
SNEIKEN and SNEIKHA
Authenticated Encryption and Cryptographic Hashing

Markku-Juhani O. Saarinen

PQShield Ltd.
Prama House, 267 Banbury Road

Oxford OX2 7HT, United Kingdom
mjos@pqshield.com

Tel. +44 (0)7548 620723

Abstract. We introduce SNEIKEN, an Authenticated Encryption with Associated
Data (AEAD) construction and SNEIKHA, a cryptographic hash. Both are derived
from the SNEIK permutation, a lightweight, flexible ARX design with very efficient
diffusion. Our SNEIK/BLNK2 design strategy emphasizes simplicity and allows
full-featured, yet extremely lightweight cryptographic protocols to be created. We
study implementations for 8-bit Atmel AVR and 32-bit ARM Cortex M3/M4 tar-
gets, where the SNEIK family is shown to perform clearly better and with smaller
implementation footprint than comparable SHA-3 and AES instances. We also dis-
cuss SNEIGEN, a group of fast diffusers that have limited cryptographic security
by themselves but are able to support the internal operations of (post-quantum)
cryptographic algorithms and protocols more efficiently than Shake or AES.
Keywords: Lightweight Cryptography · Sponge · SNEIKEN · SNEIKHA · SNEIGEN

Contents
1 Introduction 2

2 The SNEIK f512 Permutation 3

3 BLNK2 Primitive Sponge Operations 6

4 SNEIKEN: Authenticated Encryption 8

5 SNEIKHA: Cryptographic Hashing 9

6 Design Rationale 10

References 13

A SNEIGEN Entropy Distribution Functions 16

Copyright c⃝ 2019 PQShield Ltd., Oxford UK.
Version 20190329171200

mailto:mjos@pqshield.com

2 SNEIKEN and SNEIKHA

1 Introduction
This document describes the SNEIK family of primitives for lightweight cryptography.
The primary members of the family are the SNEIKEN128 AEAD (Authenticated En-
cryption with Associated Data) algorithm and the SNEIKHA256 cryptographic hash.
SNEIKEN256 and SNEIKHA384 can be paired for higher-security applications.

Name Type Security Specification
SNEIKEN128 AEAD 2128 (NIST1) Section 4.
SNEIKEN192 AEAD 2192 (NIST3) Section 4.
SNEIKEN256 AEAD 2256 (NIST5) Section 4.
SNEIKHA256 Hash 2128 Section 5.
SNEIKHA384 Hash 2192 Section 5.
SNEIGEN Informational Appendix A.

The security for SNEIKEN AEADs indicates the effort required to breach the con-
fidentiality of a given ciphertext with a classical computer. SNEIKEN 128/192/256 is
expected to match the security of AES 128/192/256 [NIS01].

The effort required to breach the integrity of ciphertext (i.e. to create a forgery) is
claimed to be equivalent to the size of the ciphertext expansion (authentication tag). Any
valid attack must ensure that a nonce does not repeat under the same secret key.

For SNEIKHA hash functions the security level primarily indicates the effort required
to produce collisions on a classical computer. Pre-image attacks may require more effort,
especially for fixed-format messages, as used in some hash-based signature schemes.

We set no explicit limits on the input sizes (hashed message, plaintext, associated data,
and the amount of data that can be processed under one key), but we assume them to be
under 264 bits for security analysis.

The SNEIGEN Entropy Distribution Function XOFs are included as “informational”
and they relate to the parallel development of post-quantum asymmetric cryptography
and protocols. Even though they have clear use cases within lightweight cryptography,
they do not meet the normal security criteria set for stand-alone primitives. Their security
must be evaluated in the context where they are used.

Notation and conventions. SNEIK is an ARX [KN10] type construction built from three
very simple operations on 32-bit words:

A: x ⊞ y Addition modulo word size: x + y mod 232.
R: x⊕ y Bitwise exclusive-or operation between x and y.
X: x ≪ r Cyclic left rotation by r bits in a 32-bit word.

We also use Boolean operators ∧ and ∨ to denote bitwise “and” and “or” operations and
double vertical ∥ to denote concatenation of arrays and strings. Expression enclosed in
single verticals |v| refers to its size (length) in bits; we have |t∥u| = |t|+ |u|.

A C-style notation is used for bit and byte arrays (unit size depends on context);
vectors are zero-indexed with index in square brackets. We use ranges to indicate sub-
arrays; v[i · · · j] refers to concatenation of all entries from v[i] to v[j], inclusive.

All numerical values are stored and exchanged in little-endian fashion, with the least
significant bit, byte, or vector array entry having index 0. Hexadecimal numbers (bytes or
words) are prefixed with “0x”. Bit and byte arrays are read from left to right, with index
starting with 0. The 32-bit integer 0x12345678 (decimal 305419896) is therefore stored
and transmitted as four bytes 0x78 ∥ 0x56 ∥ 0x34 ∥ 0x12.

Any integer n ∈ (0, 2m] has unique encoding as bit array B[m] with n =
∑m−1

i 2iB[i].
Therefore bit i has numerical value 2i. The first bit (bit 0) of a byte is therefore 20 = 0x01
and the last bit (bit 7) is 27 = 0x80. One can always fetch bit i from a byte array v[] in
C with an expression such as (v[i >> 3] >> (i & 7)) & 1.

Markku-Juhani O. Saarinen 3

� �
// cyclic rotate left for 32- bit words
define ROL32 (x, y) (((x) << (y)) | ((x) >> (32 - (y))))

void sneik_f512 (void *s, uint8_t dom , uint8_t rounds)
{

const uint8_t rc [16] = { // round constant table
0xEF , 0xE0 , 0xD9 , 0xD6 , 0xBA , 0xB5 , 0x8C , 0x83 ,
0x10 , 0x1F , 0x26 , 0x29 , 0x45 , 0x4A , 0x73 , 0x7C // (only 8 used now)

};

int i, j; // loop counters
uint32_t t, *v = (uint32_t *) s; // assume little endian !

for (i = 0; i < rounds ; i++) { // loop over rounds
v[0] ^= (uint32_t) rc[i]; // xor round constant
v[1] ^= (uint32_t) dom; // xor domain constant
for (j = 0; j < 16; j++) {

t = v[j]; // middle value
t += v[(j - 1) & 0xF]; // feedback previous
t = t ^ ROL32 (t, 24) ^ ROL32 (t, 25); // p(x) = x^25 + x^24 + x
t ^= v[(j - 2) & 0xF]; // outer feedback
t += v[(j + 2) & 0xF];
t = t ^ ROL32 (t, 9) ^ ROL32 (t, 17); // q(x) = x^17 + x^9 + x
t ^= v[(j + 1) & 0xF]; // reverse feedback
v[j] = t; // store the result

}
}

}� �
Listing 1: The SNEIK permutation f512ρ

δ(S) in C. We set dom = δ and rounds = ρ.

