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1 Introduction

This work proposes the Oribatida family of permutation-based authenticated-encryption
schemes.

Oribatida Is Lightweight. As a keyed permutation-based mode of operation, Oribatida

has to store neither the state of the permutation (plus a small overhead) nor subkeys or
tweaks. Authentication and encryption can be performed fully online and impose no need
on buffering the input. For instantiations, we employ a lightweight family of permutations
SimP that is very close to the block-cipher variants Simon-96-96 or Simon-128-128 and
their respective key schedules. As a result, the instances of SimP possess a low state size
of only 192 and 256 bits, respectively.

Oribatida Is Performant. For a security level of 128 bits, Oribatida provides a rate of
1/2 (two calls to a permutation for processing n-bit message material) for authentication
and encryption even with a small permutation size of only n = 192 or n = 256 bits due
to the way it masks ciphertext blocks.

Oribatida Alleviates Its Usage Across Different Platforms. Our proposed instantia-
tions of Oribatida with the SimP family of permutations can be implemented with only
the basic operations AND, rotations, and XOR. Since SimP avoids the use of S-boxes,
implementations can split the state flexibly according to the target platforms’ needs.

Oribatida Is Based on Well-known Components. The design of Oribatida is based on
the well-known duplex mode. Therefore, it founds on well-established results. Since SimP

is very close to the design of Simon, it can profit from the existing cryptanalysis, and rely
on its already well-understood permutation design.

Oribatida Is Secure. The design of Oribatida inherits the minimal security guarantees
of the duplex mode. Moreover, Oribatida augments the usual sponge by a ciphertext
masking that boosts the security. While this specification omits tedious proof details, all
members of the Oribatida family are expected to provide 128-bit security for encryption
and integrity.

Oribatida Is Robust under Release of Unverified Plaintexts. While authenticated en-
cryption can be realized in an online manner, proper authenticated decryption must be
offline. However, resource-constrained devices can hardly buffer long messages until the
authentication tag is verified, which can lead to a complete loss of privacy and integrity.
The ciphertext masking of Oribatida limits the security damage in such cases. In the case
of accidental misuse, Oribatida provides integrity also in the case that plaintext material
leaks from invalid ciphertexts.

2 Notations

General Notations. We use uppercase letters (e.g., X , Y ) for functions and variables,
lowercase letters (e.g., x, y) for indices and lengths, as well as calligraphic uppercase letters
X ,Y for sets and spaces. We write F2 for the field of characteristic 2 and F

n
2 = {0, 1}n

for the set of vectors over F2, i.e., strings of n bits. |X | denotes the number of bits of X .
Given X ∈ F

n
2 , we write X [i] for the i-th (least significant) bit of X , and define the bit

order by X = (X [n − 1] ‖ . . . ‖X [1] ‖X [0]). We write ∅ for the empty set and ε for the
empty string.
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We denote by X [x..y] the range of X [x], . . . , X [y] for non-zero integers x and y. Given
binary strings X and Y , we denote their concatenation by X ‖ Y and their bitwise XOR
by X⊕Y when |X | = |Y |. For positive integers x and y and bit strings of different lengths
X ∈ F

x
2 and Y ∈ F

y
2 with x ≥ y, we define X ⊕y Y =def X ⊕ (0x−y ‖ Y ).

We write X և X to indicate that X is chosen uniformly at random and independent
from other variables from a set X . We consider Func(X ,Y) to be the set of all mappings
F : X → Y, and Perm(X ) to be the set of all permutations over X . Given an event E, we
denote the probability of E by Pr[E]. We denote by ⊥ the invalid symbol.

For X ∈ F
∗
2, we denote by (X1, X2, . . . , Xx)

n
←− X the splitting of X into n-bit strings X1,

. . . , Xx−1, and |Xx| ≤ n, in form of X1 ‖ . . . ‖Xx = X . Moreover, for Y ∈ Fx, we write

(X1, X2, . . . , Xm)
x1,x2,...,xm
←−−−−−−− Y to denote the splitting of Y into X1 = Y [x − 1..x − x1],

X2 = Y [x − x1 − 1..x− x1 − x2], . . . , Xm = Y [xm − 1..0], where x = x1 + x2 + . . . + xm

holds. For a given set X and some non-negative integer x, we write X≤x for the union
set ∪x

i=0X
i. Given a non-negative integer x < 2n, we write 〈x〉n for its conversion into an

n-bit binary string with the most significant bit left, e.g., 〈135〉8 = (10000111). We omit
n if it is clear from the context.

Nonce-based Authenticated Encryption. Let K be a set of keys, N be a set of nonces,
A a set of associated data,M a set of messages, C a set of ciphertexts, and T a set of au-
thentication tags. A nonce N ∈ N is an input that must be unique for each authenticated
encryption query.
A nonce-based authenticated encryption scheme (with associated data) Π = (E ,D) is a
tuple of deterministic encryption algorithm E : K×N ×A×M→ C×T and deterministic
decryption algorithm D : K ×N ×A× C × T →M× {⊥} with associated key space K.
The encryption algorithm E takes a tuple (K, N, A, M) and outputs (C, T ), where C is a
ciphertext and T an authentication tag. We assume that |C| = |M | holds for all inputs
(K, N, A, M) and their corresponding ciphertexts. The associated data is authenticated
but not encrypted. The decryption function D takes a tuple (K, N, A, C, T ) and outputs
either the unique plaintext M for which EK(N, A, M) = (C, T ) holds, or outputs ⊥ if the

input is invalid. We introduce EN,A
K (M) as short form of EK(N, A, M) and DN,A

K (C, T )
for DK(N, A, C, T ), respectively.
We assume that authenticated-encryption schemes are (1) correct, i.e., for all (K, N, A, M) ∈

K×N×A×M, it holds thatDN,A
K (EN,A

K (M)) = M and (2) tidy, i.e., for all (K, N, A, C, T ) ∈

K ×N ×A× C × T , it holds that EN,A
K (DN,A

K (C, T )) = (C, T ) iff DN,A
K (C, T ) 6= ⊥.

3 Specification of Oribatida

This section defines the Oribatida authenticated-encryption scheme.

General Definitions. Let n denote the state size, k the key size, r the rate, c the capacity,
s the mask size, ν the nonce size, d a domain size, and τ a tag size in bits, all of which
are non-negative integers. We define:

• The key space K = F
k
2 , with k ≤ n.

• The state space S = F
n
2 .

• We denote by r the rate and by c the capacity of the Oribatida mode, where r+c = n
bits. We define a block space B = F

r
2.

• The nonce space N = F
ν
2 , with ν ≤ r. Oribatida requires ν + k = n.

• A finite set of domains DO = F
d
2 for d = 4 bits.
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Figure 1: Schematic illustration of the authentication of an a-block associated data A and the
encryption of an m-block plaintext M with Oribatida, for m > 1. P and P ′ are permutations, K

the secret key, N the nonce, C the resulting ciphertext, and T the resulting authentication tag.

• We define positive integers amax and mmax for the maximal length in bits of associ-
ated data message inputs, respectively.

• The associated-data space A = F
≤amax

2 .

• Message and ciphertext spacesM = C = F
≤mmax

2 .

• Moreover, we define the space of authentication tags T = F
τ
2 with τ ≤ r.

