
TRIFLE

Designers/Submitters:

Nilanjan Datta - Indian Institute of Technology Kharagpur, India
Ashrujit Ghoshal - University of Washington, USA

Debdeep Mukhopadhyay - Indian Institute of Technology Kharagpur, India
Sikhar Patranabis - Indian Institute of Technology Kharagpur, India
Stjepan Picek - Delft University of Technology, The Netherlands

Rajat Sadhukhan - Indian Institute of Technology Kharagpur, India

nilanjan.datta@iitkgp.ac.in, ashrujit@cs.washington.edu, debdeep@cse.iitkgp.ac.in,
sikhar.patranabis@iitkgp.ac.in, s.picek@tudelft.nl, rajat.sadhukhan@iitkgp.ac.in

March 29, 2019

Chapter 1

Introduction

In this document, we propose a new ThReshold Induced Fault resistant Lightweight authenticated Encryption
mode, and dub it TRIFLE. TRIFLE is a nonce misuse resistant, inverse-free authenticated cipher amenable to
area-efficient implementations with resistance against side-channel analysis [10] and fault injection analysis
attacks [14]. This makes it a great candidate for deployment in lightweight applications with area-constrained
target platforms.

It is well-documented in the cryptographic literature that side-channel analysis and fault injection analysis
attacks constitute a major threat to the security of cryptographic implementations, even when the underlying
cryptographic algorithm is (provably or heuristically) secure against known cryptanalytic techniques [10,14].
The threat is further amplified with the advent of pervasive computing and the Internet of Things (IoT),
where a multitude of inter-connected devices in the wild that are readily accessible offer numerous attack
vectors to malicious adversaries.

Countermeasures against side-channel attacks (e.g., masking/threshold implementations [3, 11, 12]) and
fault analysis attacks (e.g., redundancies/error-correction codes [16, 17]) can be highly area-consuming if
implemented in ad-hoc manner. This makes it necessary to design the underlying cryptographic algorithm
in a manner that allows for area-efficient side-channel and fault resilience.

In this document, we address this issue by proposing a deterministic authenticated encryption with the
following desirable properties:

1. Area-efficient Side-channel Resilience. Our underlying block cipher is a substitution-permutation
network (SPN) with specially designed CA-rule based substitution boxes (S-boxes), that can be pro-
tected using highly area-efficient threshold implementations (TI) [3, 12]. In particular, TI circuits for
our S-box occupy significantly lower area than those for existing lightweight block ciphers, such as
PRESENT [4] and GIFT [1].

2. Inherent Fault-attack Resilience. We choose a specially-designed mode that makes our overall
design inherently resistant against well-known fault analysis techniques. Informally, our mode makes
it impossible for the adversary to execute multiple instances of the underlying block cipher using the
same plaintext-key pair, which is a requirement for all known fault analysis techniques. This allows
us to avoid the additional area-requirements for dedicated countermeasures such as spatial/temporal
redundancies [16] and error-correction codes [17].

1.1 Notation

First, we introduce all the required notations. By {0, 1}∗ we denote the set of all strings, and by {0, 1}n the
set of strings of length n. |A| denotes the number of the bits in the string A. We use the notation ⊕ and · to
refer the field addition and multiplication, respectively. Integer addition and multiplications are represented
by + and ×. For A,B ∈ {0, 1}?, A‖B to denotes the concatenation of A and B. We use the notation

Vv−1‖ · · · ‖V0 i←− V to denote parsing of the string V into v vectors with |Vj | = i, for all j = 1 , . . . , (v − 1)
and |Vv−1| ≤ i. The expression E? a : b evaluates to a if E holds and b otherwise. If m ≤ n, for X ∈ {0, 1}n
we denote by bXcm (resp., dXem) the m left-most (resp., right-most) bits of X. OZP is the function that
applies optional 10? padding on n bits, i.e., OZP(X) = 0n−|X|−1‖1‖X when |X| < n, and OZP(X) = X, if
|X| = n.

1

Chapter 2

Mode Specification

TRIFLE is a block cipher based authenticated encryption mode with block size n = 128 that receives an
encryption key K ∈ {0, 1}128, a nonce N ∈ {0, 1}128, an associated data A ∈ {0, 1}∗ and a message M ∈
{0, 1}∗ as inputs and returns a ciphertext C ∈ {0, 1}|M | and a tag T ∈ {0, 1}128. Here, |M | denotes the
length or size of M in number of bits. The corresponding verification decryption algorithms receive a key
K ∈ {0, 1}128, a nonce N ∈ {0, 1}128, an associated data A ∈ {0, 1}∗, a ciphertext C ∈ {0, 1}∗ and a tag
T ∈ {0, 1}128 as inputs and return the plaintext M ∈ {0, 1}|C| corresponding to C if the tag T is verified.

TRIFLE uses a block cipher E as the underlying primitive. It employs a MAC-then-Encrypt type paradigm,
where CBC style authentication is done on the nonce, associated data and the plaintext to generate the tag.
This tag is then used as a random IV in an output feedback mode of encryption to generate the ciphertext.
Proper domain separations during the tag generation is done using constant multiplications. The formal
algorithmic description of the mode is presented in Algorithm 1.

Algorithm 1 Algorithmic description of TRIFLE.

