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Chapter 1

Introduction

We propose a lightweight authenticated encryption mode, which is named LAEM.
As an instance, we adopt the lightweight block cipher Simon[2] with 128-bit
block size and 128/192/256-bit key size as the underlying block cipher. The
final algorithm of authenticated encryption with associated data is denoted as
LAEM-Simon, and it ensures both the confidentiality of the plaintexts and the
integrity of the ciphertexts.

The recommended parameter sets for LAEM-Simon are listed in Table 1.1.
Each parameter is an integer number of bytes. The block size is 16 bytes (128-
bit). The nonce size is 16 bytes (128-bit). The key size can be 16/24/32 bytes
(128/192/256-bit). The primary recommended parameter member is LAEM
with Simon 128/128 as the underlying block cipher.

underlying cipher key size block size nonce size
EK k n n

primary recommend Simon 128/128 128 128 128
Simon 128/192 192 128 128
Simon 128/256 256 128 128

Table 1.1: Recommended parameters of LAEM-Simon

In the encryption/authentication procedure, the scheme accepts a 128-bit
nonce, a 128/192/256-bit master keyK, a messageM , an associated data A, and
outputs the ciphertext C. In the decryption/verification procedure, it accepts a
128-bit nonce, a 128/192/256-bit key K, a ciphertext C, an associated data A,
and returns the decrypted messageM if the verification succeeds or ⊥ otherwise.

LAEM has both online-encryption and online-decryption, and it is also par-
allelizable. The confidentiality and integrity of the scheme is provable secure,
assuming the underlying block cipher is a strong PRP under the OAE2 measure.
The scheme is nonce-respect, which means the nonce should be unique and not
repeated under the same key.
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Chapter 2

Specification

2.1 Preliminaries

2.1.1 Symbols

At first, we list some symbols and notations which will be used.

Symbols Descriptions
0b the string of b successive “0”
1b the string of b successive “1”
{0, 1}b the set containing all b-bit strings
{0, 1}∗ the set containing all strings
|A| the bit length of string A
A[i] the ith bit of A
A[i, . . . , j] the bits of A[i]A[i+ 1] · · ·A[j] , i < j
A∥B the concatenation of strings A and B
[i]b the binary representation of i as b-bit string
a � A select an element a from set A uniformly at random

2.1.2 Linear Mix function ρ

For A,B ∈ {0, 1}n, let A ·B, or simply AB, denote the multiplication of A and
B in Galois field GF (2n), and let A⊕B denote bitwise xor of A and B. A linear
mix function ρ is defined as ρ(x, y) = (2x⊕ y, 3x⊕ y). It takes two n-bit strings
x and y as input and gives two n-bit strings x′ and y′ as output. Its inverse
function ρ−1 takes x and y′ as input and gives x′ and y as output, which can
be represented as ρ−1(x, y′) = (x⊕ y′, 3x⊕ y′). Here we use field multiplication
by 2 and 3, which can be represented as simple shift and xor operations.

The linear mix function ρ and its inverse ρ−1 are illustrated in Fig. 2.1

2.1.3 Segmented-AE schemes

A segmented-AE scheme is a triplet Π = (K, E ,D) with a nonce space N , an
associated-data space H and a state space S. LetM = {0, 1}∗ and C = {0, 1}∗
be message space and ciphertext space respectively, and the key space K is a
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Figure 2.1: The linear mix function ρ and its inverse function ρ−1

nonempty set. Let encryption E = (E .init, E .next, E .last) and decryption D =
(D.init,D.next,D.last), and then the components of E and D are defined as
follows:

E .init : K ×N → S D.init : K ×N → S
E .next : S ×H ×M→ C × S D.next : S ×H × C → (M×S) ∪ {⊥}
E .last : S ×H ×M→ C D.last : S ×H × C →M∪ {⊥}

For a segmented-AE scheme Π = (K, E ,D), if there exists a constant τ such
that |Ci| = |Mi| + τ for every i < l, where l is the number of segments in M,
we call τ the segment-expansion of Π.

