
Simple: a simple AEAD scheme

A submission to the NIST Lightweight
Cryptography Standardization Process

Shay Gueron 1,2 and Yehuda Lindell 3,4

1University of Haifa, Israel, 2Amazon Web Services, USA 3 Bar Ilan University, Israel
4 Unbound Tech Ltd. , Israel

March 30, 2019 (at 12:09 Noon)

Submitters: Shay Gueron and Yehuda Lindell. There are no auxiliary submitters.

Inventors/Developers: Shay Gueron and Yehuda Lindell.

Implementation Owners: Submitters.

Email Address (preferred): shay@math.haifa.ac.il

Postal Address and Telephone (if absolutely necessary):
Shay Gueron, University of Haifa, Haifa, Israel, +972 (50) 5638806.

Signature: x. See also printed version of “Statement by Each Submitter”.

Version: 0.1

Release Date: February 23, 2019

Table of Contents

1 Introduction . 3
2 Preliminaries . 4

2.1 Notation and conventions . 4
2.2 The building blocks CBCMAC-IV, CTRENC, and CENC 5

3 Specification of the AEAD scheme Simple128 . 6
3.1 Nonce based derivation (for κ = n) . 7
3.2 The Simple128 AEAD scheme . 7
3.3 Concrete instantiations . 8

4 Specification of the AEAD scheme Simple64 . 8
4.1 Nonce based derivation (for κ = 2n) . 9
4.2 The Simple64 AEAD scheme . 10
4.3 Concrete instantiations . 10

5 The concrete proposals of the submission . 11
5.1 Known answer tests (KAT’s) . 11

6 Design rationale, features and advantages . 12
6.1 Design goals and desired properties . 12
6.2 A brief intuitive description of Simple128 and Simple64 13
6.3 Design rationale . 13
6.4 Block cipher calls count for Simple128/Simple64 15
6.5 Features . 15
6.6 Limitations . 16
6.7 Possible optimization for specific use cases . 16

7 Security analysis for Simple128 and Simple64 . 17
7.1 The security of the underlying block ciphers . 19
7.2 Statement . 20

8 Acknowledgments . 20
A Block Cipher Specifications . 23

A.1 PRESENT (64 bits block and 128 bits key) . 23
A.2 GIFT (128 / 64 bits block and 128 bits key) . 25
A.3 Speck (128 / 64 bits block and 128 bits key) . 29
A.4 AES128 (128 bits block and 128 bits key) . 31

3

1 Introduction

This submission describes the AEAD scheme called Simple, that receives input triples
(N,A,M) where A is a header (Additional Authenticated Data) to be authenticated,
M is a message to be encrypted and authenticated, and N is a nonce. It processes
the input under the key K, and outputs ciphertext C and an authentication tag Tag.
N,A,M,C, Tag are strings of bits. In practice, it may be assumed that their lengths
are divisible by 8, so that they could be viewed as strings of bytes. Simple is nonce
respecting, i.e., security is preserved as long as the nonce N is not repeated during the
lifetime of the key.

Simple128 is designed for the use case of lightweight devices where: a) keys are hard
to change and therefore need to remain highly secure for a large number of messages;
b) a simple design is sought; c) it is desired to have instantiations with lightweight
underlying block ciphers E.

In fact, Simple is a mode of operation that can use any underlying block cipher
E with block size denoted by n and key size denoted by κ. It has two flavors, namely
Simple128 for the case where κ = n and Simple64 for the case where κ = 2n. Specific
instantiations of Simple128 use n = 128, κ = 128, nonce size of 120 bits, and the
choice of GIFT ([5], [6]) and AES128 ([2]) for the lightweight block cipher E. Specific
instantiations of Simple64 use n = 64, κ = 128, nonce size of 56 bits, and the choice
of GIFT ([5], [6]) or PRESENT ([13]) for the lightweight block cipher E.

The following table summarizes the proposals and some of their characteristics.

Scheme’s name κ n δ τ |N | Amax Mmax Dmax Qmax Nonce usage

128 128 64 8 120 253 − 8 253 − 8 253 − 8 246 non-repeating

Simple128-GIFT

Simple128-AES128

Simple128-Speck

128 64 32 8 56 210 210 240 230 non-repeating

Simple64-GIFT

Simple64-PRESENT

Simple64-Speck

Table 1. Summary of the proposals with their characteristics and parameters. The
highlighted row is the primary submission. The key length (κ), block length (n),
nonce length (|N |) and the parameters which determine the effective IV size (τ , δ)
are given in bits. The maximal lengths of the header (Amax), message (Mmax) and
the total amount of data allowed to be processed with the same key (Dmax) are
given in bits. The maximal number of messages that can be sent, using a given key is
Qmax. The nonce values need to be non-repeating during the lifetime of a key. The la-
bels “GIFT”/“AES128”/“PRESENT” indicate the underlying block ciphers (and matching
block/key lengths) that are used for the specific instantiation of the mode of operation.
Some additional combinations are discussed below.

4

2 Preliminaries

2.1 Notation and conventions

Strings of bits. This document deals with strings of bits (strings for short). The
length of a string S is denoted by |S|, where S > 0 for all nonempty strings. The
empty string is denoted by the symbol ⊥, which is also used as a signal for failure. The
symbol ⊕ denotes the bit-wise XOR operation and the symbol ‖ denotes concatenation
of strings. By convention, strings are written in “Little Endian” orientation. If S is a
string of length |S| = L its bits are written as (S =) sL−1sL−2 . . . s0 such that the least
significant bit (s0) is in the rightmost position and the most significant bit (sL−1) is in
the leftmost position. A string of k repeated zero bits is denoted by 0k. The right-shift
of the string S = sL−1 . . . , s0 by θ positions (θ ≤ L) is the string 0θ‖sL−1 . . . sθ and is
denoted by S�θ.

Encoding of integers as strings. For integers p, k such that 0 ≤ p < 2k, p[#k]

denotes the k-bit (string) binary representation of the integer p. For example 19[#8] =
00010011.

Blocks and block ciphers. Hereafter, E is used for denoting a block cipher with
block size of n bits and key size of κ ≥ n bits. For all the cases discussed here, n and
κ are powers of 2, and either κ = n or κ = 2n. A string of n bits is called a block.
The encryption of the plaintext block P under the key K is denoted by E(K,P). Let
B = bn−1 . . . b0 be a block. Then the notation [B2, B1] = B indicates that B2 and B1
are strings of n/2 bits defined by B2 = Bn−1 . . . Bn/2, B1 = Bn/2−1 . . . B0. They are
also called “half blocks”. For an integer 1 ≤ r < n the truncation of B to r bits is the
string of r bits br−1 . . . b0, and is denoted by Truncate(B, r).

Parsing a string of bits as blocks. Let V = pv−1pv−2 . . . p0 be a nonempty string
of v bits where v is divisible by n, i.e., v = ξ × n for some positive integer ξ. Then, V
can be parsed as a sequence of ξ blocks. It is written as V̄ξ−1 ‖ . . . ‖ V̄0. Alternatively,
V can be represented as a list (sequence of blocks) V1, . . . , Vξ (with indexes increasing
from left to right), where V̄j = Vj+1 = pjn+n−1pjn+n−2 . . . pjn, j = 0, . . . , ξ − 1.

Example 2.1. Consider v = 6, n = 2, ξ = 3 and V = p5p4p3p2p1p0. Then V =
V̄2 ‖ V̄1 ‖ V̄0 where V̄2 = p5p4, V̄1 = p3p2, V̄0 = p1p0. V can be written as a list
(sequence) of blocks V = V1, V2, V3 (increasing indexes) where V1 = V̄0, V2 = V̄1,
V3 = V̄2.

The (mandatory) pad10∗() padding. Let Y be a string of bits. The mandatory
padding of Y is the string pad10∗(Y) generated by first appending the bit 1 and then
zero padding the result.

Example 2.2. Take n = 8 and Y = 1010101010 with y = 10 bits. Then, pad10∗(Y) =
0000011010101010; parsed as 2 blocks pad10∗(Y) = Y1, Y2 = 10101010, 00000110. For
Y = 10101010 with y = 8 bits we have pad10∗(Y) = 0000000110101010, parsed as
pad10∗(Y) = Y1, Y2 = 10101010, 00000001. For Y = 1010 with y = 4 bits we have
pad10∗(Y) = 00011010, and it is parsed as pad10∗(Y) = Y1 = 00011010. For Y = ⊥
we have pad10∗(Y) = 00000001, and it is parsed as pad10∗(Y) = Y1 = 00000001.

Remark 2.1. pad10∗(S) padding always modifies the string S (hence the label “manda-
tory”). It is always a nonempty string, and in particular, consists of at least one block.
If |S| is divisible by n, then one block is added to S in order to generate pad10∗(S).

5

2.2 The building blocks CBCMAC-IV, CTRENC, and CENC

CBCMAC-IV. Let X be a nonempty sequence of x > 0 blocks, X = X1, . . . , Xx, let
R be a block, and let K be a key. Define the following sequence of blocks: T0 = R
and Ti = E(K,Xi ⊕ Ti−1) for i = 1, . . . , x. The last block Tx is also referred to as
an authentication tag (for X). The CBCMAC-IV of X under the key K and the IV R is
denoted by CBCMAC-IV(K,R,X) and is defined to be the block Tx. The input X is also
referred to as a “message”.

Remark 2.2. CBCMAC-IV is defined only for sequences (messages) of full blocks, con-
sisting of at least one block.

Remark 2.3. The standard basic CBC-MAC is a special case of CBCMAC-IV where R =
0n, i.e., CBCMAC-IV(K, 0n, X). Alternatively, CBCMAC-IV of the message X can be viewed
as the standard CBC-MAC applied to X ′ = (X1 ⊕ R), X2, . . . , Xx. In other words,
CBCMAC-IV(K,R,X) =CBC-MAC(K,X ′).