1: function TRIFLE.enc(N,A,M)

2: T ← HASH(N,A,M)

3: for i = 1 to m do

4: T ← EK(T)

5: Ci ← T ⊕Mi

6: return (C, T)

7: function HASH(N,A,M)

8: b0 ← |A| > 0? 1 : 0

9: b1 ← |M | > 0? 1 : 0

10: CS← 0n−2‖b1‖b0
11: V ← EK(CS)

12: CS← CS⊕N
13: T ← EK(V ⊕N)

14: (CS, T)← MAC(A, T,CS)

15: (CS, T)← MAC(C, T,CS)

16: T ← EK(T ⊕ CS)

17: return T

1: function TRIFLE.dec(N,A,C, T)

2: V ← T

3: for i = 1 to m do

4: Mi ← bV c|Ci| ⊕ Ci

5: V ← EK(V)

6: if (HASH(N,A,M) = T) then

7: return M

8: else

9: return ⊥

10: function MAC(D,V,CS)

11: Dd‖ · · · ‖D1 ← D

12: for i = 1 to d− 1 do

13: CS← CS⊕Di

14: V ← EK(V ⊕Di)

15: α← |Dd| = n? 2 : 4

16: V ← EK(α · (V ⊕ OZP(Dd)))

17: CS← CS⊕ OZP(Dd)

18: return (CS, V)

2

0n−2‖01 N A1 Aa−1 OZP(Aa) CS

T

EK EK EK EK EK EK

⊕ ⊕ ⊕ ⊕ ⊕
⊗

· · ·

Figure 2.1: TRIFLE with a AD blocks and empty message.

0n−2‖10 N M1 Mm−1 OZP(Mm) CS

T

EK EK EK EK EK EK

⊕ ⊕ ⊕ ⊕ ⊕
⊗

EK EK EK

⊕ ⊕ ⊕

T

M1

C1

Mm−1

Cm−1

Mm

Cm

· · ·

· · ·

Figure 2.2: TRIFLE with empty AD and m message blocks.

0n−2‖11 N A1 OZP(Aa) M1 OZP(Mm) CS

T

EK EK EK EK EK EK EK

⊕ ⊕ ⊕ ⊕ ⊕ ⊕
⊗ ⊗

EK EK EK

⊕ ⊕ ⊕

T

M1

C1

Mm−1

Cm−1

Mm

Cm

· · ·

· · ·

· · ·

Figure 2.3: TRIFLE with a AD blocks and m message blocks.

3

Chapter 3

Block Cipher Specification

In this section, we propose TRIFLE-BC, a CA-based side-channel resistant 128 bit block cipher. It receives an
128 bit plaintext X127X126 · · ·X0 as the cipher state X where X0 is the least significant bit. The cipher state
can be viewed as 32 4-bit nibbles X = W31‖W30‖ · · · ‖W0. Along with the plaintext, the cipher also receives
a 128-bit key K = K7‖K6‖ · · · ‖k0 as the key state, where Ki is a 16-bit word. The cipher is composed of 50
rounds and each round is composed of the following operations:

SubNibbles. TRIFLE-BC uses an invertible CA-based 4-bit S-box and apply it to every nibble of the cipher
state. Description of this S-box is given in Table 3.1.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) 0 C 9 7 3 5 E 4 6 B A 2 D 1 8 F

Table 3.1: The TRIFLE-BC S-box.

Our CA-based S-box has the following properties:

• It is bijective,

• For any fixed non-zero input difference a ∈ F 2
4 and any fixed non-zero output difference b ∈ F 2

4 :

#{x : F 2
4 |S(x) + S(x+ a) = b} ≤ 4,

• For any fixed non-zero input difference a ∈ F 2
4 and any fixed non-zero output difference b ∈ F 2

4 with
Ham(a) = Ham(b) = 1 :

#{x : F 2
4 |S(x) + S(x+ a) = b} ≤ 2,

• For any fixed non-zero a ∈ F 2
4 and any non-zero b ∈ F 2

4 :

|SW
b (a)| ≤ 8,

• For any fixed non-zero a ∈ F 2
4 and any non-zero b ∈ F 2

4 with Ham(a) = Ham(b) = 1 :

SW
b (a) = ±4.

We call a 4× 4 S-box satisfying the above mentioned properties as super-optimal.

BitPermutation. TRIFLE-BC uses an optimal bit permutation to create maximal diffusion. This bit mapping
is presented in Table 3.2. Note that this permutation maps bits from bit position i of the cipher state to bit
position P (i), where

P (i) = bi/4c+ (i%4)× 32.

AddRoundKey. In this step, a 64 bit round key is extracted from the key state, and the round key is xored with
{X4i+1, X4i+2}i=0 ,... ,31 of the cipher state. The round-keys are generated using a key scheduling algorithm
which updates the key state at each round using simple word-wise rotations and bit-wise rotations within a
word. This key generation algorithm is similar to the one used in GIFT-128.

4

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P(i) 0 32 64 96 1 33 65 97 2 34 66 98 3 35 67 99

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P(i) 4 36 68 100 5 37 69 101 6 38 70 102 7 39 71 103

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
P(i) 8 40 72 104 9 41 73 105 10 42 74 106 11 43 75 107

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
P(i) 12 44 76 108 13 45 77 109 14 46 78 110 15 47 79 111

i 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
P(i) 16 48 80 112 17 49 81 113 18 50 82 114 19 51 83 115

i 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
P(i) 20 52 84 116 21 53 85 117 22 54 86 118 23 55 87 119

i 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
P(i) 24 56 88 120 25 57 89 121 26 58 90 122 27 59 91 123

i 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
P(i) 28 60 92 124 29 61 93 125 30 62 94 126 31 63 95 127

Table 3.2: The TRIFLE-BC BitPermutation P.