If the state space of Π is finite and there is a constant ω such that E .next
(D.next) and E .last (D.last) use at most ω bits of working memory, we say that
Π has online-encryption (online-decryption). The scheme Π is online if it has
both online-encryption and online-decryption.

2.2 Specification of LAEM

The inputs to LAEM are a variable-length plaintext M , a variable-length asso-
ciated data A, a fixed-length nonce N , and a fixed-length key K. The length
of M and A is unlimited. The total number of segments in messages is at most
264. The nonce N should never be used repeatedly in different encryptions.

2.2.1 AEAD

Let EK be a block cipher with key K ∈ K, and ρ be the linear mix function
defined in subsection 1.1.2. The authenticated encryption with associated data
procedure of LAEM is illustrated in Fig. 2.2.

For simplicity, the encryption and decryption procedures can be described
simply as follows.

E .init : K ×N → S D.init : K ×N → S
E .data : S ×H → S D.data : S ×H → S
E .next : S ×M→ C × S D.next : S × C → (M×S) ∪ {⊥}
E .last : S ×M→ C D.last : S × C →M∪ {⊥}

where the state update functions of associated data and message are denoted
as E .data/D.data and E .next/D.next respectively.

The n-bit nonce N is used to generate the initial state S∗0 . The associated
data A is divided into n-bit strings (A1, . . . , Aa), where |Ai| = n for 1 ≤ i ≤ a−1,
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Figure 2.2: The encryption procedure of LAEM

0 < |Aa| ≤ n. For the last string Aa, if |Aa| = n we choose the output x′ of ρ
as S∗a and if |Aa| < n we first pad it with one bit ”1” followed by s ≥ 0 bits
”0” to obtain an n-bit string and then choose the output y′ of ρ as S∗a. This
state is also used as the initial state to process the message, namely S0 = S∗a .
The message M is divided into m-bit segments (M1, . . . ,Ml), where |Mi| = m
for 1 ≤ i ≤ l − 1, 0 < |Ml| ≤ m. Then the encryption procedure contains the
following four steps:

1. E .init: generate an initial state with the nonce.

2. E .data: process the associated data and update the state with (S∗i−1, Ai).
This step is called iteratively until i = a.

3. E .next: generate a ciphertext Ci and update the state with (Si−1,Mi||[i]n−m),
where |Ci| = |Mi|+ τ . This step is called iteratively until i = l − 2.

4. E .last: generate ciphertext (Cl−1, Cl) with (Sl−2,Ml−1,Ml), where |Cl−1|+
|Cl| = |Ml−1|+ |Ml|+ 2τ .

In the scheme, [i]n−m denotes the (n−m)-bit representation of a counter i,
which is used for authenticity. Since a valid M ′i obtained in decryption should
be equal to the concatenation of m-bit Mi and (n −m)-bit counter i, we can
take the condition of M ′i [m+ 1, . . . , n] = [i]n−m as verification.

Notice that the step E .last deals with two segments, and the overall segment-
expansion is 2τ . To solve this problem, we take M∗ = Ml−1∥Ml as a segment
with variable length, where m < |M∗| ≤ 2m. The segment-expansion of M∗
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is 2τ , while the other segment-expansions still be τ . Specifically, we define
(τ, ω)-expanding segmented-AE schemes for which |Ci| = |Mi|+ τ for i < l, and
|Cl| = |Ml| + ω. Hence, LAEM is a (τ, 2τ)-expanding segmented-AE scheme.
In later security analysis, we will discuss whether the variable-length expansion
is necessary for building blockcipher-based OAE2-scheme.

The encryption and decryption procedures of LAEM are also described as
the following pseudo-code in Fig. 2.3.

