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1 Introduction

CLAE is a lightweight scheme for authenticated encryption with associated data (AEAD).
In CLAE, a configurable number of message bytes each is encrypted into a 2-byte ci-
phertext, which is defined over public nonces, messages, and secret keys, in a style
similar to the samples in Learning with Errors (LWE) problem [3]. Such 2-byte cipher-
texts look as if they are all randomly sampled (i.e., similar to the decision problem in
LWE) and form the basis of CLAE to randomize the ciphertexts.

A 2-byte ciphertext contains 1-byte redundancy; if the ciphertext is changed or in-
duced with faults, the decryption of the message byte will fail. In addition to the config-
urable number of message bytes, other message bytes each is encrypted into an 1-byte
ciphertext, randomized directly or indirectly with the 2-byte ciphertexts and secret keys.

In CLAE, the changes of nonces, messages, and associated data are propagated
across the whole ciphertext; one bit change of them causes random changes of cipher-
texts. On the other hand, if the ciphertext is tampered with, its decryption algorithm
spreads the changes or faults to each 2-byte ciphertext, where changes or faults are de-
tected. Without knowing the secret key, CLAE ensures the ciphertexts or associated data
cannot be changed systematically to pass integrity check. In this submission, CLAE is
specified at 128-bit security level.

CLAE is inherently resistant to side-channel attacks (e.g., differential power analy-
sis and fault attacks) for the following reasons.

– The bytes in the secret key are accessed nondeterministically during encryption,
depending on the values of public nonces, keys, associated data, and messages. For
example, two nonces of 1-bit difference can lead to very different access sequences
of key bytes. It is hard to derive a deterministic relationship between power traces
and key bytes in CLAE. Thus, the power traces cannot be used meaningfully to
recover secret key bytes.

– A secret intermediate ciphertext byte is directly affected by only up to 4 bits of an
adversary-controllable value, which can be messages, public nonces, and associated
data. Thus, even with the same nonce, when the adversary launches attacks by
varying messages or associated data, a particular byte in secret intermediate values
can have 4 bits not affected, thus not detectable via differences of power traces and
can be regarded as errors in LWE samples.

– Due to the redundancy in ciphertexts, CLAE can resist fault attacks, similar to other
authentication schemes [1]. Moreover, in CLAE, faults also affect the selection of



key bytes in decryption; hence, even in a case where a fault is not detected by
decryption, there is no deterministic relationship between the key bytes and the
faulty outputs.

In addition, public nonces or initialization vectors (IVs) can be reused in CLAE.
Even if this happens, 1-bit difference of messages or associated data is still encrypted
into completely different ciphertexts under the same key.

2 Specification

In this section, after introducing notations and preliminary functions, the algorithms of
key generation, encryption, and decryption will be described.

2.1 Notations

Given a byte array a of length l (e.g., a key, a message, a ciphertext, or the associated
data), a[i] (0 ≤ i ≤ l - 1) indicates the (i+ 1)th byte in a. ⊕ denotes exclusive-or
(XOR) operation, | indicating bitwise or, & for bitwise and. The right and left shift
operations are indicated by >> and <<, respectively.

Given two bytes b0 and b1, b0 +̂ b1 = b0 + b1 mod 256, b0 -̂ b1 = b0 - b1 mod 256, and
b0∗̂b1 = b0 ∗ b1 mod 256. b0 == b1 returns 1, if they are equal, otherwise 0.

The secret key is denoted by k, which is 16-byte long in this submission. The num-
ber of public nonces or initialization vectors (i.e., CRYPTO NPUBBYTES in api.h) is
denoted by Ln, which should be an even number in this submission. The number of tags
(i.e., CRYPTO TAGBYTES in encrypt.c) is denoted by Lt, both in bytes.