AddRoundConst. In this step, a 6 bit round constant is generated using using the same 6 bit affine LFSR used
in SKINNY [2]. The round constant is xored with the following 6 cipher state bits: X23 , X19 , X15 , X11 , X7 , X3.
We also add a constant bit 1 in the most significant bit X127.

Complete specification of TRIFLE-BC is presented in Algorithm 2.

5

Algorithm 2 TRIFLE-BC Block cipher Algorithm.

1: function TRIFLE-BCK(X)

2: C ← 06

3: for i = 1 to 50 do

4: X ← SubNibbles(X)

5: X ← BitPermutation(X)

6: (K,X)← AddRoundKey(K,X, i)

7: (C,X)← AddRoundConst(C,X)

8: return X

9: function SubNibbles(X)

10: X15‖ · · · ‖X0
4← X

11: for i = 0 to 15 do

12: Xi ← S(Xi)

13: return X

14: function BitPermutation(X)

15: X127‖ · · · ‖X0
1← X

16: for i = 0 to 127 do

17: P (i) = bi/4c+ (i%4)× 32

18: XP (i) ← Xi

19: return X

1: function AddRoundKey(K,X, i)

2: K7‖ · · · ‖K0
16← K

3: X127‖ · · · ‖X0
1← X

4: U31‖ · · ·U0 ← K4‖K5

5:6: V31‖ · · · ‖V0 ← K1‖K0

7: for i = 0 to 31 do

8: X4i+2 ← X4i+2 ⊕ Ui

9: X4i+1 ← X4i+1 ⊕ Vi

10: K7‖ · · · ‖K0 ← K1 ≫ 2‖K0 ≫ 12‖K7‖ · · · ‖K2

11: return (K,X)

12: function AddRoundConstant(C,X)

13: C5‖ · · · ‖C0
1← C

14: X127‖ · · · ‖X0
1← X

15: X127 ← X127 ⊕ 1

16: X23 ← X23 ⊕ C5

17: X19 ← X19 ⊕ C4

18: X15 ← X15 ⊕ C3

19: X11 ← X11 ⊕ C2

20: X7 ← X7 ⊕ C1

21: X3 ← X3 ⊕ C0

22: C5‖ · · · ‖C0 ← C4‖ · · · ‖C0‖(C5 ⊕ C4 ⊕ 1)

23: return (C,X)

6

Chapter 4

Security

In this chapter, we present some analysis on the security of our proposal. Section 4.1 presents a brief analysis
against generic attacks (assuming the underlying block cipher is a pseudo random permutation), i.e., the
security of the mode. Section 4.2 presents basic cryptanalysis results of TRIFLE-BC.

4.1 Security of TRIFLE

Here, we describe some possible strategies to attack the TRIFLEmode, and provide a rough estimate on the
amount of data and time required to mount those attacks (see Table 4.1). The data complexity of the attack
quantifies the online resource requirements, and includes the total number of blocks (among all messages
and associated data) processed through the underlying block cipher for a fixed master key. We would like
to emphasize that the above data and time complexities remain same even if the adversary uses same nonce
arbitrary number of times.

Security Model Data complexity Time complexity
IND-CPA 64 128

INT-CTXT 64 128

Table 4.1: Security Claims. We remark that the given values indicate the amount of data and time required to make
the attack advantage close to 1.

4.1.1 IND-CPA or Privacy Security of TRIFLE

To attack against the privacy of TRIFLE, we assume that an adversary makes at most q encryption queries
(Ai,M i)i=1..q to TRIFLE with an aggregate of total σ many blocks. Let the corresponding ciphertext tag
pairs be (Ci, T i)i=1..q. Now an adversary can distinguish our construction from a random function of same
domain and range only if it observes a non-trivial collision in the inputs of the block cipher, i.e., there exists
some message i and j such that any one of the following events occur:

1. T i = T j

2. M i
k ⊕ Ci

k = T j

3. M i
k ⊕ Ci

k = M j
l ⊕ C

j
l

4. T i ∈ {0n, 010n−2, 10n−1, 110n−2}

5. M i
k ⊕ Ci

k ∈ {0n, 010n−2, 10n−1, 110n−2}

It is easy to see that, the probability of occurrence of any one of the above mentioned events can be bounded
by O(σ2/2n). This is due to the fact that the HASH function we use is in fact a secure message authentication
code and hence the T i values will be random.

7

4.1.2 INT-CTXT or Integrity Security of TRIFLE

Given that no non-trivial collision occurs in the inputs of the block cipher, the only way that an adversary
can mount a forgery is by guessing the tag which occurs with probability qv/2

n. This probability along with
the collision probability ensures that the probability of mounting a forgery is bounded by O

(
(σ2 + qv)/2n

)
.

4.2 Security of TRIFLE-BC

In this section, we analyse the security of TRIFLE-BC, showing that it resists linear and differential attacks
and behaves as a pseudo random permutation under the given data and time limit.