E(K,N,A,M) D(K,N,A,C)
parse A as (A1, . . . , Aa) with |Ai| = n parse A as (A1, . . . , Aa) with |Ai| = n

for i = 1, . . . , a− 1 and 0 < |Aa| ≤ n for i = 1, . . . , a− 1 and 0 < |Aa| ≤ n
parse M as (M1, . . . ,Ml) with |Mi| = m parse C as (C1, . . . , Cl) with |Ci| = n

for i = 1, . . . , l − 1 and 0 < |Ml| ≤ m for i = 1, . . . , l − 2, l and |Cl−1| ≤ n
S∗0 ← EK(N) S∗0 ← EK(N)
for i = 1, ..., a− 1 do for i = 1, ..., a− 1 do

Yi ← EK(Ai) Yi ← EK(Ai)
S∗i ← 2 · S∗i−1 ⊕ Yi S∗i ← 2 · S∗i−1 ⊕ Yi

Ya ← EK(Aa∥10n−|Aa|−1) Ya ← EK(Aa∥10n−|Aa|−1)
if |Aa| = n then Ya ← EK(Aa) if |Aa| = n then Ya ← EK(Aa)

S∗a ← 2 · S∗a−1 ⊕ Ya S∗a ← 2 · S∗a−1 ⊕ Ya

else Ya ← EK(Aa∥10n−|Aa|−1) else Ya ← EK(Aa∥10n−|Aa|−1)
S∗a ← 3 · S∗a−1 ⊕ Ya S∗a ← 3 · S∗a−1 ⊕ Ya

S0 ← S∗a S0 ← S∗a
for i = 1, ..., l − 2 do for i = 1, ..., l − 2 do

Xi ← 3 · Si−1 ⊕ (Mi∥[i]n−m) Xi ← E−1K (Ci)
Si ← 2 · Si−1 ⊕ (Mi∥[i]n−m) M ′i ← 3 · Si−1 ⊕Xi

Ci ← EK(Xi) if M ′i [m+ 1, . . . , n] ̸= [i]n−m then return ⊥
Xl−1 ← 3 · Sl−2 ⊕ (Ml−1∥[l − 1]n−m) else Mi ←M ′i [1, . . . ,m]
C∗ ← EK(Xl−1) Si ← 2 · Si−1 ⊕M ′i
Cl−1 ← C∗[1, . . . , n−m+ |Ml|] Xl ← E−1K (Cl)
Z ← C∗[n−m+ |Ml|+ 1, . . . , n] M ′l ← 3 · Sl−2 ⊕Xl ⊕ EK(|C| − l · (n−m))
M∗ ←Ml∥Z∥[0]n−m if M ′l [m+ 1, . . . , n] ̸= [0]n−m then return ⊥
Xl ← 3 · Sl−2 ⊕M∗ ⊕ EK(|M |) else Ml ←M ′l [1, . . . , |Cl−1| − (n−m)]
Cl ← EK(Xl) Z ←M ′l [|Cl−1| − (n−m) + 1, . . . ,m]
return (C1, . . . , Cl−1, Cl) Xl−1 ← E−1K (Cl−1∥Z)

M ′l−1 ← 3 · Sl−2 ⊕Xl−1
if M ′l−1[m+ 1, . . . , n] ̸= [l − 1]n−m then return ⊥

else Ml−1 ←M ′l−1[1, . . . ,m]
return (M1, . . . ,Ml−1,Ml)

Figure 2.3: The pseudo-code of LAEM

2.2.2 Short message

For extremely short message whose length is no more than m-bit, special opera-
tion should be made to the Step E .last. For this case, the encryption procedure
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is illustrated in Fig. 2.4.
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Figure 2.4: The encryption procedure of LAEM for short message with |M | ≤ m

In this case, Steps of E .init and E .data remain unchanged, and the Step
of E .next will be omitted. For the Step of E .last, the message is first padded
with (m − |M |)-bit ”0” to get an m-bit string M0∗. Then generate ciphertext
C1 with (S0,M0∗||[1]n−m), where |C1| = |M |. At last, generate ciphertext C2

with (S0, Z||0|M |, [|M |]n). Note that the procedure is similar with section 1.2.1.
Details of the Step E .last for short message with |M | ≤ m can also be found in
the pseudo-code in Fig. 2.5