2 The SNEIK f512 Permutation
With πρ

δ we denote a family of unkeyed ρ-round permutations on b-bit state S, controlled
by a domain identifier δ:

S′ = πρ
δ (S). (1)

The security of πρ
δ should be evaluated in the context where it is used – we are not

claiming it to be a hermetic sponge resistant to all structural distinguishers [BDPA11].
The permutation is easily invertible but the inverse permutation is not required by

any of the modes proposed in this document.

Parameters. SNEIK is very flexible, but for the purposes of this specification we fix the
state size to b = 512 bits, which is organized as sixteen 32-bit words (n = 16).

We note that the state required by any of the proposed AEAD and hashing modes is
limited to essentially the 512-bit S – not much more than 64 bytes of RAM is required to
perform any operation from start to finish.

Implementation strategies. Listing 1 contains a compact C source code implementation
of the SNEIK permutation instantiation π = f512 (for b = 512) as used in our SNEIKEN,
SNEIKHA, and SNEIGEN proposals. This is not an optimized implementation but pre-
sented here as an additional reference.

We note that the domain separator δ or dom is an 8-bit integer, defined in the context
of BLNK2 modes (See Table 2). Round constants are defined for up to 16 rounds, even
though this version never uses more than 8. Our current round counts are quite optimistic,
so we reserve the right to increase them if deemed necessary due to future cryptanalysis.

There are two basic implementation methods, one organized as a non-linear feed-
back shift register (suitable for hardware) and a “register window” method suitable for
lightweight software implementations.

4 SNEIKEN and SNEIKHA

s[i] · · ·s[i− 1] s[i− 2] s[i− 14] s[i− 15] s[i− 16]

d[i]⊕
⊞

≪ 24 ≪ 25
⊕

⊕

⊞

≪ 9 ≪ 17
⊕

⊕

Figure 1: The SNEIK permutation, viewed as a non-linear feedback shift register
(NLFSR), Equation 2. This illustrates its structural similarity to some stream ciphers.
In a simple nr-cycle hardware implementation the sixteen registers are moved right for
each clock, while a new value computed and loaded into the leftmost 32-bit register.

Non-linear feedback shift register. Let n ≥ 5 be the size of the initial state s[0 · · ·n−1]
of 32-bit words (with the f512 instantiation we have n = 16). Recurrence of Equation 2
defines a nonlinear feedback expander sequence s[i] for any i ≥ n. The seven arithmetic
steps tj are numbered just for referencing. Figure 1 illustrates the operation of the NLFSR.

t1 = s[i− n]⊕ d[i]
t2 = t1 ⊞ s[i− 1]
t3 = t2 ⊕ (t2 ≪ 24)⊕ (t2 ≪ 25)
t4 = t3 ⊕ s[i− 2]
t5 = t4 ⊞ s[i− n + 2]
t6 = t5 ⊕ (t5 ≪ 9)⊕ (t5 ≪ 17)
t7 = t6 ⊕ s[i− n + 1]

s[i] = t7

(2)

To compute r rounds of the SNEIK permutation, we initialize the state s[0 · · ·n − 1]
with input, run the expander sequence for nr steps and return s[nr · · ·n(r + 1)− 1].

The domain separation constant d[i] is nonzero only when i mod n ∈ {0, 1}. We
interpret round constants to be just another kind of “domain separator”, separating rounds
from each other. We set d[nj] = rc[j] from vector in Equation 3 and d[nj + 1] = δ.

The domain identifier value of δ is set by higher level BLNK2 primitive (see Table 2
in Section 3). The first 16 round constants are:

rc[0..15] =0xEF, 0xE0, 0xD9, 0xD6, 0xBA, 0xB5, 0x8C, 0x83,

0x10, 0x1F, 0x26, 0x29, 0x45, 0x4A, 0x73, 0x7C.
(3)

Markku-Juhani O. Saarinen 5

s[0] s[1] s[2] s[3] s[4] s[5] s[6] s[7] s[8] s[9] s[10] s[11] s[12] s[13] s[14] s[15]
load

load

load

load

load

load

load

save

save

save

save

save

save

save

R0 R1 R2 R3

R0 R1 R2 R3

R0 R1 R2 R3

R0R1 R2 R3

R0 R1R2 R3

R0 R1 R2R3

R0 R1 R2 R3

Figure 2: The sliding window implementation technique. Since five consecutive words
(with wrap-around) from the state are used to compute a new value for the “middle word”
(Equation 4), we can organize the computation in a way that there is only a single load
and save per step. A set of four registers can be used in a way that avoids shifting values
from one register to another. We can therefore efficiently unroll by 4, 8, or 16 steps.

Sliding register window. Since there are no references beyond s[i − n] back in the se-
quence, the recurrence of Equation 2 may be implemented with a static n-word table – as
was done in Listing 1. We may use “mod n” addressing and write s[i− n± j] as s[i± j]
while i repeatedly scans the values i = 0, 1, · · · , n− 1 for each round.

We see that the operation uses a “window” of five inputs to evaluate each new value:

s[i] = fwin(s[i− 2], s[i− 1], s[i], s[i + 1], s[i + 2]) (4)

Four 32-bit state words can be used to store the f inputs as the window moves; the value
s[i− 2] is used at step t4 before a replacement value s[i + 2] is loaded for step t5. This is
illustrated in Figure 2.

The standard implementation method is therefore to unroll computation of at least four
iterations of Equation 2. Table 1 gives some implementation metrics for the permutation
on popular microcontrollers using this method. These ARMv7-m and AVR implementa-
tions are available with the C reference code at https://github.com/pqshield/sneik.