We define s ≤ c for the mask size in bits. We write two permutations P, P ′ ∈ Perm(S).
We denote the state after the i-th call to the permutations by Si = (Ui ‖Vi), and the
state after XORing the subsequent associated-data block Ai or message block Mi−a to it
by (Xi ‖ Yi), where a denotes the number of associated-data blocks after padding. We say
that A is integral if its length is a multiple of r bits, and say that it is partial otherwise.
Similarly, we say that M (or C) is integral if its length is a multiple of r bits, and call it
partial otherwise.

The Core Idea. Oribatida is a variant of the monkey-wrap design [BDPVA12], as used
before, e.g., in Ascon [DEMS16] or NORX [AJN14]. Oribatida extends such previous
designs by a ciphertext-block masking that boosts the security and ensures resilience
against release of unverified plaintext material. We denote by (Ui, Vi) the outputs of and
by (Xi, Yi) the inputs to the permutation. As in the classical sponge, Oribatida considers
the state Si = (Ui ‖Vi) as a rate part Ui of r bits, where inputs are XORed to, and a
capacity part Vi of c = n− r bits. Unlike the usual sponge, an s-bit part of the capacity
is used to mask the subsequent ciphertext block. The definition is given in Algorithm 1.
In the following, explanations and details are presented.

3.1 Proposed Parameter Sets

Oribatida-n-s is proposed in two versions, parametrized by the state size of the permu-
tation n, and a mask size s. Table 1 lists the proposed parameter sets. We define a
security parameter z = c + s which should be defined as 192 (the target for NIST secu-
rity requirements). We briefly recall the parameters and the conditions satisfied by these
parameters.
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Table 1: Recommended schemes of Oribatida in the order of recommendation. The topmost is
our primary recommendation. All integer values are given in bits. The state size is given by r + c.
Rec. = Recommendation.

State size

Permutations Key Nonce Tag Rate Capacity Mask

Rec. Name P P ′ (k) (ν) (τ ) (r) (c) (s)

1 Oribatida-256-64 SimP-256-4 SimP-256-2 128 128 128 128 128 64

2 Oribatida-192-96 SimP-192-4 SimP-192-2 128 64 96 96 96 96

1. We always choose a key size of k = 128 bits.

2. n denotes the size of the permutation in bits, which is either 256 or 192.

3. The nonce length ν is chosen such that ν + k = n holds.

4. The capacity of the permutation is chosen as c = 192 − s bits (by the security
requirement mentioned above).

5. Thus, the mask size s is at most the capacity: s ≤ c.

6. Finally, the tag length is set to τ = r bits.

Oribatida-n-s employs two internal permutations P, P ′ ∈ Perm(Fn
2 ), where P ′ is chosen

as a round-reduced variant of P to process the associated data efficiently. The following
members of the Oribatida-n-s family are proposed, based on instantiations from the SimP

family of permutations:

• Our primary recommendation is Oribatida-256-64. For P , this variant uses SimP-
256-4 with rs = 34 rounds per step and θ = 4 steps. Moreover, for P ′, it employs
SimP-256-2 with rs = 34 rounds per step and θ = 2 steps.

• Our secondary recommendation is Oribatida-192-96. For P , this variant uses
SimP-192-4 with rs = 26 and θ = 4 steps. For P ′, it employs SimP-192-2 with
rs = 26 and θ = 2 steps.

3.2 Limitations

The encryption of Oribatida produces a ciphertext of the same length as the plaintext, and
a τ -bit authentication tag. Its decryption will, if the given tuple of key, nonce, associated
data, ciphertext, and tag is valid, produce a plaintext of the same length as the ciphertext.
The nonce must be unique for each encryption query, even if the message is empty. There
is no secret message number for Oribatida.
At most 250 − 1 bytes, over all the summed lengths of all nonces, associated data after
padding, and messages after padding of all queries, are allowed to be processed under
the same secret key before the key must be changed. At most 250 − 1 bytes, over the
summed length of nonce, associated data after padding, and message after padding, are
allowed in a single query. In each encryption or verification query, the associated data can
be empty or present; in each encryption query, the message can be empty or present; in
each decryption query, the ciphertext can be empty or present. Oribatida demands that
no information about would-be plaintexts is released to the outside if a decryption query
is deemed invalid.
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Algorithm 1 Specification of Oribatida.

101: function EN,A

K
(M)

102: ℓA ← |A|
103: ℓE ← |M|
104: dN ← GetDomainForN(ℓA, ℓE)
105: dA ← GetDomainForA(ℓA, ℓE)
106: dE ← GetDomainForE(ℓE)
107: A← padr(A)
108: M ← padr(M)
109: (S1, Vf )← Init(K, N, dN , ℓA)
110: Sa+1 ← ProcessAD(S1, A, dA)
111: (C, T )← Encrypt(Sa+1, M, Vf , dE, ℓE)
112: return (C, T )

121: function GetDomainForN(ℓA, ℓE)
122: if ℓA = 0 ∧ ℓE = 0 then return 〈9〉n

123: return 〈5〉n

131: function GetDomainForA(ℓA, ℓE)
132: if ℓA = 0 then return 〈4〉n

133: if ℓE > 0 ∧ ℓA mod r = 0 then return 〈4〉n

134: if ℓE > 0 ∧ ℓA mod r 6= 0 then return 〈6〉n

135: if ℓE = 0∧ ℓA mod r = 0 then return 〈12〉n

136: if ℓE = 0∧ ℓA mod r 6= 0 then return 〈14〉n

141: function GetDomainForE(ℓE )
142: if ℓE = 0 then return 〈0〉n

143: if ℓE mod r = 0 then return 〈13〉n

144: if ℓE mod r 6= 0 then return 〈15〉n

151: function padx(X)
152: if |X| mod x = 0 then return X

153: return X ‖ 1 ‖ 0x−(|X| mod x)−1

161: function Init(K, N, dN , ℓA)
162: V0 ← lsbs(N ‖K)
163: S1 ← P ((N ‖K)⊕ dN )
164: V1 ← lsbs(S1)
165: if ℓA = 0 then

166: return (S1, V0)

167: if ℓA 6= 0 then

168: return (S1, V1)

171: function ProcessAD(S1, A, dA)

172: (A1, · · · , Aa)
r
←− A

173: for i = 1..a− 1 do

174: Si+1 ← P ′(Si ⊕ (Ai ‖ 0c))

175: Sa+1 ← P (Sa ⊕ (Aa ‖ 0c) ⊕ dA)
176: return Sa+1

181: function lsbx(X)
182: if |X| ≤ x then return X

183: return X[(|X| − x− 1)..0]

191: function msbx(X)
192: if |X| ≤ x then return X

193: return X[(|X| − 1)..(|X| − x)]

201: function DN,A

K
(C, T )

