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1 Introduction
Subterranean is a cryptographic primitive to be used both for hashing and as a stream
cipher and dates back to 1992 [17,18]. With some imagination its mode can be seen as a
precursor to the sponge [7] with an absorbing phase followed by a squeezing phase.

The round function of Subterranean has features that were adopted in several designs
over the last three decades, including Keccak-p [12] and Xoodoo [21]. Namely, all
its steps, except the addition of a constant, are bit-level shift-invariant operations, its
non-linear step is χ, the mixing step is a lightweight bit-oriented mapping with a heavy
inverse and it has a bit transposition step.

But the Subterranean round function also differs from Keccak-p and Xoodoo in
important ways. Namely, its state is essentially one-dimensional rather than 3-dimensional,
due to the particular transposition and the 257-bit state, it is not software-friendly, and it
has a buffer, similar to the belt in belt-and-mill designs such as RadioGatún [6].

Despite the differences, it only takes some minor refurbishing to turn Subterranean
into a lightweight symmetric cipher suite that can compete with new designs, at least
when implemented in dedicated hardware. Refurbishing we did, and we call the result
Subterranean 2.0. In short, it is Subterranean with the buffer removed and the hashing
and stream encryption modes replaced by a duplex-based construction with modes on
top, inspired by Xoodyak [19]. The result is very efficient in hardware but not suited
for software. We believe this makes sense in resource-constrained platforms, in particular,
when energy per bit is the primary concern and relatively short messages must be protected.
The design of Subterranean makes no compromise to be efficient in software, giving it an
exceptionally good trade-off between safety margin and hardware performance.

Subterranean 2.0 operates on a state of 257 bits. The modernization into a duplex
object required updating the output extraction and the input injection. For the former, we
have opted to extract a 32-bit string z per duplex call, where each bit of z is the sum of 2
state bits. For the latter, we inject a string σ of up to 32 bits per duplex call in keyed mode
and up to 8 bits every two rounds in unkeyed mode. The central function of the duplex
object is the application of a permutation to the state, the subsequent injection of the input
string and the extraction of the output. On top of this a number of wrapper functions



are defined for absorbing arbitrary-length strings, possibly combined with encryption or
decryption, for performing blank rounds and for squeezing arbitrary-length strings.

Loyal to the original Subterranean, we chose for the permutation f in duplex to have
only one round and so we expect there to be attacks better than generic ones, i.e., those not
exploiting the specifics of f . In particular we claim 128 bits of security against multi-target
attackers in keyed modes and 112 bits in unkeyed modes.

In Section 2 we specify the Subterranean duplex object, the primitive underlying the
schemes we propose and the three cryptographic schemes that are specified as modes of on
top of it: an eXtendable Output Function (XOF), a Doubly-Extendable Cryptographic
Keyed (deck) function and a Session Authenticated Encryption (SAE) scheme. This is not
meant to be exhaustive but covers most use cases: the XOF for hashing, the deck function
for MAC computation, stream encryption, key derivation and more sophisticated modes
such as those specified in the Xoodoo cookbook [19] and the SAE scheme for compact
authenticated encryption.

In Section 3 we provide the design rationale of the Subterranean 2.0 cipher suite. In
Section 4 we discuss how Subterranean should optimally be implemented. In Section 5 we
discuss techniques for software optimizations that have played a role in the choice of bit
positions for output and input. Finally, Section 6 discusses parameters to be used in the
NIST lightweight competition.

2 Specification of the Subterranean 2.0 suite
We specify the Subterranean 2.0 suite in a bottom-up fashion, starting with the round
function, input injection and output extraction in Section 2.1, the Subterranean 2.0 duplex
object in Section 2.2, the XOF function in Section 2.3, the deck function in Section 2.4
and the SAE scheme in Section 2.5.

2.1 The round function R, input injection and output extraction
The round function R operates on a 257-bit state and has four steps:

R = π ◦ θ ◦ ι ◦ χ , (1)

where each step is there for a particular purpose: χ for non-linearity, ι for asymmetry, θ
for mixing and π for dispersion.

We denote the state as s and its bits as si with position index i ranging from 0 to 256,
where any expressions in the index must be taken modulo 257. For all 0 ≤ i < 257:

χ : si ← si + (si+1 + 1)si+2 ,

ι : si ← si + δi ,

θ : si ← si + si+3 + si+8 ,

π : si ← s12i .

Here the addition and multiplication of state bits are in F2, and δi is a Kronecker delta:
δi = 1 if i = 0 and 0 otherwise. Figure 1 illustrates the round function by the computational
graph of a single bit of the state.

At the core of the Subterranean duplex object is a simple (internal) duplex call that
first applies the Subterranean round function R to the state and then injects a string σ of
variable length of at most 32 bits. Before adding it into the state, it pads the string σ to 33
bits with simple padding (10∗) and hence the injection rate is 33 bits. In between duplex
calls, one may extract 32-bit strings z from the state, so the extraction rate is 32 bits.

Each of the 32 bits of the extracted output z is constructed as the sum of two state
bits. These are taken from 64 fixed positions that are the elements of the multiplicative
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Figure 1: Subterranean round function, illustrated for bit s92

subgroup of order 64 generated by 124 = 176 (see Table 6). We denote this subgroup by
G64. More precisely, we have that for all 0 ≤ i ≤ 31, zi = s124i + s−124i , where the minus
sign is taken modulo 257: for instance −120 = −1 = 256 and −124 = −176 = 81.

The 33 bits of σ after padding are injected into the state at positions that form the
first 33 powers of 124 in G64. For the unkeyed mode (hashing), the input σ is limited to
8 bits. This means that only the first 9 bits of padded σ can be non-zero bringing the
effective injection rate to 9 bits. Those 9 bits are injected into the state at positions that
form the first 9 powers of 124 in G64.

2.2 The Subterranean duplex object
The Subterranean duplex object has at its core two internal functions: the duplex call
and the output extraction. The duplex call applies the round function and injects the
input. Together with the output extraction it is specified in the previous section. On top
of the duplex and extraction calls it has a thin wrapper consisting of three functions that
facilitate the compact specification of cryptographic functions and schemes on top of it.

The main features of the wrapper are that it supports absorbing and squeezing of
strings of arbitrary length and the integration of encryption and decryption with absorbing.
It provides separators between absorbed strings by imposing its last injected block is
shorter (possibly empty) than 32 bits in keyed mode and 8 in unkeyed mode. We make no
security claim for the Subterranean duplex object as such but only for the schemes that
consist of modes on top of the primitive.

We specify the Subterranean duplex object in Algorithm 1 and use the following
conventions. Any input or output is a bit string, unless specified otherwise. We indicate
the length of a bit string X by |X| and the empty string by ε.

2.3 The Subterranean-XOF function
We specify Subterranean-XOF in Algorithm 2. It is meant to be used for unkeyed hashing
and takes as input a sequence of an arbitrary number of arbitrary-length strings M [i],
denoted as M [[n]] and returns a bit string of arbitrary length. For Subterranean-XOF we
make a flat sponge claim.

Claim 1. Subterranean-XOF satisfies a flat sponge claim [8] with capacity 224 bits.
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Algorithm 1 Subterranean duplex object
Interface: Constructor: Subterranean()
s← 0257

Interface: Y ← absorb(X, op) with op ∈ {unkeyed, keyed, encrypt,decrypt}
if op = unkeyed then w = 8 else w = 32
Let x[n] be X split in w-bit blocks, with last block strictly shorter
Y ← ε
for all blocks of x[n] do
if op ∈ {encrypt,decrypt} then
temp← x[i] + (extract(s) truncated to |x[i]|)
Y ← Y ||temp

if op = decrypt then duplex(temp) else duplex(x[i])
if op = unkeyed then duplex(ε)

return Y

Interface: blank(r) with r a natural number
for r times do duplex(ε)

Interface: Z ← squeeze(`) with ` a natural number
Z ← ε
while |Z| < ` do
Z ← Z||extract(s)
duplex(ε)

return Z truncated to ` bytes

Internal interface: duplex(σ) with |σ| ≤ 32
s← R(s)
x← σ||1||032−|σ|

for j from 0 to 32 do s124j ← s124j + xj

Internal interface: z ← extract(s)
z ← ε
for j from 0 to 31 do z ← z||(s124j + s−124j )
return z

Basically, our claim corresponds to a security strength of 112 bits against all attacks
that do not apply to a random oracle. The capacity in the claim is 24 bits short of the
effective capacity 257 − 9 = 248 bits to account for possible shortcut attacks. These
are attacks that are more efficient than generic ones by exploiting Subterranean-specific
properties (see section 3.4)

Algorithm 2 Subterranean-XOF
Interface: Z ← Subterranean-XOF(M [[n]], `) with M [[n]] a string sequence and ` a
natural number
S ← Subterranean()
for all strings M [i] in M [[n]] do S.absorb(M [i],unkeyed)
S.blank(8)
return Z ← S.squeeze(`)

4



2.4 The Subterranean-deck function
We specify Subterranean-deck in Algorithm 3. It takes as input an arbitrary-length key
K and a sequence of an arbitrary number of arbitrary-length strings M [i], denoted as
M [[n]] and returns a bit string of arbitrary length. It can readily be used as a stream
cipher, a MAC function and for key derivation. The Farfalle paper [5] and the Xoodoo
cookbook [19] specify several authenticated encryption modes for deck functions.