CTRENC. Let 0 < δ ≤ n be an integer, let IV be a string of (n − δ) bits, and let K
be a key. Let M be a nonempty string of bits such that |M | ≤ n · 2δ. Denote |M |
(mod n) = r. Parse M = M1, . . . ,Mm as a sequence of m = d|M |/ne blocks (possibly
appending (n − r) 0 bits to M , when r > 0, to complete to M to an integer number
of blocks). Observe that 1 ≤ m ≤ 2δ. The (counter mode) CTR encryption of M
under the key K with the IV IV is denoted by CTRENC(K, IV,M) and is defined as the
ciphertext C computed as follows.

for j = 1, . . . ,m
Ctrj = IV ‖ (j − 1)[#δ]
Cj = Mj ⊕ E(K,Ctrj)

if r > 0 then C∗m = Truncate(Cm, r)
C = C∗m ‖ Cm−1 ‖ . . . ‖ C1

By definition, |C| = |M |. (as a degenerate case, the ciphertext for an empty string is
also an empty string)

Remark 2.4. The blocks Ctrj are called counter blocks. They are well defined for
j = 1, . . . ,m due to the constraint 1 ≤ m ≤ 2δ and the running counter (j − 1)[#δ].
The choice of δ implies limits on the longest possible length of the message M , although
an implementation can choose to allocate δ bits for counter, but independently restrict
message lengths to less than ∼ 2δ blocks. When δ = n the IV is an empty string and
the counter blocks have the form (j − 1)[#n].

6

CENC. Let 0 < δ < n be an integer, let IV be a string of (n − δ) bits, and let K be
a key. Let M be a nonempty string of bits such that |M | ≤ n · (2δ − 1). Denote |M |
(mod n) = r. Parse M = M1, . . . ,Mm as a sequence of m = d|M |/ne blocks (possibly
appending (n − r) 0 bits to M , when r > 0, to complete to M to an integer number
of blocks). Observe that 1 ≤ m ≤ 2δ − 1. The CENC encryption of M under the key K
with the IV IV is denoted by CENC(K, IV,M) and is defined as the ciphertext C that
is computed as follows.
T0 = E(K, IV ‖ (0)[#δ])
for j = 1, . . . ,m

Ctrj = IV ‖ (j)[#δ]
Cj = Mj ⊕ E(K,Ctrj)⊕ T0

if r > 0 then C∗m = Truncate(Cm, r)
C = C∗m ‖ Cm−1 ‖ . . . ‖ C1

By definition, |C| = |M |. The CENC encryption mode is defined in [23] and its improved
security bounds are shown in [24] (to be a corollary from a theorem proved in [28]).
The variation described here is a special case of CENC, where a single additional block
is XORed to all blocks in the message whatever its length (instead of having a fixed
number w of blocks after which the additional block is replaced).

Remark 2.5. The blocks Ctrj are called counter blocks. They are well defined for
j = 1, . . . ,m due to the constraint 0 < m ≤ 2δ − 1. The choice of δ implies limits the
longest possible length of the message M , although an implementation can choose to
allocate δ bits for counter, but independently restrict message lengths to less than ∼ 2δ

blocks.

3 Specification of the AEAD scheme Simple128

Simple128 = Simple128K(N,A,M) is an AEAD scheme that operates over a block
cipher E for which κ = n. The scheme encrypts and authenticates a header A, a
message M with a nonce N , under the key K. Note that M and/or A may be the
empty strings.

Parameters. The parameters that define Simple128 are Amax, Mmax, Dmax, τ , δ,
n, κ (with κ = n) as follows. The maximal allowed lengths for the header and for
the message in any single encryption are denoted by Amax and Mmax, respectively.
To be considered legitimate, the input strings A, M must satisfy 0 ≤ |A| ≤ Amax,
0 ≤ |M | ≤ Mmax. The nonce N has length |N | = (n − τ), where 2 ≤ τ < n. It is
assumed that Mmax ≤ n · 2δ − 1, and for simplicity the value δ = n/2 is fixed.

For convenience, Dmax is used hereafter in order to denote the maximal number
of bits that can be processed with a given key.

Structure. Simple128 can be viewed as a three step construction: (a) nonce based
derivation based on CTR mode that produces an encryption key, an authentication
key, and two half nonces; (b) encryption (in CTRENC mode) of M ; (c) authentication
of X = pad10∗(A) ‖ pad10∗(M) using CBCMAC-IV.

7

3.1 Nonce based derivation (for κ = n)

The following derivation function Derive(K,N) is defined.

Derive(K,N)
Input: K, N
Parameter: τ
(a.) KE = E(K,N ‖ 0[#τ])
(b.) KMAC = E(K,N ‖ 1[#τ])
(c.) [N2, N1] = E(K,N ‖ 2[#τ])
Output: [N2, N1],KE ,KMAC

Algorithm Derive.

3.2 The Simple128 AEAD scheme

The encryption and decryption flows of Simple128 are illustrated in Algorithm 1 and
Algorithm 2, respectively.

Simple128K(N,A,M)
Input: N , A, M
1. ([N2, N1],KE ,KMAC) = Derive(K,N)
2. if M = ⊥ then C = ⊥
else
IV = N1
C = CTRENC(KE , IV,M)

end if
3. X = pad10∗(A) ‖ pad10∗(M)
R = N2 ‖ 0n/2

Tag = CBCMAC-IV(KMAC , R,X)
Output: Tag ‖ C

Algorithm 1. Simple128 - encryption flow.

8

Simple128K(N,Tag,A,C)
Input: N , A, C, Tag
1. ([N2, N1],KE ,KMAC) = Derive(K,N)
2. if C = ⊥ then M = ⊥
else
IV = N1
M = CTRENC(KE , IV, C)

end if
3. X = pad10∗(A) ‖ pad10∗(M)
R = N2 ‖ 0n/2

Tag′ = CBCMAC-IV(KMAC , R,X)
if Tag′ = Tag then
S = M
else

S = ⊥
end if

Output: S

Algorithm 2. Simple128 - decryption flow.

Remark 3.1. Note that the decryption flow is almost identical to the encryption flow.
This is advantageous in the lightweight setting, as it reduces the size of the code.

3.3 Concrete instantiations

The specific instantiations proposed here are called Simple128-GIFT and Simple128-
AES128. They correspond to the choices GIFT (the version with block size of 128 bits
and a 128 bits key; [5], [6]) and of AES128 ([2]) for the block cipher E.

Parameters choice for concrete instantiations. The selected parameters are
κ = n = 128, δ = n/2 = 64, τ = 8, Mmax = Amax = 253 − 1, Dmax = 253 − 1. The
lengths of all the inputs and outputs are required to be divisible by 8, so that they can
be viewed as strings of bytes.

Remark 3.2. Although τ = 2 suffices for the derivation, the value τ = 8 is chosen so
that all lengths are divisible by 8 (and considered as bytes).

Random nonces. The nonce length is 120 bits. A uniform random selection of nonces,
used across q encryptions has nonce collision probability of (at most) q2/2121. For a
limit of q ≤ 246 encryptions, this probability is at most 2−29 which seems a sufficient
margin for practical usage.

4 Specification of the AEAD scheme Simple64

Simple64 = Simple64K(N,A,M) is an AEAD scheme that operates with a block cipher
E for which κ = 2n. The scheme encrypts and authenticates a header A, a message M
with a nonce N , under the key K. As above, M and/or A may be the empty strings.

9

Parameters. The parameters that define Simple64 are Amax, Mmax, Dmax, τ , δ, n,
κ (with κ = n) as follows. The maximal allowed lengths for the header and for the
message are denoted by Amax and Mmax, respectively. To be considered legitimate,
the input strings A, M must satisfy 0 ≤ |A| ≤ Amax, 0 ≤ |M | ≤ Mmax. The nonce N
has length |N | = (n − τ), where 2 ≤ τ < n. The maximal number of bits that can be
processed with a given key is denoted by Dmax. It is assumed that Mmax ≤ n · 2δ − 1,
and for simplicity the value δ = n/2 is fixed.

Structure. Simple64 can be viewed as a three steps construction: (a) nonce based
derivation based on XORP/CENC that produces an encryption key, an authentication
key, and two half nonces; (b) encryption (in CENC mode) of M ; (c) authentication of
X = pad10∗(A) ‖ pad10∗(M) using CBCMAC-IV.

4.1 Nonce based derivation (for κ = 2n)

The following derivation function DeriveDouble(K,N), is defined.

DeriveDouble(K,N)
Input: K, N
Parameter: τ
T0 = E(K,N ‖ 0[#τ])
T1 = E(K,N ‖ 1[#τ])⊕ T0
T2 = E(K,N ‖ 2[#τ])⊕ T0
T3 = E(K,N ‖ 3[#τ])⊕ T0
T4 = E(K,N ‖ 4[#τ])⊕ T0
T5 = E(K,N ‖ 5[#τ])⊕ T0
(a.) KE = T2 ‖ T1
(b.) KMAC = T4 ‖ T3
(c.) [N2, N1] = T5
Output: [N2, N1],KE ,KMAC

Algorithm DeriveDouble.

10

4.2 The Simple64 AEAD scheme

The encryption and decryption for Simple64 are illustrated in Algorithm 3 and Algo-
rithm 4, respectively.

Simple64K(N,A,M)
Input: N , A, M
1. ([N2, N1],KE ,KMAC) = DeriveDouble(K,N)
2. if M = ⊥ then C = ⊥

else
IV = N1
C = CENC(KE , IV,M)

end if
3. X = pad10∗(A) ‖ pad10∗(M)
R = N2 ‖ 0n/2

Tag = CBCMAC-IV(KMAC , R,X)
Output: Tag ‖ C

Algorithm 3. Simple64 - encryption flow.

Simple64K(N,Tag,A,C)
Input: N , A, C, Tag
1. ([N2, N1],KE ,KMAC) = DeriveDouble(K,N)
2. if C = ⊥ then M = ⊥

else
IV = N1
M = CENC(KE , IV, C)

end if
3. X = pad10∗(A) ‖ pad10∗(M)
R = N2 ‖ 0n/2

Tag′ = CBCMAC-IV(KMAC , R,X)
if Tag′ = Tag then
S = M

else
S = ⊥

end if
Output: S

Algorithm 4. Simple64 - decryption flow.

Remark 4.1. Note that the decryption flow is almost identical to the encryption flow.
This is advantageous in the lightweight setting, as it reduces the size of the code.

4.3 Concrete instantiations

The specific instantiations are called Simple64-GIFT and Simple64-PRESENT. They cor-
respond to the choice of GIFT (with block size of 64 bits and a 128 bits key) [5], and [6],
and PRESENT (with block size of 64 bits and a 128 bits key) [13] as the block cipher E.