Table 1: SNEIK permutation performance on 32-bit ARM Cortex-M4 (NXP/Freescale
MK20DX256 @ 24 MHz) and 8-bit AVR (Atmel ATMEGA2560 @ 16 MHz) architectures.
The “RAM” size is the input/output state + stack usage while “ROM” indicates the
required Flash memory. Cycles per round were measured with ρ = 8.

MCU Unroll Name RAM ROM Cycles/Round
AVR 16-step “fast” 64 + 14 1974 1078.1
AVR 4-step “small” 64 + 19 618 1126.0
Cortex M4 16-step “fast” 64 + 16 560 188.0
Cortex M4 4-step “small” 64 + 28 232 211.8

https://github.com/pqshield/sneik

6 SNEIKEN and SNEIKHA

3 BLNK2 Primitive Sponge Operations
Our proposals are built using “BLINKER-style” [Saa14a] primitives. This new version is
called BLNK2 (version number is optional). In addition to authenticated encryption and
hashing, these primitives can be used to build more complex yet lightweight protocols
where two (or more) parties have synchronized, continuously authenticated states.

For these modes a tuple (S, i) defines the entire state: S ∈ {0, 1}b is the permutation
input/output block and i ∈ [0, b) is a “next bit”read/write index to it, pointing at bit S[i].

As is usual in permutation-based cryptography, the block size b = 512 is split into two
halves, “rate” of r bits and “capacity” of c bits; r + c = b. We have S = Sr ∥ Sc where
Sr ∈ {0, 1}r and Sc ∈ {0, 1}c. The security of the construction is largely determined by
capacity while the rate is almost directly proportional to its processing speed.

These primitives may set additional flags on domain parameter δ before passing them
to the cryptographic permutation πρ

δ . This 8-bit domain identifier is constructed from
fields given in Table 2. The primitive operations are:

S.clr() Clear the state: S← 0b, i← 0.
S.fin(δ) Mark the end of given domain input (Algorithm 2).
S.ratchet() Clear the “rate” part for forward security: S← 0r ∥ Sc, i← 0.
S.put(D, δ) Absorb input data D (Algorithm 3).
D← S.get(n, δ) Squeeze out n bits into D (Algorithm 4).
C← S.enc(P, δ) Encrypt plaintext P into ciphertext C (Algorithm 5).
P← S.dec(C, δ,) Decrypt ciphertext C into plaintext P (Algorithm 6).

Additionally, we have a utility function S.inc(δ) (Algorithm 1) which updates the index
i by one and invokes the permutation πρ

δ if it reaches the limit set by rate r or block b,
depending on the full bit in the domain indicator δ.

Algorithm 1 Increment index: S.inc(δ).
Input: Input state (S, i), domain δ

1: i← i + 1 Increment index.
2: if (δ ∧ full = 0 and i = r) or

(δ ∧ full = full and i = b) then
3: S← πρ

δ (S) Apply permutation if rate or block is full.
4: i← 0 Reset index.
5: end if

Output: Updated state (S, i).

Algorithm 2 End a data element (padding): S.fin(δ).
Input: Input state (S, i), domain δ

1: S[i]← S[i]⊕ 1 Add padding bit, typically byte 0x01.
2: if δ ∧ full = 0 then
3: S[r − 1]← S[r − 1]⊕ 1 Normal capacity; last rate byte gets 0x80.
4: end if
5: S← πρ

(δ ∨ last)(S) Permutation with domain end marker last.
6: i← 0 Reset index.

Output: Updated state (S, i).

Markku-Juhani O. Saarinen 7

Algorithm 3 Absorb data: S.put(D, δ).
Input: Input state (S, i), data D ∈ {0, 1}∗, domain δ.

1: for j = 0, 1, .., |D| − 1 do
2: S[i]← S[i]⊕ D[j] Add (xor) input data to the state.
3: S.inc(δ) Increment index i.
4: end for

Output: Updated state (S, i).

Algorithm 4 Squeeze data: D = S.get(n, δ).
Input: Input state (S, i), length of output n, domain δ.

1: for j = 0, 1, .., n− 1 do
2: D[j]← S[i] Get a bit from the state.
3: S.inc(δ) Increment index i.
4: end for

Output: Output data D[0 · · ·n− 1], updated state (S, i).

Algorithm 5 Encrypt data: C = S.enc(P, δ).
Input: Input state (S, i), plaintext P, domain δ.

1: for j = 0, 1, .., |P| − 1 do
2: C[j]← S[i]⊕ P[j] Xor plaintext with the state.
3: S[i]← C[j] Ciphertext goes into the state.
4: S.inc(δ) Increment index i.
5: end for

Output: Ciphertext C[0 · · · |P| − 1], updated state (S, i).

Algorithm 6 Decrypt data: P = S.dec(C, δ).
Input: Input state (S, i), ciphertext C, domain δ.

1: for j = 0, 1, .., |P| − 1 do
2: P[j]← S[i]⊕ C[j] Xor ciphertext with the state.
3: S[i]← C[j] Ciphertext goes into the state.
4: S.inc(δ) Increment index i.
5: end for

Output: Plaintext P[0 · · · |C| − 1], updated state (S, i).

Table 2: Domain indicator δ bits and fields.

Name Value Class Purpose
last 0x01 Flag Final (padded) block marker.
full 0x02 Flag Full state indicator.
ad 0x10 Input Authenticated Data / Hash input.
adf 0x12 Input Full-state AAD (adf = ad ∨ full).
key 0x20 Input Secret key material.
keyf 0x22 Input Initialization block (keyf = key ∨ full).
hash 0x40 Output Hash, MAC, or XOF.
ptct 0x70 In/out Plaintext/ciphertext duplex block.

8 SNEIKEN and SNEIKHA

4 SNEIKEN: Authenticated Encryption
The SNEIKEN authenticated encryption with associated data (AEAD) algorithm is char-
acterized by the following six variables:

Var Description Length
K Secret key Fixed k
N Nonce or IV Fixed n
A Associated data Any a
P Plaintext Any p
T Authentication tag Fixed t
C Ciphertext p + t

The algorithm provides integrity and confidentiality protection for P and C but only
integrity protection for A. Capacity c = b− r is equivalent to the key size k in encryption
and decryption. Associated data is processed at with full-state rate (r = b). Generally
speaking, the confidentiality is at k-bit security level and integrity is at t-bit level.