202: ℓA ← |A|
203: ℓE ← |C|
204: dN ← GetDomainForN(ℓA, ℓE)
205: dA ← GetDomainForA(ℓA, ℓE)
206: dE ← GetDomainForE(ℓE)
207: A← padr(A)
208: C ← padr(C)
209: (S1, Vf )← Init(K, N, dN , ℓA)
210: Sa+1 ← ProcessAD(S1, A, dA)
211: (M, T ′)← Decrypt(Sa+1, C, Vf , dE, ℓE)
212: if T = T ′

then return M

213: else return ⊥

221: function Encrypt(Sa+1, M, Vf , dE, ℓE)
222: x← ℓE mod r

223: (M1, · · · , Mm)
r
←− M

224: V ← Vf

225: for i = 1..m do

226: (Ua+i, Va+i)
r,c
←−− Sa+i

227: Xa+i ←Mi ⊕ Ua+i

228: Ci ← Xa+i ⊕s lsbs(V )
229: Ya+i ← Va+i

230: if i = m then

231: Ya+i ← Ya+i ⊕d dE

232: Cm ← msbx(Cm)

233: V ← Va+i

234: Sa+i+1 ← P (Xa+i ‖ Ya+i)

235: C ← (C1 ‖C2 ‖ · · · ‖Cm)
236: T ← msbτ (Sa+m+1)
237: return (C, T )

241: function Decrypt(Sa+1, C, Vf , dE, ℓE)
242: x← ℓE mod r
243: if ℓE = 0 then

244: T ′ ← msbτ (Sa+1)
245: return (ε, T ′)

246: (C1, · · · , Cm)
r
←− C

247: V ← Vf

248: for i = 1..m do

249: (Ua+i, Va+i)
r,c
←−− Sa+i

250: Xa+i ← Ci ⊕s lsbs(V )
251: Ya+i ← Va+i

252: Mi ← Ua+i ⊕Xa+i

253: if i = m then

254: Ya+i ← Ya+i ⊕d dE

255: Mm ← msbx(Mm)

256: V ← Va+i

257: Sa+i+1 ← P (Xa+i ‖ Ya+i)

258: M ← (M1 ‖M2 ‖ · · · ‖Mm)
259: T ′ ← msbτ (Sa+m+1)
260: return (M, T ′)

3.3 Workflow of Oribatida

Initialization. Each variant of Oribatida uses a fixed size for nonces, whose length is
chosen such that k +ν = n bits. The nonce N is concatenated with the key K to initialize
the state: N ‖K: (U0, V0) ← (N ‖K) ⊕d dN . The domain dN is XORed to the least
significant byte of the initial state. Then, the first state value S1 results from a call to the
permutation: (U1 ‖V1)← P (U0 ‖V0). Note that we store the value of V0 or V1 (aliased by
Vf ), depending on whether the associated data is empty or not, to mask the first block of
ciphertext later.
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Processing Associated Data. After the initialization, the associated data A is padded
with a 10∗-padding if |A| mod r 6= 0 such that its length becomes the next highest multiple
of r bits. Thereupon, the padded associated data A is split into r-bit blocks (A1, · · · , Aa).

Given the state (Ui, Vi)
r,c
←−− Si, Ai is XORed to the rate part of the state: Xi ← Ui ⊕Ai,

for 1 ≤ i < a. For all non-final blocks of A, the capacity part of the permutation output,
Vi, is simply forwarded to the capacity part of the subsequent input to the permutation P ′:
Yi ← Vi. The next state is computed by a call to the reduced permutation P ′ afterwards,
for all indices 1 < i < a but the final a-th block of A: Si ← P ′(Xi ‖ Yi). When the final
block Aa is processed, a domain dA that depends on the lengths of A and M is XORed
to the least significant byte of the capacity.

Encryption. After the associated data has been processed, the message M is encrypted.
If the length of M is not a multiple of r bits, M is padded with a 10∗-padding such that
its length after padding becomes the next highest multiple of r bits. Thereupon, M is
split into r-bit blocks (M1, · · · , Mm) after padding.

The blocks Mi are processed one after the other. Given the state value (Ua+i, Va+i)
r,c
←−−

Sa+i, the current block Mi is XORed to the rate part Ua+i: Xa+i ← Mi ⊕ Ua+i. The
capacity part is simply forwarded: Ya+i ← Va+i. Then, (Xa+i ‖ Ya+i) is used as input to
a call to P to derive the next state value Sa+i+1 ← P (Xa+i ‖ Ya+i).
The ciphertext blocks Ci are computed from a sum of the current rate, the current plain-
text block, and a (partial) earlier value from the capacity. The first ciphertext block is
computed from

C1 ← Xa+i ⊕ lsbs(Vf ).

If it is the final block, then, C1 is computed from

C1 ← msbℓE
(Xa+i ⊕ lsbs(Vf )),

where ℓE denotes the length of M before padding.
The further non-final ciphertext blocks Ci, 1 < i < m are computed from Ci ← Xa+i ⊕s

lsbs(Va+i−1), for 1 < i < m. If m > 1, the final ciphertext block Cm is computed from

Cm ← msbℓE mod r(Xa+m ⊕ lsbs(Va+m−1)).

For the final message block, a domain dE is XORed to the least significant byte of the
capacity: Ya+m ← Va+m⊕d dE . Thereupon, P is called another time to derive Sa+m+1 ←
P (Xa+m ‖ Ya+m). Its rate part – truncated to τ bits if necessary – is released as the
authentication tag: T ← msbτ (Sa+m+1).

Decryption. The decryption algorithm takes a tuple (K, N, A, C, T ). Again, the initial-
ization with K and N as well as the processing of the associated data A is performed
in the same manner as for encryption. If |C| mod r 6= 0, the decryption pads C with
a 10∗-padding to the next multiple of r bits. In all cases, it splits C into r-bit blocks
(C1, · · · , Cm−1) plus a final block Cm. If m > 1, the plaintext block is computed as

Xa+i ← Ci ⊕ lsbs(V )

Mi ← (Ua+i ⊕Xa+i),

where V = Vf for i = 1 and V = Va+i−1 otherwise. The capacity is again simply forwarded
to the next call of the permutation: Ya+i ← Va+i. The subsequent state is then computed
by (Ua+i+1 ‖Va+i+1)← Sa+i+1 ← P (Xa+i ‖ Ya+i).

8



For the final block m, the final plaintext block is computed from the padded ciphertext
block Cm as

Xa+m ← Cm ⊕ lsbs(V )

Mm ← lsbx(Ua+m ⊕Xa+m),

where x ← ℓE mod r. For the final block, the domain dE is XORed to the least sig-
nificant byte of the capacity: Ya+m ← Va+m ⊕d dE . The would-be tag T ′ is derived
by computing (T ′ ‖Z) ← P (Xa+m ‖ Ya+m), and using only its most siginficant τ bits:
T ′ ← msbτ (T ′ ‖Z) as for the encryption If T = T ′, the ciphertext is considered valid, and
M = (M1 ‖ · · · ‖Mm) is released as plaintext. Otherwise, the ciphertext is considered
invalid, and ⊥ is given as output.

Domain Separation. For the purpose of domain separation, Oribatida defines a set of
domain constants dN , dA and dE . Note that d = 4 bits suffice in practice; we encode
them as n-bit constants in Algorithm 1 for simplicity of description. The domains are
XORed with the least significant byte of the state at three stages. Domains are encoded
as bit strings, e.g., 〈12〉d = (1100)2. The value depends on the presence of A and M and
whether their final blocks are absent, partial, or integral. This ensures that there exist no
trivial collisions of inputs to P among blocks of A and M .
The constants are determined by the four control bits (t3, t2, t1, t0) that reflect inputs in
the hardware API. The rationale behind them is the following:

• EOI: t3 is the end-of-input control bit. This bit is set to 1 iff the current data
block is the final block of the input. For all other cases, t3 is set to 0.