11

Parameters choice for concrete instantiations. The selected parameters are
n = 64, κ = 128, δ = n/2 = 32, τ = 8, Mmax = 210, Amax = 210, Dmax = 240.
This corresponds to messages of up to 128 bytes, and AAD (Additional Authenticated
Data) of length up to 128 bytes. The lengths of all the inputs and outputs are required
to be divisible by 8, so that they can be viewed as strings of bytes.

Remark 4.2. Although τ = 3 suffices for the derivation, the value τ = 8 is chosen so
that all lengths are divisible by 8 (and considered as bytes).

Random nonces. The nonce length is 56 bits. A uniform random selection of nonces,
used across q encryptions has nonce collision probability of (at most) q2/257. For a limit
of q ≤ 218 encryptions, this probability is at most 2−21 which seems a sufficient margin
for practical usage. Thus, although Qmax equals 230 for unique nonces, it should be set
to 218 for random nonces.

5 The concrete proposals of the submission

This section defines the concrete proposals that combine Simple128 and Simple64 and
specific block ciphers, to define a concrete instantiation. The proposals use the block
ciphers GIFT, AES128, PRESENT, and Speck as follows.
For n = 128, κ = 128, the proposed instantiations are:

– Simple128-GIFT; this is the primary submission.
– Simple128-AES128
– Simple128-Speck

For n = 64, κ = 128, the proposed instantiations are:

– Simple64-GIFT
– Simple64-PRESENT
– Simple128-Speck

These are summarized in Table 1 (page 3).

A brief description of the block ciphers used in the submission are given in the Ap-
pendix, and detailed descriptions are given in the respective specifications:
[2] for AES128; [5] and [6] for GIFT; [13] for PRESENT; [7] for Speck-64/128.

5.1 Known answer tests (KAT’s)

– The KAT files of Simple128-GIFT are available in:

crypto_aead/simple128gift/LWC_AEAD_KAT_128_120.txt

– The KAT files of Simple128-AES128 are available in:

crypto_aead/simple128aes10/LWC_AEAD_KAT_128_120.txt

– The KAT files of Simple128-Speck are available in:

crypto_aead/simple128Speck/LWC_AEAD_KAT_128_120.txt

12

– The KAT files of Simple64-GIFT are available in:

crypto_aead/simple64gift/LWC_AEAD_KAT_128_56.txt

– The KAT files of Simple64-PRESENT are available in:

crypto_aead/simple64present/LWC_AEAD_KAT_128_56.txt

– The KAT files of Simple64-Speck are available in:

crypto_aead/simple64Speck/LWC_AEAD_KAT_128_56.txt

6 Design rationale, features and advantages

6.1 Design goals and desired properties

The proposed mode of operation (formulating an AEAD scheme) can be instantiated
with any cipher (E) with block size of 128 (and 64) bits. Specific instantiation with
a suitable choice of a lightweight cipher would be useful in lightweight setting. The
desired properties that are targeted in this proposal are as follows.

1. Security. The top priority design goal is the security achieved by the scheme. The
mode is intended to rely only on the standard (and most basic) assumption on E,
that modern block ciphers (in particularly the ones selected for the instantiation)
should have as a design goal, namely PRP security. E should be indistinguishable
from a random permutation (over {0, 1}128 or {0, 1}64) when the keys are selected
uniformly at random from the key space. In particular, additional properties (e.g.,
related key security) are not required.

2. Flexibility. The mode1 should allow for encrypting a large amount of blocks while
preserving a high security margin. To be concrete, considering a 128-bit block, the
goal is to be able to encrypt up to 250 bytes (equivalently, 246 blocks) in any
configuration of number of messages and message length. Specifically (and per the
requirements of the NIST call [3, Sec. 3.1]), security should be maintained when
250 single-byte encryptions are carried out, or when encrypting a message of size
250 bytes, and everything in between.

3. Long lifetime for keys. The maximal number of messages that can be encrypted
with a single key is a significant concern in lightweight scenarios, where devices
(communicating with a server) are deployed “in the field” and it could be extremely
difficult to rotate keys. It is likely that messages emitted from the device are (very)
short, but over time, a large number of such message need to sent.

4. Random nonces. The mode that requires a uniquely-chosen nonce should be
able to support usage under a randomly-chosen nonce setting. To satisfy the above
requirements, a mode that uses a long nonce (as long as possible) is desired.

5. Simplicity and frugality. The mode should be simple. Simple to describe and
also to implement, e.g., not involving a length block, or not requiring complex
padding or multiple conditional branches. The mode should use only a small num-
ber of cryptographic primitives, preferably one.

6. Online (streaming) mode. The mode should be “online”: the lengths of A and
of M should not be needed at the onset.

1 At least the primary instantiation per [3].

13

Challenges to overcome. CBC-MAC and Counter Mode encryption are obvious
choices for simple authentication and an encryption primitive. Indeed, the known
AEAD scheme CCM (([14], [30], [31]) leverages exactly these primitives to gain its
simplicity. Unfortunately, raw CBC-MAC is known to be insecure for messages of ar-
bitrary length, unless it operates over a prefix free set of inputs (or otherwise enhance
by e.g., encrypting the tag with an additional key). Due to this, CCM mode encrypts
the CBC-MAC tag and also uses a relatively complex padding to achieve the prefix
free property. For this reason, CCM is not an online mode and the lengths of A and
M are required in advance.

Supporting the use of random nonces poses another design challenge due to con-
flicting requirements. On the one hand, a nonce respecting scheme cannot safely use
short randomized nonces because of the high probability that nonces would repeat. For
example, using a 96 bits (or shorter) randomized nonce cannot support the encryption
of 250 messages. On the other hand, using Counter Mode with a long nonce/IV limits
the maximal allowed length of the message. For example, in order to leave enough bits
(in a block of size 128) to account for a message of length 250 bytes (246 blocks), the
nonce can have at most 82 bits. The CCM mode (with a nonce length between 56
and 112 bits) is not design to address these conflicting desired. As described below, we
overcome this by having a long nonce as input, but deriving a shorter nonce for the
actual encryption (and since we derive both a nonce and encryption key, security is
maintained as long as there is no simultaneous collision of the derived key and derived
nonce).

6.2 A brief intuitive description of Simple128 and Simple64

The mode uses a block cipher E with key size κ and block size n, where κ = n or
κ = 2n. The nonce size is (n − τ) for some τ ≥ 3, such that the strings N ‖ i[#τ],
i = 0, . . . 5 fit in one block. Upon input (N,A,M) and key K, the output C and tag
are produced in three (logical) steps, namely Derive, Encrypt, Authenticate as follows.

1. Derive. Derive 2κ + n random bits to define KE and KM of length κ each, and
two half blocks N1, N2 of length n/2 each. The derivation invokes E over N ‖ i[#τ]
for 3 times (if κ = n) or 6 times (if κ = 2n).

2. Encrypt. Encrypt M in CTRENC (if κ = n) mode or in CENC (if κ = 2n) mode with
the key KE and initial counter N1. Let C be the result.

3. Authenticate. Authenticate X = pad10∗(A) ‖ pad10∗(M) using CBCMAC-IV with
the key KM and the IV N2. Let Tag be the result.

Output (C, Tag).

Remark 6.1. The Derive-Encrypt-Authenticate description is a logical description of
Simple, which is useful for the simplicity of description and for analysis. An imple-
mentation can (and should) interleave the encryption and the authentication steps in
order to, among other things, avoid reading the input from memory twice.

6.3 Design rationale

– The chosen value for τ is τ = 8, which makes it a byte (technically, τ = 3 suffices).
– The role of per-nonce derivation is to extend the lifetime of the key, to isolate

encryption from authentication, and to randomize the IV ’s for the CBCMAC-IV and
for the CTRENC/CENC encryption. Explanations follow.

14

1. The approach for extending the lifetime of a key through a nonce based deriva-
tion method has been studied in [17] and applied to AES-GCM-SIV ([18], [19]).
This derivation precedes encryption and authentication, and is an overhead
paid toward key lifetime enhancement. Altogether, Simple128 requires 2κ+n
random bits and these are derived by means of a few invocations of E, whose
number depends on the relation between κ and n and on the actual value of n.

• When κ = n and n is sufficiently large (here, 128) 3 calls suffice, as exe-
cuted by Derive. Here, the permutation (E) is viewed as a pseudorandom
function. With the targeted number of allowed encryption operations with
the same key, the PRP-PRF advantage can be tolerated.

• When κ = 2n and n is small (here, 64) 6 calls are required, as executed
in DeriveDouble. Here, the PRP-PRF advantage cannot tolerate a large
number of messages with the same key, so the permutation is not viewed
directly as a pseudorandom function. Rather, a derivation that is based
on CENC ([23], [23]) is used. This helps the design achieve strong security
bounds (especially for n = 64).

2. Authentication and encryption are isolated from each other through using
separate (independent) keys KE , KM .

3. n bits of the overall derived random values are split into two half nonces (N2,
N1). These are used for randomizing the IV for the encryption, and the IV
of the CBCMAC-IV. This method secures prefix-free inputs to CBCMAC-IV (with
high probability), and distinct IV ’s for the CTRENC/CENC encryption for the
case κ = 2n where derived keys are not guaranteed to be distinct.

– When κ = n = 128, encryption of at most 250 messages can be executed with
CTRENC, because the PRP-PRF security bounds suffice. However, when κ = 2n =
128, the birthday bound on a 64-bit block cipher (232 without any margins) and the
desire to keep sufficient security margins do now allow to encrypt a large amount
of data. In this case, Simple64 uses CENC for encryption at a (relatively low) cost
of one additional invocation of E per message.

Remark 6.2 (The use of CBCMAC-IV). Observe that Simple128/Simple64 use CBC-
MAC in a special way: (a) the MAC is computed on the plaintext message (and not
on the ciphertext); and (b) an IV is used. It is important to note that the usage is
secure in these conditions, due to the key and half nonce derivation.

Here, security is maintained due to the low probability of simultaneous collision
between: (a) an encryption key and an n/2-bit nonce (counter mode is secure as long
as a key is never used on equal counter blocks); (b) a MAC key and n/2-bit nonce
(making the set of MAC-ed messages prefix free).

The plain CBC-MAC is very simple to implement, and avoiding length encoding
allows the AEAD to be an online (streaming) mode.