SNEIKEN128 is the primary member of the family:
Name Rate Rounds Key Nonce Tag

SNEIKEN128 r = 384 ρ = 6 k = 128 n = 128 t = 128
SNEIKEN192 r = 320 ρ = 7 k = 192 n = 128 t = 128
SNEIKEN256 r = 256 ρ = 8 k = 256 n = 128 t = 128

Encryption and decryption. We define a 6-byte “variant identifier block” as follows:

ID[0..5] = 0x61, 0x65, r/8, k/8, n/8, t/8 (5)

The first two bytes are ASCII ’a’ and ’e’, followed by byte lengths for rate, key, nonce,
and tag. We denote the encryption process by C ← SNEIKEN(K, N, A, P). Algorithm 7
contains the full procedure for SNEIKEN using the BLNK2 primitives from Section 3.

Algorithm 7 Authenticated encryption C ← SNEIKEN(K, N, A, P).
Input: Secret key K, (public) nonce N , associated data A, and plaintext P .

1: S.clr() Initialize the state: S = 0b, i = 0
2: S.put(ID ∥ K ∥ N, keyf) Identifier, secret key, and nonce.
3: S.fin(keyf) Pad and permute the key block.
4: S.put(A, adf) Associated authenticated data.
5: S.fin(adf) Pad and permute, even if a = 0.
6: C ′ ← S.enc(P, ptct) Actual ciphertext.
7: S.fin(ptct) Pad and permute, even if p = 0.
8: T ← S.get(t, hash) Authentication tag, t bits.
9: C ← C ′ ∥ T Authenticated ciphertext.

Output: Ciphertext C.

Algorithm 8 specifies the corresponding decryption and authentication function

{P, FAIL} ← SNEIKEN−1(K, N, A, C). (6)

Decryption must output only FAIL upon integrity check failure (no partial plaintext!)

Code Size. Compiling size-optimized encrypt.c that implements the NIST AEAD API
(for Encryption and Decryption) resulted in 1100 bytes of executable code and data on
AVR and 626 bytes on Cortex-M4. This is the only component required for implemen-
tation in addition to the permutation (Table 1). Full assembler implementation or co-
implementation with SNEIKHA may yield smaller code size.

Markku-Juhani O. Saarinen 9

Algorithm 8 Authenticated decryption {P, FAIL} ← SNEIKEN−1(K, N, A, C).
Input: Secret key K, (public) nonce N , associated data A, and ciphertext C (p + t bits).

1: S.clr() Initialize the state: S = 0b, i = 0
2: S.put(ID ∥ K ∥ N, keyf) Identifier, secret key, and nonce.
3: S.fin(keyf) Pad and permute the key block.
4: S.put(A, adf) Associated authenticated data.
5: S.fin(adf) Pad and permute, even if a = 0.
6: P ← S.dec(C[0 · · · p− 1], ptct) Decrypt plaintext from first p bits of C.
7: S.fin(ptct) Pad and permute, even if p = 0.
8: T = S.get(t, hash) Authentication tag, t bits.
9: if T = C[p · · · p + t− 1] then

10: return P Last t bits of C matches with tag T .
11: else
12: return FAIL Authentication failure.
13: end if
Output: Plaintext P or FAIL.

MAC-and-continue. Lightweight protocols can avoid per-message rekeying by padding
the MAC with S.fin(hash), and then directly continuing to process the next message (from
step 4 in Algorithm 7). The decryption side must of course mirror these operations to
keep both parties synchronized.

A protocol that uses SNEIKEN in a MAC-and-continue setting can incorporate a
ratchet operation S.ratchet() that explicitly clears the “rate” portion and is therefore
irreversible. This enforces forward security when used appropriately in relation to permu-
tation calls. The “capacity” should contain enough secret entropy to maintain security.

Therefore MAC-and-continue is not only a significant speedup but also saves memory
and provides forward security. There is no longer any need to retain the original se-
cret keying material after initialization, unless the protocol is of connectionless datagram
type. All exchanged messages are “continuously authenticated” (across messages) which
simplifies handshake protocol design as separate hashes are not required.

5 SNEIKHA: Cryptographic Hashing
SNEIKHA hash functions produce an h-bit hash H from input data A of arbitrary bit
length a. The security against collision search for SNEIKHA algorithms is expected to
be 2c/2 – which is equivalent to 2h/2 for these fixed-length hashes. The complexity of
(second) pre-image search may be higher for format-restricted inputs.

SNEIKHA256 is the primary member of the family:

Name Hash Rate Rounds Security
SNEIKHA256 h = 256 r = 256 ρ = 8 2128

SNEIKHA384 h = 384 r = 128 ρ = 8 2192

Algorithm 9 specifies SNEIKHA using the BLNK2 primitives of Section 3. We note
that if the squeezing step S.get() is implemented literally (as in Algorithm 4), there may
be a final permutation call which is unnecessary if SNEIKHA is not used as a part of
some intermediate-hash scheme. This is because these hashes algorithms are internally
extensible-output functions (XOFs) cut to length h. We may define explicit XOF padding
modes in the future if a need arises for them.

10 SNEIKEN and SNEIKHA

Algorithm 9 Cryptographic hash H ← SNEIKHA(A).
Input: Data to be hashed A.

1: S.clr() Initialize the state: S = 0b, i = 0
2: S.put(A, ad) Absorb input data – only to rate.
3: S.fin(ad) Pad and permute.
4: H ← S.get(h, hash) Squeeze hash, h bits.

Output: Hash H of A.

Code Size. The size-optimized hash.c file implementing the NIST hash API compiles
into 288 bytes on AVR and 180 bytes on Cortex-M4. This is the only component required
for implementation in addition to the permutation (Table 1). Full assembler implementa-
tion or co-implementation with SNEIKEN may yield smaller code size. Incremental and
keyed hashing constructions are straightforward.

6 Design Rationale
Shared features between AEAD and Hash. The SNEIKEN and SNEIKHA proposals
share the underlying SNEIK permutation f512ρ

δ (Section 2), and the BLNK2 padding
mechanism (Section 3). Implementations of the two algorithms may have up to 90%
common code, as can be seen from the reference implementations provided. We note
that the SNEIK family is intended as a fully-featured suite that fulfills all symmetric
cryptographic needs of a lightweight application; encryption, authentication, PRNG, etc.