4.2.1 Linear Cryptanalysis

Given a linear characteristic with a bias LP, the square of the correlation contribution (correlation potential)
is defined as 4.(LP)2. For an adversary to mount linear cryptanalysis on a 128-bit block cipher, she would
require the correlation potential to be larger than 2−128. To analyse the resistance of TRIFLE-BC against
linear attacks, we present the following lemma where we analyse the best linear approximation to four rounds
of TRIFLE-BC:

Lemma 1 Let LP4 be the maximal bias of a linear approximation of four rounds of TRIFLE-BC. Then
LP4 ≤ 2−7.

Proof: According to the definition of super-optimal S-boxes, the bias of all linear approximations is less
than 2−2 while the bias of any single-bit approximation is less than 2−3. Let LP(4,a) denote the bias of a
linear approximation over 4 rounds involving a active S-boxes. Now consider the following three cases:

• a = 4. In this case, each round linear approximation has exactly one active S-box. The bias of each
of the two S-boxes in the middle rounds is at most 2−3 and hence, the overall bias for a four round
approximation can be bounded as follows:

LP(4,4) ≤ 23.(2−2)2.(2−3)2 ≤ 2−7.

• a = 5. In this case, there are exactly five active S-boxes over four rounds. The optimal diffusion
property of the bit-permutation ensures that three consecutive rounds cannot form the pattern 1-2-1.
Consequently the number of active S-boxes is either 2-1-1-1 or 1-1-1-2, and hence

LP(4,5) ≤ 24.(2−2)4.(2−3)1 ≤ 2−7.

• a ≥ 6. If there are more than five active S-boxes,

LP(4,≥6) ≤ 2a−1(2−2)a ≤ 2−7 for any a ≥ 6.

This completes the proof. �

We use the above lemma directly to bound the maximal bias of a 44-round linear approximation by 210.(2−7))11 ≤
2−67. Hence, the correlation contribution of 44-round is less than 2−130. Therefore, we believe 50-round
TRIFLE-BC is enough to resist against linear cryptanalysis.

4.2.2 Differential Cryptanalysis

Generally, for an adversary to mount an attack on a 128-bit block cipher using differential cryptanalysis,
there must be some differential propagation with differential probability larger than 2−127. The case of
the differential cryptanalysis of TRIFLE-BC is handled by an MILP program that finds the best differential
characteristics up to 10 rounds of TRIFLE-BC. We present the result in Table 4.2.
We use this result directly to claim that the differential probability of 50-round TRIFLE-BC is at most
(2−28)5 ≤ 2−140. Hence, we believe that 50 round is sufficient for our cipher to resist against differential
cryptanalysis.

8

Round Number 4 5 6 7 8 9 10
Differential Probability 2−10 2−13 2−16 2−19 2−22 2−25 2−28

Table 4.2: Differential Characteristic of TRIFLE-BC.

4.2.3 Integral Cryptanalysis

TRIFLE-BC S-box can be described via 10 inequalities given below:

a3 + a2 + a1 + a0 − b3 − b2 − b1 − b0 ≥ 0

−b3 − b2 + 2b1 − b0 + 1 ≥ 0

−b3 − b2 − b1 + 2b0 + 1 ≥ 0

−a3 − a2 − a1 − a0 + 3b3 + 3b2 + 3b1 + 3b0 ≥ 0

−b3 + 2b2 − b1 − b0 + 1 ≥ 0

2b3 − b2 − b1 − b0 + 1 ≥ 0

−a3 − a1 − a0 + 2b3 + 3b2 + 3b1 + 3b0 ≥ 0

−a2 − a1 − a0 + 3b3 + 3b2 + 3b1 + 2b0 ≥ 0

−a3 − a2 − a1 + 3b3 + 3b2 + 2b1 + 3b0 ≥ 0

−a3 − a2 − a0 + 3b3 + 2b2 + 3b1 + 3b0 ≥ 0

The feasible solutions of these inequalities are exactly the 54 division trails of TRIFLE-BC S-box described
in Table 4.3.

Input Division Property Output Division Property
(0,0,0,0) (0,0,0,0)
(0,0,0,1) (0,0,0,1),(0,0,1,0),(0,1,0,0),(1,0,0,0)
(0,0,1,0) (0,0,0,1),(0,0,1,0),(0,1,0,0),(1,0,0,0)
(0,0,1,1) (0,0,0,1),(0,0,1,0),(0,1,0,0),(1,0,0,0)
(0,1,0,0) (0,0,0,1),(0,0,1,0),(0,1,0,0),(1,0,0,0)
(0,1,0,1) (0,0,1,0),(0,1,0,0),(1,0,0,0)
(0,1,1,0) (0,0,0,1),(0,0,1,0),(0,1,0,0),(1,0,0,0)
(0,1,1,1) (0,0,1,0),(0,1,0,0),(1,0,0,0)
(1,0,0,0) (0,0,0,1),(0,0,1,0),(0,1,0,0),(1,0,0,0)
(1,0,0,1) (0,0,0,1),(0,0,1,0),(0,1,0,0),(1,0,0,0)
(1,0,1,0) (0,0,0,1),(0,0,1,0),(0,1,0,0),(1,0,0,0)
(1,0,1,1) (0,0,0,1),(0,0,1,0),(0,1,0,0)
(1,1,0,0) (0,0,0,1),(0,0,1,0),(0,1,0,0),(1,0,0,0)
(1,1,0,1) (0,0,1,0),(0,1,0,0),(1,0,0,0)
(1,1,1,0) (0,0,0,1),(0,0,1,0),(1,0,0,0)
(1,1,1,1) (0,0,1,0),(1,1,0,0)

Table 4.3: Division Trail of TRIFLE S-box.