We claim Subterranean-deck offers 128 bits of security against adversaries that are
limited to 296 data blocks, when it is loaded with min-entropy 128 bits in a single-target
settings, and loaded with independent keys with min-entropy 128 + log2 µ in a multi-target
setting with µ targets.

Subterranean-deck absorbs the key in blocks of 32 bits. This makes it an application
of the recent result of Bart Mennink [25]. The bottom line is that, even for a uniform
key with length k and an ideal underlying permutation, the success probability of key
prediction cannot be proven to be close to N2−k for N operations On the other hand, the
absence of this bound does not imply there is an attack with success probability above
N2−k and we do not take this into account in our claim.

Claim 2. The advantage of an adversary in distinguishing an array of µ Subterranean-deck
instances loaded with µ independent keys, each with min-entropy 128 + log2 µ bits, from an
array of µ independent random oracles. is upper bound by (N +M)2−128, with N the total
computational complexity in calls to the Subterranean round function and M the total data
complexity in 32-bit input- and output blocks, with M ≤ 296.

The data limit for the adversary, M < 296 is not likely to pose a problem in the
foreseeable future.

Algorithm 3 Subterranean-deck
Interface: Z ← Subterranean-deck(K,M [[n]], `) with M [[n]] a string sequence and ` a
natural number
S ← Subterranean()
S.absorb(K, keyed)
for all strings M [i] in M [[n]] do S.absorb(M, keyed)
S.blank(8)
return Z ← S.squeeze(`)

2.5 The Subterranean-SAE authenticated encryption scheme
We specify Subterranean-SAE in Algorithm 4. It takes a nonce when starting the session
and can then encipher and authenticate a sequence of messages each consisting of a
plaintext and associated data. Compared to authenticated encryption modes based on
Subterranean-deck, Subterranean-SAE has smaller state and is better suited to offer
protection against differential power analysis (DPA). In particular, the security is based
on the secrecy of a state that evolves during the session rather than a static key. Across
sessions, one can derive a fresh key per session using Subterranean-deck. This protects
against differential power analysis and provides fine-grained forward secrecy. If one wishes
to use the same key for multiple sessions and DPA is a concern, one can absorb the nonce
bit per bit, as was proposed by Taha and Schaumont in [28]. By taking as nonce the
shortest binary representation of a session counter, this can be quite economical.

For Subterranean-SAE, we basically make the same security claim as for Subterranean-
deck with two differences. First, we do not try to distinguish it from a random oracle,
but from a random function with the same interface as Subterranean-SAE. Second, we
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only consider adversaries that respect nonces and that only get an error message when
presenting invalid cryptograms for unwrapping.

We claim Subterranean-SAE offers 128 bits of security against adversaries that are
limited to 296 data blocks, when it is loaded with min-entropy 128 bits in a single-target
settings, and loaded with independent keys with min-entropy 128 + log2 µ in a multi-target
setting with µ targets.

Claim 3. Consider an adversary that respects the nonce requirement and that, when
presenting invalid cryptograms for unwrapping, only gets an error message. The advantage
of such an adversary in distinguishing an array of µ Subterranean-SAE instances loaded
with µ independent keys, each with min-entropy 128 + log2 µ bits, from an array of µ
independent random functions with the same interface is upper bound by (N +M)2−128,
with N the total computational complexity in calls to the Subterranean round function
and M the total data complexity in 32-bit input- and output blocks, with M ≤ 296. When
taking a 128-bit tag, this results in plaintext confidentiality and message integrity of security
strength 128 bits.

In nonce-misuse scenario’s or when unwrapping invalid cryptograms returns more
information than a simple error, we make no security claims and an attacker may even be
able to reconstruct the secret state. Nevertheless we believe that this would probably a
non-trivial effort, both in attack complexity as in ingenuity.

Algorithm 4 Subterranean-SAE, with τ the tag length
Interface: start(K,N)
S ← Subterranean()
S.absorb(K, keyed)
S.absorb(N, keyed)
S.blank(8)

Interface: (Y, T )← wrap(A,X, T ′, op) with op ∈ {encrypt,decrypt}
S.absorb(A, keyed)
Y ← S.absorb(X, op)
S.blank(8)
T ← S.squeeze(τ)
if op = decrypt AND (T ′ 6= T ) then (Y, T ) = (ε, ε)
return (Y, T )

3 Design Rationale
In this section we give the design rationale for the Subterranean 2.0 cipher suite, following
the same canvas as for the specifications in previous section. Before discussing the different
aspects more in-depth, we give the design rationale in a nutshell.

3.1 Rationale in a nutshell
The round function operates at bit level with a maximum of symmetry by using very
light shift-invariant operations and a minimum of sub-structures by letting it operate on
a prime-sized state. When speaking of sub-structures, we are thinking of Matryoshka in
Keccak-p [9] or symmetry properties in the ChaCha permutation [4,22]. In a way, the,
Subterranean round function is the nec plus ultra of weak alignment.
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We extract the output z from statebits that are in positions distant from each other to
make it very hard to reconstruct the secret state from a series of outputs z and to prevent
measurable bias in the output stream Z.

Likewise, we inject input strings σ in the state in positions distant from each other to
make it infeasible to control difference propagation in the state. In unkeyed absorbing we
limit the strings σ in length to 8 bits and we apply two rounds in between input injections.
The reason for this is to make the generation of state collisions infeasible.

Subterranean-XOF and Subterranean-deck each have a single absorbing phase followed
by a squeezing phase. In between those phases there is a sequence of 8 blank rounds. In
Subterranean-deck, these blank rounds are meant to prevent measurable correlations or
exploitable differentials between input M [i] and output Z. In Subterranean-XOF they are
meant to make the generation of collisions in n-bit outputs, for any n ≤ 224, infeasible.
Similarly, they should prevent the generation of (2nd) pre-images for any n-bit output
with n ≤ 112 in less than 2n operations.

More generally, in Subterranean-XOF, Subterranean-deck and Subterranean-SAE alike,
the blank rounds should make the output Z (whether tag or keystream) depend on all
bits of the input in a complex way, as is the case for a random oracle. Finally, the blank
rounds should prevent attacks that make use of higher order differentials such as cube
attacks by the fact that expressions of state bits as a function of the state 8 rounds ago
has high degree and is relatively dense.

The size of the state, 257, fits nicely the ambition to offer a security of 128 bits in
keyed modes and 112 bits in unkeyed mode. It is rather small but not too small to fall
prey to time-memory-data-precomputation trade-offs.

3.2 The round function
The round function is just taken from the original Subterranean specified in [18], with
the buffer addition removed and the non-linear step complemented. In short, it is a
classical lightweight bit-oriented wide trail design, with a non-linear layer, a mixing layer,
a transposition layer and a (round) constant addition. The former three are shift-invariant
and the addition of the constant is just to ensure the round function itself is not shift-
invariant. The state is a one-dimensional array of length 257, a prime. This had to be at
least 256 as the original Subterranean targeted a security strength of 128 bits. A prime
was taken to avoid the existence of exploitable symmetries.

3.2.1 The non-linear layer χ

The non-linear layer is χ, well known from Keccak-p. This is the most sparse shift-
invariant mapping of algebraic degree 2 that is invertible when the state has odd length.
By sparse we mean that each output bit only depends on few input bits, in this case 3 bits
in neighbouring positions. The low degree is an advantage when countermeasures against
differential power analysis need to be implemented, such as masking or threshold schemes.
In general, computing the inverse of χ requires a recursive procedure and the consequence
is that it is dense and has an algebraic degree that is proportionate to the state length. In
the case of Subterranean, the inverse of χ has algebraic degree 128. This complexity helps
in frustrating cryptanalysts.

3.2.2 The mixing layer θ

The mixing layer θ is similarly sparse: each output bit is the sum of 3 input bits at fixed
relative offsets. The Subterranean round function was an improved version of that of the
very first wide-trail design, the hash function Cellhash [20]. In Cellhash, the offsets in θ
were −3, 0, 3: symmetric around 0 and at minimum distance so that each output bit of
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θ ◦ χ depends on 9 bits. Due to this choice of offsets, there is a 2-bit input difference (resp.
output mask) that leads to a 2-bit output difference (resp. input mask). This feature can
be used to build n-round trails with weight n2n. The choice of offsets in Subterranean
avoid this problem: a 2-bit input difference leads to an output difference with at least 4
bits. The symmetry around 0 was abandoned, 3 was kept and 8 was chosen as the smallest
value that gives excellent mixing properties.