The BLNK2 modes are based on the author’s BLINKER framework for sponge-based
protocols [Saa14a], which has inspired and influenced constructions such as Mike Ham-
burg’s lightweight STROBE protocol framework [Ham17], David Wong’s DISCO [Won19],
and the Xoodyak suite from the Xoodoo/Keccak team [DHP+18].

SNEIGEN also shares these components (See Appendix A). As an example of its
versatility, we have used SNEIGEN to create a variant (“R5SNEIK”) of the Round5 post-
quantum encryption and KEM scheme [BBF+19a, BBF+19b], which is demonstrably more
efficient than the original – which uses the NIST SHAKE and AES-GCM primitives.

Design goals and process. Our main design goal was to create fast permutation-based
primitives suitable for prominent 8, 16, and 32-bit embedded microcontrollers – primarily
ARM Cortex-M and Atmel AVR families. The 32-bit Cortex-M target directly led to the
use of a 32-bit primary datapath, while AVR somewhat limited the use of rotations (which
are essentially “free” in the ARMv7 architecture and Cortex M3/4).

We observe that the size of the permutation n is almost entirely flexible – smaller and
larger permutations can be easily constructed. This was one of the original design goals,
although it is not used in the current proposals. However, it was clear that the entire
permutation state would not fit into the register file of either of the main target platforms,
so processing would have to be “localized” to some degree. This led to the “window”
design of Equation 4. This is quite different from proposals such as Gimli [BKL+17],
whose designers chose to have more localized mixing.

It was obvious that the design should not have any table lookups or conditional
branches in order to make it naturally resistant to timing attacks and some other simple
side-channel attacks. We toyed for a while with designs inspired by Ascon [DEMS16] and
Xoodoo [DHP+18], but the availability of “free” addition on the main target platforms
finally made the decision to use ARX an easy one. The NSA’s SPECK [BSS+13] has been
a strong inspiration when studying lightweight ARX algorithms.

Markku-Juhani O. Saarinen 11

The overall design of SNEIK is clearly influenced by a large number of previous pro-
posals. A great early influence was the “Block TEA” algorithm by David Wheeler and
Roger Needham – which the author cryptanalyzed more than two decades ago [WN98].

Strong feedback for fast diffusion. Since multiple-issue or superscalar processing is
generally not available on lightweight targets, instruction and data path parallelism was
not a great concern. Indeed, we decided to take the opposite route and maximize the
critical path instead of minimizing it. We use immediate feedback from one processed
word to the next, which helps to diffuse the state extremely rapidly. The design achieves
complete avalanche (each input bit evenly affecting each output bit) in only two rounds.

The long critical path between rounds may limit the clock frequency of hardware
implementations and the design does not allow easy venues for parallelization; however
we view these as secondary considerations for lightweight cryptography.

Round structure. The security of SNEIK relies largely on very effective feedback diffu-
sion when the permutation is computed in either direction.

It is easy to see that each step in Equation 2 is invertible. The weight-3 rotation-xor
operations at steps t3 and t6 can be interpreted as polynomial multiplications in the binary
polynomial ring Z2[x]/(x32 + 1):

t3 = p ∗ t2 mod x32 + 1, with p = x25 + x24 + 1 (7)
t6 = q ∗ t4 mod x32 + 1, with q = x17 + x9 + 1. (8)

The inverse polynomials have Hamming weight 9:

p ∗ (x28 + x21 + x20 + x14 + x12 + x7 + x6 + x5 + x4) ≡ 1 (mod x32 + 1) (9)
q ∗ (x27 + x19 + x18 + x17 + x11 + x9 + x3 + x2 + 1) ≡ 1 (mod x32 + 1) (10)

The choice of p and q guarantees that input (differentials) of weight less than 6 at t2 and t5
will always have output weight of at least 3 at t3 and t6. Ignoring the nonlinear operation
at step t5, the composite p∗q also has this property, but with guaranteed output weight of
4. The coefficients were chosen in a way to allow for a reasonably efficient implementation
on AVR, which only has instructions for single-bit shifts of bytes.

There are some potentially problematic 4-bit to 4-bit rotational differentials such as
0x80808080≪, but we could not cancel out the strong feedback propagation in our crypt-
analysis (with this particular p and q selection – some others are vulnerable), so these
could not be exploited.

Round constants. The round constants of Equation 3 are just bytes from a maximum
distance separable (MDS) code in decreasing-increasing order. The Hamming distance
between each pair is at least 4. Efficient digital circuits can be constructed to generate
this code – the last 8 bytes are just logical inverses of the first 8, for example. The modes
described in this document only use the first 8 so implementations may choose not to
include the last 8.

Number of rounds. Table 3 defines sixteen round constants as we reserve the option of
doubling the number of rounds to ρ = 12/16 for an extra margin of security.

The current ρ choices are based on relatively optimistic estimates derived from initial
cryptanalysis and various statistical experiments. We currently don’t know how to break
more than half of the rounds of any variant (except SNEIGEN). However, we encourage
developers to conservatively choose the round-doubled versions for applications where
throughput is not the main selection criterion (or when the cryptographic operation is

12 SNEIKEN and SNEIKHA

Table 3: Performance comparison: For Sponge permutations we give cycles/byte estimates
for the entire round (full block) and for 128-bit and 256-bit capacity (with appropriate
number of rounds), corresponding to the security of an AEAD. The Keccak speeds are
derived from an optimized 11,785 cycle assembler implementation of the permutation –
256-bit security number maps most closely to SHAKE128 (which has 256-bit capacity).
Note that RAM usage is not uniformly reported in the literature; one clearly needs RAM
for the permutation in Sponge modes (200 bytes for Keccak/SHA3/Shake) and for ex-
panded keys with block ciphers (176/240 bytes for AES128/AES256), but only 64 bytes
for SNEIK. We are reporting just the additional stack usage in this table.

– Cycles / Byte –
Algorithm ROM Stack Round 128-bit 256-bit

Atmel AVR ATmega
SNEIK Fast [This work] 1974 14 16.8 135 270
SNEIK Small [This work] 618 19 17.6 141 282
AES Fast [Poe07] 3411 ? 15.5 155
AES Small [Poe07] 1570 ? 17.1 171
Gimli Fast [BKL+17] 19218 45 8.88 320 639
Gimli Small [BKL+17] 778 44 17.2 620 1239

ARM Cortex M3/M4
SNEIK Fast [This work] 560 16 2.94 23.5 47.0
SNEIK Small [This work] 232 28 3.31 26.4 52.0
Gimli [BKL+17] 3972 44 0.875 31.5 63.0
AES Unprotected CTR [SS16] 2192/2960 72 ≈ 3.5 34.7 49.5
Keccak XKCP Asm [BDH+19] 7052 ? 2.46 64.0 70.1

required only rarely; e.g. for verifying signatures of firmware updates). A special notation
such as SNEIKEN-k-ρ and SNEIKHA-c-ρ may be used for these variants.