Algorithm 1: search(k, b, o)
Input :

16-byte key k
1-byte value b

Output :
updated 4-byte o

Steps :
f = k[b>>4] +̂ k[b&0x0F]
b = (f>>3|f<<5)⊕ b
b0 = (b&0x1E)>>1; b1 = (b&0x01<<3)|b>>5
b2 = (b&0x3C)>>2; b3 = (b&0x03<<2)|b>>6
o[0] = k[b0] +̂ (b2<<1); o[1] = k[b1] +̂ (b3<<3)
o[2] = k[b2] +̂ (b1<<1); o[3] = k[b3] +̂ (b0<<3)

Fig. 1: Search in key bytes



Algorithm 2: vecIV(k, iv, liv, s0, s1, o)

Input :
16-byte key k
nonces iv of liv bytes
two state bytes s0 and s1

Output :
updated o of two bytes

Steps :
o[0] = s0; o[1] = s1
for i = 0, ..., liv - 1 do

b0 = iv[i]&0x0F
o[0] = (o[0] +̂ k[o[1]>>4] +̂ k[o[0]&0x0F] +̂ k[b0])⊕ b0
b1 = iv[liv - i - 1]>>4
o[1] = (o[1] +̂ k[o[0]>>4] +̂ k[o[1]&0x0F] +̂ k[b1])⊕ b0 ⊕ b1

Fig. 2: Generate o from iv and k based on s0 and s1

2.2 Preliminary Functions

Four preliminary functions are defined below.

search(k, b, o): Based on the higher four bits and lower four bits in b, this algorithm in
Figure 1 selects two bytes from the key k, that is, k[b&0x0F] and k[b>>4]. Then, b
is updated with their sum f . Based on updated b, four bytes from k are selected to
update the output o. If there is one bit change in the input b, f and then o can be
totally different.

vecIV(k, iv, liv, s0, s1, o): This function given in Figure 2 merges the input iv into the
2-byte array o, based on two state bytes and the key. Each byte of intermediate o is
dependent on only four bits of iv; thus, even if iv is changed to generate different
power traces, there is no power consumption difference for 4 bits of each byte in
intermediate o. Also, the change of iv also changes the selected key bytes k[b0] and
k[b1], leading to different key byte accesses.

spill(k, c, lc, i): This function in Figure 3 merges the key bytes selected with c[i] to
other three ciphertext bytes. If c[i] is changed due to attacks, three other ciphertext
bytes, one of them probably at a different position, will be updated with different
key bytes.

spillA(k, s, c, lc, i, b): Similarly, this algorithm merges associated data into ciphertexts.
This function is stateful. An adversary can control the associated data, but not the
state s. Hence, the output of key byte search cannot be manipulated by the adversary
by making up associated data. An intermediate ciphertext byte in this function is
also affected by only 4 bits of associated data.

2.3 Key Generation

The secret key k in CLAE is 128-bit (or 16-byte) long. Each byte in k can be any
number and there is no extra processing of the secret key.



Algorithm 3: spill(k, c, lc, i)
Input :

16-byte key k, ciphertext c of lc bytes, lc ≥ 16
i ∈ {0, lc - 1}

Output :
updated c

Steps :
search(k, c[i], o)
if i > 0 then l = i - 1 else l = lc - 1
if i < lc - 1 then r0 = i + 1 else r0 = 0
r1 = r0 + ((o[0] +̂ o[3])&0x0F)
if r1 ≥ lc then r1 = r1 - lc
if r1 = i then

if r0 < lc - 1 then r1 = r0 + 1 else r1 = 0
c[l] = c[l]⊕ (o[0] +̂ o[1])
c[r1] = c[r1]⊕ (o[1] +̂ o[2])
c[r0] = c[r0]⊕ (o[2] +̂ o[3])

Fig. 3: Propagation of ciphertext

Algorithm 4: spillA(k, s, c, lc, i, b)

Input :
16-byte key k, 1-byte state s, ciphertext c of lc bytes, lc ≥ 16
i ∈ {0, lc}, 1-byte value b

Output :
a new state, and updated c

Steps :
search(k, (k[b>>4] +̂ k[b&0x0F] +̂ s)⊕ (b>>4), o)
l0 = i + (s&0x0F)
if l0 ≥ lc then l0 = l0 - lc
r0 = i + ((o[0] +̂ o[1])&0x0F)
if r0 ≥ lc then r0 = r0 - lc
c[l0] = c[l0]⊕ (o[0] +̂ o[1] +̂ s)⊕ (b&0xAA)
c[r0] = c[r0]⊕ (o[2] +̂ o[3] +̂ s)⊕ (b&0x55)
return o[0] +̂ o[2] +̂ o[3]

Fig. 4: Propagation of associate data



2.4 Encryption

The encryption algorithm is given in Figure 7, which depends two byte encryption
algorithms, called 2-byte encryption and 1-byte encryption, given in Figure 5 and Figure
6, respectively.

