N without violating the security model, i.e., misusing the nonce or releasing
unverified plaintexts. We plan to study the applicability/cost of such countermeasures, in
addition to newly proposed countermeasures suited specifically for TGIF in subsequent works.
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Design Rationale

TGIF is designed with the following goals in mind:

1. Have a small-footprint and efficient TBC internal primitive, while providing strong security
guarantees against state-of-the-art attacks.

2. Have a very small area compared to other TBC/BC based AEAD modes, while providing
security proofs in the well-established ideal-cipher model.

6.1 TGIF-TBC Design

Our cipher TGIF-TBC can be seen as an improvement over GIFT, while enabling tweakable capability.
This work was initiated by the new observation of a special structure in GIFT cipher, that can greatly
improve its performance in software. Namely, instead of performing the normal bit permutation
of GIFT (efficient on hardware, but can be slow on software), one can instead use an alternative
representation during 4 rounds, that will eventually have a completely equivalent effect as the
normal 4 rounds of GIFT. This new representation, bitslice in essence, only uses very simple rotations
which are easy to perform in software.

In other words, we retain all the benefits from the structure and the analysis of GIFT (ability to
easily get a number of active Sboxes for differential and linear cryptanalysis, etc.), while having a
very efficient alternative bitslice representation of it. TGIF-TBC can be seen as a link between SPN
ciphers and AND-Rotation-XOR ciphers.

We note that this type of special bitslice representation of GIFT is simple for its 64-bit version,
but not for its 128-bit one. This is the reason why we chose to use GIFT-64 as basic building block
(and a Misty structure to propose a 128-bit cipher). Besides, this representation goes back to identity
after 4 rounds of GIFT, which is why we used 4 rounds inside the GIFT-64 black-box. Overall, our
cipher is notably more efficient than GIFT-128, one of the very lightest cipher recently published,
while actually ensuring a higher number of active Sboxes per Sbox computed. The analysis is also
simpler for related-key attacks, which allows use to enable the crucial tweak capability, that leads
to very efficient and lightweight authenticated encryption modes, such as Remus.

The tweakey schedule of TGIF-TBC has been chosen so as to minimize the number of XORs,
while proposing acceptable diffusion in the tweakey state. It is also very simple and efficient to
compute this tweakey schedule on the fly. Besides, we forced the special feature that the tweakey
schedule naturally makes the tweakey state to come back to its initial value at the end of the cipher
computation. This has two benefits in practice. First, for decryption the tweakey passed as input
is the tweakey state to start the decryption from (no need to compute the entire tweakey schedule
for all rounds in order to obtain the stating decryption tweakey state). Secondly, in serial modes
like Remus, saving memory is crucial for lightweight performances. Since TGIF-TBC will receive
some special counter-like value to its tweakey input, this key schedule feature will allow to avoid
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allocating extra memory to compute the cipher: the counter register can directly be used for free
as tweakey state.

6.2 Mode Design

Rationale of NAE Mode. By seeing TGIF-N as a mode of TBC (ICE), TGIF-N has a similar
structure as a mode called iCOFB, which appeared in the full version of CHES 2017 paper [12].
Because it was introduced to show the feasibility of the main proposal of [10], block cipher mode
COFB, it does not work as a full-fledged AE using conventional TBCs. Therefore, starting from
iCOFB, we apply numerous changes for improving efficiency while achieving high security. As
a result, TGIF-N becomes a much more advanced, sophisticated NAE mode based on a TBC.
Assuming ICE is an ideally secure TBC, the security bound of TGIF-N is essentially equivalent to
ΘCB3, having full n-bit security. The remaining problem is how to efficiently instantiate TBC.
We could use a dedicated TBC, or a conventional block cipher mode (such as XEX [37]), however,
they have certain limitations on security and efficiency. To overcome such limitations, we choose
to use a block cipher with tweak-dependent key/mask derivation. This approach, initiated by
Mennink [31], enables the performance that cannot be achieved by the previous approaches, at the
expense of the ideal-cipher model for security. Specifically, the TBC ICE has 2 variants, ICE1 and
ICE2, that can be seen as a variant of XHX [21]. Each variant has its own security level, namely,
ICE1 has n/2-bit security and ICE2 has n-bit security. They have different computation cost for
key/mask derivations and have different state sizes. Given the n-bit security of outer TBC-based
mode, the standard hybrid argument shows that the security of TGIF-N is effectively determined by
the security of the internal ICE.