We have used the above mentioned division trail and found integral distinguishers up to 7 rounds.

• We have found a 4-round distinguisher for TRIFLE-BC by varying consecutive 4-bits that correspond
to an S-box and fixing all other 124 bits. However, we found no distinguisher in this setting increasing
the number of rounds to 5.

• We have found a 5-round distinguisher for TRIFLE-BC by varying 8-bits (two sets of consecutive 4-bits
corresponding to two S-boxes) and fixing all other 120 bits. However, we found no distinguisher in this
setting increasing the number of rounds to 6.

9

• We have found a 6-round distinguisher for TRIFLE-BC by varying 16-bits (four sets of consecutive 4-bits
corresponding to two S-boxes) and fixing all other 112 bits. However, we found no distinguisher in this
setting increasing the number of rounds to 7.

• We have found a 7-round distinguisher for TRIFLE-BC by varying 32-bits (eight sets of 4-bit nibbles
corresponding to eight S-boxes) and fixing all other 96 bits. However, we found no distinguisher in this
setting increasing the number of rounds to 8.

4.2.4 Impossible Differential Cryptanalysis

Impossible differential cryptanalysis for r rounds exploits a pair of difference ∆1 and ∆2 such that the state
difference ∆1 never reaches the state difference ∆2 after r rounds.

We have implemented impossible differential search tool based on MILP, considering the differential
distribution through the S-box. We have exhaustively tested input and output differences satisfying the
following conditions.

• The input difference activates exactly one of the 32 S-boxes.

• The output difference activates exactly one of the 32 S-boxes.

Overall, we have For the first condition, there are 32× 15 = 480 many input differences as well as 480 many
output differences. Hence, we have tested 480 × 480 = 2, 30, 400 pairs of input and output differences and
the search results show that 1, 15, 200 pairs are actually impossible for 4 rounds. We extend the search for 5
rounds and have not found any impossible differentials.

10

Chapter 5

Design Rationale

5.1 Choice of the Mode

TRIFLE is nonce-based authenticated encryption, where the same nonce can be used for all the queries
without degrading any security. It can be viewed as a deterministic authenticated encryption where the
nonce is considered as the first block of the associated data, and in this respect the mode provides maximal
robustness against the misuse of nonce. It is an inverse-free authenticated encryption mode. Both encryption
and decryption of the algorithm do not require any decryption call to the underlying block cipher TRIFLE-BC.
This ensures a significant reduction of the overall hardware footprint, especially in the combined encryption-
decryption implementations.

A notable feature of our chosen mode is that it makes the overall design inherently resistant against
well-known fault analysis techniques, such as Differential Fault Analysis (DFA) [14] and Differential Fault
Intensity Analysis (DFIA) [7]. We provide a high level argument to justify this claim.

We begin by pointing out each of the aforementioned fault analysis techniques requires two or more
invocations of a block cipher encryption algorithm on the same plaintext-key pair, with the fault being
injected in one or more of such invocations, such that the adversary learns the differential between the
correct and faulty outputs.

Now, observe that as per our choice of mode (see Figures 2.3, 2.2 and 2.1), the only way for the adversary
to ensure such invocations is to inject a fault in the ith encryption block in the circuit that outputs the tag
T , and to try and adjust the input message into the (i+ 1)th so that the eventual tag T remains unchanged.
The differential between the original and final inputs to the (i+ 1)th block would thus leak the output fault
differential to the adversary, and would allow him to launch a DFA/DFIA-based attack.

However, this attack fails in our setting, since every time the adversary changes one or more message
blocks, the corresponding checksum block CS also gets altered, resulting in a faulty tag T ′ 6= T . In other
words, the adversary fails to recover the desired differential between the correct and faulty ciphertexts. Thus
we use the mode to make the overall design inherently resistant against fault attacks, and avoid the need for
additional countermeasures such as spatial/temporal redundancies [16] and error-correction codes [17].

5.2 Choice of the Block cipher

5.2.1 Choice of the S-box

We intend to use a 4× 4 S-box that can be easily protected against side-channel attacks using compact area-
efficient implementations. More specifically, we focus on low area threshold implementations (TI) [3]. TI is a
state-of-the-art and widely used masking technique proposed by Nikova et al. [12] as a countermeasure against
Differential Power Attacks (DPA) [10]. What sets TI apart from most masking techniques is the security
it guarantees even in non-ideal circuits where glitches have shown to result in leakage in more conventional
masking schemes [11]. TI works under extremely relaxed assumptions on the underlying leakage which are
more achievable in practical scenarios.

In our design, we propose using a 4×4 S-boxes derived using cellular automata (CA) rules. Our proposal
is based on the fact that CA-based S-boxes have recently been shown to allow threshold implementations
with very low area footprint [8]. In fact, as we demonstrate in Table 5.1, the CA-based S-box chosen for our

11

design can be protected using a TI circuit with lower area footprint than the S-boxes of the PRESENT and
GIFT block ciphers (all figures reported correspond to post-place and route results on a Virtex5 (xc5vlx50)
FPGA. We have synthesized TI implementation of our S-box design along with PRESENT and GIFT S-boxes
on the same Virtex5 platform and compared the result as shown in Table 5.1.