In 2-byte encryption, according to the state byte s[0], four bytes from the secret key
k are selected and used together with two byte arrays derived from IV to define the two
ciphertext bytes c[0] and c[1]. Their definition is in a style similar to samples in LWE
[3], in the sense that c[0] or c[1] can be regarded as containing 4-bit errors (or unknown
values) for the adversary, since the adversary can determine at most 4 bits in each of
them by varying the message m and analyzing power differences.

The value of c obtained just after c[0]= c[0] +̂ (c[1]>>3|c[1]<<5) is used as the up-
dated state s to influence the encryption of the next message byte. After o= c, the ci-
phertext c is updated with s. This update is exploited by the decryption algorithm to
propagate changes in ciphertexts, as to be explained more later.

In the 1-byte encryption algorithm, based on the state s, four bytes from k are se-
lected. Then, state bytes and key bytes are used to generate the 1-byte ciphertext c in
two steps. In each step, only 4-bits of m is XORed with secret values.

Algorithm 5a: Eb(k, s, iv,m, c)

Input :
16 - byte key k
2 - byte state s, nonces iv of Ln bytes
1 - byte message m, 2-byte array c

Output :
2-byte updated ciphertext c
2-byte updated state s

Steps :
search(k, s[0], o)
vecIV(k, iv, Ln/2, s[0], s[1], b)
c[0] = (o[0]∗̂b[0] +̂ o[1]∗̂b[1])⊕ (m&0x0F)
vecIV(k, iv + Ln/2, Ln/2, s[1], c[0], b)
c[1] = (o[2]∗̂b[0] +̂ o[3]∗̂b[1])⊕ (m>>4)
c[0] = c[0] +̂ (c[1]>>3|c[1]<<5)
o = c
c[0] = c[0] +̂ s[1]
c[1] = c[1] +̂ s[0]
s = o

Fig. 5: 2-byte encryption for 2-byte ciphertext

The encryption algorithm first determines the number lp of padding bytes. For a
message of lm bytes, if lm < Lt, then Lt − lm bytes need to be padded. CLAE pads lp
bytes of 0xFF for a short message. The length of ciphertext is Lt + lm + lp. The size gap



Algorithm 5b: Eb′(k, s0, s1,m)

Input :
16 - byte key k
two byte states s0, s1
1 - byte message m

Output :
1-byte ciphertext c

Steps :
search(k, s0 ⊕ s1, o)
c0 = (s1∗̂o[3] +̂ s0∗̂o[2])⊕ (m&0x0F)
c1 = (s0∗̂o[1] +̂ s1∗̂o[0])⊕ (m&0xF0)
return c0 ⊕ c1

Fig. 6: 1-byte encryption for 1-byte ciphertext

between the message and the ciphertext is at most 2 ∗ Lt when lm = 0. If lm ≥ Lt, the
gap is Lt. The 2-byte initial state s is generated with the vecIV function.

Based on the initial state, the first Lt message bytes each is encrypted into a 2-byte
ciphertext, with the state updated. Following the 2-byte encryption is a loop updating
the 2-byte ciphertext of a message byte with the 2-byte ciphertext of the succeeding
message byte. The updates in this loop propagate ciphertext changes in the decryption
algorithm.

After the loop of 2-byte ciphertext updating, the encryption algorithm encrypts the
remaining message bytes each into a 1-byte ciphertext. The 1-byte encryption algo-
rithm refers to the 2-byte ciphertexts and the previous ciphertext byte as the states to
randomize the 1-byte ciphertexts. After each 1-byte encryption, the 1-byte ciphertext
and the message byte are propagated into the preceding ciphertexts. Such propagation
helps detect the changes in the 1-byte ciphertext or message m in decryption.