Rationale of MRAE Mode. TGIF-M is designed as an MRAE mode following the structure of
SIV [39] and SCT [35]. TGIF-M reuses the components of TGIF-N as much as possible to inherit its
implementation advantages and the security. In fact, this brings us several advantages (not only
for implementation aspects) over SIV/SCT. TGIF-M needs an equivalent number of primitive calls
as SCT. The difference is in the primitive: TGIF-M uses an n-bit block cipher while SCT uses an
n-bit-block dedicated TBC. Moreover, TGIF-M has a smaller state than SCT because of single-state
encryption part taken from TGIF-N (SCT employs a variant of counter mode). Similarly to TGIF-N,
the provable security of TGIF-M is effectively determined by the internal ICE. For TGIF-M2, thanks
to n-bit security of ICE2, its security is equivalent to SCT: the security depends on the maximum
number of repetition of a nonce in encryption (r), and if r = 1 (i.e., NR adversary), we have the full
n-bit security. Security will gradually decrease as r increases, also known as “graceful degradation”,
and even if r equals to the number of encryption queries, implying nonces are fixed, we maintain
the birthday-bound, n/2-bit security. For TGIF-M1, the security is n/2 bits for both NR and NM
adversaries due to the n/2-bit security of ICE1.

ZAE [20] is another TBC-based MRAE. Although it is faster than SCT, the state size is much
larger than SCT and TGIF-M.

Efficiency Comparison. In Table 6.1, we compare TGIF-N to ΘCB3, COFB, Beetle and Ascon,
where state size is the minimum number of bits that the mode has to maintain during its operation,
and rate is the ratio of input data length divided by the total output length of the primitive needed
to process that input. ΘCB3 is a well-studied TBC-based AEAD mode. COFB is a BC-based
lightweight AEAD mode. Beetle is a Sponge-based AEAD mode, but it holds a lot of resemblance
to TGIF-N. The comparison follows the following guidelines, while trying to be fair in comparing
designs that follow completely different approaches:

1. k = 128 for all the designs.
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Table 6.1: Features of TGIF-N members compared to ΘCB3 and other lightweight AEAD algo-
rithms: λ is the bit security level of a mode. Here, (n, k)-BC is a block cipher of n-bit block and
k-bit key, (n, t, k)-TBC is a TBC of n-bit block and k-bit key and t-bit tweak, and n-Perm is an
n-bit cryptographic permutation.

Scheme
Number of

Primitive
Security State Size Rate S/R Inverse

Primitive Calls (λ) (S) (R) Free

TGIF-N1
⌈ |A|
n

⌉
+
⌈ |M |
n

⌉
+ 1 (n, k)-BC, n = k n/2 n+ k = 4λ† 1 4λ Yes

TGIF-N2
⌈ |A|
n

⌉
+
⌈ |M |
n

⌉
+ 2 (n, k)-BC, n = k n 2n+ k = 3λ 1 3λ Yes

COFB [11]
⌈ |A|
n

⌉
+
⌈ |M |
n

⌉
+ 1 (n, k)-BC, n = k n/2− log2 n/2 1.5n+ k = 5.4λ‡ 1 5.4λ Yes

ΘCB3 [26]
⌈ |A|
n

⌉
+
⌈ |M |
n

⌉
+ 1 (n, 1.5n, k)-TBC], n = k n 2n+ 2.5k = 4.5λ 1 4.5λ No

Beetle [9]
⌈ |A|
n

⌉
+
⌈ |M |
n

⌉
+ 2 2n-Perm, n = k n− log2 n 2n = 2.12λ 1/2 4.24λ Yes

Ascon-128 [15]
⌈ |A|
n

⌉
+
⌈ |M |
n

⌉
+ 1 5n-Perm, n = k/2 n/2 7n = 3.5λ 1/5 17.5λ Yes

Ascon-128a [15]
⌈ |A|
n

⌉
+
⌈ |M |
n

⌉
+ 1 2.5n-Perm, n = k n 3.5n = 3.5λ 1/2.5 8.75λ Yes

SpongeAE [ [5]
⌈ |A|
n

⌉
+
⌈ |M |
n

⌉
+ 1 3n-Perm, n = k n 3n = 3λ 1/3 9λ Yes

†Can possibly be enhanced to 3λ with a different KDF and block cipher with 2k-bit key;
‡Can possibly be enhanced to about 4λ with a 2n-bit block cipher;
] 1.5n-bit tweak for n-bit nonce and 0.5n-bit counter;
[ Duplex construction with n-bit rate, 2n-bit capacity.