For studying the algebraic properties of θ, it helps to see the state s as a binary
polynomial

∑
i siX

i. The operation of θ then becomes a modular multiplication:

θ (s(X)) = s(X)(1 +X3 +X8) mod (1 +X257) .

We say 1 +X3 +X8 is the multiplication polynomial of the linear shift-invariant mapping
θ.

The polynomials P (X) of degree smaller than 257 that are coprime to 1 +X257 form a
group that we will denote by Θ. The modulus 1 +X257 is the product of 1 +X with 16
irreducible polynomials of degree 16 as shown in table 7. As

P 2n

(X) mod
(
1 +X257) = P (X2n mod 257) ,

we have P 2n(X) mod (1+X257) = P (X) if n is the order of 2 in (Z/257Z∗,×). The order of
2 happens to be 16, implying that the order of any P (X) ∈ Θ divides 216−1 = 3 ·5 ·17 ·257.
For P (X) = 1 +X3 +X8, we verified with sage that the order is 216 − 1 itself. It follows
that θ has the maximum order of any element in Θ. The inverse of θ can be computed as
(1 +X3 +X8)216−2 and has a Hamming weight of 127. This high diffusion in the backward
direction helps in frustrating cryptanalysis.

3.2.3 The transposition π

The transposition layer π puts bits that are 12 positions apart next to each other: si ← s12i.
This ensures that each state bit depends on 81 bits of the state 2 cycles ago. Dually, it
moves neighbouring bits to positions 150 bits apart: s150j ← sj as 150 · 12 mod 257 = 1.
The result is that a single-bit difference in the state may affect 81 state bits 2 cycles later.

The order of 12 in (Z/257Z)∗,×) is 256, or in other words, it is a generator. The
consequence is that the order of the transposition π is likewise 256.

3.2.4 The order of the linear layer π ◦ θ

For understanding the order of the linear layer π ◦ θ we use the following observation. For
all i ∈ Z, let θ(i) be the linear transformation defined as θ(i) = π−i ◦ θ ◦ πi. Then, for all
n ∈ N, the linear transformation (π ◦ θ)n can be converted into

πn ◦ θ(n−1) ◦ θ(n−2) · · · θ(1) ◦ θ(0) .

Indeed, (π ◦ θ)n = π ◦ θ ◦ π ◦ θ ◦ · · · ◦ π ◦ θ = πn ◦ π1−n ◦ θ ◦ πn−1 ◦ π2−n ◦ θ ◦ · · · ◦ π1 ◦ θ. If
we take this expression for n = 256, the first term becomes the identity and we obtain
a mapping that is the composition of 256 linear shift-invariant mappings, each with its
own multiplication polynomial. From this follows that the composed mapping is also a
linear shift-invariant mapping and that its order divides 216 − 1. Hence, the order of π ◦ θ
divides 28(216 − 1). We checked the divisors of this integer and it turns out that the order
of π ◦ θ is 256 and the minimal polynomial of π ◦ θ is 1 +X256.

More in general, we can prove the following lemma.

Lemma 1. Let θ′ be a linear shift-invariant mapping with multiplication polynomial P
and let π′ be defined as si ← sg×i and ord(g) the multiplicative order of g in Z/257Z∗. If
ord(g) ≥ 16, the order of π′ ◦ θ′ divides ord(g).

8



Proof. By using the technique described just above, for all n ∈ N, (π′ ◦ θ′)n can be
converted into

π′n ◦ θ′(n−1) ◦ θ′(n−2) · · · θ′(1) ◦ θ′(0)

where θ′(i) = π′−i ◦ θ′ ◦ π′i. Clearly, for all i ∈ N, the multiplication polynomial of θ′(i) is
P (Xgi) modulo 1 +X257 (see Section 5).

We have (π′)ord(g) = Id. Hence, (π′ ◦ θ′)ord(g) is a linear shift-invariant mapping with
the following polynomial Q.

Q =
n∏
i=0

P (Xgi

) (2)

As expressed before in Section 3.2.2, 1 +X257 is the product of 1 +X and 16 polynomials
of degree 16. We can now show that Q = 1, the multiplication polynomial of the identity
mapping. Let α be a primitive element of F2257 , then if follows immediately from (2)
that Q(α) = Q(αg) = Q(αg2) = . . . = Q(αgord(g)−1). As α is a primitive element, all
these powers are different elements. Thanks to the Chinese Remainder Theorem, and the
factorisation of (1 +X257) in polynomials of degree 16 or smaller (see Table 7), the result
follows immediately: Q is a constant polynomial. Depending on the Hamming weight of
P , we get either a constant term that is zero or one, but as P corresponds to a bijective
mapping, we have Q = 1. Hence, (π′ ◦ θ′)ord(g) = Id if ord(g) ≥ 16.

3.3 The number of blank rounds
The algebraic degree of the Subterranean round function is 2 and for small r the degree
of r rounds is 2r. For larger r, it was observed in, e.g., [15] that the degree lags behind
from the point 2r starts approaching the permutation width b. Still, for r = 8 we expect
the algebraic degree to be well above 128. Together with the positioning of the input bits
and the fact that there are only 32 per round, this makes it unlikely that shortcut attacks
based on higher-order differentials, such as cube attacks, can be mounted.

In collision attacks in Subterranean-XOF, a non-zero difference a′ in the state before the
blank rounds will propagate to a non-zero difference b′ in the state after the blank rounds.
Due to the 8 rounds, the difference b′ will depend in a complicated way on the difference a′
and the absolute values of the states before the blank rounds. This implies that the best
collision-generating strategy against Subterranean-XOF is to go for an internal collision
during the absorbing phase.

For Subterranean-deck, differential attacks require the propagation of a difference across
the blank rounds. Thanks to the excellent difference propagation properties across the
rounds, we do not expect there to be 8-round differentials with a DP values anywhere near
2−96, the value that would be required for exploiting it with 296 pairs. Similarly, for the
same reasons, we do not expect there to be 8-round correlations with amplitude above
2−48, the value that would be required for exploiting it with 296 input-output couples. The
same reasoning is true for Subterranean-SAE for nonce-respecting adversaries that do not
get unverified deciphered ciphertext. Namely, in these use cases, controllable input and
output is separated by 8 blank rounds.

In the following sections we will discuss input-only attacks in the form of state collisions
and output-only attacks in the form of state recovery attacks from output only and biases
in the output.

3.4 State collisions in unkeyed absorbing
The single-most important security requirement of unkeyed absorbing is that it should be
hard to generate state collisions. A state collision occurs when different string sequences
M [[n]] and M ′[[n′]] lead to the same state value.
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A string sequence M [[n]] gives rise to a sequence of absorb calls, that each split the
string M [i] into 8-bit blocks, pad these blocks with 10∗ and then sequentially inject these
into the state in a series of duplex calls. The borders between the strings in the sequence
are marked by the fact that the last block of each string M [i] before padding is shorter
than 8 bits. If the strings M [i] are bit strings, an adversary can hence freely choose 9 bits
between two consecutive duplex calls, as there is a blank round between each absorbing
phase in unkeyed mode. In the case of byte strings, the adversary can choose from 28 + 1
input values, reducing the number of freely chosen bits per duplex call to 8 + ε with ε small.
Our ambition is to have 112-bit security strength in the more general case of bit strings.

When generating a state collision, this may occur between string sequences M [[n]] and
M ′[[n′]] that give rise to sequences of duplex calls of equal length or of different length.
For duplex call sequences of equal length, we can try to find a differential from the input
M [[n]] to a zero difference in the state with a high differential probability. For duplex call
sequences of different length, one could try to generate a fixed point. Those properties are
discussed respectively in section 3.4.3 and section 3.4.2. Finally, one can try to find state
collisions with a generic attack by just randomly trying inputs and count on the birthday
bound for collisions to occur. This is the starting point of the attack explained in the
following subsection.

3.4.1 Advanced inner collisions

In absorbing, we call the bit positions where the input is injected the outer part of the state.
The inner part of the state is formed by the other bit positions. In unkeyed absorbing,
the outer part consists of 9 bit positions and the inner part 248 bit positions. In keyed
absorbing, the outer part is 33 bits wide and the inner part 224 bits.