S-box Slice Registers Slice LUTs

PRESENT 13 30
GIFT 13 24
TRIFLE 9 17

Table 5.1: Area-comparison for TI of S-boxes: Post-place and route results on a Virtex5 (xc5vlx50) FPGA

We provide a high level intuition for why CA-based S-boxes allow area-efficient TI. A cellular automaton
is (informally) a finite state machine whose state transitions are based on simple local rules. Prior studies
have extensively analyzed the scope of realizing complex functions via repeated iterations of such simple
rules [18]. A recent work by Picek et al. [13] explores the possibility of designing cryptographically optimal
4× 4 S-boxes from simple 4× 1 CA-based rules. The idea is to iterate over a single instance of the CA rule,
while cyclically shifting the input bits, to obtain one output bit of an S-box at a time.

Now, when designing a TI circuit for the overall S-box, we first design a TI circuit for the core CA rule
by decomposing the input and output bits into as few shares as possible, and then iterate over this core unit
by cyclically permuting over the input bits. Note that in other non-CA-based 4× 4 S-boxes, such as those of
PRESENT and GIFT, one would need to implement a separate TI-circuit for each of the 4 output bits. This
obviously incurs more area overhead as compared to CA-based S-boxes, where a single TI circuit suffices for
all four output bits.

Additionally, if the core CA-rule is a high degree polynomial in the input bits, we follow a technique
proposed in [15] to further decompose it into two or more low-degree polynomials. We then design TI
circuits for these “decomposed polynomials”, and cascade them in series to maintain functional equivalence.
The decomposition-based strategy is motivated by the fact that cascading multiple low degree polynomials
typically gives rise to TI implementations with lower area footprint than a single high-degree polynomial [8,
15].

Note that while saving on area requirements, we do not compromise on the cryptographic security of our
S-box. In particular, our S-box belongs to a class of S-boxes that we refer to as super-optimal. The notion of
super-optimal S-boxes is already explained in Section 3. The reason of considering the super-optimal S-box
is to reduce the number of rounds of a block-cipher that uses the 4-bit S-box. Note that, all the CA-based
S-boxes have branch number 2 and do not exhibit BOGI property. Hence, we need some additional good
properties of the S-boxes, which is obtained via this notion. Our first goal is to identify CA based Super-
optimal S-boxes. We have found 192 CA based S-boxes which are Super-optimal. As we have seen in section
4, this property essentially ensures that around 50 rounds of the underlying block cipher would have very
good linear and differential characteristics. With an optimal (but not super-optimal) S-box, we would require
at least 64 rounds to have the desired security. We choose the particular S-box as it is also optimal from all
considered S-boxes with respect to the confusion coefficient [6] and modified transparency order [5], which
are two properties increasing the side-channel resilience of a cipher.

5.2.2 Choice of the Bit-Permutation

In a substitution-permutation network of 128 bits (with 4 bit S-boxes), a bit-permutation achieves optimal
diffusion if all the following properties hold:

• the input of an S-box in round r comprises output bits from 4 different S-boxes in round r − 1,

• the output of an S-box in round r is distributed across the inputs of 4 different S-boxes in round r+ 1,

• the output of the S-box group {4i, 4i + 1, 4i + 2, 4i + 3} in round r entirely constitutes the input for
the S-box group {i, i+ 8, i+ 16, i+ 24} in round r + 1.

Currently, we just need any bit-permutation with optimal diffusion. Consequently, a bit-permutation such
as the one used in GIFT should be sufficient. However, as we are not exploiting the BOGI property here, we
can construct a new bit-permutation similar to one used for PRESENT using the underlying group mapping
as presented in Table 7 of [1].

12

5.2.3 Choice of the Key Schedule and Add-round-subkey

We use the same key scheduling, AddRoundKey and AddRoundConst as used in GIFT. The main rationale
behind this key scheduling and addition of the round keys are given below:

1. The key scheduling is done using simple word-wise rotations and bit-wise rotations within a word. Thus
the key schedule can be viewed as a simple wire shuffle and requires no additional hardware area.

2. The round keys are xored into only half of the cipher state. This saves a significant amount of hardware
area in a round-based implementation.

3. The round key xors are done uniformly at the same bit positions of each nibble. This makes it software
friendly and bitslice implementation more efficient.

4. The round constants are generated using a 6-bit affine LFSR that requires only a single XNOR gate
per update. Each of the 6 bits is xored to a different nibble to break the symmetry.

13

Chapter 6

Threshold Implementation in
Hardware

In this chapter, we present an overview of the TI circuit for the TRIFLE-BC S-box. In particular, we first
illustrate how the CA rule describing the S-box can be expressed as a composition of two CA rules of lower
algebraic degree. We then describe the individual TI circuits corresponding to these rules. Finally, we present
the overall hardware architecture, where the TI circuits corresponding to these rules are cascaded in series
to preserve the functionality while ensuring side-channel resistance.