Note that comparable schemes such as ChaCha are used with a wide array of different
round number selections [Ber08].

Sponge modes. As noted, the BLNK2 modes are based on the BLINKER framework for
lightweight Sponge-based protocols [Saa14a]. The mode implementation is derived from
the one used for CBEAM [Saa14b] and WHIRLBOB [SB15] proposals.

We use an updated variant with a full-state keying mechanism and also a full-state
keyed sponge method for associated data [GPT15, MRV15]. This full-state use case mo-
tivated us to move domain separation from the capacity part of the state to be an “out-
of-band” parameter of the cryptographic permutation itself.

The capacity of SNEIKEN capacity matches the intended security level, as discussed
in [JLM14]. The capacity of SNEIKHA matches with the output size; this means re-
duced resistance to pre-image attacks, but it was deemed as a satisfactory compromise
for lightweight use cases.

Comparison to other schemes. Table 3 compares SNEIK against some other proposals.
See Table 1 for additional information about SNEIK on microcontrollers. We observe that
SNEIK has clearly advantageous performance and code size characteristics over current
NIST ciphers. It also serves as a single fit for a wide array of applications. We expect
hardware implementations to also share these performance and footprint features.

Markku-Juhani O. Saarinen 13

References
[BBF+19a] Hayo Baan, Sauvik Bhattacharya, Scott Fluhrer, Oscar Garcia-Morchon,

Thijs Laarhoven, Ronald Rietman, Markku-Juhani O. Saarinen, Ludo Tol-
huizen, and Zhenfei Zhang. Round5: Compact and fast post-quantum public-
key encryption. In PQCrypto 2019 – The Tenth International Conference
on Post-Quantum Cryptography. Chongqing, China, May 8-10, 2019, vol-
ume to appear of Lecture Notes in Computer Science. Springer, 2019. URL:
https://eprint.iacr.org/2019/090.

[BBF+19b] Hayo Baan, Sauvik Bhattacharya, Scott Fluhrer, Oscar Garcia-Morchon,
Thijs Laarhoven, Ronald Rietman, Markku-Juhani O. Saarinen, Ludo Tol-
huizen, and Zhenfei Zhang. Round5: KEM and PKE based on (ring)
learning with rounding. Round5 submission to NIST PQC standardiza-
tion (Second Round), 2019. URL: https://csrc.nist.gov/projects/
post-quantum-cryptography/round-2-submissions.

[BDH+19] Guido Bertoni, Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van Ass-
che, and Ronny Van Keer. XKCP: eXtended Keccak Code Package. Official
Keccak family implementation collection., 2019. URL: https://github.com/
XKCP/XKCP.

[BDPA11] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Cryptographic sponge functions, 2011. URL: https://keccak.team/files/
CSF-0.1.pdf.

[Ben14] Josh Benaloh, editor. Topics in Cryptology - CT-RSA 2014 - The Cryptogra-
pher’s Track at the RSA Conference 2014, San Francisco, CA, USA, February
25-28, 2014. Proceedings, volume 8366 of Lecture Notes in Computer Science.
Springer, 2014. doi:10.1007/978-3-319-04852-9.

[Ber08] Daniel J. Bernstein. Chacha, a variant of salsa20, 2008. URL: https://cr.
yp.to/chacha/chacha-20080128.pdf.

[BFM+18] Joppe W. Bos, Simon Friedberger, Marco Martinoli, Elisabeth Oswald, and
Martijn Stam. Fly, you fool! faster Frodo for the ARM Cortex-M4. IACR
Cryptology ePrint Archive, 2018:1116, 2018. URL: https://eprint.iacr.
org/2018/1116.

[BKL+17] Daniel J. Bernstein, Stefan Kölbl, Stefan Lucks, Pedro Maat Costa Mas-
solino, Florian Mendel, Kashif Nawaz, Tobias Schneider, Peter Schwabe,
François-Xavier Standaert, Yosuke Todo, and Benoît Viguier. Gimli : A
cross-platform permutation. In Wieland Fischer and Naofumi Homma, ed-
itors, Cryptographic Hardware and Embedded Systems - CHES 2017 - 19th
International Conference, Taipei, Taiwan, September 25-28, 2017, Proceed-
ings, volume 10529 of Lecture Notes in Computer Science, pages 299–320.
Springer, 2017. doi:10.1007/978-3-319-66787-4_15.

[BSS+13] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The SIMON and SPECK families of lightweight
block ciphers. IACR Cryptology ePrint Archive, 2013:404, 2013. URL: https:
//eprint.iacr.org/2013/404.

[DEMS16] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1.2. Submission to the CAESAR Competition, 2016. URL: https:
//competitions.cr.yp.to/round3/asconv12.pdf.

https://eprint.iacr.org/2019/090
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://github.com/XKCP/XKCP
https://github.com/XKCP/XKCP
https://keccak.team/files/CSF-0.1.pdf
https://keccak.team/files/CSF-0.1.pdf
http://dx.doi.org/10.1007/978-3-319-04852-9
https://cr.yp.to/chacha/chacha-20080128.pdf
https://cr.yp.to/chacha/chacha-20080128.pdf
https://eprint.iacr.org/2018/1116
https://eprint.iacr.org/2018/1116
http://dx.doi.org/10.1007/978-3-319-66787-4_15
https://eprint.iacr.org/2013/404
https://eprint.iacr.org/2013/404
https://competitions.cr.yp.to/round3/asconv12.pdf
https://competitions.cr.yp.to/round3/asconv12.pdf

14 SNEIKEN and SNEIKHA

[DHP+18] Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van Assche, and
Ronny Van Keer. Xoodoo cookbook. IACR Cryptology ePrint Archive
2018/767, November 2018. URL: https://eprint.iacr.org/2018/767.