In a naive version of the birthday attack, we need to try about 2(257+1)/2 = 2129 inputs
to find a collision in the state. This can be reduced to about 2124 inputs if we relax the
state collision requirement somewhat, by only requiring a collision in the 248-bit inner part
of the state. We call this an inner collision. An inner collision can readily be converted
into a state collision by compensating for the (possible) difference in the 9-bit outer part
by choosing the last blocks in the inner-state colliding inputs. The expected number of
string sequences that must be tried before an inner collision presents itself is about 2125,
taking about 2125+1 = 2126 duplex calls as there are two rounds per 8-bit block.

This is expected workload of a generic attack and decreasing it by a factor 212 by
exploiting specifics of the round function would break our security claim for Subterranean-
XOF.

As the round function of Subterranean is rather sparse and has a degree of only 2, it is
not unthinkable that this could be done. Exploiting specificities of the round function we
did, and found a state-collision finding attack that takes roughly 2116+1 duplex calls. It
is an attack on a weakened variant of Subterranean, where during unkeyed absorbing an
input block is absorbed every round. This attack is exactly the reason why we chose to
reduce this to one block every two rounds in unkeyed absorbing.

In a first phase of the attack, the birthday phase, we compute the states s obtained by
absorbing many random input messages and assemble them in what we call the birthday
set. It is the size of this set that determines the attack complexity.

In a second phase of the attack, we identify pairs of states (s, s′) in the birthday set
that form what we call an advanced inner collision. To form an advanced inner collision,
the state values of the pair must satisfy certain equations and for a number of equations
involving bits of (s, s′) a solution must exist. The generic scheme of the attack is depicted
in figure 2.

We will now derive the equations the bits of an advanced inner collision must satisfy.
This allows us to estimate the required size of the birthday set and hence the attack
complexity. We denote the value of the state(s), right after absorbing the last message
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Figure 2: Finding state collisions in unkeyed absorbing. We want a collision on s0, bits in
blue are input block bits, only their difference matters. Bits in red represent conditions that
can be satisfied by choosing the value of m−1, where mi’s are message blocks concatenated
with the padding bit.

blocks m0 and m′0, s0 and index the iteration backwards with −1, −2 etc. Our equations
are in the bits of s−1 and s′−1 and for readability we will abbreviate these to simply s and
s′.

For the message difference m0 ⊕m′0, we can choose 9 bits (in blue in Figure 2). This is
equivalent to the statement 1 ≤ j ≤ 248, qj(s) = qj(s′), where qj are quadratic functions
defined by the round function R and s and s′ are state values in the birthday set. In other
words, we express bits in s0 as functions of the state in s.

An attacker can control 9 bits in both states s and s′. We denote bits of m−1 by
b0, b1, . . . , b7, b8 and bits of m′−1 by b′0, b′1, . . . , b′7, b′8 Those bits are injected at positions
1, 176, 136, 35, 249, 134, 197, 234, 64. Each bit bi (or b′i), for 0 ≤ i ≤ 8 will appear in 9
equations qj where qj are quadratic functions defined above. By doing a Gauss pivot on
the 248 equations we can minimize the number of equations where bi or b′i appear.

We clarify this by explaining this in detail for equations where bits b2, b′2, b5 and
b′5 intervene. Those bits are respectively injected at position 136 and 134. This yields
equations of the form:



q124(s) + q124(s′) = b5s133 + b′5s
′
133

q125(s) + q125(s′) = b5s135 + b′5s
′
135

q126(s) + q126(s′) = b5 + b′5 + b2s135 + b′2s
′
135

q127(s) + q127(s′) = b2s137 + b′2s
′
137

q128(s) + q128(s′) = b2 + b′2
q129(s) + q129(s′) = b5s133 + b′5s

′
133

q130(s) + q130(s′) = b5s135 + b′5s
′
135

q131(s) + q131(s′) = b5 + b′5 + b2s135 + b′2s
′
135

q132(s) + q132(s′) = b5s133 + b′5s
′
133 + b2s137 + b′2s

′
137

q133(s) + q133(s′) = b5s135 + b′5s
′
135 + b2 + b′2

q134(s) + q134(s′) = b5 + b′5 + b2s135 + b′2s
′
135

q135(s) + q135(s′) = b2s137 + b′2s
′
137

q136(s) + q136(s′) = b2 + b′2

11



By doing a Gauss pivot, we can say that this system of equations is equivalent to

q′124(s) + q′124(s′) = 0
q′125(s) + q′125(s′) = 0
q′126(s) + q′126(s′) = 0
q′127(s) + q′127(s′) = 0
q′128(s) + q′128(s′) = 0
q′129(s) + q′129(s′) = 0
q′130(s) + q′130(s′) = 0
q′131(s) + q′131(s′) = 0
q′132(s) + q′132(s′) = b5s133 + b′5s

′
133

q′133(s) + q′133(s′) = b5s135 + b′5s
′
135

q134(s) + q134(s′) = b5 + b′5 + b2s135 + b′2s
′
135

q135(s) + q135(s′) = b2s137 + b′2s
′
137

q136(s) + q136(s′) = b2 + b′2

where q′133 = q133 + q136, q′132 = q135, q′131 = q131 + q134, q′130 = q130 + q′133, q′129 =
q129 + q′132, q′128 = q128 + q136, q′127 = q127 + q135, q′126 = q126 + q134, q′125 = q125 + q′133 and
q′124 = q124 + q′132.

Except for this specific behaviour of bits b2 and b5 that are injected at positions 136
and 134, the injected bits yield a system of 3× 7 equations, concatenated with equations
exclusively in bits of s and s′. The system of equations we obtain (after applying the
Gauss pivot and reordering the equations) has the following form

q′1(s) + q′1(s′) = b0 + b′0
q′2(s) + q′2(s′) = b0s0 + b′0s

′
0

q′3(s) + q′3(s′) = b0s2 + b′0s
′
2

q′4(s) + q′4(s′) = b1 + b′1
q′5(s) + q′5(s′) = b1s175 + b′1s

′
175

q′6(s) + q′6(s′) = b1s177 + b′1s
′
177

· · ·
q′19(s) + q′19(s′) = b7 + b′7
q′20(s) + q′20(s′) = b7s63 + b′7s

′
63

q′21(s) + q′21(s′) = b7s65 + b′7s
′
65

q′22(s) + q′22(s′) = b5s133 + b′5s
′
133

q′23(s) + q′23(s′) = b5s135 + b′5s
′
135

q24(s) + q24(s′) = b5 + b′5 + b2s135 + b′2s
′
135

q25(s) + q25(s′) = b2s137 + b′2s
′
137

q26(s) + q26(s′) = b2 + b′2
q′27(s) = q′27(s′)
q′28(s) = q′28(s′)

· · ·
q′248(s) = q′248(s′)

where q′j , for all 0 ≤ j ≤ 27, are quadratic functions exclusively in bits of s and s′. The
q′j functions differs from qj functions as we did a Gauss pivot. Satisfying this system is
equivalent to building a collision in the state s0. So how do we proceed?

We see that the last 221 equations just express equality of quadratic expressions in
bits of s and s′ respectively. So we first try to find pairs in the birthday set that satisfy
these equations. To do so, we can think of storing the birthday set in a hash table, where
order the states and corresponding inputs according to the 221-bit values defined by
(q′27(s)||q′28|| · · · ||q′248). These can be seen as coordinates and we call them birthday set
coordinates.

12



When we find a pair (s, s′) that has colliding birthday set coordinates, we try to find
values of bi and b′i for i from 0 to 8 so that the first 26 equations are also satisfied. We
now evaluate the probability that such values can be found.

For any i with i different from 2 and 5, bits bi and b′i for different i occur in non-
overlapping equations and there are 3 equations per couple (bi, b′i). An exception to this
are equations in bits b2, b

′
2, b5 and b′5 that we will address afterwards. We will now work

out the case for b0 and b′0 that corresponds to the first 3 equations.

• If s0 = s′0 and s2 = s′2, then only the difference b0 + b′0 matters. This difference
is uniquely determined by the first equation and this equation can be satisfied by
choosing b0 + b′0. The next two equations are then both satisfied with probability
2−2.

• If s0 = s′0 + 1 or s2 = s′2 + 1, then the difference b0 + b′0 matters for the first equation,
but the absolute value also matters. This uniquely determines the value of b0 and b′0
by using only 2 equations. The last equation is then satisfied with probability 2−1.

Hence, the first three equations can be satisfied with probability

1
4 ×

1
4 + 3

4 ×
1
2 = 7

16 .

This probability is the same for equations where b1, b3, b4, b6, b7 and b8 intervene.
For the five equations where b2, b′2, b5 and b′5 intervene, the previous analysis does not

hold. To obtain the probability that these equations can be satisfied, we can look into the
following 8 different events:

• s137 = s′137, s135 = s′135, s133 = s′133;

• s137 6= s′137, s135 = s′135, s133 = s′133;

• s137 = s′137, s135 6= s′135, s133 = s′133;

• s137 = s′137, s135 = s′135, s133 6= s′133;

• s137 6= s′137, s135 6= s′135, s133 = s′133;

• s137 6= s′137, s135 = s′135, s133 6= s′133;

• s137 = s′137, s135 6= s′135, s133 6= s′133;

• s137 6= s′137, s135 6= s′135, s133 6= s′133.