6.1 CA Rule Decomposition

We define class (a, b, c) of CA-rule as a tuple of three elements, where a, b and c denotes number of degree 3,
degree 2 and degree 1 terms respectively in the CA-rule. The CA-rule that describes our S-box has algebraic
degree 3 and belongs to class (3, 2, 2). We express a degree 3 function into a combination of degree 2 functions
in order to construct composite TI targeting low area footprint and power consumption. We then identify
uniform and non-complete sharing for each of these sub-functions and finally cascade them to obtain the
final output. We decompose the function from degree 3 to degree 2 as shown below:

f(x0, x1, x2, x3) = x0 ∗ x1 ∗ x2 ⊕ x0 ∗ x2 ∗ x3 ⊕ x1 ∗ x2 ∗ x3 ⊕ x0 ∗ x2 ⊕ x2 ∗ x3 ⊕ x0 ⊕ x1

f = f3(x2, f1, f2) = x2 ∗ f1 ⊕ f2
f1(x0, x1, x3) = x0 ∗ x1 ⊕ x0 ∗ x3 ⊕ x1 ∗ x3 ⊕ x0 ⊕ 1

f2(x0, x1, x2, x3) = x2 ∗ x3 ⊕ x0 ⊕ x1 ⊕ x2

6.2 TI Decomposition

In this section, we illustrate the uniform three share decomposition of every function obtained in Section 6.1.
Let si denotes the ith share. Then we follow the below nomenclature to denote the shares:

x0 = x10 + x20 + x30, x1 = x11 + x21 + x31, x2 = x12 + x22 + x32, x3 = x13 + x23 + x33,

f1 = f11 + f21 + f31 , f2 = f12 + f22 + f32 , f3 = f13 + f23 + f33

Therefore, the decomposition of f1, f2 and f3 are

14

4 4 4

444

4 4 4

4 4 4

444

4 4 4

PT_1[127:124]
PT_2[127:124] PT_3[127:124] PT_3[3:0]PT_2[3:0]

PT_1[3:0]

SHUFFLE SHUFFLE SHUFFLE SHUFFLE SHUFFLE SHUFFLE

LOCAL RULE TI LOCAL RULE TI

PERMUTATION + KEY XOR + ROUND CONSTANT XOR

ROUND KEY

ROUND CONSTANT

Round_op_2[127:124]

R
o
u
n
d
_
o
p
_
3
[1

2
7
:1

2
4
]

Round_op_1[127:124]

Round_op_2[3:0]

R
o
u
n
d
_
o
p
_
3
[3

:0
]

.........

Block−32 Block−1

Round_op_1[3:0]

Figure 6.1: TRIFLE Architecture

s_3

s_1

s_3

s_1

s_2

s_2

s_3

s_1

s_3

s_1

s_2

s_2

f

f

f

3

3

3

1

2

3

>

>

>

>

>

>

>

>

>

f
1

1

f

f

f

f

f

1

1

2

3

2

2

2

1

2

3

o11

o12

o13

o21

o22

o23

out_2

out_3

out_1

o11,o12,o21,s_1,s_2

o13,o11,o23,s_3,s_1

o13,o12,o22,s_3,s_2

Figure 6.2: Local Rule TI of TRIFLE

15

0 100 200 300 400 500
Trace Point

8

6

4

2

0

2

4

6

8

T-
te

st
 V

al
ue

t-value

Figure 6.3: TVLA on 3-TI Implementation on TRIFLE

f11 = 1⊕ x30 ⊕ x20 ∗ x31 ⊕ x20 ∗ x21 ⊕ x30 ∗ x21 ⊕ x20 ∗ x33 ⊕ x20 ∗ x23 ⊕ x30 ∗ x23 ⊕ x21 ∗ x33 ⊕ x21 ∗ x23 ⊕ x31 ∗ x23
f21 = x10 ⊕ x30 ∗ x11 ⊕ x30 ∗ x31 ⊕ x10 ∗ x31 ⊕ x30 ∗ x13 ⊕ x30 ∗ x33 ⊕ x10 ∗ x33 ⊕ x31 ∗ x13 ⊕ x31 ∗ x33 ⊕ x11 ∗ x33
f31 = x20 ⊕ x10 ∗ x21 ⊕ x10 ∗ x11 ⊕ x20 ∗ x11 ⊕ x10 ∗ x23 ⊕ x10 ∗ x13 ⊕ x20 ∗ x13 ⊕ x11 ∗ x23 ⊕ x11 ∗ x13 ⊕ x21 ∗ x13
f12 = x22 ∗ x23 ⊕ x22 ∗ x33 ⊕ x32 ∗ x23 ⊕ x20 ⊕ x21 ⊕ x22
f22 = x32 ∗ x33 ⊕ x12 ∗ x33 ⊕ x32 ∗ x13 ⊕ x30 ⊕ x31 ⊕ x32
f32 = x12 ∗ x13 ⊕ x12 ∗ x23 ⊕ x22 ∗ x13 ⊕ x10 ⊕ x11 ⊕ x12
f13 = x22 ∗ f21 ⊕ x22 ∗ f31 ⊕ x32 ∗ f21 ⊕ f22
f23 = x32 ∗ f31 ⊕ x32 ∗ f11 ⊕ x12 ∗ f31 ⊕ f32
f33 = x12 ∗ f11 ⊕ x12 ∗ f21 ⊕ x22 ∗ f11 ⊕ f12

6.3 Hardware Architecture and Implementation Details

The hardware architecture of a round implementation of TRIFLE is shown in Figure 6.1. It uses 32 blocks
where each block processes PT i and Round op i denotes i-th share of plaintext and round output respec-
tively, where 1 ≤ i ≤ 3. The TI of local rule for TRIFLE is shown in Figure 6.2 which takes s i as i-th
input share and produces out i as i-th output share. We have synthesized TI of our datapath including key
schedule on Virtex-5 (xc5vlx50) platform using ISE Design suite (v14.2) and observed that TRIFLE consumes
1489 slice-registers and 1877 slice-LUTs.