For each byte of the associated data, the encryption algorithm uses the spillA algo-
rithm to merge it into other two ciphertext bytes. Then, a loop updates a ciphertext byte
c[lc - i - 1] with its succeeding one c[lc - i]. At last, the encryption algorithm uses the
spill algorithm twice to merge each byte in the ciphertext with other ciphertext bytes.
The spill and spillA algorithms ensure the adversary cannot make valid changes to ci-
phertexts and associated data, without knowing the secret key. The repeated application
of spill algorithm is to increase the resistance to differential analysis attack, as to be
discussed later.

In the encryption algorithm, key bytes are selected in a nondeterministic way. Given
a key, the sequence of key bytes accessed via the search algorithm or the vecIV func-
tion is random, depending on public nonces, messages, and associated data. For two
encryptions of the same message with different public nonces, the access sequences of
key bytes can be different. A key byte can be repeatedly selected, or not selected when
encrypting a message. In addition, a longer message needs to access more key bytes to
encrypt.



Algorithm 6: E(c, lc,m, lm, a, la, iv, k)

Input :
16-byte key k, 12-byte nonces iv
lm-byte message m
buffer c and its length lc
associated data a and its length la

Output :
ciphertext c
updated lc

Steps :
if lm < Lt then lp = Lt - lm else lp = 0
lc = Lt + lm + lp
Let s be 2-byte array, and s[0] = 0
for i = 0, ..., 15 do s[0] = s[0] +̂ k[i]
vecIV(k, iv, Ln, s[0], s[0]>>3|s[0]<<3, s)
for i = 0, ..., Lt - 1 do

if i < lm then Eb(k, s, iv,m[i], c + i ∗ 2)
else Eb(k, s, iv, 0xFF, c + i ∗ 2)

for i = 0, ..., Lt - 2 do
c[i ∗ 2 + 0] = c[i ∗ 2 + 0] +̂ c[(i + 1) ∗ 2 + 0]
c[i ∗ 2 + 1] = c[i ∗ 2 + 1] +̂ c[(i + 1) ∗ 2 + 1]

for i = Lt, ..., lm - 1 do
c[2 ∗ Lt + i - Lt] =Eb′(k, c[i - Lt], c[2 ∗ Lt + i - Lt - 1],m[i])
c[i - Lt + 1] = (c[i - Lt + 1] +̂ c[2 ∗ Lt + i - Lt])⊕ (m[i]&0xAA)
c[i - Lt + 2] = (c[i - Lt + 2] +̂ c[2 ∗ Lt + i - Lt])⊕ (m[i]&0x55)

s[0] = 0; j = 0
for i = 0, ..., 15 do s[0] = s[0] +̂ k[i]
for i = 0, ..., la - 1 do

s[0]=spillA(k, s[0], c, lc, j, a[i])
j = j + 1; if j > lc then j = 0

for i = 1, ..., lc - 1 do
c[lc - i - 1] = c[lc - i - 1] +̂ (c[lc - i]>>5|c[lc - i]<<3)

for i = 0, ..., lc - 1 do
spill(k, c, lc, i)

for i = 0, ..., lc - 1 do
spill(k, c, lc, i)

Fig. 7: Encryption



2.5 Decryption

The decryption algorithm in Figure 10 relies on two byte decryption algorithms, called
2-byte decryption and 1-byte decryption, as shown in Figure 8 and Figure 9, respec-
tively.

The 2-byte decryption algorithm starts with updating the 2-byte ciphertext with the
state s. The updated 2-byte ciphertext then becomes the state to decrypt the next mes-
sage byte. Hence, either a changed input state or the changed 2-byte ciphertext affects
the subsequent states. In the 2-byte decryption, the 1-byte redundancy (i.e., higher 4 bits
in m0 and m1, respectively) is used to check the integrity of the 2-byte ciphertext. A
failed check returns -1; otherwise, the message byte is returned. The 1-byte decryption
algorithm simply recovers the encrypted message byte.