By using the same arguments as before, the probability of satisfying the five equations can
be expressed as

1
8

(
1
8 + 1

4 + 3
8 + 1

4 + 1
2 + 1

2 + 3
8 + 1

2

)
= 23

64 .

So given a pair (s, s′) with colliding birthday set coordinates, the probability that we
can find trailing blocks m−1, m′−1 and a difference in m0 that lead to a state collision is:

p′ =
(

7
16

)7(23
64

)
≈ 2−10 .

Hence, on the average we would need to find about 210 pairs with colliding birthday
coordinates. In a birthday set of size 2w the expected number of pairs that collide in
birthday coordinates would be

(2w

2
)
2−221 ≈ 22w−1−221 = 22w−222. Setting this to 210 gives

us the required size of the birthday set: 2116. Hence the computational complexity is
roughly 2116 duplex calls.
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The complexity of this attack is probably dominated by storing the states in the hash
table in their order of birthday set coordinates. Assuming n log(n) complexity and skipping
over the constant factor, this would correspond to 116× 2116 ≈ 2123 operations. Moreover,
it would require an amount of memory enough to store 2116 states each taking a few
hundred bits.

In order to reduce the birthday set in this attack on weakened Subterranean unkeyed
absorbing to size below 2112, an attacker would have to make use of sets of two trailing
blocks m−2 and m−1 and one final difference. Equations would become of degree 4 and
there would be many more equations involving the input bits. However, as the safety
margin between the claimed security strengt of 112 bits, and the complexity of this attack
is small, we think the reduction of injecting 9 bits every round to 9 bits every two rounds
is justified.

To modify this attack for the nominal unkeyed absorbing in Subterranean so that its
birthday set would have size below 2112, an attacker would have to construct equations
spanning 4 Subterranean rounds. We believe this to be infeasible.

3.4.2 Fixed points

A fixed point consists of a state value s, reached after absorbing a first sequence of input
blocks, and a second sequence of input blocks such that after absorbing that second
sequence with duplex calls the state has again value s. Such a fixed point would allow
generating an infinite set of colliding input sequences. Finding such a fixed point with
a generic attack has the same complexity as generically finding a state collision and we
believe there are no shortcut attacks that would reduce the expected complexity by a
factor 28.

3.4.3 Differential properties

For duplex call sequences of equal length one may try to generate an inner collision by
exploiting a differential or trail with high differential probability (DP). As an inner collision
must be obtained in 248 bits of the state and the adversary can choose 9 bits per duplex
call in each of the two input block sequences, it is unlikely that starting from some given
state, there exist colliding input sequences of less than 248/(2 · 9) ≈ 14 blocks. Clearly,
there are 29·14 = 2126 input block sequences and just trying them all would just be a
generic attack. Doing this in less calls in a systematic way would require controlling the
propagation of the difference through the rounds and hence having some kind of high
probability differential in Subterranean from the input blocks to the state. We believe
such differentials do simply not exist.

3.5 State-recovery attacks
Subterranean-SAE is very similar to the CAESAR competition candidate Ketje Jr [10,11]
that was attacked last year [23]. This attack is a state recovery attack on a weakened
version of Ketje Jr, where the weakening consists of an increase of the rate during the
wrap calls from the nominal 16 bits to 32 bits. The attack focuses on 4 consecutive rounds
on Ketje Jr v1. The feasibility of the attack strongly depends on the bit positions of the
outer part. In Ketje Jr the outer part covers full (5-bit) rows and the nonlinear mapping
operates at row level. This means that if in a state at the input (resp. output) of χ all
bits of a row are known, one can compute the bits in that row at the output (resp. input)
of χ. This fact allows an attacker to link the information between 4 consecutive rounds.
In Ketje Jr v2 the definition of the outer part was changed and no longer contains full
rows, greatly reducing the applicability of the attack.
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In Subterranean the squeezing rate is 32 bits, so at first sight the attacks in [23] may be
a concern. However, two factors already make it much harder to pull of for Subterranean
than for the weakened version of Ketje Jr v1:

• Subterranean has a 257-bit state and Ketje Jr only a 200-bit state.

• In Ketje Jr the χ mapping is applied on rows of 5 bits. In Subterranean, χ is
applied on all state bits arranged in a single circle.

From the reduction in effectiveness of attacks from Ketje Jr v1 and Ketje Jr v2,
we learned that it is a good idea to choose the positions of output bits far from each other.
Our choice of output positions does exactly that when seen in the context of state-recovery
attacks. On top of that, we added another hurdle to frustrate state-recovery attacks:
instead of taking as output string z the concatenation of state bits, we construct each of its
bits as the sum of 2 state bits. This is inspired by the stream cipher Trivium [16], where
the output bit consists of the sum of three state bits. Hence, to obtain 32 output bits, we
take 64 state bits and add them in pairs. While information-technically an attacker gets
the same amount of information per round as in the case of taking 32 consecutive state
bits, it is much harder to exploit this information. In particular, most techniques used
in [23] no longer work and it appears that Subterranean has a comfortable safety margin
with respect to state recovery attacks.

3.6 Bias in the keystream
In this section we investigate biases in the keystream. Here, we refer to biases using linear
combination of output bits such as recently found in AEGIS [26] or MORUS [2]. For
Subterranean this would mean the following. We write an output stream Z as a sequence of
32-bit blocks z0, z1, z2 . . . and define a mask sequence U that consists of a sequence of, say,
n masks u0, u1, u2 . . . un−1. Each mask is a 32-bit block. We can now compute a parity of a
sequence Z using that mask. We write UTZ =

∑
0≤i<n u

T
i zi. We can shift this mask to a

later position in Z and compute a similar parity. We write UT(Z � q) =
∑

0≤i<n u
T
i zq+i.

Each parity is a single bit. If we have a keystream Z of length m, this parity can be
computed on m− n positions. If we have multiple keystreams Z of length mi, this parity
can be computed on

∑
i(mi − n) positions.

For AEGIS and MORUS, masks were found so that UTZ exhibits a bias, i.e., its value
has higher probability to be 0 than 1 or vice versa. This is equivalent to saying that UTZ
is correlated to 0 with positive or negative correlation C. To detect a bias with some
given correlation C, one needs about C−2 samples, so for example to detect a bias with
correlation 1/1000 we need about a million samples.

For any given mask U we can form the algebraic expression of UTZ. In Subterranean,
every bit of Z is the sum of two state bits. However, typically U spans multiple blocks
and the bits of Z are bits of state values separated by rounds. Still, in principle, one
can express each state bit as an algebraic expression of the bits of the state one round
earlier. This can be applied recursively and UTZ can be expressed fully as a sum of
monomials each containing bits of the state value used to generate z0. Now, the value
of the correlation of UTZ with 0 is determined by a property of this algebraic function.
Namely, if it contains at least one degree-1 monomial si that does not appear in any other
monomial, the correlation is 0. In this respect, the choice of the bit positions for generating
the output helps in avoiding measurable correlations.

The 64 bit positions used for generating the output are the elements of the multiplicative
subgroup G64 of Z/257Z of order 64 generated by 124 = 176.

The relations between state bits at time t+ 1 and time t are of the following form:

st+1
150∗i = sti + δi+ sti+3 + sti+8 + (sti+1 + 1)(sti+2) + (sti+4 + 1)(sti+5) + (sti+9 + 1)(sti+10) . (3)
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So when combining bits of zt+1 with bits of zt, in the expression of each bit of st+1

there is always one bit with position i ∈ 12G64 (namely sti), while the bits of st will be
in positions in G64. A bit of zt+2 expressed in bits of st will contain at least one bit in
position i ∈ 144G64. Finally, the expression of a bit of zt+3 will contain at least one bit in
position i ∈ 176G64.

During squeezing, the attacker knows 32 sums of 2 state bits each, taken from positions
in the multiplicative subgroup generated by 176. Hence, the attacker knows the value of
st+1

176i + st+1
−176−i . But, all those bits belong to G64, and we know that they can be expressed

as a function of st (see equation 3). We have that for all 0 ≤ i ≤ 63,

st+1
176i + st+1

−176i = st12∗176i + st−12∗176i + q(st) .

By construction, we know that 12 ∗ 176i and −12 ∗ 176i do not belong to G64. Those bits
remain then unknown and their presence guarantees that linear biases on the keystream
can only be found for masks U spanning more rounds. More precisely, any mask U for
which UTZ would exhibit non-zero bias has a span of at least 4 blocks. We believe this
eliminates measurable bias in Z.