6.4 Test Vector Leakage Assessment Methodology(TVLA) Anal-
ysis

To evaluate the security of our design we have tested it on SAKURA-G platform with Spartan-6 LX75 logic.
We have performed non-specific Welch t-test [9] on our design by collecting 100000 traces.We have used
Tektronix MSO54-C011756 oscilloscope collecting sampling frequency of 1.2Gs/s and the design running at
45.4Mhz. We collected power traces for one round cipher operation having around 520 sample points and
the t-test plot is shown in Figure 6.3. It is evident from the Figure 6.3 that the t-test(t) value is within the
prescribed range of −4.5 ≤ t ≤ +4.5.

16

Bibliography

[1] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki, Siang Meng Sim, and Yosuke Todo.
GIFT: A small present - towards reaching the limit of lightweight encryption. In Cryptographic Hardware
and Embedded Systems - CHES 2017 - 19th International Conference, Taipei, Taiwan, September 25-28,
2017, Proceedings, pages 321–345, 2017.

[2] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi, Thomas Peyrin, Yu Sasaki,
Pascal Sasdrich, and Siang Meng Sim. The SKINNY family of block ciphers and its low-latency vari-
ant MANTIS. In Advances in Cryptology - CRYPTO 2016 - 36th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II, pages 123–153, 2016.

[3] Begül Bilgin. Threshold implementations: as countermeasure against higher-order differential power
analysis. 2015.

[4] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel Poschmann, Matthew J. B.
Robshaw, Yannick Seurin, and C. Vikkelsoe. PRESENT: An Ultra-Lightweight Block Cipher. In CHES
2007, pages 450–466, 2007.

[5] Kaushik Chakraborty, Sumanta Sarkar, Subhamoy Maitra, Bodhisatwa Mazumdar, Debdeep Mukhopad-
hyay, and Emmanuel Prouff. Redefining the transparency order. Designs, Codes and Cryptography,
82(1):95–115, Jan 2017.

[6] Yunsi Fei, Qiasi Luo, and A. Adam Ding. A statistical model for dpa with novel algorithmic confusion
analysis. In Emmanuel Prouff and Patrick Schaumont, editors, Cryptographic Hardware and Embedded
Systems – CHES 2012, pages 233–250, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[7] Nahid Farhady Ghalaty, Bilgiday Yuce, Mostafa M. I. Taha, and Patrick Schaumont. Differential fault
intensity analysis. In FDTC 2014, pages 49–58, 2014.

[8] Ashrujit Ghoshal, Rajat Sadhukhan, Sikhar Patranabis, Nilanjan Datta, Stjepan Picek, and Debdeep
Mukhopadhyay. Lightweight and side-channel secure 4 4 s-boxes from cellular automata rules. IACR
Trans. Symmetric Cryptol., 2018(3):311–334, 2018.

[9] Gilbert Goodwill, Benjamin Jun, Josh Jaffe, and Pankaj Rohatgi. P.: A testing methodology for side-
channel resistance validation, niat, 2011.

[10] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis. In Proceedings of
CRYPTO’99, volume 1666 of LNCS, pages 388–397. Springer-Verlag, 1999.

[11] Stefan Mangard, Norbert Pramstaller, and Elisabeth Oswald. Successfully attacking masked aes hard-
ware implementations. In CHES 2005, pages 157–171. Springer, 2005.

[12] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold implementations against side-
channel attacks and glitches. In ICICS 2006, pages 529–545. Springer, 2006.

[13] Stjepan Picek, Luca Mariot, Bohan Yang, Domagoj Jakobovic, and Nele Mentens. Design of s-boxes
defined with cellular automata rules. In CF 2017, pages 409–414, 2017.

[14] Gilles Piret and Jean-Jacques Quisquater. A differential fault attack technique against SPN structures,
with application to the AES and KHAZAD. In CHES 2003, pages 77–88, 2003.

17

[15] Axel Poschmann, Amir Moradi, Khoongming Khoo, Chu-Wee Lim, Huaxiong Wang, and San Ling.
Side-channel resistant crypto for less than 2, 300 GE. J. Cryptology, 24(2):322–345, 2011.

[16] Akashi Satoh, Takeshi Sugawara, Naofumi Homma, and Takafumi Aoki. High-performance concurrent
error detection scheme for AES hardware. In CHES 2008, pages 100–112, 2008.

[17] Tobias Schneider, Amir Moradi, and Tim Güneysu. Parti - towards combined hardware countermeasures
against side-channel and fault-injection attacks. In CRYPTO 2016, pages 302–332, 2016.

[18] Stephen Wolfram. Cellular automata as models of complexity. Nature, 311(5985):419, 1984.

18

	Introduction
	Notation

	Mode Specification
	Block Cipher Specification
	Security
	Security of TRIFLE
	IND-CPA or Privacy Security of TRIFLE
	INT-CTXT or Integrity Security of TRIFLE

	Security of TRIFLE-BC
	Linear Cryptanalysis
	Differential Cryptanalysis
	Integral Cryptanalysis
	Impossible Differential Cryptanalysis

	Design Rationale
	Choice of the Mode
	Choice of the Block cipher
	Choice of the S-box
	Choice of the Bit-Permutation
	Choice of the Key Schedule and Add-round-subkey

	Threshold Implementation in Hardware
	CA Rule Decomposition
	TI Decomposition
	Hardware Architecture and Implementation Details
	Test Vector Leakage Assessment Methodology(TVLA) Analysis