Algorithm 7a: Db(k, s, iv, c)

Input :
16-byte key k
2-byte state s, nonces iv of Ln bytes
2-byte ciphertext c

Output :
2-byte updated state s
1-byte message or -1

Steps :
c[0] = c[0] -̂ s[1]
c[1] = c[1] -̂ s[0]
c0 = c[0] -̂ (c[1]>>3|c[1]<<5)
search(k, s[0], o)
vecIV(k, iv + Ln/2, Ln/2, s[1], c0, b)
m1 = c[1]⊕ (o[2]∗̂b[0] +̂ o[3]∗̂b[1])
vecIV(k, iv, Ln/2, s[0], s[1], b)
m0 = c0 ⊕ (o[0]∗̂b[0] +̂ o[1]∗̂b[1])
s = c
if m0 > 0x0F or m1 > 0x0F then return -1
else return m0+(m1<<4)

Fig. 8: Byte decryption for 2-byte ciphertext

The decryption algorithm first determines lm. After that, it applies the spill and
spillA algorithms to update all ciphertext bytes. The spill and spillA algorithms rely
on the search algorithm. Any change in ciphertext or associated data leads the search
algorithm to returning different key bytes, thus propagating changes to other bytes in
the ciphertext.

Then, the 1-byte decryption algorithm is applied. Any fault induced to the decrypted
m or its ciphertext is propagated to the preceding ciphertexts, and eventually propagated
to the 2-byte ciphertexts. The 1-byte decryption is followed by the loop of updating 2-
byte ciphertexts. This loop propagates the changes from the last 2-byte ciphertext to



Algorithm 7b: Db′(k, s0, s1, c)

Input :
16 - byte key k
two byte states s0, s1
1 - byte ciphertext c

Output :
1-byte message m

Steps :
search(k, s0 ⊕ s1, o)
m = c⊕ (s1∗̂o[3] +̂ s0∗̂o[2])⊕ (s0∗̂o[1] +̂ s1∗̂o[0])
return m

Fig. 9: Byte decryption for 1-byte ciphertext

the first 2-byte ciphertext. Thus, each 2-byte decryption has the chance to detect the
change.

When the 2-byte decryption algorithm return -1, the decryption algorithm continues
to decrypt the subsequent bytes. Thus, the decryption time does not leak the position of
the first message byte that fails the integrity check. At last, the bytes 0xFF at the tail of
the message are supposed to be padded bytes, thus removed.

3 Security Analysis

The semantic security of CLAE and its resistance to side channel and fault attacks come
from the following properties, which will be evaluated with experiments in this section.

– The 2-byte encryption algorithm generates pseudorandom 2-byte ciphertext for a
message byte;

– Two nonces even with 1-bit difference randomize the whole ciphertexts including
the output of 1-byte encryption differently;

– The bytes in the secret key are accessed randomly in encryption via the search and
vecIV algorithms;

– The 2-byte decryption algorithm will fail if the 2-ciphertext is tampered with;
– A change to ciphertexts or associated data is propagated to 2-byte ciphertexts,

where it is detected.

Given any two different messages with the same length, one of them is encrypted.
Due to the first two properties, the cipherext is randomized for every cipherext byte,
making it hard to distinguish which message is encrypted. This is the basic idea of
semantic security of CLAE.

3.1 Security Claim and Differential Cryptanalysis

The differential cryptanalytic attack to CLAE requires 2128 computations on a classical
computer in a single key setting, as estimated below.



Algorithm 8: D(m, lm, c, lc, a, la, iv, k)

Input :
16-byte key k, nonces iv of Ln bytes
ciphertext c and its length lc
buffer m and its length lm
associated data a and its length la