3.7 Time-Memory-Data Trade-offs
When squeezing an output, Subterranean behaves like a stream cipher and hence it may
be subject to Time-Memory trade-off attacks as specified in [3]. Those attacks can recover
the internal state given resources M = T = N/2 with M the memory complexity and T
the time complexity and N the stream cipher state space. As for Subterranean N = 2257,
these attacks are not a threat for our claimed security strength of 128 bits. In 2000,
Biryukov and Shamir [13] improved the trade-off by bringing the data complexity D and
computation in the pre-processing phase P into the equation. The invariances of their
trade-off become TP = N and MD = N . As we limit the data complexity to D < 296

and have N = 2257, this still does not jeopardize the claimed security strength of 128 bits.

4 Implementation of Subterranean
We did 3 software implementations and 1 hardware/software co-design for FPGAs or
ASICs. The software implementations are:

• reference code in C,

• a clone of the reference code in Python,

• memory-compact code in C.

The hardware/software co-design uses the memory-compact code for the mode layers and
a Verilog implementation of the Subterranean permutation and some I/O management.

In the following subsections we will discuss these implementtions.

4.1 Software code
The reference code in C stores each state bit in a byte, thus making it easier to handle
the round function π step and performing input injection and output extractions. This
code is very close to the specifications in Algorithms 1, 2, 3 and 4 and therefore easier
to understand and debug. It does diverges in the way the absorb function is structured.
This function is split along the 4 options unkeyed, keyed, encryption and decryption, for
understandability.
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We wrote a clone of the reference code in Python. We used this code for debugging
and now make it available. In this code the state is stored into a list of integers, where
each integer is a state bit. Like the C reference code, this code is meant for understanding
the Subterranean 2.0 suite, and not for performance.

4.1.1 Memory-compact code

As a proof of concept, we implemented the Subterranean 2.0 suite that packs sets of 8
statebits in bytes, thus showing it is possible to work with less memory. This byte-packing
requires all the bit-oriented transformations to be done with the use of bit masks and
shifts. While the low-level state handling functions is quite different from the reference
code, the mode-level functions for XOF, deck and SAE are quite close to those in the
reference C code and Algorithms 2, 3 and 4. However, in the functions of absorb and
duplex the architecture is different from the one described in Algorithm 1. This is because
in the memory-compact code, all the state handling operations are done in the duplex and
extract calls, therefore having a clear separation of the functions that handles the state.
This separation makes it easier to make the hardware/software co-design, because the
hardware will be the one handling the state directly. Finally, the code only accepts inputs
which are byte multiples, as the NIST submission interface only accepts byte multiples.

While the memory compact code will work for any architecture that can process bytes,
it is still open to write code for words of 32 or 64 bits.

4.2 Hardware architecture
It makes sense to implement the Subterranean duplex object as a hardware core, and this
can be done in different ways. The entire Subterranean 2.0 suite, including XOF, deck and
SAE could be done as a hardware core with an internal buffer and state machine or with
a hardware/software co-design. In the co-design strategy the serial and communications
tasks are usually done by a software on a CPU, and the computation tasks themselves are
done in the hardware core. The hardware/software co-design could also be integrated in a
SoC, therefore having the state handling operations done in a special circuit, while the
communication and serial tasks done in software. We design as a proof of concept a hardware
circuit only to handle the state and a software code to handle the communication based
on the memory-compact code. In order to better understand, we split the Subterranean
algorithm operations into the ones that handle the state and ones that do not.

In the hardware implementation we adopted a different interpretation of the low level
Subterranean duplex object from Algorithm 1, as (partly) defined in Algorithm 5. In
this alternative definition, duplex is subdivided in duplexSimple, duplexEncrypt and
duplexDecrypt, while extract becomes squeezeSimple. In the alternative definitions, the
padding responsibility is given to the function caller, while some extra functionality is
given to the duplex and extract. The duplexEncrypt and duplexDecrypt are made in
order to also perform the output extraction and input injection inside the duplex function,
while still not handling the padding. The squeezeSimple performs the extract and the
blank duplex call in the Algorithm 1. We made this separation to avoid the conditional
execution of the original duplex and to have in the hardware core only simple functions
that handle the state. The memory-compact software implementations follows a similar
approach, except the padding is handled by the inner functions instead of the caller.

Our hardware and software co-design architecture is split into 4 parts: the permutation
round, the registers with a simple interface , the AXI4-Lite slave interface [1] and the
entire SoC system.

Figure 3 shows the Subterranean round architecture. This architecture is basically the
same as the one shown in Figure 1, the only difference is the addition of the input σ in the
θ step. This is done because the 3 input XORs that are done in the θ step can be done

17



Figure 3: Subterranean round hardware architecture.

Figure 4: Subterranean round with registers and duplex logic.

together with the buffer addition, thus using 4 input XOR. By adding the input buffer
before the π step, the total delay between registers in the round circuit is not affected the
addition of the buffer.

Figure 4 adds registers and the functions described in Algorithm 5. There are 3 registers,
the 257-bit state buffer and the 32-bit input and output buffers. The state register can be
initialized with all zeroes or the evaluation of the round function applied to the content
of the state register. The round function will use the value received in buffer in together
with the state to compute the duplex empty, duplex simple and duplex encrypt, just as
seen in Algorithm 5. The corner cases are with the duplex decrypt and the squeeze simple.
In the duplex decrypt last message it is necessary to force some bits of the state to be
zero, therefore the padding in “buffer in” is kept and is used during the round function
computation. In case of squeeze simple, the value to be added in the round comes from
buffer in, and then the circuit force the XOR to happen only with the state and then
writes in the buffer out.

Figure 5 adds the components to make the circuit be able to interact with the AXI4-Lite
interface. Only the slave interface is done, since the hardware circuit does not need to use
an external memory or other components.

In order to differentiate operations and input sizes, the circuit makes use of the address
system in the bus. Each operation is tied to a certain address, and the size of the data is
also tied to the address. Since for the bus operation is easier to perform read and write
operations into direct 32-bit aligned addresses, all commands are 32 bits aligned. Then in
order to support up to 5 different byte sizes (empty, 1, 2, 3 and 4) the commands were
split into operation on a full buffer (4 bytes) or in a incomplete buffer. In case of the
incomplete buffer operations, then we use 2 extra bits to indicate the size in the buffer. So
for example, if the address of incomplete buffer encryption is 0x50, then 0x50, 0x54, 0x58
and 0x5C means buffer with 0, 1, 2, 3 bytes respectively.

The entire AXI4-Lite system can be instantiated in a ASIC or FPGA with the same
bus and a communication master which should be the CPU. In our case, we tested with
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Figure 5: Subterranean simple encapsulated into a AXI4-Lite slave interface.

the Xilinx Zynq SoC, which is a ARM SoC, with external peripherals such as Ethernet,
USB, UART etc and the Xilinx FPGA interconnected with different buses, but more
importantly an AXI4. With the AXI4 bus interconnecting the FPGA and the CPU, this
helps to test and evaluate IP designs that are supposed to be used in a AXI4 bus.

Figure 6 shows how we interconnected the ARM CPU and the Subterranean core. The
Zynq has a central interconnect which connects the SoC peripherals, the ARM CPU and
the FPGA as well, there are other connections like interrupts which are not shown. In our
case the CPU is the master of the AXI4 communication, which then is connected to the
AXI4 slave port in the FPGA. Inside the FPGA, we need to instantiate an intermediate
component that is the AXI Interconnect. This extra component performs the conversion
between the AXI4 and the AXI4-Lite protocol.

If we implemented Subterranean with a AXI4 interface, then we could directly connect
to the central interconnect in the chip. However, the AXI4 interface is quite complex, and
therefore it could be done for another implementation.

4.3 Hardware results
The circuits described above where tested and described in Verilog language, and also tested
on the Zedboard with the Zynq SoC from Xilinx. The tests applied the KAT produced by
the software implementation done in C, which are compared with the reference software
KAT. The hardware software co-design was done through Vivado 2017.4 tool, where the
software runs on the Zynq ARM CPU that sends the hardware commands through the
AXI interface in the FPGA. In this implementation we needed 298 Slices that can be split
into 763 LUT and 877 flip-flops. The FPGA was set at 200 MHz (5 ns period), but our
circuit could theoretically operate up to 217 MHz.

We also synthesized the same circuit in ASIC cells with the open FreePDK 45nm [27] and
the open source tool Yosys 0.8 [29]. Yosys does not perform the entire ASIC development
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Figure 6: Subterranean core in the Xilinx Zynq FPGA. The communication is bidirectional,
the arrows point from communication master to slave.

stack, but gives results for only the gates necessary to implement (therefore no wiring
taken into account). It also does not have a fully time oriented synthesis, which tries
different combinations and optimizations until it meets the timing requirements. However,
in order to have a resources estimation and possible circuit delay this is enough.

