
mixFeed

Designers/Submitters:
Bishwajit Chakraborty - Indian Statistical Institute,Kolkata
Mridul Nandi - Indian Statistical Institute, Kolkata, India

bishu.math.ynwa@gmail.com
mridul.nandi@gmail.com

March 22, 2019

1

1 Introduction

In this document, we propose a new scheme for authenticated encryption with associated data (AEAD) based
on AES’128/128 [6] block cipher. Here, we introduce a new mode which we call Minimally Xored Feedback
mode (mixFeed) based on any block cipher with some involved key-scheduling algorithm. Our mode (on top
of the n-bit block cipher) requires only n-bit xor to process each n-bit blocks. The name can also be justified
for the fact that we use a mixture of Plaintext and Ciphertext as the feedback to the underlying blockcipher.

Another aspect of the mixFeed is that, we use nonce-dependent key. This would help to get higher security
beyond conventional model (such as reasonable security against leakage of nonce-dependent key).

2 mixFeed Specification

2.1 Notations and Conventions

We fix positive even integers n, κ, and t to denote the block size, key size, and tag size respectively in bits.
Our input nonce size is one byte less than the block size. En/κ denotes a block cipher family E, parametrized
by the block length n and key length κ. In this paper we use AES’128/128 and so n = 128, nonce size = 120
and κ = 128 . Note that AES’128/128 is same as the original AES128/128 except that we use mixcolumn
operation at the last round.

We fix the tag size to be 128. Note that one can always truncate the tag to a small size if required.

We use {0, 1}+ and {0, 1}n to denote the set of all non-empty (binary) strings, and n-bit strings, re-
spectively. λ denotes the empty string and {0, 1}∗ = {0, 1}+ ∪ {λ}. For all practical purposes: we use
little-endian format of indexing, and assume all binary strings are byte-oriented, i.e. belong in ({0, 1}8)∗. For
any string B ∈ {0, 1}+, |B| denotes the number of bits in B, and for 0 ≤ i ≤ |B| − 1, bi denotes the i-th
bit of B, i.e. B = b|B|−1 · · · b0. where b0 is the least significant bit (LSB) and b|B|−1 is the most significant
bit (MSB). Given a nonempty bit string B of size x < n, we denote pad(B) as 0n−x−11B. Thus we always
pad the extra bits from MSB side. When x = n, we define pad(B) as B itself. The chop function chops
either the most significant or least significant bits. For k ≤ n, and B ∈ {0, 1}n, bBck := Bk−1 . . . B0 and
dBek := Bn−1 . . . Bn−k.

For B ∈ {0, 1}+, (B`−1, . . . , B0)
n← B, denotes the n-bit block parsing of B into (B`−1, . . . , B0), where

|Bi| = n for 0 ≤ i ≤ `−2, and 1 ≤ |B`−1| ≤ n. For A,B ∈ {0, 1}+, and |A| = |B|, A⊕B denotes the “bitwise
XOR” operation on A and B. For A,B ∈ {0, 1}+, A‖B denotes the “string concatenation” operation on A
and B.

We will use a compact representation of if-else statement by the following expression P ? b : c where P is
some mathematical statement. This evaluates to b if P is true and c otherwise. P1 & P2 ? b1 : b2 : b3 : b4
evaluates to b1 if both P1 and P2 are true, to b2 if only P1 is true, to b3 if only P2 is true and to b4 if none
of P1 , P2 are true.

Block Cipher: A block cipher with key size κ and block size n is a family of permutations over n-bits
indexed by κ bit key. For a fixed key k ∈ {0, 1}κ, we write Ek(·) = E(k, ·). Many block cipher uses some
non-trivial key-scheduling algorithm which produces round keys for each round to mask the block cipher
state. Let φ corresponds to the function which updates the key. In other words, if K is the key of the block
cipher for the current execution, φ(K) will denote the updated key. We will see details of this key update
function for AES’128/128 in more details later.

2.2 Our Recommendation

In Algorithm 1 we describe our specification mixFeed based on any block cipher E. We propose (primary
submission) mixFeed where E is instantiated by AES’128/128 where the last round also calls MixColumns
operation of AES128/128. For the sake of completeness we describe it in Algorithm 2. This does not change
any security level of AES’128/128, but it adds uniformity over all rounds.

2.3 Provenance of Constants used in Tweak Control

Our mode uses a 4-bit constant t3 ‖ t2 ‖ t1 ‖ t0 for processing the last block of associated data and the last
block of message which distinguishes different cases regarding completeness of the last blocks. This constant
value is decided from the inputs of the hardware API and are explained as follows.

• eoi : t3 is called the end of input control bit. This bit is set to 1 if and only if the current data block
being processed is the final block of the input. For all other data block processing t3 is set to 0.