2. n is the input block size (in bits) for each primitive call.

3. λ is the security level of the design.

4. For BC/TBC based designs, the key is considered to be stored inside the design, but we also
consider that the encryption and decryption keys are interchangeable, i.e., the encryption key
can be derived from the decryption key and vice versa. Hence, there is no need to store the
master key in additional storage. The same applies for the nonce.

5. For Sponge and Sponge-like designs, if the key/nonce are used only during initialization, then
they are counted as part of the state and do not need extra storage. However, in designs like
Ascon, where the key is used again during finalization, we assume the key storage is part of
the state, as the key should be supplied only once as an input.

Our comparative analysis of these modes show that TGIF-N achieves its goals, as TGIF-N1 has
2n state, which is smaller than COFB and equal to Beetle. TGIF-N1 and COFB both have birthday
security, i.e., n/2. Beetle achieves higher security, at the expense of using a 2n-bit permutation.
Our analysis also shows that among the considered AEAD modes, TGIF-N2 achieves the lowest
S/R ratio, with a state size of 3n but only an n-bit permutation.

Similar comparison is shown in Table 6.2 for Misuse-Resistant BC- and TBC-based AEAD
modes. It shows that TGIF-M2 particularly is very efficient.

6.2.1 Hardware Implementations

The goal of the design of TGIF is to have a very small area overhead over the underlying TBC,
specially for the round-based implementations. In order to achieve this goal, we set two requirements:

1. There should be no extra Flip-Flops over what is already required by the TBC, since Flip-Flops
are very costly (4 ∼ 7 GEs per Flip-Flop).

2. The number of possible inputs to each Flip-Flop and outputs of the circuits have to be
minimized. This is in order to reduce the number of multiplexers required, which is usually
one of the cause of efficiency reduction between the specification and implementation.
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Table 6.2: Features of TGIF-M members compared to other MRAE modes : λ is the bit security
level of a mode. Here, (n, k)-BC is a block cipher of n-bit block and k-bit key, (n, t, k)-TBC is a
TBC of n-bit block and k-bit key and t-bit tweak. Security is for Nonce-respecting adversary.

Scheme
Number of

Primitive
Security State Size Rate S/R Inverse

Primitive Calls (λ) (S) (R) Free

TGIF-M1
⌈ |A|+|M |

n

⌉
+
⌈ |M |
n

⌉
+ 1 (n, k)-BC, n = k n/2 2n = 4λ 1/2 8λ Yes

TGIF-M2
⌈ |A|+|M |

n

⌉
+
⌈ |M |
n

⌉
+ 2 (n, k)-BC, n = k n 3n = 3λ 1/2 6λ Yes

SCT † [36]
⌈ |A|+|M |

n

⌉
+
⌈ |M |
n

⌉
+ 1 (n, n, k)-TBC, n = k n 4n = 4λ 1/2 8λ Yes

SUNDAE [1]
⌈ |A|+|M |

n

⌉
+
⌈ |M |
n

⌉
+ 1 (n, k)-BC, n = k n/2 2n = 4λ 1/2 8λ Yes

ZAE ] [20]
⌈ |A|+|M |

2n

⌉
+
⌈ |M |
n

⌉
+ 6 (n, n, k)-TBC, n = k n 7n = 7λ 1/2 14λ Yes

†Tag is n bits;
] Tag is 2n bits;

In this section, we describe various design choices that help achieve these two goals.

General Architecture and Hardware Estimates. The mode was designed with the architec-
ture in Figure 6.1 in mind, where only a full-width state-register is used, carrying the TBC state
and tweakey values, and every cycle, it is either kept without change, updated with the TBC round
output (which includes a single round of the key scheduling algorithm) or the output of a simple
linear transformation, which consists of ρ/ρ−1 and the block counter.

Hardware Cost of TGIF-N1. The overhead of TGIF-N1 is mostly due to the doubling (3 XORs)
and ρ operations (68 XORs, assuming the input/output bus has width of 32 bits). Moreover, we
need 2 128-bit multiplexers to select the input to the tweakey out of four positive values: K, S
(after applying the KDF function), lt, or the TGIF-TBC round key. We assume a multiplexer costs
∼ 2.75 GEs and an XOR gate costs ∼ 2.25 GEs. In total, this adds up to ∼ 864 GEs on top of
TGIF-TBC.