Output :
0 or -1
updated m and lm

Steps :
lm = lc - Lt
for i = 0, ..., lc - 1 do

spill(k, c, lc, lc - i - 1)
for i = 0, ..., lc - 1 do

spill(k, c, lc, lc - i - 1)
for i = 1, ..., lc - 1 do

c[i - 1] = c[i - 1] -̂ (c[i]>>5|<<3)
Let s be 2-byte array
s[0] = 0; j = 0
for i = 0, ..., 15 do s[0] = s[0] +̂ k[i]
for i = 0, ..., la - 1 do

s[0] = spillA(k, s[0], c, lc, j, a[i])
j = j + 1; if j > lc then j = 0

for i = lm - 1, ..., Lt do
m[i] = Db′(k, c[i - Lt], c[2 ∗ Lt + i - Lt - 1], c[2 ∗ Lt + i - Lt])
c[i - Lt + 1] = (c[i - Lt + 1]⊕ (m[i]&0xAA)) -̂ c[2 ∗ Lt + i - Lt]
c[i - Lt + 2] = (c[i - Lt + 2]⊕ (m[i]&0x55)) -̂ c[2 ∗ Lt + i - Lt]

for i = Lt - 2, ..., 0 do
c[i ∗ 2 + 0] = c[i ∗ 2 + 0] -̂ c[(i + 1) ∗ 2 + 0]
c[i ∗ 2 + 1] = c[i ∗ 2 + 1] -̂ c[(i + 1) ∗ 2 + 1]

s[0] = 0; j = 0
for i = 0, ..., 15 do s[0] = s[0] +̂ k[i]
vecIV(k, iv, Ln, s[0], s[0]>>3|s[0]<<5, s)
for i = 0, ..., Lt - 1 do

m[i] =Db(k, s, iv, c + i ∗ 2)
j = j + (m[i] == 0)

if lm = Lt then
for i = 0, ..., Lt - 1 do

if m[Lt - i - 1] = 0xFF then lm = lm - 1
else break

return -1*(j > 0)

Fig. 10: Decryption



Fig. 11: Randomness of 2-byte encryption

The adversary controls public nonces, messages, and associated data. If the input
differences come from nonces, the vecIV function creates different initial states, which
has differences caused by different key byte combinations and not known by the ad-
versary. Then, according to the first two properties above, the 2-byte encryption gen-
erates pseudorandom intermediate ciphertexts and such pseudorandomness is propa-
gated across the whole intermediate values and ciphertexts. Hence, the adversary can-
not decide meaningful differences between intermediate values from the differences of
nonces.

With the same public nonce, but different messages or associated data, the inter-
mediate values before the first spill in the encryption algorithm can reflect the input
differences. If two messages longer than Lt are only different at the last byte, then the
last byte in the intermediate values have the same difference. With the same message
and nonce, if one encryption has no associated data and the other has 1-byte associated
data, then most bytes of the two intermediate values will be the same. The encryption
algorithm of CLAE exploits two spill at its last two steps to protect each byte of such
intermediate values.

If the adversary intends to recover a byte in two intermediate values generated from
two messages or associated data with particular differences, the adversary has to guess
key bytes used in the two applications of spill algorithm. In the following analysis, we
suppose the last byte of intermediate values is targeted by the adversary and estimate the
number of key bytes the adversary has to guess. The last ciphertext c[lc - 1] is obtained
by XORing a sum of two key bytes selected according to intermediate values of c[lc - 2]
and c[0] four times in the two applications of spill. If intermediate values of c[lc - 2] and
c[0] are known, 4 ∗ 4 key bytes has to be guessed from the 4-time use of the search
algorithm.

However, the intermediate values of c[lc - 2] and c[0] are unknown and they are
XORed with key byte combinations twice searched according to c[lc] and its intermedi-
ate value. This requires 2 ∗ 6 key byte guesses from two search algorithm. In addition,
two intermediate values of c[0] are XORed with the key byte sum selected according to



c[1] in two spill. The adversary needs to guess another two bytes for this key byte sum.
Hence, for one intermediate value the adversary wants to know, 16+12 key bytes and 2
summed key bytes have to be guessed, and for two intermediate values, there will be 56
key bytes and 4 summed key bytes to guess, which is much longer than 16-byte secret
key due to repeated key bytes used by spill. Based on this estimation, CLAE requires
2128 computations for differential cryptanalysis on a classical computer in a single key
setting.