• EOT: t2 is the end-of-type control bit. This bit is set to 1 iff the current data block
is the final block of the same type, i.e., it is the last block of the message/associated
data. Note that, if the associated data is empty, the nonce is treated as the final
block of the associated data. So, t2 is set to 1. For all other cases, t2 is set to 0.

• Partial: t1 is the partial-control bit. It is set to 1 if the current data block is
partial, i.e. if its size is less than the required block size. For all other data blocks,
t1 is 0.

• Type: t0 is called the type-control bit. It identifies the type of the current data
block. For the nonce and the processing of the final message block, t0 is set to 1.
For all other cases, t0 is set to 0.

While processing a data block, the domain values are set as the integer representation of
t3 ‖ t2 ‖ t1 ‖ t0. For example, if we are processing the nonce (which is always a complete
r-bit block), where the associated data is empty, and the message is not empty, it holds
that dN = (t3t2t1t0) = (0101)2 = 5.

4 Specification of The SimP Family of Permutations

This section contains the specification of the permutation SimP. From a high-level point
of view, SimP is a variant of the domain extender Ψ′r by Coron et al. [CDMS10] that
iterates a block cipher in r steps. We define SimP to use a round-reduced variant of the
Simon [BSS+13] block cipher and its key schedule through four such steps. First, we
briefly recall Ψ′r before we describe the details of Simon. We will provide an overview of
existing cryptanalysis and close with a discussion of the implications on SimP.
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Figure 2: Top: The construction Ψ′

4 [CDMS10]. The blocks πi denote block ciphers over F
n
2

with key space F
n
2 . Bottom: High-level view of the construction Φ4 as a variant of Ψ′

4. The
blocks ϕi represent the key schedules that produce the subkeys and which are externalized from
the block ciphers πi in Φ4. ϕi feeds the subkeys to πi and outputs the final subkey Krs to become
the next value Rirs .

4.1 The Ψ
′

r
Domain Extender

Coron et al. [CDMS10] proposed the Ψ′r family of two-branch Feistel-like networks, con-
sisting of r calls to (pairwise independent) block ciphers. An illustration of Ψ′4 is given
at the top of Figure 2. Coron et al. provide statements on the indifferentiability of their
constructions, which is a stronger model than the usual indistinguishability. We briefly
recall the model.

Definition 1 (Indifferentiability [MRH04]). Let C be a Turing machine with oracle access
to either (Π, {π±1 , . . . , π±m}), where C is a construction and the πi’s are ideal primitives.
C can employ any of the primitives internally. C is said to be (tD, tS , q, ǫ)-indifferentiable
from an tuple (P , {π±1 , . . . , π±m}), where P is an ideal primitive, if there exists a simulator
S with oracle access to P that runs in time at most tS , such that for any distinguisher A

that runs in time at most tD and makes at most q queries, it holds that
∣

∣Pr
[

AC,π1,...,πm = 1
]

− Pr
[

AP,π1,...,πm = 1
]∣

∣ < ǫ.

C is said to be indifferentiable from P if ǫ is a negligible function of the security parameters
for polynomially bounded q, tD and tS .

Coron et al. showed in [CDMS10] that the following theorem holds.

Theorem 1 ([CDMS10]). Let π1, π2, π3 և Perm(Fn
2 ) be pairwise independent permuta-

tions over F
n
2 . The three-step construction Ψ′3 with an ideal block cipher is (tD, tS , q, ǫ)-

indifferentiable from an ideal cipher with tS = O(qn) and ǫ = 5q2/2n.

It follows naturally that a four-step construction with a fourth independent permutation
π4 և Perm(Fn

2 ) inherits at least the security of the three-step construction.
While the analysis by Coron et al. yielded reasonable bounds for practical constructions,
there is good reason that the three- and four-step constructions can provide higher security.
Omitting the proof details, we provide the following claim.

Claim. The three-step construction Φ3 is (tD, tS, q, ǫ)-indifferentiable from a random
permutation with tS = O(qn) and ǫ = O(n2q2/22n).

The analysis of the given claim implies that almost full security is achieved already with
three steps. Again, a four-step construction with a fourth independent permutation π4 և

Perm(Fn
2 ) would inherit at least the security of the three-step construction.
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4.2 Φr: A Variant of Ψ
′

r
That Includes The Key Schedule

The Ψ′r construction has to store the state that is transformed through the block cipher
πi’s state transformation, plus the key of the current step. Internally, however, the block
ciphers πi have to expand the secret key to subkeys that add to the total memory require-
ment. As an improvement, we propose a variant that avoids the need to store the current
secret key input. For this purpose, we define the key-schedule permutation ϕi : Fn

2 → F
n
2

that takes an initial key K as input and outputs the subkeys K0, . . . , Krs for fixed num-
ber of rounds rs of πi, for 1 ≤ i ≤ r. An illustration is given on the bottom of Figure 2.
Hereafter, we call the construction Φr when it consists of r steps in total. Note that Φr

omits the final swap of the halves for simplicity and since it does not affect the security.
Compared to Ψ′r, the adversary on the SPRP security of Φr has access also to public
oracles for ϕi. So, those are public as well. The rest of the setting is identical to the usual
indifferentiability setting [CDMS10]. Clearly, Φ4 instantiated with π1, . . . , π4 can only be
as secure as Ψ′4 with π1, . . . , π4: any efficient successful distinguisher A′ on Ψ′4 can be
used by a distinguisher A on Φ4 that performs the same steps as A′, plus queries the ϕi

functions with the key input additionally. The reverse direction – i.e., that the security
of Φ4 is at least that of Ψ′4 – can be expected to hold.

4.3 Simon

The Simon family of block ciphers [BSS+13] belongs to the lightest block ciphers in
terms of hardware area and energy efficiency. Internally, it consists of only XORs, bit-
wise rotations, and bit-wise AND, which renders it particularly lightweight and flexible.
Moreover, Simon has been analyzed intensively since its proposal1 and recently been
standardized as part of the ISO/IEC 29167-21:2018 [ISO18]. To keep as close to the
standard as possible, SimP is an instantiation of Φ4 that employs either Simon-96-96 with
its key schedule for ϕ as a 192-bit permutation, or Simon-128-128 with its key schedule
for ϕ as a 256-bit permutation. One iteration of the round function of Simon-2w-2w and
its key-update function are illustrated in Figure 3. Simon-96-96 uses a word size w of 48
bits and employs 52 rounds, whereas Simon-128-128 uses w = 64 bits and 68 rounds.