The estimations for the area of TGIF-TBC are provided in Table 5.1.

In order to design a combined encryption/decryption circuit, we show below that the decryption
costs only extra 32 multiplexers and ∼ 32 OR gates, or ∼ 100 GEs.

Hardware Cost of TGIF-N2. TGIF-N2 is similar to TGIF-N1, with an additional mask V . Hence,
the additional cost comes from the need to store and process this mask. The storage cost is simply
128 extra Flip-Flops. However, the processing cost can be tricky, especially since we adopt a serial
concept for the implementation of ρ. Hence, we also adopt a serial concept for the processing of V .
We assume that V will be updated in parallel to ρ and we merge the masking and ρ operations.
Consequently, we need 64 XORs for the masking, 3 XORs for doubling, 5 XORs in order to correct
the domain separation bits after each block (note that 3 bits are fixed), and 1 Flip-Flop for the
serialization of doubling. Overall, we need ∼ 800 GEs on top of TGIF-N1, which is again smaller
than almost all other AEAD designs (except other TGIF variants), while achieving BBB security.

The arguments about serialization, unrolling and decryption are the same for all TGIF-N variants.
Thanks to the shared structure, these arguments also generally apply to TGIF-M.
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state

TGIF-TBC lt

input

output

Figure 6.1: Expected architectures for TGIF-TBC and TGIF.

6.2.2 Primitives Choices

LFSR-Based Counters. The NIST call for lightweight AEAD algorithms requires that such
algorithms must allow encrypting messages of length at least 250 bytes while still maintaining their
security claims. This means that using TBCs whose block sizes are 128 and 64 bits, we need a
block counter of a period of at least 246 and 247, respectively. While this can be achieved by a
simple arithmetic counter of 46 bits, arithmetic counters can be costly both in terms of area (3 ∼ 5
GEs/bit) and performance (due to the long carry chains which limit the frequency of the circuit).
In order to avoid this, we decided to use LFSR-based counters, which can be implemented using
a handful of XOR gates (3 XORs ≈ 6 ∼ 9 GEs). These counters are consecutive doubling of the
key L, which is equivalent to a Galois LFSR. This, in addition to the architecture described above,
makes the cost of counter almost negligible.

Tag Generation. While TGIF has a lot of similarities compared to iCOFB, the original iCOFB
simply outputs the final chaining value as the tag. Considering hardware simplicity, we changed it
so that the tag is the final output state (i.e., the same way as the ciphertext blocks). In order to
avoid branching when it comes to the output of the circuit, the tag is generated as G(S) instead of
S. In hardware, this can be implemented as ρ(S, 0n), i.e., similar to the encryption of a zero vector.
Consequently, the output bus is always connected to the output of ρ and a multiplexer is avoided.

Mask Generation in KDF. Similar to tag generation, we generate the masks by applying G to
a standard n-bit keyed permutation. The reason for that is to be able to reuse the same circuit used
for the normal opration of TGIF for KDF. Moreover, it allows us to easily output and store the masks
during the first pass of TGIF-N, to be used during the second pass. Effectively, KDF2 is equivalent
to the algorithm in Figure 6.2, where for KDF1 lines 5 to 7 will be substituted with a line [V ← 0n].
This algorithm shows that the KDF has the same structure as the main encryption/decryption part
of TGIF itself and the same hardware circuit can be very easily reused with almost no overhead.
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Algorithm KDF2(N,K)
1. S ← 0n

2. (S, η)← ρ(S,N)
3. S ← EK(S)
4. (S,L)← ρ(S, 0n)
5. S ← EK⊕1(S)
6. (S, V )← ρ(S, 0n)
7. S ← 0n

8. return (L, V )

Figure 6.2: Alternative description of KDF2 (KDF for ICE2). KDF1 is obtained by substituting
lines 5 to 7 with single line [V ← 0n].