The results for the ASIC cells are summarized in Table 1. It shows that by adding the
registers plus duplex logic, the total area doubled. Which is easy to verify by knowing a
flip-flop with no resets/sets occupies 4.25 GE, while the NAND is only 1 GE [27]. Therefore,
serial architectures for this scenario are extremely discouraged, since the registers are
the biggest bottlenck, and reducing the round logic will give minor optimization gains.
However, maybe the construction of a circuit that can perform 2, 3, 4 or more rounds in
one cycle might be preferable, since it will give some latency gains while performing XOF
computations.

Table 1 also shows the critical circuit path results for this technology. Because the
round function does not have a big dependency the results are less than 1 ns. Thus adding
a register between the computations might not be interesting in this case. In a extreme
scenario where someone would need to reduce the critical path, they could be added after
the ι step.

By inserting the AXI4-Lite interface into our circuit, it increased the amount of resources
by approximately 16%. While this is a reasonable amount, if we needed to add a full AXI4
interface in our design, this number would be bigger. Therefore, designers should also
taken into account the communication and environment where the solution will be used.

Table 1: FreePDK 45nm [27] area and delay results for Subterranean duplex.
Area (µm2) Area (GE) Critical path (ns)

Round logic (Fig. 3) 4602 2452 0.290
Duplex logic (Fig. 4) 9161 4880 0.385
AXI4 Lite (Fig. 5) 10655 5676 0.413

4.4 Reference software results
Even though our reference code is a guide in order to test and understand, we still evaluate
it in terms of memory consumption and timing. All the results were obtained on the
virtual machine running on a Intel Core i5-4570 running at 3.2GHz with Hyperthread on
and Windows 7. The virtual machine is configured with 16 GB of RAM, 2 CPUs and
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Debian OS, while the host has 32 GB RAM. While obtaining results on a virtual machine
might not be ideal, a small comparison test between compiling and running in the VM
against the Windows, showed the results has less than 10% penalty.

The stack estimation is done with GCC internal stack usage estimation [14] for each
function, with a script to account the theoretically [24] maximum amount. Table 2 shows
the results for both reference code stack usage. We can easily see the byte reference code
needs almost one third of the bytes in contrast of the bit reference code.

Table 2: Subterranean-XOF, Subterranean-deck and Subterranean-SAE memory consump-
tion in bytes.

XOF deck SAE-encryption SAE-decryption
Bit Reference 680 680 744 760
Memory compact 248 248 264 296

In case of cycles we got the following results on Tables 3 and 4. From the results we can
clearly conclude that encryption and decryption share closer times and the bit reference
implementation is bigger, but faster. This raises the doubt if the byte code could be faster
than the bit code by optimizing for an architecture word size, like 32 or 64 bits, and how
much gain can we get from an direct assembly implementation.

Table 3: Subterranean-XOF time in cycles. “mlen” is message length. The last column is
a linear regression of the results.

Subterranean-XOF with 256 bits output
mlen 1 byte 16 bytes 256 bytes 4096 bytes x bytes
Bit Ref. 15774 21857 114994 1605706 15545 + 388x
Memory compact 12528 28625 311177 4853451 9866 + 1182x

Table 4: Subterranean-SAE time in cycles. “mlen” is the plaintext/ciphertext with no tag
length, and “adlen” is the associated data length. The last column is a linear regression of
the results.

Subterranean-SAE with 128 bits tag
mlen = 1 byte | adlen = 1 byte 16 bytes 256 bytes x bytes
Bit Ref. Enc. 30916 30996 44544 30947 + 52x
Bit Ref. Dec. 30776 31044 44513 30971 + 52x
Memory compact Enc. 21621 21888 61183 20566 + 157x
Memory compact Dec. 19244 23072 60887 20153 + 156x
mlen = 16 bytes | adlen = 1 byte 16 bytes 256 bytes adlen = x bytes
Bit Ref. Enc. 30973 31315 44473 31246 + 52x
Bit Ref. Dec. 31141 31313 44659 31075 + 52x
Memory compact Enc. 22414 25760 61938 22660 + 154x
Memory compact Dec. 22836 24126 62675 22445 + 155x
mlen = 256 bytes | adlen = 1 byte 16 bytes 256 bytes x bytes
Bit Ref. Enc. 46230 46293 59605 45988 + 52x
Bit Ref. Dec. 47086 47120 60282 47011 + 52x
Memory compact Enc. 71252 71887 107683 69565 + 155x
Memory compact Dec. 68677 72615 108859 69155 + 156x
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5 Optimizing software implementation
The choice of the 64 bit positions for extracting output as the elements of G64 is not only
motivated by symmetry reasons and optimal diffusion as explained in section 3.6. The
choice is also beneficial for optimizing the software performance of Subterranean duplex
object.

The steps χ and θ lend themselves reasonably well for software implementations: they
can be implemented with shifts and bitwise Boolean instructions. Also ι does not pose a
problem. The bit permutation π on the other hand requires the manipulation of individual
bits and something that is costly on all CPUs.

5.1 Procrastination of π

In this section we present a technique to avoid implementing π: instead of executing π, we
execute variants of χ and θ that operate on the state in an alternative representation that
changes every round. Basically, we push π in front of us, hence the name π procrastination.

Let γ be shortcut notation for θ ◦ ι ◦ χ. Then two rounds can be expressed as:

R2 = π ◦ γ ◦ π ◦ γ

Let now γ(1) be defined as π−1 ◦ γ ◦ π. Then we have for two rounds:

R2 = π ◦ π ◦ γ(1) ◦ π−1 ◦ π ◦ γ = π2 ◦ γ(1) ◦ γ .

This can be generalized to any number of rounds. Let γ(j) = π−j ◦ γ ◦ πj , then we have
for all n ∈ N,

Rn = πn ◦ γ(n−1) ◦ γ(n−2) ◦ . . . γ(1) ◦ γ(0) . (4)

So clearly, the π steps can be procrastinated eternally. The remaining question is now:
what does γ(j) look like? It can be seen as the sequence of three variant functions:

γ(j) = π−j ◦ θ ◦ ι ◦ χ ◦ πj

= π−j ◦ θ ◦ πj ◦ π−j ◦ ι ◦ πj ◦ π−j ◦ χ ◦ πj

= θ(j) ◦ ι(j) ◦ χ(j) ,

with θ(j), ι(j) and χ(j) defined along the same lines as γ(j).
All functions χ(j), ι(j) and θ(j) have a simple description. For instance, consider χ(j).
Let b = πj(a), c = χ(b) and d = π−j(c). We can now directly express d as a function

of a.
y = π(x) is defined as yi = x12i So bi = a12ji and di = c12−ji or equivalently: ci = d12ji

Substitution in ci = bi + (bi+1 + 1)bi+2 gives:

d12ji = a12ji + (a12ji+12j + 1)a12ji+2·12j .

We can now write q as a shorthand for 12ji, yielding:

dq = aq + (aq+12j + 1)aq+2·12j .

So χ(j) is simply χ with both offsets 1 and 2 multiplied by 12j . By doing the same exercise,
we have that θ(j) is θ with both offsets 3 and 8 multiplied by 12j . ι only operates on the
bit in position 0. As this position is not moved by π, ι is not affected by this.

So the consequence is that we have a kind of evolving state representation, implying
that all bit positions (except the bit at 0) are moving for every cycle by multiplication by
12 modulo 257.
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5.2 Localizing positions in the evolving state
For input injection and output extraction, we need to locate the corresponding bit positions
in a register containing the (moving) state. The state, denoted by st, is stored in a register
R. We indicate the bits of st in the usual way, and the bits in the register by R[i]. Using
equation (4), we have that for all 0 ≤ i ≤ 256 and any t ∈ N,

sti = R[12ti] .

Hence, due to the procrastination, bit i of the state after t rounds can be found in the cell
of R with index 12ti.

If the input or output positions were unrelated, we would have to locate the positions
in R for each bit separately. This would require keeping track of the positions and each
time multiplying them by 12 modulo 257. This could be done by a table-lookup in a
256-byte table but still would be an expensive operation.

The positions we need to locate in R are the 64 output bit position and the 33 input
bit positions in keyed mode (reduced to 9 bits in unkeyed mode) that are a subset of those
64 positions. Moreover, as explained above, we also have to compute the value of offsets of
χ(t) and θ(t), i.e., the offsets 1, 2, 3 and 8, multiplied by 12t at round t ∈ N.

Our choice of the output and input bit positions simplifies this task. (Z/257Z∗,×) is
a group of order 256 and can be generated with 12. Bit positions are evolving by the
multiplication by 12. By choosing G64 generated by 124 = 176, the 64 bit positions are
evolving in a nice way.