2

Algorithm 1 Encryption/Decryption algorithm in mixFeed. Here, λ denotes the empty string. ⊥,> denotes
the abort and accept symbols respectively. By ∗, we mean that the exact value is not bothered.

1: function mixFeed[E].enc(K,N,A,M)

2: ((a, δA), (m, δM))← Fmt(A,M)

3: if a = 0,m = 0 then

4: (T, ∗)← EK(N‖0610)
5: return (λ, T)

6: else if a = 0 then (KN , ∗)← EK(N‖071)
7: else (KN , ∗)← EK(N‖08)
8: (Y,K)← EKN

(N‖08)
9: C ← λ

10: if a 6= 0 then (∗, Y,K)← proc txt(Y,K,A, δA,+)

11: if m 6= 0 then (C, T, ∗)← proc txt(Y,K,M, δM ,+)

12: return (C, T)

13: function mixFeed[E].dec(K,N,A,C, T)

14: ((a, δA), (m, δC))← Fmt(A,C)

15: if a = 0,m = 0 then

16: (T ′, ∗)← EK(N‖0610)
17: return (T = T ′)? > : ⊥
18: else if a = 0 then (KN , ∗)← EK(N‖071)
19: else (KN , ∗)← EK(N‖08)
20: (Y,K)← EKN

(N‖08)
21: M ← λ

22: if a 6= 0 then (∗, T,K)← proc txt(Y,K,A, δA,+)

23: if m 6= 0 then (M,T ′, ∗)← proc txt(T,K,C, δC ,−)
24: if T 6= T ′ then

25: return ⊥
26: else

27: return (M,>)

1: function Fmt(A,M)

2: (Aa−1, . . . , A0)
n← A

3: (Mm−1, . . . ,M0)
n←M

4: δA ← (n | |Aa−1|) & (m = 0)? 12 : 4 : 14 : 6

5: δM ← (m | |Mm−1|)? 13 : 15

6: return ((a, δA), (m, δM))

7: function proc txt(K1, Y0, D, δD)

8: (Dd−1, . . . , D0)
n← D

9: for i = 0 to d− 1 do

10: (Xi+1, D
′
i)← Feed(Yi, Di,+)

11: (Yi+1,Ki+2)← EKi+1
(Xi+1)

12: Xd+1 ← Yd ⊕ 0n−4‖δD
13: (Yd+1,Kd+2)← EKd+1

(Xd+1)

14: return (D′, Yd+1,Kd+2)

15: function Feed(Y,D,dir)

16: D′ ← D ⊕ bY c|D|
17: if dir = ” + ” then

18: B ← dpad(D′)en/2‖bpad(D)cn/2

19: if dir = ”− ” then

20: B ← dpad(D)en/2‖bpad(D′)cn/2

21: X ← B ⊕ Y
22: return (X,D′)

• eot: t2 is called the end of type control bit. This bit is set to 1 if and only if the current data block
being processed is the last block of the same type i.e. it is the last block of message/ associated data.
For all other data block processing t2 is set to 0.

• partial: t1 is called the partial control bit. this bit is set to 1 if data block currently being processed
is a partial block, i.e. it’s the data size is less than the required block size. For all other data block
processes it is set to 0.

• Type: t0 is called the type control bit and it identifies the data being processed. For the final message
block processing, t0 is set to 1. For all other data processing, t0 is set to 0.

While processing a last data block of a type, the input of the block cipher is decided based on the 4 control
bits. Fmt function outputs the δA, δM values by simply giving the integer representation of t3‖t2‖t1‖t0. For
example if we are in the last message block and it is partial then t3 = 1, t2 = 1, t1 = 1, t0 = 1, making
δM = 15 In Algorithm 1. Similarly if we are processing the last associate data block which is complete and
the message length is non-zero, then t3 = 0, t2 = 1, t1 = 0, t0 = 0 making δM = 4.

i 1 2 3 4 5 6 7 8 9 10 11
RCON(i) 01 02 04 08 10 20 40 80 1b 36 6c

Table 1: The RCON Values

3 Security of mixFeed

Here we describe some possible strategies to attack the mixFeed mode, and give a rough estimate on the
amount of data and time required to mount those attacks (see Table 2). In the following discussion:

3

Algorithm 2 AES’128/128 Block Cipher. To apply a chain of block cipher, we perform an extra round of
AES’128/128 Key-Schedule and use that round key as the initial key of the next call of AES’128/128. As
described in the Introduction the second output of Emodule only depends on the first input K and we define
this function as φ(K).