The choice of the block ciphers to be used with Simple128/Simple64. Simple128

is instantiated with GIFT (128-bit block size) as the primary variant, and with AES128,
and Speck (128-bit block size). Simple64, is instantiated with GIFT (64-bit block size),
PRESENT, and Speck (64-bit block size). The choice of AES is obvious, as this is a well
established cipher used in multiple standards.

For lightweight-dedicated designs, PRESENT, which is already a well studied cipher
that is included in ISO standards (ISO/IEC 29192-2:2012 and ISO/IEC 29192-5:2016),
is a solid and efficient choice. GIFT is a relatively new development (proposed as an

15

improvement over PRESENT) and is a very competitive design accompanied with a solid
security analysis.

Speck is a competitive lightweight design, especially efficient in sofwtare. To the
best of our knowledge there is no single-key attack on full-round Speck (64/128) with
complexity that is significantly better than brute-force approach.

All of these ciphers are public and their design rationale, properties and security
are publicly available.

6.4 Block cipher calls count for Simple128/Simple64

The number of processed blocks for input (N,A,M). The input (for encryp-
tion) to the AEAD schemes (Simple128 and Simple64) is (N,A,M). The following
computation counts the number of blocks in the padded A and M combination.

– For the encryption of M : M (possibly padded with 0 bits to the next boundary of
a multiple of n) is parsed as m blocks, where m = d|M |/ne.

– For the authentication of X = pad10∗(A) ‖ pad10∗(M): X consists of x blocks
where x = a + m′, and a is the number of blocks in pad10∗(A) and m′ is the
number of blocks in pad10∗(A). The value of a is a = 1 + b|A|/nc (e.g., a = 1 if
A = ⊥) and the value of m′ is m′ = 1 + b|M |/nc.

The performance of Simple128. The performance of Simple128 is measured in terms
of the number of invocations of the block cipher E for processing A and M (lower is
better). The Derive step requires 3 invocations of E. The CTRENC encryption requires
m invocations of E. The CBCMAC-IV authentication requires x = a + m′ invocations
of E. Thus, the total number of invocations of E is

TotalECalls(Simple128) = 3 + a+m′ +m = 5 + b|A|/nc+ b|M |/nc+ d|M |/ne (1)

The performance of Simple64. The DeriveDouble step requires 6 invocations of E.
The CENC encryption requires 1 + m invocations of E. The CBCMAC-IV authentication
requires x = a+m′ invocations of E. Thus, the total number of invocations of E is

TotalECalls(Simple64) = 6 + a+m′ +m = 8 + b|A|/nc+ b|M |/nc+ d|M |/ne (2)

6.5 Features

– The design of the mode is very simple, which is a very advantageous property for
implementation in the lightweight setting. In addition, the code for decryption is
almost identical to encryption, which reduces the size of the code base.

– The mode uses well known constructions CBC/CTR/CENC and nonce-based deriva-
tion [17,18,19] (reference the CCS paper and the AES-GCM-SIV) which are proven
and have been studied and used.

– Provable security: analysis is for a single key. Some properties hold for multi users
too.

– A small number of primitives. The mode uses E only in the encryption direction
(no decryption)

16

– The mode can work with any good cipher. The security relies only on the PRP
security of E (specifically, not requiring related key security for the mode, which
would be problematic for GIFT) For example, see remark on page 10 of [6]): “Re-
mark: GIFT aims at single-key security, so we do not claim any related-key security
(even though no attack is known in this model as of today). In case one wants to
protect against related-key attacks as well, we advise to double the number of
rounds.”

– The modes allow for online encryption (streaming messages - no need to know the
lengths in advance)

– For Simple128, the long nonce (120 bits) allows for using a random nonce with
low collision probabilities.

– The mode is simple and easy to analyze.
– Simple64 allows for crossing the birthday bound w.r.t. the number of encrypted

messages, i.e., it offers the option to use a 64-bit block cipher with a respectable
number of messages for a single key. The limitation when encryption a very large
number of messages is that the messages need to be short, which is a reasonable
assumption in the lightweight setting.

6.6 Limitations

While the overhead of the derivation (Derive/DeriveDouble) step in Simple128 and
Simple64 is not significant for messages that are not very short, it is significant for
short messages. However, this seems to be a proper tradeoff between the performance
of the schemes and the desired to meet the goals specified in Section 6.3.

Note also that the authentication algorithm used for Simple128 and Simple64 is
CBCMAC-IV, which is an inherently serial process. Here, CBCMAC-IV is chosen for its
utmost simplicity. This seems to be an adequate tradeoff, because encryption on small
devices is likely to be done serially, with an on-the-fly key scheduling for the underlying
block cipher.

For the 64-bit block cipher, Simple64 allows to encrypt a large number of messages
(230) with the same key, provided that they are short (up to 128 bytes here). In the
lightweight setting, this seems to be an reasonable tradeoff for allowing the use of a
64-bit block cipher.

It is worth mentioning that Simple128 and Simple64 are insecure in nonce-misusing
scenarios.

6.7 Possible optimization for specific use cases

It is worth mentioning that for both Simple128 and Simple64, the derivation can be
shortened when the mode is used only for authentication and not for confidentiality
(i.e., M = ⊥) since no encryption key (KE) needs to be derived. This is useful for
designs of protocols that use Simple128/Simple64 over messages that are comprised
only of AAD.

Note that if A is shorter than one block, then |X| = |pad10∗(A) ‖ pad10∗(M)| =
1 + |pad10∗(M)|. On the other hand, when A has exactly one block then |X| = 1 +
|pad10∗(M)|. This suggests that (at least for short messages) designs of protocols that
use Simple128/Simple64 should consider encoding A to be shorter than one block. A
similar observation is appropriate for the case where M is shorter than one block.

17

7 Security analysis for Simple128 and Simple64

The precise theorems and proofs will be provided in a separate paper. This document
provides an informal outline of the statements and some explanations on how the
bounds can be derived.

Hereafter, for simplicity, for every (encryption) query (N,A,M) consider the num-
ber of blocks in pad10∗(M) as the “length in blocks of the message”, and consider the
number of blocks in X = pad10∗(A) ‖ pad10∗(M) as “length in blocks of (the tagged
message) X”.

The security of the AEAD schemes proposed here is expressed in terms of up-
per bounds on the distinguishing advantage of an adversary with a given budget of
encryption and decryption queries. An adversary A is said to be a (qE , qD, n, ~̀E , ~xE)-
adversary against the AEAD scheme if it makes at most qE encryption queries and at
most qD decryption queries in the following setting: (a) The respective message lengths

(in blocks) of the encryption queries are ~̀E = (`1, . . . , `qE); (b) The respective lengths
(in blocks) of the decryption queries (X) are ~xE = (x1, . . . , xqE).

Denote xmax = max(x1, . . . , xqE) and `max = max(`1, . . . , `qE). A is assumed to be
a nonce respecting adversary (i.e., it does not repeat a nonce in encryption queries). Let
the block cipher E be modeled as a pseudorandom permutation with PRP advantage
at most AdvprpE (q′) after q′ samples.

Let Π = Simple128. Then,

AdvnAEΠ (A)

≤ 9 · qE2

2n+1
+

qE∑
i=1

`i
2

2n+1
+ qD ·

(
12 · xmax

2n
+

64 · xmax
4

22n

)
+ AdvprpE (TotalECalls)

≤ 9 · qE2

2n+1
+ qE ·

`max
2

2n+1
+ qD ·

(
12 · xmax

2n
+

64 · xmax
4

22n

)
+ AdvprpE (TotalECalls).

(3)

Explanation. The first term in the bound (the RHS of the above inequality) cor-
responds to the PRP-PRF advantage from qE derivations (each one producing 3
keys/values) using Derive. The second term corresponds to the PRP-PRF advantage of
the CTRENC encryption. The third term corresponds to the successful forgery probability
in qD attempts, against CBCMAC-IV (see [9]). Note that due to the permutation-based
derivation, all MAC keys are distinct, so a MAC key is used for authenticating (at
most) one message. The fourth term corresponds to the PRP advantage of the block
cipher itself, with TotalECalls samples, which is a measurement of its quality as the
(underlying) block cipher. The second inequality is brought for simplicity and assumes
that each message encrypted is the maximum allowed length.

These expressions can be used in order to set the limits on the input lengths and
on the total amount of data to be processed under a single key by substituting n = 128,
assuming AdvprpE (TotalECalls) negligible relatively to the other terms. See Table 7 for
a demonstration of our bounds for a number of different cases. As can be seen, our mode
enables encrypting well beyond the birthday bound (overall number of blocks encrypted)
while still providing security of 2−32, and is highly flexible providing security for a very
large number of medium-size encryptions and few massive encryptions.

18

n qE `max qD xmax total bytes encrypted security bound

128 246 224 260 230 274 2−32

128 232 232 248 240 268 2−32

128 216 240 232 246 260 2−32

128 28 244 248 240 256 2−32

128 21 248 248 240 253 2−32

Table 2. Security bounds for the Simple128 mode of operation. The impact of qE , `max
and qD, xmax on the bounds are independent of each other, and so all combinations of
these pairs in the table yield the same bounds.

Remark 7.1. When considering a block cipher (not an ideal random permutation) the
term (TE ·µ)/2n needs to be added, where µ is the multiplicity of a block in the scheme.
The value of µ is small for the single key Simple128.

Remark 7.2. If the mode is used with a random nonce (or 120 bits) then the probability
for at least one pair of colliding nonce values in qE attempts is upper bounded by
qE

2/2121. This term needs to be added to the upper bound on the advantage. It is
larger than the first term qE

2/2129.

Bounds for Simple64.