[Fer06] Niels Ferguson. AES-CBC + Elephant diffuser: A disk encryp-
tion algorithm for Windows Vista. Microsoft Technical Report, Au-
gust 2006. URL: http://download.microsoft.com/download/0/2/3/
0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf.

[GPT15] Peter Gazi, Krzysztof Pietrzak, and Stefano Tessaro. The exact PRF security
of truncation: Tight bounds for keyed sponges and truncated CBC. In Rosario
Gennaro and Matthew Robshaw, editors, Advances in Cryptology - CRYPTO
2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August
16-20, 2015, Proceedings, Part I, volume 9215 of Lecture Notes in Computer
Science, pages 368–387. Springer, 2015. doi:10.1007/978-3-662-47989-6\
_18.

[Ham17] Mike Hamburg. The STROBE protocol framework. IACR Cryptology ePrint
Archive, 2017:3, 2017. URL: http://eprint.iacr.org/2017/003.

[JLM14] Philipp Jovanovic, Atul Luykx, and Bart Mennink. Beyond 2c/2 security in
sponge-based authenticated encryption modes. In Palash Sarkar and Tetsu
Iwata, editors, Advances in Cryptology - ASIACRYPT 2014 - 20th Interna-
tional Conference on the Theory and Application of Cryptology and Informa-
tion Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014. Proceedings,
Part I, volume 8873 of Lecture Notes in Computer Science, pages 85–104.
Springer, 2014. doi:10.1007/978-3-662-45611-8_5.

[KN10] Dmitry Khovratovich and Ivica Nikolic. Rotational cryptanalysis of ARX.
In Seokhie Hong and Tetsu Iwata, editors, Fast Software Encryption, 17th
International Workshop, FSE 2010, Seoul, Korea, February 7-10, 2010,
Revised Selected Papers, volume 6147 of Lecture Notes in Computer Sci-
ence, pages 333–346. Springer, 2010. URL: https://doi.org/10.1007/
978-3-642-13858-4_19, doi:10.1007/978-3-642-13858-4_19.

[MKJR16] Kathleen M. Moriarty, Burt Kaliski, Jakob Jonsson, and Andreas Rusch.
PKCS #1: RSA cryptography specifications version 2.2. RFC, 8017:1–78,
2016. doi:10.17487/RFC8017.

[MRV15] Bart Mennink, Reza Reyhanitabar, and Damian Vizár. Security of full-
state keyed sponge and duplex: Applications to authenticated encryption.
In Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryptology -
ASIACRYPT 2015 - 21st International Conference on the Theory and Ap-
plication of Cryptology and Information Security, Auckland, New Zealand,
November 29 - December 3, 2015, Proceedings, Part II, volume 9453 of
Lecture Notes in Computer Science, pages 465–489. Springer, 2015. doi:
10.1007/978-3-662-48800-3_19.

[NIS01] NIST. Advanced Encryption Standard (AES). Federal Information Processing
Standards Publication FIPS 197, November 2001. doi:10.6028/NIST.FIPS.
197.

[NIS07] NIST. Recommendation for block cipher modes of operation: Galois/counter
mode (GCM) and GMAC. NIST Special Publication SP 800-38D, November
2007. doi:10.6028/NIST.SP.800-38D.

https://eprint.iacr.org/2018/767
http://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf
http://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf
http://dx.doi.org/10.1007/978-3-662-47989-6_18
http://dx.doi.org/10.1007/978-3-662-47989-6_18
http://eprint.iacr.org/2017/003
http://dx.doi.org/10.1007/978-3-662-45611-8_5
https://doi.org/10.1007/978-3-642-13858-4_19
https://doi.org/10.1007/978-3-642-13858-4_19
http://dx.doi.org/10.1007/978-3-642-13858-4_19
http://dx.doi.org/10.17487/RFC8017
http://dx.doi.org/10.1007/978-3-662-48800-3_19
http://dx.doi.org/10.1007/978-3-662-48800-3_19
http://dx.doi.org/10.6028/NIST.FIPS.197
http://dx.doi.org/10.6028/NIST.FIPS.197
http://dx.doi.org/10.6028/NIST.SP.800-38D

Markku-Juhani O. Saarinen 15

[NIS15] NIST. SHA-3 standard: Permutation-based hash and extendable-output func-
tions. Federal Information Processing Standards Publication FIPS 202, Au-
gust 2015. doi:10.6028/NIST.FIPS.202.

[NIS16] NIST. SHA-3 derived functions: cSHAKE, KMAC, TupleHash and Par-
allelHash. NIST Special Publication SP 800-185, December 2016. doi:
10.6028/NIST.SP.800-185.

[Poe07] B. Poettering. AVRAES: The AES block cipher on AVR controllers, 2007.
URL: http://point-at-infinity.org/avraes/.

[Saa14a] Markku-Juhani O. Saarinen. Beyond modes: Building a secure record pro-
tocol from a cryptographic sponge permutation. In Benaloh [Ben14], pages
270–285. doi:10.1007/978-3-319-04852-9_14.

[Saa14b] Markku-Juhani O. Saarinen. CBEAM: efficient authenticated encryption from
feebly one-way ϕ functions. In Benaloh [Ben14], pages 251–269. doi:10.1007/
978-3-319-04852-9_13.

[SB15] Markku-Juhani O. Saarinen and Billy Bob Brumley. Whirlbob, the whirlpool
based variant of STRIBOB. In Sonja Buchegger and Mads Dam, editors, Se-
cure IT Systems, 20th Nordic Conference, NordSec 2015, Stockholm, Sweden,
October 19-21, 2015, Proceedings, volume 9417 of Lecture Notes in Computer
Science, pages 106–122. Springer, 2015. doi:10.1007/978-3-319-26502-5\
_8.

[SS16] Peter Schwabe and Ko Stoffelen. All the AES you need on cortex-M3 and M4.
In Roberto Avanzi and Howard M. Heys, editors, Selected Areas in Cryptogra-
phy - SAC 2016 - 23rd International Conference, St. John’s, NL, Canada, Au-
gust 10-12, 2016, Revised Selected Papers, volume 10532 of Lecture Notes in
Computer Science, pages 180–194. Springer, 2016. URL: https://doi.org/
10.1007/978-3-319-69453-5_10, doi:10.1007/978-3-319-69453-5_10.

[WN98] David J. Wheeler and Roger M. Needham. Correction to xtea. Informal
Report, October 1998. URL: https://www.mjos.fi/doc/misc/xxtea.pdf.