1: function E(K;X)

2: (W47, . . . ,W0)← KeyGen(K)

3: for i = 1 to 10 do

4: X ← X ⊕ (W4i−1,W4i−2,W4i−3,W4i−4)

5: X ← SubBytes(X)

6: X ← ShiftRows(X)

7: X ← MixColumns(X)

8: X ← X ⊕ (W43,W42,W41,W40)

9: K ← (W47,W46,W45,W44)

10: return (X,K)

11: function KeyGen(K)

12: (K15, . . . ,K0)
8← K

13: for i = 0 to 3 do

14: Wi ← (K4i+3,K4i+2,K4i+1,K4i)

15: for i = 4 to 47 do

16: Y ←Wi−1

17: if i%4 = 0 then

18: Y ← SubWords(Y ≪ 8)

19: Y ← Y ⊕ RCONi/4

20: Wi ←Wi−4 ⊕ Y
21: return (W47, . . . ,W0)

1: function SubBytes(X)

2: (X15, . . . , X0)
8← X

3: for i = 0 to 15 do

4: Xi ← AS(Xi)

5: return X

6: function Shiftrows(X)

7: (X15, . . . , X0)
8← X

8: for i = 0 to 3 do

9: for j = 0 to 3 do

10: Y4i+j ← X4i+((j+i)%4)

11: return Y

12: function MixColumns(X)

13: M ←

2 3 1 1

3 1 1 2

1 1 2 3

1 2 3 1

14: Y ←M ·X
15: return Y

• D denotes the data complexity of the attack. This parameter quantifies the online resource require-
ments, and includes the total number of blocks (among all messages and associated data) processed
through the underlying block cipher for a fixed master key. Note that for simplicity we also use D to
denote the data complexity of forging attempts.

• T denotes the time complexity of the attack. This parameter quantifies the offline resource requirements,
and includes the total time required to process the off line evaluations of the underlying block cipher.
Since one call of the block cipher can be assumed to take a constant amount of time, we generally take
T as the total number of off line calls to the block cipher.

Security Data complexity Time complexity
Model (log2D) (log2 T)

IND-CPA 60 112
INT-CTXT 50 112

Table 2: Security Claims. We remark that the given values indicate the amount of data and time required to make
the attack advantage close to 1.

Notes on Security on the Modes After making q queries with σ many blocks, adversary observes inputs
and outputs of the block cipher with a key which is dependent on the nonce and the current block number.
Thus the security of this construction would depend on the nultikey set up. As the least significant 64 bits of
inputs are random (during encryption), the multi-key attack (in the ideal cipher model) will have advantage
roughly σT/2192 where T is the number of ideal cipher calls and σ is the number of encryption blocks. Similar
argument will work for all decryption attempts.

We must admit that there is no conventional privacy security in case of nonce misuse. However, the
integrity security remains until 232 data in case of nonce misuse.

3.1 Known Security Analysis of AES’128/128

The security of AES’128/128 is same as the security of AES128/128 as mixcolumn is a linear operation which
can be peeled off from the output. The security of AES128/128 is well-established in the community.

4

To the best of our knowledge, the best single-key attack on AES128/128 is the biclique attack by Bogdanov
et al. [1], that recovers the key in approx. 2126 computations. Although there is a related-key attack on
full-round AES-128/192 and AES-128/256, the same attack does not apply to AES128/128, even in the usual
XOR related-key setting, let alone the key scheduled related-keys. In fact, [5] shows that AES128/128 is
almost as secure in related-key setting as it is in single-key setting. Recent distinguishers on AES128/128
[3, 4, 7, 2], are applicable to round-reduced variants of AES128/128, and hence not applicable in our case.

4 Design Rationale

4.1 Choice of the Mode

Our primary goal is to design a lightweight cipher that should be efficient, provide high performance and
able to perform well in low end devices. In addition, we also demand robustness in security.

4.1.1 Nonce dependent key

At the very first step we compute the secret key based on nonce. So, for every encryption we use random
keys. Even though due to some side channel analysis the secret key corresponding to a nonce N is released,
the master key remains still secret and all encryption using nonce other than N remains good.

4.1.2 Minimally xored mixture feedback

As our name suggests, we use minimum number of xors to process each block. This makes the design simpler
and having very low footprint in software. The rational behind having mixture of plaintext and ciphertext
feedback is to achieve NIST aimed security. During encryption we ensure 192 bit entropy for each block
process. We have 128 bit dynamic secret key and 64 bits LSB of the inputs have influence from 64 bits LSB
of the previous block cipher call.

While decrypt, we have 64 bit MSB of the previous outputs goes to the correspond position of the next
input. This would provide about 64 bit security for forgery attempts.