Let Π = Simple64. Suppose that qE ≤ min
{

2n

67·3 ,
2n

67·`max

}
. Then,

AdvnAEΠ (A)

≤ 25 · qE
2n

+
qE · (`max)2

2n
+ qD ·

(
48 · xmax

2n
+

256 · xmax
4

22n

)
+

qE
3

6 · 22n
+

qE
2

23n/2+1
+ AdvprpE (TotalECalls)

(4)

Explanation. The first term in the bound (the RHS of the above inequality) corre-
sponds to PRP-PRF advantage from qE derivations (each one producing 5 keys/values)
using DeriveDouble (see [23], [24]) The second term corresponds to the PRP-PRF ad-
vantage of the CENC encryption (see [23], [24]). The third term corresponds to the
successful forgery probability in qD attempts, against CBCMAC-IV (see [9]). Here, our
analysis takes into account that MAC keys can repeat (at most) twice, so a MAC key
can be used for authenticating (at most) two messages. The fourth term corresponds
to the probability that the derivation repeats a value 3 or more times. The fifth term
corresponds to the probability of the event where two keys are repeated and the half
nonce (N1/N2) is also repeated. The sixth term corresponds to the PRP advantage
of the block cipher itself, with TotalECalls samples, which is a measurement of its
quality as the (underlying) block cipher.

See Table 7 for a demonstration of our bounds for a number of different cases.
As can be seen, our mode enables encrypting securely for very good parameters even
using a 64-bit block cipher. Note that standard modes of operation break at 230 blocks
except with probability 2−5, whereas here it is possible to encrypt this many blocks
with security 2−32. Even more blocks can be encrypted if 2−24 security is acceptable.
This is therefore a unique mode in that it enables the secure use of a 64-bit block cipher
(albeit, at the cost of more block cipher invocations for the key derivation).

19

n qE `max qD xmax total bytes encrypted security bound

64 226 22 222 22 231 2−32

64 223 24 219 26 230 2−32

64 215 28 215 29 226 2−32

64 227 26 227 26 236 2−24

64 220 29 220 213 232 2−24

64 213 213 214 218 229 2−24

Table 3. Security bounds for the Simple64 mode of operation. The impact of qE , `max
and qD, xmax on the bounds are independent of each other, and so all combinations of
these pairs in the table yield the same bounds.

7.1 The security of the underlying block ciphers

The security of Simple128 (as a mode of operation) depends on the of the underlying
block cipher. Specifically, the (only) property affects the security is the indistinguisha-
bility of the block cipher from a random permutation, when the cipher key is selected
uniformly at random with the appropriate length (and not e.g., on the related key
security of the cipher). This property is a fundamental design goal of block ciphers.

The concrete Simple128 instantiations that are given in this proposal are based
on the well known and fairly well studied block ciphers, namely GIFT, AES128, Speck,
PRESENT. Some brief comments on te security of these block ciphers is given below.

Security of AES128. The security of AES128is well-established. The best attack on
AES128 is the biclique attack in [12] (key recovery with complexity of 2126 computa-
tions). Some related key attacks on AES with 192-bit and 256-bit keys are known, but
not for AES128 (see also [25] that shows that AES128 in related key settings is almost
as secure as in single key settings). Recent distinguishers on AES128 [20,21,29,22,8]
were shown, but only for reduced rounds AES128. To the best of our knowledge, there
is no attack on AES128 that has significantly better complexity than the brute force
approach.

Security of GIFT. Analysis of GIFT is provided by the designers in [5,6]. The recent
paper [15] shows 9-round (out of 28 rounds) distinguishers for GIFT-64. For GIFT-128
this paper finds only a distinguisher with high data complexity (similar to the original
one in [5,6]). To the best of our knowledge, there is no attack on GIFT (with block-size
/key-length of 128/128 and 64/128) that has significantly better complexity than the
brute force approach.

Security of PRESENT. PRESENT is considered as an acceptable lightweight cipher. It
is included in the international standard for lightweight cryptography by ISO (Inter-
national Organization for Standardization) and IEC (International Electrotechnical
Commission). An attack (truncated differential attack) on reduced round PRESENT (26
rounds out of 31) is presented in [11]. An attack on PRESENT (using biclique crypt-
analysis) is presented in [1], but its complexity is very close to that of brute force
analysis.

Security of Speck. Speck is defined and analyzed in [7]. Additional analysis of
reduced-rounds or related-key settings of Speck appears in [10,26,27,4]. The best at-
tack (differential cryptanalysis) on Speck breaks 20 out of the 27 rounds with time
complexity 2125.56 (and data complexity 261.56). To the best of our knowledge. there

20

is no single key attack on Speck (with block-size /key-length of 128/128 and 64/128)
that has significantly better complexity than the brute force approach.

7.2 Statement

We declare that there are no hidden weaknesses in the Simple128 and Simple64 modes
of operation. To the best of our knowledge, public third-party analysis do not raise any
security threat to the submission’s specific proposals, within the limits prescribed in
Table 1 (page 3).

8 Acknowledgments

Shay Gueron is a professor at the Department of Mathematics at the University of
Haifa and a Senior Principal Engineer at AWS. Yehuda Lindell is a professor at the
Department of Computer Science at Bar Ilan University and CEO at Unbound Tech
Ltd.

Shay Gueron is a member of the Center for Cyber Law & Policy at the University of
Haifa. Shay Gueron and Yehuda Lindell are members of the BIU Center for Research
in Applied Cryptography and Cyber Security.

This research was supported by: the BIU Center for Research in Applied Cryptography
and Cyber Security in conjunction with the Israel National Cyber Directorate in the
Prime Minister’s Office; the Israel Science Foundation (grant No. 1018/16); a grant
from the Ministry of Science and Technology, Israel, and the Department of Science
and Technology, Government of India; and the Center for Cyber Law & Policy at the
University of Haifa, in conjunction with the Israel National Cyber Directorate in the
Prime Ministers Office.

References

1. F. Abed, C. Forler E. List S. Lucks. J. Wenzel: Biclique Cryptanalysis Of
PRESENT, LED, And KLEIN, IACR Cryptology ePrint Archive 2012/591
https://eprint.iacr.org/2012/591.pdf (2012).

2. -, FIPS PUB 197: Advanced Encryption Standard (AES) https:

//web.archive.org/web/20170312045558/http://nvlpubs.nist.gov/

nistpubs/FIPS/NIST.FIPS.197.pdf (2001).
3. -, Submission Requirements and Evaluation Criteria for the

Lightweight Cryptography Standardization Process. https://csrc.

nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/

final-lwc-submission-requirements-august2018.pdf

4. Ashur, T., Bodden, D., Dunkelman, O.: Linear cryptanalysis using low-bias
linear approximations. IACR Cryptology ePrint Archive 2017/204 https://

eprint.iacr.org/2017/204.pdf (2017).
5. S. Banik, S.K Pandey, T. Peyrin, Y. Sasaki, S.M. Sim, Y. Todo. GIFT: A

Small Present - Towards Reaching the Limit of Lightweight Encryption. In:
Cryptographic Hardware and Embedded Systems - CHES 2017 Proceedings
321-345 (2017).

https://eprint.iacr.org/2012/591.pdf
https://web.archive.org/web/20170312045558/http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://web.archive.org/web/20170312045558/http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://web.archive.org/web/20170312045558/http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://eprint.iacr.org/2017/204.pdf
https://eprint.iacr.org/2017/204.pdf

21

6. S. Banik, S.K Pandey, T. Peyrin, S.M. Sim, Y. Todo, Y. Sasaki: GIFT: A
Small Present. IACR Cryptology ePrint Archive 2017/622 https://eprint.

iacr.org/2017/622.pdf (2017).
7. R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, L. Wingers. SI-

MON and SPECK: Block Ciphers for the Internet of Things. Report #2015/585,
2015. https://eprint.iacr.org/2015/585

8. Bar-On, A., Dunkelman, O., Keller, N., Ronen, E., Shamir, A.: Improved key
recovery attacks on reduced-round AES with practical data and memory com-
plexities. In: Advances in Cryptology - CRYPTO 2018 - 38th Annual Interna-
tional Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018,
Proceedings, Part II. (2018) 185–212

9. M. Bellare, K. Pietrzak and P. Rogaway. Improved Security Analyses for CBC
MACs. In CRYPTO 2005, Springer (LNCS 3621), pages 527–545, 2005.

10. Biryukov, A., Roy, A., Velichkov, V.: Differential analysis of block ciphers SI-
MON and SPECK. In: Fast Software Encryption - 21st International Workshop,
FSE 2014, London, UK, March 3-5, 2014. Revised Selected Papers. (2014) 546–
570

11. C. Blondeau, K. Nyberg: Links Between Truncated Differential and Multidimen-
sional Linear Properties of Block Ciphers and Underlying Attack Complexities
IACR Cryptology ePrint Archive 2015/184 https://eprint.iacr.org/2015/

184.pdf (2015).
12. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the

full AES. In: Advances in Cryptology - ASIACRYPT 2011 - 17th International
Conference on the Theory and Application of Cryptology and Information Se-
curity, Seoul, South Korea, December 4-8, 2011. Proceedings. (2011) 344–371

13. A. Bogdanov, L.R Knudsen, G. Leander, C. Paar, A. Poschmann, M.J.B Rob-
shaw, Y. Seurin, C. Vikkelsoe. PRESENT: An ultra-lightweight block cipher. In
Paillier, P., Verbauwhede, I., eds.: CHES 2007. Volume 4727 of LNCS., Springer,
Heidelberg 450-466 (2007)

14. M. Dworking. Recommendation for Block Cipher Modes of Operation: The
CCM Mode for Authentication and Confidentiality. https://nvlpubs.nist.

gov/nistpubs/legacy/sp/nistspecialpublication800-38c.pdf
15. Eskandari, Z., Kidmose, A.B., Kölbl, S., Tiessen, T.: Finding integral distin-

guishers with ease. IACR Cryptology ePrint Archive 2018 (2018) 688
16. P. Fouque, G. Martinet, F. Valette and S. Zimmer. On the Security of the CCM

Encryption Mode and of a Slight Variant. In ACNS 2008, Springer (LNCS 5037),
pages 411–428, 2008.

17. S. Gueron, Y. Lindell. Better bounds for block cipher modes of operation via
nonce-based key derivation. In: Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS 2017. 1019-1036 (2017).

18. S. Gueron, A. Langley, Y. Lindell. AES-GCM-SIV:specification and analysis.
ePrint report 2017/168, https://eprint.iacr.org/2017/168 (2017).