Padding. The padding function used in TGIF is chosen so that the padding information is always
inserted in the most significant byte of the last block of the message/AD. Hence, it reduces the
number of decisions for each byte to only two decisions (either the input byte or a zero byte, except
the most significant byte which is either the input byte or the byte length of that block). Besides, it
is also the case when the input is treated as a string of words (16-, 32-, 64- or 128-bit words). This
is much simpler than the classical 10∗ padding approach, where every word has a lot of different
possibilities when it comes to the location of the padding string. Besides, usually implementations
maintain the length of the message in a local variable/register, which means that the padding
information is already available, just a matter of placing it in the right place in the message, as
opposed to the decoder required to convert the message length into 10∗ padding.

Padding Circuit for Decryption. One of the main features of TGIF is that it is inverse free
and both the encryption and decryption algorithms are almost the same. However, it can be
tricky to understand the behavior of decryption when the last ciphertext block has length < n. In
order to understand padding in decryption, we look at the ρ and ρ−1 functions when the input
plaintext/ciphertext is partial. The ρ function applied on a partial plaintext block is shown in
Equation (6.1). If ρ−1 is directly applied to padn(C), the corresponding output will be incorrect,
due to the truncation of the last ciphertext block. Hence, before applying ρ−1 we need to regenerate
the truncated bits. It can be verified that C

′
= padn(C)⊕ msbn−|C|(G(S)). Once C

′
is regenerated,

ρ−1 can be computed as shown in Equation (6.2)

S′
C
′

 =

1 1

G 1

 S

padn(M)

 and C = lsb|M |(C
′
). (6.1)

C
′

= padn(C)⊕ msbn−|C|(G(S)) and

S′
M

 =

1⊕G 1

G 1

 S
C
′

 . (6.2)

While this looks like a special padding function, in practice it is simple. First of all, G(S) needs
to be calculated anyway. Besides, the whole operation can be implemented in two steps:

M = C ⊕ lsb|C|(G(s)),

S
′

= padn(M)⊕ S,

which can have a very simple hardware implementation, as discussed in the next paragraph.
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Encryption-Decryption Combined Circuit. One of the goals of TGIF is to be efficient for
implementations that require a combine encryption-decryption datapath. Hence, we made sure
that the algorithm is inverse free, i.e., it does not use the inverse function of TGIF-TBC or G(S).
Moreover, ρ and ρ−1 can be combined using only one multiplexer, whose size depends on the size
of the input/output bus. The same circuit can be used to solve the padding issue in decryption, by
padding M instead of C. The tag verification operation simply checks that if ρ(S, 0n) equals to T ,
which can be serialized depending on the implementation of ρ.

Choice of the G Matrix. We chose the position of G so that it is applied to the output state.
This removes the need of G for AD processing, which improves (e.g.) software performance. In
Section 4, we listed the security condition for G, and we choose our matrix G so that it meets these
conditions and suits well for various hardware and software.

We noticed that for lightweight applications, most implementations use an input/output bus of
width ≤ 32. Hence, we expect the implementation of ρ to be serialized depending on the bus size.
Consequently, the matrix used in iCOFB can be inefficient as it needs a feedback operation over 4
bytes, which requires up to 32 extra Flip-Flops in order to be serialized, something we are trying to
avoid in TGIF. Moreover, the serial operation of ρ is different for byte, which requires additional
multiplexers.

However, we observed that if the input block is interpreted in a different order, both problems
can be avoided. First, it is impossible to satisfy the security requirements of G without any feedback
signals, i.e., G is a bit permutation.

• If G is a bit permutation with at least one bit going to itself, then there is at least one
non-zero value on the diagonal, so I +G has at least 1 row that is all 0s.

• If G is a bit permutation without any bit going to itself, then every column in I + G has
exactly two 1’s. The sum of all rows in such matrix is the 0 vector, which means the rows are
linearly dependent. Hence, I +G is not invertible.

However, the number of feedback signals can be adjusted to our requirements, starting from only
1 feedback signal. Second, we noticed that the input block/state of length n bits can be treated
as several independent sub-blocks of size n/w each. Hence, it is enough to design a matrix Gs of
size w × w bits and apply it independently n/w times to each sub-block. The operation applied on
each sub-block in this case is the same, (i.e., as we can distribute the feedback bits evenly across
the input block). Unfortunately, the choice of w and Gs that provides the optimal results depends
on the implementation architecture. However, we found out that the best trade-off/balance across
different architectures is when w = 8 and Gs uses a single bit feedback.