4.4 Definition of The SimP-n-θ Family of Permutations

SimP-n-θ is an instantiation of Pθ that employs the round function and the key-update
function of Simon-2w-2w in parallel as an n-bit permutation. Internally, the state of
SimP-n-θ consists of four w-bit words (X i

0, X i
1, X i

2, X i
3), where the superscript index i

indicates the state after Round i. We denote by rs the number of rounds per step, and
index the steps from 1 to θ, and the rounds from 1 to θ · rs. The plaintext is denoted as
(X0

0 , X0
1 , X0

2 , X0
3 ); the ciphertext is given as (Xθrs

0 , Xθrs

1 , Xθrs

2 , Xθrs

3 ).
After Round rs, the state halves (Xrs

0 , Xrs

1 ) and (Xrs

2 , Xrs

3 ) are swapped; similarly, they
are swapped also after Round 2rs, . . . , θrs. One round of the permutation is illustrated
in Figure 3. Thus, SimP-192-θ uses Simon-96-96 and consists of four 48-bit words. SimP-
256-θ employs the round function and the key-update function of Simon-128-128 as a
256-bit permutation. For SimP-256-θ, the state consists of four 64-bit words.

Round Function. Let w be a positive integer that determines the word size. for SimP-
192, it holds that w = 48 bits; for SimP-256, it holds that w = 64 bits. Let f : F2w → F2w

1As examples of peer-reviewed publications on Simon-96-96 and Simon-128-128, consider, e.g.,
[ALLW14, CW16, LLW17a, Rad15, XZBL16]. Considerably more analysis targetted the smaller-state
variants.
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Figure 3: Round function of SimP, which is equivalent to Simon-2w/2w with its key sched-
ule, where w is the word size. It transforms the four-word state (Xi−1

0 , Xi−1

1 , Xi−1

2 , Xi−1

3 ) to
(Xi

0, Xi
1, Xi

2, Xi
3).

and g : F2w → F2w be defined as

f(x)
def
= (x ≪ 8) ∧ (x ≪ 1)⊕ (x ≪ 2), and

g(x)
def
= (x ≫ 3)⊕ (x ≫ 4).

Key-update Function. Let ϕj : (F2w )2 → (F2w )2, for 1 ≤ j ≤ θ be key-update functions.
Let ℓ = (j−1)·rs. Given an input (Xℓ

0, Xℓ
1), it derives rs keys (Xℓ+i

0 , Xℓ+i
1 ), for 1 ≤ i ≤ rs,

as

Xℓ+i
0 ← Xℓ+i−1

1 ⊕ g(Xℓ+i−1
0 )⊕ c⊕ zℓ+i−1,

Xℓ+i
1 ← Xℓ+i−1

0 ,

for 1 ≤ i ≤ rs.

State-update Function. We define the state-update function as π : (F2w )rs × (F2w )2 →
(F2w )2, where the first input considers the expanded subkeys. Let ℓ = (j − 1) · rs. It
takes rs round keys (Xℓ

0, . . . , Xℓ
rs−1) as key input, as well as (Xℓ

2, Xℓ
3) as state input, and

computes (Xℓ+rs

2 , Xℓ+rs

3 ) recursively as:

Xℓ+i
2 ← f(Xℓ+i−1

2 )⊕Xℓ+i−1
3 ⊕Xℓ+i−1

1

Xℓ+i
3 ← Xℓ+i−1

2 ,

for 1 ≤ i ≤ rs.

Step Function. Let ρj : F
4
2w → F

4
2w denote the step function, for 1 ≤ j ≤ θ. Define

Li = (X i
0, X i

1) and Ri = (X i
2, X i

3). The step transforms (Li, Ri) = (X i
0, X i

1, X i
2, X i

3) into
(X i+rs

0 , X i+rs

1 , X i+rs

2 , X i+rs

3 ) as:

(Lrs , Rrs) = (X i+rs

0 , X i+rs

1 , X i+rs

2 , X i+rs

3 )

ρj(X i
0, X i

1, X i
2, X i

3)
def
= (πj(X i

2, X i
3), ϕj(X i

0, X i
1)),

for 1 ≤ j < θ. One exception is the final step ρθ, which omits the final swap of the halves:

ρθ(X i
0, X i

1, X i
2, X i

3)
def
= (ϕθ(X i

0, X i
1), πθ(X i

2, X i
3)).

SimP-n-θ takes a plaintext (X0
0 , X0

1 , X0
2 , X0

3 ) and outputs (Lr, Rr) = (Xr
0 , Xr

1 , Xr
2 , Xr

3 ),
with r = θrs as ciphertext.
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Figure 4: SimP-n-2.

Round Constants. The round constants are those of Simon-96-96 and Simon-128-128
[BSS+13], respectively. It holds that c = 0xff...ffc, i.e., all w bits except for the least
significant two bits are 1. More precisely, for w = 48, it holds that

c = (1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1100)2.

For w = 64, it holds that

c = (1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1100)2.

For both SimP-192 and SimP-256, the constants are defined as

z = z0z1 . . . z61

= (10 1011 1101 1100 0000 1101 0010 0110 0010 1000 0100 0111 1110 0101 1011 0011)2.

The sequence has a period of 62, so zi = zi mod 62, for non-negative integers i. Note that
the order of the bits zi is reversed.

Number of Steps θ. We only consider two choices of θ, namely 2 and 4. The case θ = 2
is used only to process the intermediate associate data block. In all other cases, Oribatida

uses θ = 4. Figure 4 shows the step-reduced variant SimP-n-2.

Number of Rounds. SimP-192-4 consists of rs = 26 rounds for each step, and therefore
performs r = 4 · rs = 104 rounds in total. SimP-256-4 consists of rs = 34 rounds for each
block, and therefore performs r = 4 · rs = 136 rounds in total.
Similarly, SimP-192-2 consists of rs = 26 rounds for each step, and therefore performs
r = 2 · rs = 52 rounds in total. SimP-256-2 consists of rs = 34 rounds for each block,
and therefore performs r = 2 · rs = 68 rounds in total. For notational simplicity, we also
denote SimP-n-4 as SimP-n and SimP-n-2 as SimP

′-n. The algorithm for SimP-n-θ is given
in Algorithm 2.

4.5 Byte Order in Oribatida

For the sake of clarity, Figure 5 visualizes the byte and word order of the inputs. Let SB
denote the state in bytes; for more clarity, we further write this ordering in type-writer
font. The rate consists of the first r/8 bytes of the state: SB[0], ..., SB[r/8 - 1].
The capacity represents the last c/8 bytes SB[r/8], ..., SB[n/8 - 1]. Similarly, the
rate part of the state consists of the first words of the permutation input.
If the state is interpreted as an n-bit value, however, note that the initial Byte 0 contains
the most significant eight bits: SB[0] = (S[n − 1], S[n − 2], . . . , S[n − 8]). On the other
side, the least significant eight bits are stored in Byte SB[n/8 - 1]: SB[n/8 - 1] =
(S[7], S[6], . . . , S[0]).
So, the rate part is used first as input to the key-update function, the capacity is used as
input to the state-update function.
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Algorithm 2 Specification of the encryption and decryption algorithms of SimP-n-θ.