19. S. Gueron, A. Langley, Y. Lindell. AES-GCM-SIV: Nonce Misuse-Resistant Au-
thenticated Encryption. IETF Internet Draft https://datatracker.ietf.org/
doc/draft-irtf-cfrg-gcmsiv/ (Last updated on 2019-01-18)

20. Grassi, L., Rechberger, C., Rønjom, S.: Subspace trail cryptanalysis and its
applications to AES. IACR Trans. Symmetric Cryptol. 2016(2) (2016) 192–
225

21. Grassi, L., Rechberger, C., Rønjom, S.: A new structural-differential property
of 5-round AES. In: Advances in Cryptology - EUROCRYPT 2017 - 36th An-
nual International Conference on the Theory and Applications of Cryptographic

https://eprint.iacr.org/2017/622.pdf
https://eprint.iacr.org/2017/622.pdf
https://eprint.iacr.org/2015/585
https://eprint.iacr.org/2015/184.pdf
https://eprint.iacr.org/2015/184.pdf
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-38c.pdf
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-38c.pdf
https://eprint.iacr.org/2017/168
https://datatracker.ietf.org/doc/draft-irtf-cfrg-gcmsiv/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-gcmsiv/

22

Techniques, Paris, France, April 30 - May 4, 2017, Proceedings, Part II. (2017)
289–317

22. Grassi, L.: Mixture differential cryptanalysis: a new approach to distinguishers
and attacks on round-reduced AES. IACR Trans. Symmetric Cryptol. 2018(2)
(2018) 133–160

23. T. Iwata. New Blockcipher Modes of Operation with Beyond the Birthday
Bound Security. In: Proceeding of Fast Software Encryption 2006, Lecture Notes
in Computer Science, vol. 4047, pp. 310-327. Springer (2006).

24. T. Iwata, B. Mennink, D. Vizár. CENC is Optimally Secure. Report
#2016/1087, 2016. https://eprint.iacr.org/2016/1087

25. Khoo, K., Lee, E., Peyrin, T., Sim, S.M.: Human-readable proof of the related-
key security of AES-128. IACR Trans. Symmetric Cryptol. 2017(2) (2017)
59–83

26. Liu, Y., Fu, K., Wang, W., Sun, L., Wang, M.: Linear cryptanalysis of reduced-
round SPECK. Inf. Process. Lett. 116(3) (2016) 259–266

27. Liu, Y., Witte, G.D., Ranea, A., Ashur, T.: Rotational-xor cryptanalysis of
reduced-round SPECK. IACR Trans. Symmetric Cryptol. 2017(3) (2017) 24–
36

28. J. Patarin. On linear systems of equations with distinct variables and small
block size. In: Proceedings of Information Security and Cryptology 2005, Lecture
Notes in Computer Science, vol. 3935, pp. 299-321. Springer (2006).

29. Rønjom, S., Bardeh, N.G., Helleseth, T.: Yoyo tricks with AES. In: Advances in
Cryptology - ASIACRYPT 2017 - 23rd International Conference on the Theory
and Applications of Cryptology and Information Security, Hong Kong, China,
December 3-7, 2017, Proceedings, Part I. (2017) 217–243

30. D. Whiting, R. Housley and N. Ferguson. IEEE 802.11-02/001r2: AES Encryp-
tion & Authentication Using CTR Mode & CBC-MAC. March 2002.

31. D. Whiting, R. Housley and N. Ferguson. Counter with CBC-MAC (CCM), AES
Mode of Operation. Contribution to NIST, May 2002. Available from http:

//csrc.nist.gov/encryption/modes/proposedmodes/

https://eprint.iacr.org/2016/1087
http://csrc.nist.gov/encryption/modes/proposedmodes/
http://csrc.nist.gov/encryption/modes/proposedmodes/

23

A Block Cipher Specifications

This appendix provides a brief description of the block ciphers used in the submission.
Detailed descriptions are given in the specifications given in:
[13] for PRESENT;
[5] and [6] for GIFT;
[7] for Speck-64/128;
[2] for AES128.

A.1 PRESENT (64 bits block and 128 bits key)

PRESENT (with block length of 64 bits and key length of 128 bits) is an Substitution-
Permutation network (SP) design with 31 rounds. The key scheduling expands an
input key to 32 round keys (Ki, i=1, 2, ..., 32) where K32 is used for “post-whitening”
(XOR-ed to the state after the 31 rounds are executed).
Each round consists of three steps: addRoundKey, sBoxLayer, pLayer.

– addRoundKey: add (XOR) the i-th round key (Ki) to the state
– sBoxLayer: apply a single 4-bit S-box 16 times (in parallel) to the 64-bit state.
– pLayer: apply a (fixed) permutation of the bits of the state.

Key scheduling:

– Denote the (current) key bits by K = k127 k126 ... k1 k0.
Extract the 64 bits k127 k126 ... k64 as the round key.
Update the key state after the extraction.

– Key state is updated (after the round key extraction):
Rotate the key register by 61 bit positions to the left; Pass the leftmost eight bits
(two leftmost nibbles) through two S-boxes; Add (XOR) the round counter (value
i) to k66 k65 k64 k63 k62 (of the current key).

The encryption routine of the cipher is described in the (pseudo-)code below (C syntax).

24

The constants of PRESENT
#define ROUNDS 31

//State-size in Half-Bytes

#define SSZ 16

typedef unsigned char u8;

typedef unsigned int u32;

//SBOX

const u8 PRESENT_SBOX[16] = {0xC, 5, 6, 0xB, 9, 0, 0xA, 0xD, 3, 0xE, 0xF, 8, 4, 7, 1, 2};

//bit permutation

const u8 PRESENT_PERM[64] = {

0, 16, 32, 48, 1, 17, 33, 49, 2, 18, 34, 50, 3, 19, 35, 51,

4, 20, 36, 52, 5, 21, 37, 53, 6, 22, 38, 54, 7, 23, 39, 55,

8, 24, 40, 56, 9, 25, 41, 57, 10, 26, 42, 58, 11, 27, 43, 59,

12, 28, 44, 60, 13, 29, 45, 61, 14, 30, 46, 62, 15, 31, 47, 63

};

Encryption: PRESENT
#define ROUNDS 31

//State-size in Half-Bytes

#define SSZ 16

void PRESENT_encrypt(u8 *ct, const u8 *pt,

const u8 *masterkey){

//convert input data from bytes to Half-Bytes

u8 k_register[32];

for(u8 i=0; i<16; i++){

k_register[2*i] = masterkey[i]&0xF;

k_register[2*i+1] = (masterkey[i]&0xF0)>>4;

}

u8 state[SSZ];

for(u8 i=0; i<SSZ/2; i++){

state[2*i] = pt[i]&0xF;

state[2*i+1] = (pt[i]&0xF0)>>4;

}

//state = MSB [15][14]...[1][0] LSB

//key = MSB [31][30]...[1][0] LSB

u8 round_key[ROUNDS+1][SSZ] = { 0 };

//generateRoundKeys

u8 r_counter = 1;

u8 temp_k_reg[32] = { 0 };

for(u8 r=0; r<ROUNDS+1; r++){

//Extract roundkey k127...k64

for(u8 i=0; i<SSZ; i++){

round_key[r][i] = k_register[16+i];

}

//ROL 61

for(u8 i=0; i<32; i++){

temp_k_reg[i] = (k_register[(i+32-15)%32]<<1 |

k_register[(i+32-16)%32]>>3)&0xF;

}

//SBOX-Substitution

temp_k_reg[31] = PRESENT_SBOX[temp_k_reg[31]];

temp_k_reg[30] = PRESENT_SBOX[temp_k_reg[30]];

//~copy temp register

for(u8 i=0; i<32; i++){

k_register[i] = temp_k_reg[i];

}

//Round Counter Addition

k_register[15] ^= (r_counter<<2)&0xF;

k_register[16] ^= r_counter>>2;

r_counter++;

}

u8 bits [64] = { 0 };

u8 perm_bits [64] = { 0 };

for(u8 r=0; r<ROUNDS; r++){

//addRoundKey

for(u8 i=0; i<SSZ; i++){

state[i] = state[i] ^ round_key[r][i];

}

//sBoxLayer

for(u8 i=0; i<SSZ; i++){

state[i] = PRESENT_SBOX[state[i]];

}

//pLayer

//convert state to bits

for(u8 i=0; i<SSZ; i++){

for(u8 j=0; j<4; j++){

bits[4*i+j] = (state[i] >> j) & 0x1;

}

}

//permute the bits

for(u8 i=0; i<64; i++){

perm_bits[PRESENT_PERM[i]] = bits[i];

}

//convert permutated bits to state

for(u8 i=0; i<SSZ; i++){

state[i]=0;

for(u8 j=0; j<4; j++){

state[i] ^= perm_bits[4*i+j] << j;

}

}

}

//last addRoundKey

for(u8 i=0; i<SSZ; i++){

state[i] = state[i] ^ round_key[ROUNDS][i];

}

//convert back from half-bytes

for(u8 i=0; i<SSZ/2; i++){

ct[i] = state[2*i+1]<<4 | state[2*i];

}

return;

}

25

A.2 GIFT (128 / 64 bits block and 128 bits key)

GIFT (with block length 64 bits or 128 bits is an SP network with 28 rounds for block
size of 64 bits, and 40 round for block size of 128 bit. The key size is 128 bits.
Each round of GIFT consists of three steps: SubCells, PermBits and AddRoundKey.

– SubCells: apply 16 4-bit Sboxes (GS), in parallel, to every nibble of the state.
– PermBits: apply a permutation of the bits of the state.
– AddRoundKey: add (XOR) a (32 bits) round key to bit 0 and bit 1 of eacn nibble

of the state; add (XOR) the bit 1 is to the most significant bit of each nibble; add
(XOR) a (6-bit) round constant to bit 3 of the first 6 nibbles of the state.

Key scheduling:

– Split the (current) 128-bit key into 8 16-bit words K = k7 k6 k5 k4 k3 k2 k1 k0.
Extract k1 and k0 as the round key.
Update the key state after the extraction.

– Key state is updated (after the round key extraction):
K ← right-rotate-16 (k1, 2) right-rotate-16 (k0, 12) k7 k6 k5 k4 k3 k2
(here, right-rotate-16 (e, f) is the right rotation of the 16-bit value e by f positions)

The encryption routines of the cipher (with block sizes of 64 and of 128 bits) are
described in the (pseudo-)code below (C syntax).