3.2 Resistance to Side Channel Attacks

Power analysis (PA) and differential power analysis (DPA) are side-channel attacks. To
successfully perform PA or DPA attacks, the adversary needs to know a deterministic
relationship between known data inputs (such as known plaintexts and public nonces)
and a subkey [2]. Then, the power traces from different known data inputs can be used
to derive the subkey. From the third property, CLAE is resistant to PA or DPA, because
the adversary cannot know exactly the sequence of key bytes accessed in encryption.
In addition, a secret byte is XORed with 4 bits of a value controlled by the adversary.
Thus, 4 bits in a secret byte cannot be leaked by the difference of power traces, regarded
as 4-bit error in a secret intermediate value. Based on hardness of LWE, the secret key
bytes in the partially exposed intermediate values cannot be recovered.

CLAE is also resistant to timing attack, since no execution branches of conditional
statements are selected according to secret values. Even if a message byte decryption
might fail, the decryption algorithm does not change its execution time. The length of
messages or associated data affect the execution time. However, their length is supposed
to be public.

In fault attacks, the adversary needs to observe the output of decrypting faulty ci-
phertexts or faulty intermediate ciphertexts. Due to the fourth and fifth properties, the
byte encryption just return -1 when a fault is induced. Thus, fault attacks cannot happen
because there is no faulty output to observe. Additionally, based on the third property,
the access sequence of key bytes is random in encryption, and faults also change the
access sequence of key bytes in decryption from where the fault comes into effect.
Hence, even one faulty output is observed, the adversary cannot link faulty outputs to
the nondeterministic key bytes used in encryption and decryption.

3.3 Experiment Evaluation of Properties

The five properties described above is the basis of CLAE security. In this section, we
check these properties with experiments. In these experiments, the key is 16 bytes from
0 to 15, and the public nonce is 12 bytes of 0x00.

3.3.1 Randomness of 2-Byte Encryption In this experiment, the 2-byte encryption
algorithm uses the same key to encrypt the byte 0x00 for 256 times, with the 6th byte
of public nonces increasing from 0 to 255, respectively. As shown in Figure 11, the 2-
byte ciphertext c[0] and c[1] are changed randomly even if the 6th nonce byte changes
only one bit each time. This experiment confirms the pseudorandomness of the 2-byte
encryption algorithm.



Fig. 12: c[0] and c[47] of encrypting 40-byte 0x00, Lt = 8

3.3.2 Randomness Propagation in Encryption Let Lt = 8. In this experiment, the
message is 40 bytes of 0x00. It is encrypted with the same key for 256 times, with
only the 6th nonce byte increasing from 0 to 255. The first ciphertext byte c[0] and the
last byte c[47] are observed for the 256-time encryptions. Figure 12 shows the values
c[0] and c[47], which are randomized between 0 and 255. This experiment confirms the
randomness propagation of CLAE encryption algorithm; otherwise, c[0] and c[47] will
not change with the 6th nonce byte.

Fig. 13: Partial key byte sequence of encrypting 8-byte 0x00, Lt = 8

3.3.3 Random Access Sequence of Key Bytes in Encryption In this experiment,
Lt = 8. With the same key, the 8-byte message 0x00 is encrypted six times, with the



6th nonce byte increasing from 0 to 5. There is no associated data in this experiment.
The key bytes are accessed via the search and vecIV functions. Figure 13 shows a part
of the access sequences of key bytes via the search algorithm. It shows that the access
sequences are dynamically changing, even with one bit change of the nonce.

3.3.4 Integrity Check of 2-Byte Decryption In this experiment, the 2-byte encryp-
tion algorithm encrypts the byte 0x00 into a 2-byte ciphertext. For the 2-byte ciphertext,
it can be tampered with by at most 216 − 1 ways. This experiment is repeated with 256
times, with the 6th nonce byte changing from 0 to 255. For each repeated experiment,
among 216 − 1 changes, our experiment shows that 28 − 1 changes pass the integrity
check. Since the 2-byte ciphertext contains only 1-byte redundancy, the detection rate
255/65535 is expected.