101: function SimP-n-θ(M)

102: (X0
0

, X0
1

, X0
2

, X0
3

)
w
←−M

103: for i← 1..θ do

104: for j ← 1..rs do

105: ℓ← (i− 1) · rs + j

106: Xℓ
0
← Xℓ−1

1
⊕ g(Xℓ−1

0
)⊕ c⊕ zℓ−1

107: Xℓ
1
← Xℓ−1

0

108: Xℓ
2
← Xℓ−1

3
⊕ f(Xℓ−1

2
) ⊕Xℓ−1

1

109: Xℓ
3
← Xℓ−1

2

110: if i 6= θ then

111: (Xℓ
0
, Xℓ

1
, Xℓ

2
, Xℓ

3
)

112: ← swap(Xℓ
0
, Xℓ

1
, Xℓ

2
, Xℓ

3
)

113: C ← (Xθrs
0
‖X

θrs
1
‖X

θrs
2
‖X

θrs
3

)
114: return C

121: function f(X)
122: return ((X ≪ 1)∧(X ≪ 8))⊕(X ≪ 2)

131: function g(X)
132: return (X ≫ 3)⊕ (X ≫ 4)

141: function swap(X0, X1, X2, X3)
142: return (X2, X3, X0, X1)

Figure 5: Byte and word orientation of inputs and outputs into SimP when used in Oribatida.

5 Security Arguments for Oribatida

This section provides arguments on the provable security of our mode. First, we briefly
recall the necessary notions for nonce-based authenticated encryption. Thereupon, we
provide an outline of its security, but omit proof details.
Assume, we consider an information-theoretic nonce-respecting distinguisher A that has
access to a construction oracle that is either Oribatida or random bits. Moreover, A has
access to independent random permutations P, P ′ և Perm(Fn

2 ) in both worlds.

• As usual, we bound the number of primitive queries that A asks to the construction
oracle by qp;

• We further denote the number of encryption and verification queries by qe and qv,
respectively.

• We use σ for the total number of r-bit blocks in associated data, plaintexts, and
ciphertexts over all encryption and verification queries, respectively.

The advantage of the AE-security of the duplex sponge is dominated by

O
(rqp

2c
+

qpσ

2n
+

qpqv

2c
+

qp

2k

)

, (1)

which addresses the probabilities of multi-collisions, the probability of collisions between
internal states and primitive queries, as well as the probability to find a valid verification
query or the secret key.
For Oribatida-n with an s-bit mask, we expect the rightmost term of Equation (1) to be
replacable by

qpqv

2c+s
,
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Table 2: Security claims in bits for our recommended schemes. RUP = release of unverified
plaintext material.

Security Goal Oribatida-256-64 Oribatida-192-96

nAE Security 128 128

Integrity under RUP 128 128

instead of qpqv/2c since each output depends on c + s output bits.
Moreover, for integrity under release of unverified plaintexts, we expect that the rightmost
term is replaced by

qp(qv + σ)

2c+s
.

for the same reason.

Choice of Rate and Capacity Inputs To The Permutation. The omission of the final
swap does not affect the security properties in the context of the permutation, but is an
optimization. Note that the reduced permutation SimP-2 – that employs only two steps
for processing the associated data in Oribatida – is no longer a random permutation. It is
easy to see that if the key input would be held constant and the state input would change,
the state would remain a permutation, where the zero difference cannot occur. Since we
choose the rate part as the key input, this distinguisher is not directly exploitable. In
contrast, for the step-reduced permutation that is used for processing the associated data,
we follow the established Hash-then-PRP approach. Thus, we need only the differential
probability of P ′.

Security Level. The security level is expressed in bits. A security level of z bits means
that in the single-key setting, the advantage of any adversary to distinguish it from the
ideal primitive or to recover the key is negligible as long as its number of queries q and
its total number of queried r-bit blocks σ over all messages satisfy q, σ ≪ O(2z). Assume
that P and P ′ are independent permutations. Given the assumptions on A as above, we
obtain for Oribatida-192-96 that

AdvnAE

Oribatida-192-96[P,P ′](A) ∈ O

(

96qp

296
+

qp · σ

2192
+

qp · qv

2192
+

qp

2128

)

AdvINT-RUP

Oribatida-192-96[P,P ′](A) ∈ O

(

96qp

296
+

qp · σ

2192
+

qp · (qv + σ)

2192
+

qp

2128

)

.

For Oribatida-256-64, we obtain

AdvnAE

Oribatida-256-64[P,P ′](A) ∈ O

(

128qp

2128
+

qp · σ

2256
+

qp · qv

2192
+

qp

2128

)

Adv
INT-RUP

Oribatida-256-64[P,P ′](A) ∈ O

(

128qp

2128
+

qp · σ

2256
+

qp · (qv + σ)

2192
+

qp

2128

)

.

Table 2 summarizes our security claims for our recommended variants of Oribatida. Fig-
ure 6 illustrates the relations of the required time (as the number of permutation queries,
qp) and required data (in terms of the number of queried blocks in construction queries,
σ) to obtain an advantage of 1 for the individual variants of Oribatida.
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Figure 6: Bounds of time (qp) conditioned on available data σ so that the advantage of the
dominating terms for nonce-respecting AE and INT-RUP adversaries for the variants of Oribatida
becomes one.

6 Security of SimP

The number of steps and rounds of SimP was chosen to resist known cryptanalysis tech-
niques and tools. This section provides a rationale of our choices from the existing works.

6.1 Existing Cryptanalysis on Simon

Various works considered analyzed the Simon family of block ciphers since its proposal.

Differential Cryptanalysis. Cryptanalysis that appeared early after the proposal of Si-

mon followed heuristics for differential cryptanalysis: Abed et al. [ALLW14] followed
a heuristic branch-and-bound approach that yielded differentials for up to 30 round Si-

mon-96. Biryukov et al. [BRV14] studied more efficient heuristics, but considered the
small variants with state sizes up to 64 bits. Dinur et al. [DDGS15] showed that distin-
guishers on Simon with k key words can be extended by at least k rounds. Interestingly,
boomerangs seemed to be less a threat to Simon-like ciphers than pure differentials.
Kölbl et al. [KLT15] redirected the search on optimal characteristics. More recently,
Liu et al. [LLW17a] employed a variant of Matsui’s algorithm [Mat94] to find optimal
differential characteristics. They found that characteristics with probability higher than
2−96 covered at most 27 rounds. Moreover, they found at best 31-round differentials with
accumulated probability higher than 2−96, i.e., of probability 2−95.34. For Simon-128, they
showed that optimal differential characteristics covered at most 37 rounds; furthermore,
they found 41-round differentials with cumulative probability of 2−123.74.

Linear Cryptanalysis. Linear trails are similarly a threat as differential trails. Alizadeh
et al. [ABG+13, AAA+14] studied linear trails. They reported multi-linear distinguishers
on all variants of Simon. For Simon-96-96, they proposed a multi-linear distinguisher on
up to 31 rounds that could be extended by two rounds in a key-recovery attacks. Similarly,
they reported a 37-round distinguisher for Simon-128-128 that could be extendable by two
rounds. Chen and Wang [CW16] published improved key-recovery attacks that employed
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Table 3: Existing results of best distinguishers and best key-recovery attacks on Simon-96 in
the single-key setting. Dist. = distinguisher; Prob. = probability; Pot. = linear potential.