At round 0, bits are v64 = [1, 176, 136, . . . , 92]. Those are the elements of G64 and
ordered with the successive powers of the generator 124 = 176. At round 1, bit positions
are now defined by the coset of G64 multiplied by 12 and ordered in the same way as before,
that is [12, 56, 90, . . . , 76]. At round 2, the positions evolve to a second coset of G64, the
one multiplied by 122 = 144: [144, 158, 52, . . . , 141]. At round 3, they evolve to the last
coset of G64, the one multiplied by 123 = 186: [186, 97, 110, . . . , 150]. At round 4, the cycle
returns to v64, but cyclically shifted over one position: [176, 136, 35, . . . , 92, 1].

In a software implementation, we can hardcode the four 64-byte arrays, leading to
a reduction of the workload. Four possible choices would have fit the requirements for
security and software performance, G64 and its cosets: 12G64, 144G64 or even 186G64.
Nevertheless, we also need to access the value of offsets 1, 2, 3 and 8 multiplied by 12t
at each round t ∈ N. Offsets 1, 2 and 8 are in G64, so it is natural to choose G64 as bit
positions for offsets.

Eventually, we explain how we add the 64 bits to obtain the 32 bits of z. To every bit
in a position i in R, we add bit at position −i in R to compute the output bit. By doing
so, the shift operation applied on the 64 bit vector commutes with the addition used to
obtain the output, leading to another reduction in workload.

Offset 3 does not belong to G64, and we will need this offset to compute θ. 3 ∗ 12n can
be computed using either the multiplication by 12 at each round or a lookup table.

Finally, we need to choose either 9 bits or 33 bits for input depending on the unkeyed
or keyed mode. In order to lower the complexity, we took the 9 (respectively the 33) first
powers of 124, that we already need to locate.

6 Parameter choices for the NIST lightweight competition
In this section we specify the set of parameters for both the hash function and the
authenticated encryption scheme in the context of the NIST lightweight competition. Both
concrete instances are modes on top of the Subterranean duplex object that can be shared.
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6.1 Hash function
The hash function of the Subterranean 2.0 suite submitted to the NIST lightweight
competition, is the following. Subterranean-XOF, with the input restricted to a string
sequence of a single arbitrary-length byte string and the output length fixed to 256. The
security claim is given in Claim 1

6.2 Authenticated Encryption
The authenticated encryption scheme of the Subterranean 2.0 suite submitted to the NIST
lightweight competition is the following. Subterranean-SAE, with a key K of length 128
bits and a tag length τ = 128 and associated data and plaintext limited to byte strings.
The security claim is given in Claim 3 and it implies that the amount of data available to
the attacker shall be limited to 296 bits.

6.3 Advantages and limitations
In this section we describe the advantages and limitations of Subterranean 2.0 cipher suite.
We discuss first the advantages and then the limitations, in a bottom-up fashion.

We start with the advantages:

• The round function:

– It is optimized for propagation without compromising for software implementa-
tion resulting in an exceptionally good security build up with respect to cost
(area, energy)

– It has a dense inverse
– It is extremely simple and therefore an attractive target for cryptanalysis
– It has ultimate weak alignment, ensuring that large classes of attacks cannot

be mounted
– It has low gate delay allowing fast and energy-efficient dedicated hardware

implementations
– It has algebraic degree two, very suitable for protection against DPA such as

masking and threshold implementations
– It has small state while still offering both hashing and authenticated encryption
(and more)

– It is historically important as it clearly is the mother of all sponges

• Its architecture:

– Duplex does not have a fixed key as block ciphers do and hence offers better
leakage resilience features

– The basic duplex object is simple and can be used in other use cases. In other
words, the design is modular.

– The whole cipher suite is so simple that it can be easily memorized.
– SAE supports session-based authenticated encryption, or seen from a different

perspective, supports intermediate tags, to limit the amount of buffering needed
at unwrapping end required when not releasing unverified deciphered ciphertext.

The obvious limitations are:

• Operation of duplex is strictly serial.

• The round function is not really suited for software implementations.
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A Tables

Table 5: Input bits for Subterranean duplex object. Bits 0 to 8 are for the unkeyed mode
and all bits are taken for the keyed mode.

i j i j i j i j i j
0 1 8 64 16 241 24 4 32 256
1 176 9 213 17 11 25 190
2 136 10 223 18 137 26 30
3 35 11 184 19 211 27 140
4 249 12 2 20 128 28 225
5 134 13 95 21 169 29 22
6 197 14 15 22 189 30 17
7 234 15 70 23 111 31 165

Table 6: Mapping between state bits and input/output bits.

i j i j i j i j
0 (1, 256) 8 (64, 193) 16 (241, 16) 24 (4, 253)
1 (176, 81) 9 (213, 44) 17 (11, 246) 25 (190, 67)
2 (136, 121) 10 (223, 34) 18 (137, 120) 26 (30, 227)
3 (35, 222) 11 (184, 73) 19 (211, 46) 27 (140, 117)
4 (249, 8) 12 (2, 255) 20 (128, 129) 28 (225, 32)
5 (134, 123) 13 (95, 162) 21 (169, 88) 29 (22, 235)
6 (197, 60) 14 (15, 242) 22 (189, 68) 30 (17, 240)
7 (234, 23) 15 (70, 187) 23 (111, 146) 31 (165, 92)
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Table 7: Factors of 1 +X257

X + 1
X16 +X12 +X11 +X8 +X5 +X4 + 1
X16 +X13 +X8 +X3 + 1
X16 +X13 +X12 +X10 +X8 +X6 +X4 +X3 + 1
X16 +X14 +X12 +X11 +X8 +X5 +X4 +X2 + 1
X16 +X14 +X13 +X11 +X10 +X9 +X8 +X7 +X6 +X5 +X3 +X2 + 1
X16 +X14 +X13 +X12 +X10 +X8 +X6 +X4 +X3 +X2 + 1
X16 +X14 +X13 +X12 +X11 +X9 +X8 +X7 +X5 +X4 +X3 +X2 + 1
X16 +X15 +X8 +X + 1
X16 +X15 +X13 +X9 +X8 +X7 +X3 +X + 1
X16 +X15 +X13 +X11 +X10 +X8 +X6 +X5 +X3 +X + 1
X16 +X15 +X13 +X12 +X10 +X9 +X8 +X7 +X6 +X4 +X3 +X + 1
X16 +X15 +X14 +X8 +X2 +X + 1
X16 +X15 +X14 +X12 +X10 +X8 +X6 +X4 +X2 +X + 1
X16 +X15 +X14 +X13 +X9 +X8 +X7 +X3 +X2 +X + 1
X16 +X15 +X14 +X13 +X11 +X10 +X8 +X6 +X5 +X3 +X2 +X + 1
X16 +X15 +X14 +X13 +X12 +X11 +X8 +X5 +X4 +X3 +X2 +X + 1
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Algorithm 5 Subterranean duplex hardware state handling function
HW Interface: s← Initialize()
return 0257

HW Interface: duplexSimpleFull(x) with |x| = 32
s← R(s)
for j from 0 to 31 do s124j ← s124j + xj
s124·32 ← s124·32 + 1

HW Interface: duplexSimpleIncomplete(x) with |x| = 32
s← R(s)
for j from 0 to 31 do s124j ← s124j + xj

HW Interface: Y ← duplexEncryptFull(x) with |x| = 32
z ← ε
for j from 0 to 31 do z ← z||(s124j + s−124j )
Y ← x+ z
s← R(s)
for j from 0 to 31 do s124j ← s124j + xj
s124·32 ← s124·32 + 1
return Y

HW Interface: Y ← duplexEncryptIncomplete(x) with |x| = 32
z ← ε
for j from 0 to 31 do z ← z||(s124j + s−124j )
Y ← x+ z
s← R(s)
for j from 0 to 31 do s124j ← s124j + xj
return Y

HW Interface: Y ← duplexDecryptFull(x) with |x| = 32
z ← ε
for j from 0 to 31 do z ← z||(s124j + s−124j )
Y ← x+ z
s← R(s)
for j from 0 to 31 do s124j ← s124j + Yj
s124·32 ← s124·32 + 1
return Y

HW Interface: Y ← duplexDecryptIncomplete(x, |σ|) with |x| = 32
z ← ε
for j from 0 to 31 do z ← z||(s124j + s−124j )
Y ← x+ z
s← R(s)
temp← Y ||(x only the last (32− |σ|) bits)
for j from 0 to 31 do s124j ← s124j + tempj
return Y

HW Interface: Y ← squeezeSimple(x)
Y ← ε
for j from 0 to 31 do Y ← Y ||(s124j + s−124j )
s← R(s)
for j from 0 to 32 do s124j ← s124j + xj
return Y
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