[Won19] David Wong. Disco: Modern session encryption. IACR Cryptology ePrint
Archive, 2019:180, 2019. URL: https://eprint.iacr.org/2019/180.

http://dx.doi.org/10.6028/NIST.FIPS.202
http://dx.doi.org/10.6028/NIST.SP.800-185
http://dx.doi.org/10.6028/NIST.SP.800-185
http://point-at-infinity.org/avraes/
http://dx.doi.org/10.1007/978-3-319-04852-9_14
http://dx.doi.org/10.1007/978-3-319-04852-9_13
http://dx.doi.org/10.1007/978-3-319-04852-9_13
http://dx.doi.org/10.1007/978-3-319-26502-5_8
http://dx.doi.org/10.1007/978-3-319-26502-5_8
https://doi.org/10.1007/978-3-319-69453-5_10
https://doi.org/10.1007/978-3-319-69453-5_10
http://dx.doi.org/10.1007/978-3-319-69453-5_10
https://www.mjos.fi/doc/misc/xxtea.pdf
https://eprint.iacr.org/2019/180

16 SNEIKEN and SNEIKHA

A SNEIGEN Entropy Distribution Functions
SNEIGEN is a seed expander with limited cryptographic strength – it is not an authen-
ticated encryption or hash function algorithm per se, and therefore not part of the main
proposal. It is intended for cryptographic applications that need “random-like padding”,
“lightweight mixing” with well-understood entropy flow properties, or a deterministic
PRNG source with good statistical qualities.

Name Entropy Rate Rounds Security
SNEIGEN128 c = 128 r = 384 ρ = 3 limited
SNEIGEN192 c = 192 r = 320 ρ = 4 limited
SNEIGEN256 c = 256 r = 256 ρ = 5 limited

Algorithmically SNEIGEN works exactly like SNEIKHA (Algorithm 9); it is basically
a XOF (Extensible Output Function). One can squeeze any amount of bits out with
successive calls to S.get(∗, hash). However, we are not ruling out more complex interactions
with the state (such as ratcheting or reseeding, see below for PRNG use) when SNEIGEN
is used to build higher-level primitives.

Properties. The main security requirement for a lightweight mixing function is captured
in the term “Entropy Distribution Function“ (EDF); once seeded with n ≤ c truly random
bits (n bits of entropy), any n-bit output should also have close to n bits of randomness
(entropy) when observed without joint information.

SNEIGEN is not claimed to be collision resistant, but full collisions are unlikely for
outputs that are much larger than the c-bit input seed. Given more than c bits of output,
an attacker may be able to distinguish SNEIGEN from random, and may also be able to
derive the secret state or even the input seed from it. However, targeted cryptanalytic
effort is required to achieve this. SNEIGEN output should not be directly exposed to an
attacker in a way that leads to the compromise of secret state.

Since the SNEIK permutation has a 2× 32 = 64 - bit feedback “accumulator” (words
s[i − 1] and s[i − 2] in Equation 2) diffusion to the right, and the first round does not
achieve much diffusion to the left, the number of rounds is chosen as ρ = ⌊c/64⌋+ 1.

Algebraic Interaction. The output of an EDF should not “interact algebraically” with
arithmetic operations of the higher-level cryptographic primitive that uses it. This means
that, as an example, a completely linear EDF probably should not be used to distribute
entropy between other linear components; there is a possibility that some of the entropy
will algebraically cancel out or that the shared algebraic structure can somehow be used
to attack the higher-level primitive.

We claim that the ARX structure of SNEIK does not interact with common rings,
lattices, and other similar number theoretical structures. However, this must be analyzed
on a case-by-case basis.

R5SNEIK. The SNEIGEN EDF is used by the R5SNEIK variants of the Round5 post-
quantum public-key cryptosystem [BBF+19a, BBF+19b]. This is not an official part of the
Round5 submission, but a result of separate ongoing research1. SNEIGEN replaces NIST
standard SHAKE [NIS15] and cSHAKE [NIS16] XOFs in this Round5 variant for public
vector/matrix A computation and also for the derivation of secret ternary polynomials.

When instantiated as a public key encryption algorithm (rather than simply as a
KEM), the more secure SNEIKEN algorithms (Section 4) are used to replace AES-GCM
[NIS01, NIS07] as a Data Encapsulation Mechanism (DEM) to transport bulk data.

1An R5SNEIK implementation is included with https://github.com/r5embed/r5embed

https://github.com/r5embed/r5embed

Markku-Juhani O. Saarinen 17

The overall speed-up is significant (up to 50%), but the main advantage is that full-
featured BLNK2-based protocols can be built from these simple lightweight primitives;
the Round5 KEM and PKE are used to provide an (authenticated) key exchange in this
framework. This eliminates the need for non-lightweight NIST cryptography or completely
ad hoc diffusers.

Other Applications. The authors of [BFM+18] argue that “good statistical properties”
are sufficient for the public matrix A in a lightweight implementation of the FrodoKEM,
another NIST PQC candidate. They use xoshiro128**, a very simple, fully XOR-linear
PRNG (actually a seed expander) with a 128-bit state.

An example of a lightweight mixing function used to support symmetric cryptogra-
phy is the “Elephant” diffuser used with AES-CBC in the original version of Microsoft’s
Bitlocker disk encryption system [Fer06].

Another traditional example is the padding in RSA PKCS #1 [MKJR16]; the padding
of the RSA message really does not require absolute cryptographic security – lack of
algebraic interaction with the RSA operation is sufficient.

Random Number Generation. If the SNEIK permutation is used to build a general-
purpose random number generator, this may also be called “SNEIGEN”. New randomness
can be added after S.fin(hash) with S.put(R, ad), S.fin(ad). Further random bits may then
be extracted with S.get(∗, hash). If cryptographic security is required from the generator,
we suggest increasing the number of rounds to ρ = 8 or even ρ = 16 and having capacity
of at least c ≥ 192. Furthermore, S.ratchet() can be used for PRNG forward security.

	Introduction
	The SNEIK f512 Permutation
	BLNK2 Primitive Sponge Operations
	SNEIKEN: Authenticated Encryption
	SNEIKHA: Cryptographic Hashing
	Design Rationale
	References
	SNEIGEN Entropy Distribution Functions