4.1.3 Single State

mixFeed has a state size as small as the block size of the underlying cipher, and it ensures good implementation
characteristics both on lightweight and high-performance platforms. We moreover need not to hold the
original key as we dynamically update the key based on the key scheduling algorithm used for the block
cipher computation.

4.1.4 Inverse-Free

mixFeed is a inverse-free authenticated algorithm. Both encryption and verified decryption of the algorithm
do not require any decryption call to the underlying twekable block cipher. This reduces the overall hardware
footprint significantly, especially in the combined authenticated-encryption, verified-decryption implementa-
tions.

4.2 Choice of the Block cipher

4.2.1 Well analyzed and NIST standard

AES128/128 block cipher is well analyzed for long time and it remains secure. Moreover, in this proposal, a
weaker security from AES128/128 would suffice. AES128/128 also performs very well in microcontroller based
platform. We note that the last mix-column operation is included in our proposal to make it uniform over all
rounds. This reduces additional MUX which was required to process last round for the original AES128/128.

4.2.2 Dynamic Key

We compute the key dynamically as key schedules goes on. This helps us not to hold the master key as well
not to expose a secret key multiple times. As the key-scheduling of AES128/128 is involved, the related-key
security analysis of AES128/128 expected to be much harder than conventional xor-related key.

5

References

[1] Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger. Biclique cryptanalysis of the full
AES. In Advances in Cryptology - ASIACRYPT 2011 - 17th International Conference on the Theory and
Application of Cryptology and Information Security, Seoul, South Korea, December 4-8, 2011. Proceedings,
pages 344–371, 2011.

[2] Lorenzo Grassi. Mixture differential cryptanalysis: a new approach to distinguishers and attacks on
round-reduced AES. IACR Trans. Symmetric Cryptol., 2018(2):133–160, 2018.

[3] Lorenzo Grassi, Christian Rechberger, and Sondre Rønjom. Subspace trail cryptanalysis and its applica-
tions to AES. IACR Trans. Symmetric Cryptol., 2016(2):192–225, 2016.

[4] Lorenzo Grassi, Christian Rechberger, and Sondre Rønjom. A new structural-differential property of
5-round AES. In Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Paris, France, April 30 - May 4, 2017,
Proceedings, Part II, pages 289–317, 2017.

[5] Khoongming Khoo, Eugene Lee, Thomas Peyrin, and Siang Meng Sim. Human-readable proof of the
related-key security of AES-128. IACR Trans. Symmetric Cryptol., 2017(2):59–83, 2017.

[6] NIST. Announcing the ADVANCED ENCRYPTION STANDARD (AES). Fedral Information Processing
Standards Publication FIPS 197, National Institute of Standards and Technology, U. S. Department of
Commerce, 2001.

[7] Sondre Rønjom, Navid Ghaedi Bardeh, and Tor Helleseth. Yoyo tricks with AES. In Advances in
Cryptology - ASIACRYPT 2017 - 23rd International Conference on the Theory and Applications of
Cryptology and Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part I, pages
217–243, 2017.

Appendix

Test Vectors

Test Vectors for AES’128/128

testvector 1
Input = 00123456789abcde
Key = efcb089475ded60586a7d97c64baf
Input = eb2af160413cc3b7b883c03017809ea9
Key = 60e85eca556be71e2b61bd666465c495

testvector 2
Input = 00123456789abcde
Key = efcb089475ded60586a7d97c64baf
Input = eb2af160413cc3b7b883c03017809ea9
Key = 60e85eca556be71e2b61bd666465c495

Test Vectors for mixFeed

testvector 1
Key = 000102030405060708090A0B0C0D0E0F
Nonce = 000102030405060708090A0B0C0D0E
PT =
AD = 000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F
CT = 6CDB385142B591F8E57D50FC41899B23

testvector 2
Key = 000102030405060708090A0B0C0D0E0F
Nonce = 000102030405060708090A0B0C0D0E
PT = 00

6

AD = 000102030405060708090A0B0C0D
CT = E56EDEC0001E1D94074303E6397D238CCF

testvectors 3
Key = 000102030405060708090A0B0C0D0E0F
Nonce = 000102030405060708090A0B0C0D0E
PT = 000102
AD = 000102030405060708090A0B0C0D0E
CT = 4753140EA6C5D3B01F06BBBC3F55181BB3FFE5

7

	Introduction
	 Specification
	Notations and Conventions
	Our Recommendation
	Provenance of Constants used in Tweak Control

	Security of
	Known Security Analysis of AES'128/128

	Design Rationale
	Choice of the Mode
	Nonce dependent key
	Minimally xored mixture feedback
	Single State
	Inverse-Free

	Choice of the Block cipher
	Well analyzed and NIST standard
	Dynamic Key