Type #Rds. Time Data Prob./Pot. Ref

Simon-96-96 Distinguishers

Algebraic 14 20 CPs [Rad15]

Integral 22 295 295 CP [XZBL16]

Differential 30 2−92.2 [ALLW14]

Differential 31 2−95.34 [LLW17a]

Linear 31 2−93.8 [LLW17b]

Simon-96-96 Key-recovery Attacks

Multiple Linear 33 294.42 294.42 KP 2−94.42 [AAA+14]

Linear Hull 37 288.0 295.2 KP 2−95.2 [CW16]

Simon-128-128 Distinguishers

Algebraic 16 20 CP [Rad15]

Integral 26 2126 2126 CP [XZBL16]

Linear 37 2−128 [AAA+14]

Differential 41 2−123.74 [LLW17a]

Linear Hull 41 2−123.15 [LLW17b]

Simon-128-128 Key-recovery Attack

Linear Hull 49 2127.6 2127.6 CP 2−126.6 [CW16]

dynamic key-guessing, i.e., adaptive guessing of key bits to reduce the complexity. Their
attacks are the most effective ones for our considered variants to the best of our knowledge,
covering up to 37 rounds of Simon-96-96 and up to 49 rounds of Simon-128-128 in theory.
Similar as for differentials, Liu et al. studied also optimal linear approximations [LLW17b]
with an algorithm adapted from Matsui. Liu et al. found that optimal linear approxima-
tions can reach at most 28 rounds for Simon-96, and at most 37 rounds for Simon-128.
They further found linear hulls with potential of 2−93.8 for 31 rounds of Simon-96, and
2−123.15 for 41 rounds of Simon-128.

Integral, Impossible-differential, and Zero-correlation Distinguishers. Integral attacks
cover at most 22 rounds for Simon-96-96 and 26 rounds of Simon-128-128. Zhang et al.
[ZWW15] found integrals on up to 21 and 25 rounds for Simon-96 and Simon-128. Their
results were extended by one round each by Xiang et al. [XZBL16], and later by Todo
and Morii [TM16]. The latter could show the absence of integrals for 25-round Simon-96.
Their observation was confirmed by Kondo et al. [KSTI18].
Shen et al. [SLS+17] studied impossible-differential and zero-correlation distinguishers.
The maximal number of rounds that such distinguishers can cover is given by at most
twice the length of the maximal diffusion. Since this is given by 11 rounds for Simon-96
and 13 rounds for Simon-128-128 [KLT15], such distinguishers can cover at most 22 and
26 rounds in the single-key setting.
For related keys, Kondo et al. [KSTI18] searched for iterative key differences in Simon.
This allowed them to extend previous results by four to 15 rounds. For Simon-96-96, the
authors found iterative key differentials for up to 20 rounds. Though, it remains unclear
if this yields an impossible differential; in the best case, such a 20-round distinguisher
can be extended by 2 + 2 + 2 wrapping rounds: two more blank rounds where one of the
key words is not used, plus two rounds where the key difference can be canceled by the
state differences, plus two outermost rounds since the result of the non-linear function is
independent of the key and therefore predictable in Simon. So, an impossible-differential
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distinguisher could cover up to 26 rounds. Note that this upper bound that has not been
formulated to an attack on the here-considered versions by Kondo et al. and is therefore
not part of the attack overview in Table 3.

Algebraic Cryptanalysis is unlikely to be a threat on Simon-like constructions for suffi-
ciently many rounds. However, Raddum [Rad15] showed that the large number of rounds
is necessary, by demonstrating that equation systems of up to 14 rounds of Simon-96-
96 and up to 16 rounds of Simon-128 are efficiently solvable on an off-the-shelf laptop.
Though, extensions are unknown at the moment.

Meet-in-the-Middle Attacks are successful primarily on primitives that do not use parts
of the key space in sequences of several rounds. The Simon-2w-2w versions use every key
bit in each sequence of two subsequent rounds, which limits the chances of meet-in-the-
middle attacks drastically. Considering 3-subset meet-in-the-middle attacks, together with
an initial structure and partial matching, the length of an attack is limited to that of twice
the full diffusion plus four rounds plus the maximal length of an initial structure plus two
rounds for a splice-and-cut part, which yiels 30 rounds as upper bound. Though, it is
unlikely that such attacks cover 30 or more rounds on Simon-2w-2w.

Correlated Sequences. A recent interesting direction may be correlated sequences [RG18].
Rohit and Gong’s technique requires only very few texts and could break 27 rounds of Si-

mon-32 and Simeck-32 and thus, outperformed all previous attacks by at least 3 rounds.
Though, that approach needs further investigation and has seen application only to Si-

mon-32-64 until now.

6.2 Implications to SimP

Clearly, the key schedule of Simon is completely linear. Therefore, the two state words
that are transformed by the key schedule allow complete prediction of differences, linear
and algebraic properties through a full step. Though, SimP transforms each input word
through at least 2rs rounds of Simon.

Related-key Differential Cryptanalysis. SimP needs an analysis of related-key differen-
tial and linear characteristics. Though, with existing methods such as the exhaustive
search in [LLW17a] or SAT solvers [KLT15], such a study is difficult due to the large state
size since the known tools cannot scale appropriately. There exist peer-reviewed related-
key results on Simon, e.g., by Wang et al. [WWHL18]. Though, their search restricted
to related-key trails for the small variants of the Simon family, i.e., Simon-32, Simon-48,
and Simon-64.
We conducted experiments using the SAT-based approach from [KLT15] as well as us-
ing the approach from [LLW17a] to search optimal differential characteristics on SimP.
Though, the related-key analysis of Simon-like constructions is computationally difficult
because of the large state size. We obtained improved trails for only for up to seven rounds
of Simon-96; starting from eight rounds, the best found characteristics possessed a zero
key difference for up to 10 rounds, which suggests that differences in the few key words
do not improve the best single-key characteristics. So, it seems that the probabilities
of the existing optimal differential characteristics and linear trails for Simon-96-96 and
Simon-128-128 also hold for SimP-192-1 and SimP-256-1 from there. Table 4 compares
the probabilities of optimal single- and related-key differential characteristics.

Number of Steps and Rounds of SimP. SimP benefits from the intensive cryptanalysis
of Simon. The usage of the key-update function of Simon seems to not promote consid-
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Table 4: Probabilities of optimal related-key differential characteristics for round-reduced vari-
ants of Simon-96-96 and Simon-128-128. p denotes the probability; SK = single-key model, RK
= related-key model.

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

#Rounds 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

Simon-96-96

− log2(p) (SK) 4 6 8 12 14 18 20 26 30 36 38 44 48 54 56 62 64 66

68 72 74 78 80 86 90 96

− log2(p) (RK) 0 2 4 10 12 18 20 26

Simon-128-128

− log2(p) (SK) 4 6 8 12 14 18 20 26 30 36 38 44 48 54 56 62 64 66

68 72 74 78 80 86 90 96 98 104 108 114 116 122 124 126 128

− log2(p) (RK) 0 2 4 10 12 18 20 26

erably more effective differential or linear attacks compared to the single-key results on
Simon. The usage of the 2w-word key appears not exploitable neither by differentials and
linear characteristics, nor by techniques that try to exploit more available state such as
meet-in-the-middle attacks. The reason is in the diffusion and the relatively large number
of rounds.
The number of steps and the number of rounds in our employed instantiations of SimP

have been chosen very conservatively, using the number of rounds per step rs as half
the number of rounds in Simon. This choice guarantees that each bit passes at least once
through the full-round cipher, and therefore is expected to possess the algebraic degree
of the full-round cipher. Moreover, the diffusion properties of Simon render impossible-
differential, zero-correlation, or integral attacks implausible.
The design of SimP is as close to the original design of Simon as possible. Therefore,
any considerable novel result in the cryptanalysis on SimP would most likely also be a
higher threat on Simon-2w-2w at the same time. Thus, such results are possible, but
appear unrealistic in the mid-term future. Moreover, the higher number of rounds in
SimP provide an additional security margin.