S0 ← S∗a S0 ← S∗a

X1 ← 3 · Si−1 ⊕ (M∥0n−|M |−11) X2 ← E−1K (C2)
C∗ ← EK(X1) M ′2 ← 3 · S0 ⊕X2 ⊕ EK(|C| − n))
C1 ← C∗[1, |M |] if M ′2[2n− |C|+ 1, n] ̸= 0|C|−n then return ⊥
Z ← C∗[|M |+ 1, n] else Z ←M ′2[1, 2n− |C|]
M∗ ← Z∥0|M | X1 ← E−1K (C1∥Z)
X2 ← 3 · S0 ⊕M∗ ⊕ EK(|M |) M ′ ← 3 · S0 ⊕X1

C2 ← EK(X2) if M ′[|C| − n+ 1, n] ̸= 02n−|C|−11 then return ⊥
return (C1, C2) else M ←M ′[1, |C| − n]

return M

Figure 2.5: The pseudo-code of E .last for short message with |M | ≤ m
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2.2.3 The underlying block cipher

Considering the requirements of lightweight AEAD algorithm, we choose the
lightweight block cipher Simon[2] as the underlying block cipher EK of LAEM.

Simon is a family of lightweight block ciphers designed to be extremely
small in hardware. It supports a variety of block and key sizes. According to
the definition in [2], the Simon block cipher with an n-bit word (and hence a
2n-bit block) and an m-word (mn-bit) key is denoted Simon 2n/mn, where
n is required to be 16, 24, 32, 48, or 64. In order to satisfy the requirements
of key length and nonce length of AEAD algorithm, we choose Simon with
128-bit block size and 128/192/256-bit key sizes as the underlying block cipher.
Specifically, parameters of the three versions are listed in Table 2.1.

EK block key word key const rounds
size 2n size mn size n words m seq

Simon 128/128 128 128 64 2 z2 68
Simon 128/192 128 192 64 3 z3 69
Simon 128/256 128 256 64 4 z4 72

Table 2.1: Parameters of the underlying block cipher

Each instance of Simon uses the familiar Feistel structure. For Simon 2n,
the round function is defined by

Rk(x, y) = (y ⊕ f(x)⊕ k, x),

f(x) = (S1x & S8x)⊕ S2x

where Sj denotes left circular shift by j bits, and & denotes bitwise AND. The
n-bit round key k is generated by key schedules.

The Simon key schedules employ five sequences of 1-bit round constants
denoted as z0, . . . z4. Each of these sequences is defined in terms of one of the
following period 31 sequences:

u = u0u1u2 . . . = 1111101000100101011000011100110 . . . ,

v = v0v1v2 . . . = 1000111011111001001100001011010 . . . ,

w = u0w1w2 . . . = 1000010010110011111000110111010 . . . ,

For the three versions of Simon used as our underlying block cipher, the con-
stant sequences z2, z3, and z4 have period 62 and are formed by computing the
bitwise XOR of the period 2 sequence t = t0t1t2 . . . = 01010101 . . . with u, v,
and w, respectively.

Let c = 2n−4 = 0xff · · · fc. For Simon 2n with m key words (km−1, . . . , k0)
and constant sequence zj , round keys are generated by

ki+m =

 c⊕ (zj)i ⊕ ki ⊕ (I ⊕ S−1)S−3ki+1, if m = 2
c⊕ (zj)i ⊕ ki ⊕ (I ⊕ S−1)S−3ki+2, if m = 3

c⊕ (zj)i ⊕ ki ⊕ (I ⊕ S−1)(S−3ki+1 ⊕ ki+1), if m = 4

for 0 ≤ i < T −m, where T is the number of rounds. Note that key words k0 to
km−1 are used as the first m round keys; they are loaded into the shift registers
with k0 on the right and km−1 on the left.

For the complete specification of Simon one can refer to [2] for more details.
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2.2.4 LAEM-SIMON and its security claims

Based on the description of LAEM and underlying block cipher in the former
sections, here we give the final specification of lightweight authenticated encryp-
tion with associated data algorithm LAEM-Simon.