GIFT (128 bits block)

The constants of GIFT (128 bits block)
#define ROUNDS 40

typedef unsigned char u8;

typedef unsigned int u32;

//Sbox

const u8 GIFT_S[16] = { 1,10, 4,12, 6,15, 3, 9, 2,13,11, 7, 5, 0, 8,14};

//bit permutation

const u8 GIFT_P[]={

/* Block size = 128 */

0, 33, 66, 99, 96, 1, 34, 67, 64, 97, 2, 35, 32, 65, 98, 3,

4, 37, 70,103,100, 5, 38, 71, 68,101, 6, 39, 36, 69,102, 7,

8, 41, 74,107,104, 9, 42, 75, 72,105, 10, 43, 40, 73,106, 11,

12, 45, 78,111,108, 13, 46, 79, 76,109, 14, 47, 44, 77,110, 15,

16, 49, 82,115,112, 17, 50, 83, 80,113, 18, 51, 48, 81,114, 19,

20, 53, 86,119,116, 21, 54, 87, 84,117, 22, 55, 52, 85,118, 23,

24, 57, 90,123,120, 25, 58, 91, 88,121, 26, 59, 56, 89,122, 27,

28, 61, 94,127,124, 29, 62, 95, 92,125, 30, 63, 60, 93,126, 31

};

// round constants

const u8 GIFT_RC[62] = {

0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3E, 0x3D, 0x3B, 0x37, 0x2F,

0x1E, 0x3C, 0x39, 0x33, 0x27, 0x0E, 0x1D, 0x3A, 0x35, 0x2B,

0x16, 0x2C, 0x18, 0x30, 0x21, 0x02, 0x05, 0x0B, 0x17, 0x2E,

0x1C, 0x38, 0x31, 0x23, 0x06, 0x0D, 0x1B, 0x36, 0x2D, 0x1A,

0x34, 0x29, 0x12, 0x24, 0x08, 0x11, 0x22, 0x04, 0x09, 0x13,

0x26, 0x0c, 0x19, 0x32, 0x25, 0x0a, 0x15, 0x2a, 0x14, 0x28,

0x10, 0x20

};

26

Encryption: GIFT (128 bits
block)
#define ROUNDS 40

typedef unsigned char u8;

typedef unsigned int u32;

void blockcipher_encrypt(u8 *ct, const u8 *pt, const u8 *masterkey){

//convert input data from bytes to halfbytes

u8 key[32];

for(u8 i=0; i<16; i++){

key[2*i] = masterkey[i]&0xF;

key[2*i+1] = (masterkey[i]&0xF0)>>4;

}

u8 input[32];

for(u8 i=0; i<16; i++){

input[2*i] = pt[i]&0xF;

input[2*i+1] = (pt[i]&0xF0)>>4;

}

//input = MSB [15][14]...[1][0] LSB

//key = MSB [31][30]...[1][0] LSB

u8 bits[128];

u8 perm_bits[128];

u8 key_bits[128];

u8 temp_key[32];

for(u8 r=0; r<ROUNDS; r++){

//SubCells

for(u8 i=0; i<32; i++){

input[i] = GIFT_S[input[i]];

}

//PermBits

//input to bits

for(u8 i=0; i<32; i++){

for(u8 j=0; j<4; j++){

bits[4*i+j] = (input[i] >> j) & 0x1;

}

}

//permute the bits

for(u8 i=0; i<128; i++){

perm_bits[GIFT_P[i]] = bits[i];

}

//perm_bits to input

for(u8 i=0; i<32; i++){

input[i]=0;

for(u8 j=0; j<4; j++){

input[i] ^= perm_bits[4*i+j] << j;

}

}

//AddRoundKey

//input to bits

for(u8 i=0; i<32; i++){

for(u8 j=0; j<4; j++){

bits[4*i+j] = (input[i] >> j) & 0x1;

}

}

//key to key_bits

for(u8 i=0; i<32; i++){

for(u8 j=0; j<4; j++){

key_bits[4*i+j] = (key[i] >> j) & 0x1;

}

}

//add round key

u8 kbc=0; //key_bit_counter

for(u8 i=0; i<32; i++){

bits[4*i+1] ^= key_bits[kbc];

bits[4*i+2] ^= key_bits[kbc+64];

kbc++;

}

//add constant

bits[3] ^= GIFT_RC[r] & 0x1;

bits[7] ^= (GIFT_RC[r]>>1) & 0x1;

bits[11] ^= (GIFT_RC[r]>>2) & 0x1;

bits[15] ^= (GIFT_RC[r]>>3) & 0x1;

bits[19] ^= (GIFT_RC[r]>>4) & 0x1;

bits[23] ^= (GIFT_RC[r]>>5) & 0x1;

bits[127] ^= 1;

//bits to input

for(u8 i=0; i<32; i++){

input[i]=0;

for(u8 j=0; j<4; j++){

input[i] ^= bits[4*i+j] << j;

}

}

//key update

//entire key>>32

for(u8 i=0; i<32; i++){

temp_key[i] = key[(i+8)%32];

}

for(u8 i=0; i<24; i++){

key[i] = temp_key[i];

}

//k0>>12

key[24] = temp_key[27];

key[25] = temp_key[24];

key[26] = temp_key[25];

key[27] = temp_key[26];

//k1>>2

key[28] = ((temp_key[28]&0xc)>>2) ^ ((temp_key[29]&0x3)<<2);

key[29] = ((temp_key[29]&0xc)>>2) ^ ((temp_key[30]&0x3)<<2);

key[30] = ((temp_key[30]&0xc)>>2) ^ ((temp_key[31]&0x3)<<2);

key[31] = ((temp_key[31]&0xc)>>2) ^ ((temp_key[28]&0x3)<<2);

}

//convert back from half-bytes

for(u8 i=0; i<16; i++){

ct[i] = input[2*i+1]<<4 | input[2*i];

}

return;

}

27

GIFT (64 bits block)

The constants of GIFT (64 bits block)
#define ROUNDS 28

typedef unsigned char u8;

typedef unsigned int u32;

//Sbox

const u8 GIFT_S[16] = { 1,10, 4,12, 6,15, 3, 9, 2,13,11, 7, 5, 0, 8,14};

const u8 GIFT_S_inv[16] = {13, 0, 8, 6, 2,12, 4,11,14, 7, 1,10, 3, 9,15, 5};

//bit permutation

const u8 GIFT_P[] = {

/* Block size = 64 */

0, 17, 34, 51, 48, 1, 18, 35, 32, 49, 2, 19, 16, 33, 50, 3,

4, 21, 38, 55, 52, 5, 22, 39, 36, 53, 6, 23, 20, 37, 54, 7,

8, 25, 42, 59, 56, 9, 26, 43, 40, 57, 10, 27, 24, 41, 58, 11,

12, 29, 46, 63, 60, 13, 30, 47, 44, 61, 14, 31, 28, 45, 62, 15

};

// round constants

const u8 GIFT_RC[62] = {

0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3E, 0x3D, 0x3B, 0x37, 0x2F,

0x1E, 0x3C, 0x39, 0x33, 0x27, 0x0E, 0x1D, 0x3A, 0x35, 0x2B,

0x16, 0x2C, 0x18, 0x30, 0x21, 0x02, 0x05, 0x0B, 0x17, 0x2E,

0x1C, 0x38, 0x31, 0x23, 0x06, 0x0D, 0x1B, 0x36, 0x2D, 0x1A,

0x34, 0x29, 0x12, 0x24, 0x08, 0x11, 0x22, 0x04, 0x09, 0x13,

0x26, 0x0c, 0x19, 0x32, 0x25, 0x0a, 0x15, 0x2a, 0x14, 0x28,

0x10, 0x20

};

28

Encryption: GIFT (64 bits
block)
#define ROUNDS 28

typedef unsigned char u8;

typedef unsigned int u32;

void blockcipher_encrypt(u8 *ct, const u8 *pt,

const u8 *masterkey){

//convert input data from bytes to halfbytes

u8 key[32];

for(u8 i=0; i<16; i++){

key[2*i] = masterkey[i]&0xF;

key[2*i+1] = (masterkey[i]&0xF0)>>4;

}

u8 input[16];

for(u8 i=0; i<8; i++){

input[2*i] = pt[i]&0xF;

input[2*i+1] = (pt[i]&0xF0)>>4;

}

//input = MSB [15][14]...[1][0] LSB

//key = MSB [31][30]...[1][0] LSB

u8 bits[64];

u8 perm_bits[64];

u8 key_bits[128];

u8 temp_key[32];

for(u8 r=0; r<ROUNDS; r++){

//SubCells

for(u8 i=0; i<16; i++){

input[i] = GIFT_S[input[i]];

}

//PermBits

//input to bits

for(u8 i=0; i<16; i++){

for(u8 j=0; j<4; j++){

bits[4*i+j] = (input[i] >> j) & 0x1;

}

}

//permute the bits

for(u8 i=0; i<64; i++){

perm_bits[GIFT_P[i]] = bits[i];

}

//perm_bits to input

for(u8 i=0; i<16; i++){

input[i]=0;

for(u8 j=0; j<4; j++){

input[i] ^= perm_bits[4*i+j] << j;

}

}

//AddRoundKey

//input to bits

for(u8 i=0; i<16; i++){

for(u8 j=0; j<4; j++){

bits[4*i+j] = (input[i] >> j) & 0x1;

}

}

//key to key_bits

for(u8 i=0; i<32; i++){

for(u8 j=0; j<4; j++){

key_bits[4*i+j] = (key[i] >> j) & 0x1;

}

}

//add round key

u8 kbc=0; //key_bit_counter

for(u8 i=0; i<16; i++){

bits[4*i] ^= key_bits[kbc];

bits[4*i+1] ^= key_bits[kbc+16];

kbc++;

}

//add constant

bits[3] ^= GIFT_RC[r] & 0x1;

bits[7] ^= (GIFT_RC[r]>>1) & 0x1;

bits[11] ^= (GIFT_RC[r]>>2) & 0x1;

bits[15] ^= (GIFT_RC[r]>>3) & 0x1;

bits[19] ^= (GIFT_RC[r]>>4) & 0x1;

bits[23] ^= (GIFT_RC[r]>>5) & 0x1;

bits[63] ^= 1;

//bits to input

for(u8 i=0; i<16; i++){

input[i]=0;

for(u8 j=0; j<4; j++){

input[i] ^= bits[4*i+j] << j;

}

}

//key update

//entire key>>32

for(u8 i=0; i<32; i++){

temp_key[i] = key[(i+8)%32];

}

for(u8 i=0; i<24; i++){

key[i] = temp_key[i];

}

//k0>>12

key[24] = temp_key[27];

key[25] = temp_key[24];

key[26] = temp_key[25];

key[27] = temp_key[26];

//k1>>2

key[28] = ((temp_key[28]&0xc)>>2) ^ ((temp_key[29]&0x3)<<2);

key[29] = ((temp_key[29]&0xc)>>2) ^ ((temp_key[30]&0x3)<<2);

key[30] = ((temp_key[30]&0xc)>>2) ^ ((temp_key[31]&0x3)<<2);

key[31] = ((temp_key[31]&0xc)>>2) ^ ((temp_key[28]&0x3)<<2);

}

//convert back from half-bytes

for(u8 i=0; i<8; i++){

ct[i] = input[2*i+1]<<4 | input[2*i];

}

return;

}

29

A.3 Speck (128 / 64 bits block and 128 bits key)

Speck (with block lengths 64 or 128 bits) is an AddRotateXor (ARX) design. It sup-
ports a number of block/key size combinations. Here, the key size is 128 bits. For the
64 bits block size, Speck has 27 rounds, and for the 128 bits block size, Speck has 32
rounds.