7 Features

Oribatida . . .

• . . . is optimized for messages as short as 8 bytes and

• . . . is optimized for message lengths in full bytes.

As given by [NIS18]

Flexibility. All versions of the Oribatida family support. . .

• . . . nonce lengths of at least 64 bits,

• . . . tag lengths of at least 96 bits,

• . . . plaintext lengths of up to 250 − 1 bytes,

• . . . associated-data lengths of up to 250 − 1 bytes, and
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• . . . processing 250 − 1 bytes under a single key.

In particular, our primary recommendation Oribatida-256-128 supports. . .

• . . . a nonce length of 128 bits,

• . . . a tag length of 128 bits, and

• . . . a key length of up to 256 bits.

Efficiency. As a keyed sponge mode that initializes the state from key and nonce, the
key preprocessing is efficient and requires only a single call to the permutation.

Simplicity. The sponge mode is well-understood and has been analyzed intensely. It
is easily adaptable to a hash function or a MAC. The implementation overhead for the
decryption is low since the encryption can also be performed with the sole forward direc-
tion of the permutation. Moreover, a round-reduced permutation is used in between the
associated-data blocks to further boost the performance.

8 Hardware Implementation

This section considers the character of SimP and Oribatida for hardware implementations.

8.1 SimP

Below, we list hardware-implementation characteristics of SimP.

SimP Is Lightweight since its transformations are exactly the round function and the
key-update function of Simon-96-96 or Simon-128-128, respectively. Both transforma-
tions are based on simple operations such as rotations, XORs, and ANDs that consume
only routing resources and bit-wise logical operations. The area in GEs is approximately
that of Simon-96 plus some overhead, which is caused from the need of an additional
input to both transformations due to the swapping after rs rounds.

Side-channel Resistance. Unprotected implementations of Simon are vulnerable against
differential power analysis attacks using the leakage generated by the transitions in the
state register; the Hamming-distance model captures such leakage. Masking – in particu-
lar, Boolean masking (XORing a random value to the output of the round function) – is
one countermeasure that can be easily applied to Simon. The simple structure of Simon
components allow to explore other countermeasures such as unrolling rounds to achieve
higher-order side-channel resistance.

Latency. SimP can be implemented in different levels of serialization, from fully serial
that updates one bit per cycle, to a round-based implementation that updates the full state
in one clock cycle. Depending on the choice, there is a broad implementation spectrum
with a trade-off between throughput and area.

8.2 Oribatida

Below, we consider aspects of Oribatida when implementing it in hardware.
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Table 5: Implementation results for SimP-256 and Oribatida-256-64 encryption/decryption and
only encryption on Virtex 7 FPGA. LUTs = lookup tables; AD = associated data; Enc. =
encryption; Dec. = decryption.

Frequency Clock cycles Throughput (Mbps)

LUTs FF #Slices (MHz) AD Message AD Message

SimP-256 495 340 148 580.51 69 137 1 076.88 542.37

SimP-192 383 259 122 581.98 53 105 1 054.15 532.10

Oribatida-256-64

Enc. and Dec. 940 599 298 554.16 68 138 1 043.12 514.00

Enc. only 805 595 253 560.71 68 138 1 055.45 520.08

Oribatida Is Simple. It can be implemented efficiently with little extra cost compared
to the duplex sponge. Additional costs result from the use of a module to generate the
constants for the domain separation, which can be held in ROM. In modern FPGAs, this
module takes only four LUTs. For domain separation, only a four-bit XOR is necessary at
the input for capacity of the permutation. An additional 64-bit register to store a mask,
and a 64-bit XOR to add the mask to the ciphertext is requires.

Oribatida Allows A Wide Spectrum of Implementations. The use of SimP as its main
building block allows to directly transfer the same strategy of using different data-path
sizes to Oribatida. Thus, the implementer can choose among various trade-offs between
throughput, latency, area, and power consumption.

Side-channel Resistance. In terms of side-channel resistance, the same aspects that hold
for SimP also hold for the mode Oribatida. Thus, Oribatida does not introduce additional
weaknesses of side channels.
Table 5 lists the implementations results obtained from Xilinx Vivado 2018 optimizing for
area. All results represent measurements after the place-and-route process.
In Table 5, we list two columns for the number of clock cycles and throughput, the first
one is for associated data processing (reduced rounds SimP) and the second for message
processing (normal SimP). Our results represent the first implementation attempts of
Oribatida that leaves still room for improvements as explained above.

9 Software Implementation

SimP Is Very Lightweight and Flexible. For SimP, only the round function and the
key-update function of Simon have to be implemented, which can be realized using only
rotations, logical ANDs and XORs. Since those operations treat individual bits separately
without dependencies among the bits of the same words, the employed internal state size
can be arbitrary. Therefore, SimP is well-suited for a variety of platforms independent
of word-size limitations. There are no S-boxes or complex constants that must be stored,
the RAM and ROM sizes are expected low. The round constants zi can be implemented
compactly using a five-bit Linear Feedback-shift Register [BSS+13].

SimP Alleviates Side-channel Countermeasures. The lack for S-boxes renders constant-
time implementations straight-forward. Moreover, the low degree of the internal function
alleviates protections with maskings or sharing-based countermeasures such as threshold
implementations or consolidated masking schemes.
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The Memory Footprint of Oribatida Is Also Low. The full implementation state is
given by the n-bit state, the subsequent block, plus the overhead from the mask size, plus
the result of initializing the key. Note that the key needs one single preprocessing call to
the permutation P at initialization. Moreover, there is no overhead for the decryption
operation of the primitive in Oribatida.
To minimize the memory requirements, e.g., Oribatida-192-96 needs 96-bits register for the
block, 96 bits for the mask, plus 192 bits for the current state, and 128 bits for the key.
Note that the state size of Oribatida is analogous to that of lightweight block ciphers with
128-bit security and small 64-bit state such as GIFT or LED. Though, such primitives
either lead to birthday-bound security of at most 232 blocks encrypted under the same
key, or must be used in modes with security beyond the birthday bound that are usually
slower. Therefore, they require further memory to store the previous state. To provide
high security, block-cipher-based modes often have to occupy more memory.

10 Intellectual Property

The submitters are not aware of any patent involved in Oribatida. Furthermore, Oribatida

will not be patented. If any of this information changes, the submitters will promptly
(and within at most one month) announce these changes on the mailing list of the NIST
lightweight competition.
According to [BSS+18], “SIMON and SPECK are free from any intellectual property
restrictions. [The work on SIMON and SPECK] was prepared by a United States Govern-
ment employee and, therefore, is excluded from copyright by Section 105 of the Copyright
Act of 1976. The algorithms [of SIMON and SPECK] are free for anyone to use. There
are no patent or licensing restrictions. Copyright and related rights are expressly waived
through the CC0 1.0 Universal License.”
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