In order to verify our observations, we generated a family of matrices with different values of w
and Gs, and measured the cost of implementing each of them on different architectures.
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Implementations

7.1 Software Performances

7.1.1 Software implementations

The GIFT article presents extremely fast software implementations of the cipher on various recent
Intel processors, some as low as 2.57 c/B (actually our case will be even faster as no bitslice
packing/unpacking is required in TGIF). However, these bitslice implementations are heavily relying
on the parallelism offered by some operating modes. In our case, this parallelism is not present
as Remus is not a parallel mode. We do note that the Misty structure in TGIF offers a twofold
parallelization though.

In practice several easy solutions are possible to overcome this performance limitation. One
solution is to let the two communicating entities to use short sessions, which would re-enable
the server side to parallelise the encryption/decryption of the various sessions. Another possible
solution to still use these very fast bitslice implementations is to let the server to communicate
with several clients in parallel. This is in fact very probably what will happen in practice (a
server communicating with many clients is the main reason why fast software implementations are
interesting). Even in the case where the arriving data is always from new clients, bitslicing remains
possible by bitslicing the key schedule part of TGIF-TBC as well.

7.1.2 Micro-controller implementations

No micro-controller implementation has been reported on GIFT or TGIF yet to the best of our
knowledge. However, we believe that TGIF-TBC will be a strong candidate for micro-controllers:
its total number of rounds/operations is small compared to most other lightweight ciphers, while
the special bitslice representation of 4 rounds of GIFT has been set especially to avoid any
packing/unpacking cost and to perform the linear layer efficiently.

7.2 ASIC Performances

We have implemented the round-based architecture of all the variants of TGIF, using a simple
lightweight interface. The results show that TGIF is very lightweight, requiring less than 6 KGE to
reach around 6 Gbps. Moreover, we estimated that the round based implementation, while not
as efficient as the step based implementation, it can be around 700 GEs smaller. The largest and
most secure step-based implementation costs between 6 and 7 kGEs.
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Table 7.1: ASIC Step-Based Implementations of TGIF using the TSMC 65nm standard cell library
at minimum area. Power and Energy are estimated at 10 Mhz. Energy is for 1 TBC call for TGIF-N
members and 2 TBC calls for TGIF-M members.

Variant Cycles
Area w/o Area Minimum Throughput Power Energy Thput/Area NR NM

interface (kGE) (kGE) Delay (ns) (Gbps) (µW) (pJ) (Gbps/kGE) Security Security

TGIF-N1 22 4307 4813 1.58 3.68 433.1 952.6 0.76 64 -

TGIF-N2 22 5406 5950 1.58 3.68 430 946 0.62 128 -

TGIF-M1 22(AD)/44(M) 4250 4940 1.58 2.45 467.7 2057 0.5 64 64

TGIF-M2 22(AD)/44(M) 5569 6236 1.58 2.45 528.2 2324 0.39 128 64∼128

Table 7.2: ASIC Step-Based Implementations of TGIF using the TSMC 65nm standard cell library
at 1GHz

Variant Cycles
Area Minimum Throughput Thput/Area NR NM

(kGE) Delay (ns) (Gbps) (Gbps/kGE) Security Security

TGIF-N1 22 5945 1 5.9 1 64 -

TGIF-N2 22 7009 1 5.9 0.85 128 -

TGIF-M1 22(AD)/44(M) 6133 1 3.87 0.63 64 64

TGIF-M2 22(AD)/44(M) 7345 1 3.87 0.52 128 64∼128
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Appendix

8.1 Domain Separation

Table 8.1: Domain separation byte B of TGIF. Bit b6 is to be set to the appropriate value according
to the parameter sets.

b7 b6 b5 b4 b3 b2 b1 b0 int(B) case

TGIF-N

0 - 0 0 0 1 0 0 4 A main

0 - 0 0 1 1 0 0 12 A last unpadded

0 - 0 0 1 1 0 1 13 A last padded

0 - 0 0 0 0 1 0 2 M main

0 - 0 0 1 0 1 0 10 M last unpadded

0 - 0 0 1 0 1 1 11 M last padded

TGIF-M

0 - 1 0 0 1 0 0 36 A main

0 - 1 0 1 1 0 0 44 A last unpadded

0 - 1 0 1 1 0 1 45 A last padded

0 - 1 0 0 1 1 0 38 M auth main

0 - 1 0 1 1 1 0 46 M auth last unpadded

0 - 1 0 1 1 1 1 47 M auth last padded

0 - 1 0 0 0 1 0 34 M enc main
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