– Each round applies the function Fk : F232 × F232 → F232 × F232 defined by

FR(X1, X0) := (((X1 ≫ 8)�X0)⊕R, ((X0 ≪ 3)⊕ ((X1 ≫ 8)�X0)⊕R))

where R denotes the 32-bit round key, (X1, X0) denotes the 64-bit state of the
cipher,≫ /≪ denote right/left rotation in a 32-bit word by the specified number
of positions, and � denotes addition modulo 232.

Key scheduling:

– Write K as 4 32-bit words (K3,K2,K1,K0). Let L2 = K3, L1 = K2, L0 = K0,
and R0 = K0. Then, for 0 ≤ i < 27 (or 0 ≤ i < 32) the round keys are defined by:

Li+3 = (Ri � (Li≫ 8))⊕ i,
Ri+1 = (Ri≪ 3)⊕ Li+3,

The round keys are (R0, . . . , R26) for the block size of 64 bits, and (R0, . . . , R31)
for the block size of 128 bits.

30

Encryption: Speck (64 bits
and 128 bits block)
#if BLOCKSIZE == 64

define ROUNDS 27

//size of a word in bytes

//(pt and ct size = 2 words = 1 block)

define WSZ 4

//number of words for key

define M 4

#elif BLOCKSIZE == 128

define ROUNDS 32

//size of a word in bytes

//(pt and ct size = 2 words = 1 block)

define WSZ 8

//number of words for key

define M 2

#endif

#define CARRY(r, a, b)

(((a>>7)&(b>>7)) | ((a>>7)&(!(r>>7))) |

((!(r>>7))&(b>>7)))

typedef unsigned char u8;

typedef unsigned int u32;

void blockcipher_encrypt

(u8 *ct, const u8 *pt, const u8 *K)

{

u8 L[(ROUNDS+M-2)*WSZ] = { 0 };

u8 RK[ROUNDS*WSZ] = { 0 };

u8 carry;

u8 ct_temp[2*WSZ] = { 0 };

//RK0 = K0

for(u8 j=0; j<WSZ; j++){

RK[j] = K[j];

}

//initial Ls

for(u8 i=0; i<M-1; i++){

for(u8 j=0; j<WSZ; j++){

L[i*WSZ+j] = K[(i+1)*WSZ+j];

}

}

//Key Schedule

for (u8 i=0; i<ROUNDS-1; i++){

carry = 0;

//L[i+m-1] = (ROR(L[i], 8) + RK[i]) ^ i

for(u8 j=0; j<WSZ; j++){

L[(i+M-1)*WSZ+j] = L[i*WSZ+((j+1)%WSZ)] + RK[i*WSZ+j];

//add carry

L[(i+M-1)*WSZ+j] += carry;

//set next carry

carry = CARRY(L[(i+M-1)*WSZ+j], L[i*WSZ+((j+1)%WSZ)], RK[i*WSZ+j]);

if(j==0){

L[(i+M-1)*WSZ+j] ^= i;

}

}

//RK[i+1] = ROL(RK[i], 3) ^ L[i+m-1]

for(u8 j=0; j<WSZ; j++){

RK[(i+1)*WSZ+j] = (RK[i*WSZ+j]<<3 |

RK[i*WSZ+((j+WSZ-1)%WSZ)]>>5) ^

L[(i+M-1)*WSZ+j];

}

}

//Encryption

for(u8 j=0; j<2*WSZ; j++){

ct[j] = pt[j]; //copy pt to ct

}

for(u8 i=0; i<ROUNDS; i++){

carry = 0;

//ct[1] = (ROR(ct[1], 8) + ct[0]) ^ RK[i]

for(u8 j=0; j<WSZ; j++){

ct_temp[WSZ+j] = (ct[WSZ+((j+1)%WSZ)] + ct[j]);

//add carry

ct_temp[WSZ+j] += carry;

//set next carry

carry = (ct_temp[WSZ+j] < ct[WSZ+((j+1)%WSZ)]) ||

(ct_temp[WSZ+j] < ct[j]);

ct_temp[WSZ+j] ^= RK[i*WSZ+j];

}

//ct[0] = ROL(ct[0], 3) ^ ct[1]

for(u8 j=0; j<WSZ; j++){

ct_temp[j] = (ct[j]<<3 | ct[(j+WSZ-1)%WSZ]>>5) ^

ct_temp[WSZ+j];

}

//copy ct from temp

for(u8 j=0; j<2*WSZ; j++){

ct[j] = ct_temp[j];

}

}

}

31

A.4 AES128 (128 bits block and 128 bits key)

This document relates only to the AES128 version with a 128-bit key. AES128 is a
substitution-permutation network with block size of 128 bits, and key size of 128 bits

The 128-bit state of AES128is viewed as a sequence of 16 bytes and also as a 4× 4
matrix over F28 in column-major order, i.e., the state S15, . . . , S1, S0 is viewed as:

S0 S4 S8 S12

S1 S5 S9 S13

S2 S6 S10 S14

S3 S7 S11 S15

The encryption flow consists of a whitening step followd by 9 rounds that execute
four transformations SubBytes, ShiftRows, MixColumns, and AddRoundKey on the state
(viewed as a sequence of 16 bytes), followed by the last (10-th) round that exe-
cutes only the transformations SubBytes, ShiftRows, and AddRoundKey (i.e., skipping
MixColumns). The encryption flow is the sequence:

1. Initial round key whitening: generate the initial state S0 using AddRoundKey (de-
scribed below) with the initial whitening key K0 and the plaintext P .

2. Repeat 9 times:
(a) SubBytes: Let S denote the internal state. Then, map Si 7→ SB[Si], for i ∈
{0, . . . , 15}, where SB denotes the AES S-box as shown in Table 3 below.

(b) ShiftRows: apply this bytes shuffle of the internal state S:
S0 S4 S8 S12

S1 S5 S9 S13

S2 S6 S10 S14

S3 S7 S11 S15

 7−→

S0 S4 S8 S12

S5 S9 S13 S1

S10 S14 S2 S6

S15 S3 S7 S11

(c) MixColumns: multiply the state (matrix) by the following matrix:

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

over the field F28 represented with the irreducible polynomial x8+x4+x3+x+1.

(d) AddRoundKey: apply the mapping (XOR with the i-th round key) Sj 7→ Sj⊕Ki
j ,

for all j ∈ {0, . . . , 15}.
3. The last round: execute SubBytes, ShiftRows, and AddRoundKey on the state.

Key scheduling:

1. The cipher key is expanded into 11 round keys, one for each round plus one for
the key whitening steo. The round keys are obtained as follows. Write the K
as 4 32-bit words K = (K3,K2,K1,K0). For S = (S3, S2, S1, S0) ∈ (F28)4, let
SubWord(S) := (SB[S3], SB[S2], SB[S1], SB[S0]), where SB denotes the AES128 S-
box given in Table 3 below. Then, for i ∈ {0, . . . , 43}:

Wi :=

Ki if i < 4

Wi−4 ⊕ (SubWord(Wi−1)≫ 8)⊕ Ri/4 if i ≥ 4 and i ≡ 0 (mod 4)

Wi−4 ⊕Wi−1 otherwise,

32

Table 4. AES Round Constants Table.

Round: 1 2 3 4 5 6 7 8 9 10
R 01 02 04 08 10 20 40 80 1b 36

where for i ∈ {1, . . . , 10}, write Ki to denote the i-th round key
W4i+3,W4i+2,W4i+1,W4i, andK0 to denote the initial whitening keyW3,W2,W1,W0.
The notation R denotes the round constant array given in Table 2

Table 5. The AES128 S-box (SubBytes transformation). The table shows the 256 values
of SubBytes. In this layout, the column is determined by the least significant nibble,
and the row by the most significant nibble. For example, the SubBytes value of 0x9c
is 0xde.

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

00 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76

10 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0

20 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15

30 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75

40 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84

50 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf

60 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8

70 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2

80 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73

90 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db

a0 e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79

b0 e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08

c0 ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a

d0 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e

e0 e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df

f0 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

	Introduction
	Preliminaries
	Notation and conventions
	The building blocks CBCMAC-IV, CTRENC, and CENC

	Specification of the AEAD scheme Simple128
	Nonce based derivation (for =n)
	The Simple128 AEAD scheme
	Concrete instantiations

	Specification of the AEAD scheme Simple64
	Nonce based derivation (for =2n)
	The Simple64 AEAD scheme
	Concrete instantiations

	The concrete proposals of the submission
	Known answer tests (KAT's)

	Design rationale, features and advantages
	Design goals and desired properties
	A brief intuitive description of Simple128 and Simple64
	Design rationale
	Block cipher calls count for Simple128/Simple64
	Features
	Limitations
	Possible optimization for specific use cases

	Security analysis for Simple128 and Simple64
	The security of the underlying block ciphers
	Statement

	Acknowledgments
	Block Cipher Specifications
	PRESENT (64 bits block and 128 bits key)
	GIFT (128 / 64 bits block and 128 bits key)
	Speck (128 / 64 bits block and 128 bits key)
	AES128 (128 bits block and 128 bits key)