3.3.5 Change Propagation in Decryption The above experiment shows that the
brute-force changes to the 2-byte ciphertext of a 1-byte redundancy lead to 255 suc-
cessful attacks among 216 − 1 ones. In this experiment, we still use the same attack
method as in the last experiment (i.e., changing the first two ciphertext bytes in a brute-
force way), but attack the ciphertexts with 2-byte redundancy (i.e., Lt = 2). Among 256
experiments, the 6th byte of the nonce increases from 0 to 255. The message is 40 bytes
of 0x00. The similar code is also applied to tamper with associated data of 50 bytes.

The change propagation property of CLAE decryption algorithm should ensure that
the 2-byte ciphertext of each message byte is tainted. Thus, the changes can be detected
with 2-byte redundancies and the number of successful attacks is expected to signifi-
cantly reduce. This expectation is confirmed in the Figure 14, which shows the number
of successful attacks is decreased from 255 with 1-byte redundancy to a small number
(i.e., 0, 1, 2, ...) with 2-byte redundancy in each experiment.

Fig. 14: Change propagation among ciphertexts: 40-byte messages, 50-byte AD, Lt = 2



3.3.6 Reuse of Nonces In this experiment, we use the same key and nonces to encrypt
messages of 1 bit difference, without associated data. The initial message is 40 bytes of
0x00. Also, we encrypt the initial message but with the 50-byte associated data changed
1-bit each time. The changes are applied to message byte m[20] and associated byte
ad[25]. The experiment results are shown in Figure 15 and Figure 16. Even with the
same key and nonces, the ciphertext bytes are completely different for each encryption.

Fig. 15: Nonce reuse with 1-bit message changing; Lt = 8

Fig. 16: Nonce reuse with 1-bit associated data changing; Lt = 8

In another experiment, we increase the first byte of the secret key from 0 to 1, and
then 2, without changing the nonce, the message, and the associated data. The three



ciphertexts are shown in Figure 17. One bit change of key also leads to completely
different ciphertexts.

Fig. 17: 1-bit change of key with same nonce, message, AD; Lt = 8

4 Parameter Configuration and Memory Usage

CLAE is specified at the 128-bit security level, with a 128-bit secret key. The length
of public nonces is configured as 12 (Ln = 12) in the reference implementation, with
Ln = 8 and Ln = 16 also tested. The length of authentication tags Lt is configured as 8
bytes by default; the cases Lt = 12 and Lt = 16 are tested. For bigger Lt, the value of
CRYPTO ABYTES needs to be accordingly adjusted.

The configuration in the reference implementation can encrypt more than 250 mes-
sages under one key, because one bit change of nonces leads to a completely different
ciphertext.

CLAE needs the necessary storage of 16 bytes for the secret key, lm bytes for mes-
sages, Lt + lm + lp bytes for ciphertexts (as discussed in the encryption algorithm), la
bytes of associated data, and Ln bytes for the public nonces. In addition, it needs a few
extra bytes for storing local integer variables like i in a loop, the 4-byte array o, the
2-byte state s, two bytes for the output of vecIV function.

5 Advantages and Limitations

The advantages of CLAE have been explained in the previous section. The following is
the summary:

– CLAE permits the reuse of public nonces, with two messages of 1-bit difference
encrypted into completely different ciphertexts under the same key and the same
nonce.



– CLAE resists side-channel and fault attacks inherently; the implementation does
not need extra countermeasures to enhance CLAE for resisting such attacks.

– The security of CLAE can be explained with a few high-level properties, making
design rationale and implementation easier to understand.

– In addition to the necessary memory requirement, CLAE does not need much extra
memory for all algorithms in the specification.

A limitation of CLAE is that it pads a short message simply by appending byte
0xFF. Hence, a short message to be encrypted should avoid 0xFF as its tail bytes. In
addition, a message of 0 byte long is padded and encrypted into a 2 ∗ Lt ciphertext,
leading to the big gap (e.g., 16 bytes for Lt = 8) between the message length and the
ciphertext length.

In addition, this specification considers only secret keys of 128 bits long. To sup-
port a longer key of 256 bits, the algorithms like search and vecIV can be revised to
select key bytes with 5-bit combination of a byte, instead of 4-bit combinations in this
specification.
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