For the linear mix function ρ(x, y) = (2x ⊕ y, 3x ⊕ y), the multiplication is
defined in Galois field GF(2128) with primitive polynomial p(x) = x128 + x7 +
x2 + x+ 1.

The algorithm has 4 parameters: key length, block length, segment length,
nonce length. Each parameter is an integer number of bytes. The key length can
be 16/24/32 bytes (128/192/256-bit). The block length is 16 bytes (128-bit).
The segment length is 8 bytes (64-bit). The nonce length is 16 bytes (128-bit).
The recommended parameter sets for LAEM-Simon are as follows.

underlying cipher key size block size segment size nonce size
EK k n m n

Simon 128/128 128 128 64 128
Simon 128/192 192 128 64 128
Simon 128/256 256 128 64 128

Table 2.2: Recommended parameters of LAEM-Simon

For the AEAD algorithm LAEM-Simon, the security claim of confidentiality
is expected to be the length of key. For the security claim of integrity, in the
scheme a validM ′i obtained in decryption should be equal to the concatenation of
m-bit Mi and (n−m)-bit counter i, and hence we can use [i]n−m as verification.
Therefore, for a message M which is divided into m-bit segments (M1, . . . ,Ml),
where |Mi| = m for 1 ≤ i ≤ l − 1, 0 < |Ml| ≤ m, the tag length should be
(n −m)l = 64l-bit. On the other hand, for short message with |M | ≤ m, the
tag length should be n-bit.
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Chapter 3

Design Rationale

3.1 AE Mode

First of all, we explain the design strategy of the authenticated encryption
mode of LAEM. Considering the advantages of block cipher, such as low cost,
high efficiency, mature analysis, and widespread applications, we try to build a
blockcipher-based OAE2 scheme.

A general model of OAE2 scheme is described in Figure 3.1. In the model,
a blockcipher-based basic operation maps (Si−1,Mi) to (Si, Ci). The operation
consists of a linear mix function and an underlying block cipher Ek. First, the
linear mix function maps a pair of input (Si−1,Mi) to (Si,M

′
i). Then, M ′i is

encrypted by the block cipher Ek to get the ciphertext Ci and the intermediate
state is updated as Si.

M1

C1

S0

M2

C2

S1 S2

Mi

Ci

Si-1 Si

Figure 3.1: A general model of OAE2 scheme

In order to reduce the implementation cost, we build the basic operation
with only one call of the underlying block cipher and one call of a linear mix
function. For the linear mix function, we denote it as ρ(x, y) = (ax⊕by, cx⊕dy).
The input of underlying block cipher is formalized as cSi ⊕ dMi, or ca

i−1S0 ⊕
σi−1
j=1a

i−j−1bcMj ⊕ dMi, where the multiple of S0 is a mask. To avoid collisions
in the inputs of underlying block cipher, we try to generate distinct masks. The
powering-up construction proposed by Rogaway[20] gives us an efficient way to
produce many distinct masks as 2α3β7γL from one secret value L = EK(0).
Based on this construction, we choose ρ(x, y) = (2x⊕ y, 3x⊕ y) with respect to
a polynomial which makes the values of mask δ distinct from each other, where
δ = 2α3βS0 for varying indices of α and β. The polynomial should satisfy
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two requirements: (1) it needs to be primitive; (2) log2 3 is “huge”. For the
state size n = 128, the polynomial p(x) = x128 + x7 + x2 + x + 1 satisfies the
requirements, and makes the values of 2α3β all distinct and not equal to 1 for
any α ∈ [−2115, 2115] and any β ∈ [−210, 210]. Note that for other state size n,
we can still find other suitable polynomials satisfying these requirements.

3.2 AE with Associated Data

The problem of handling associated data with AE scheme was formally pro-
posed by Rogaway [19]. It is mainly aiming for the requirements of binding
some cleartext datas, such as an IP address, to a ciphertext. In an authenti-
cated encryption with associated data scheme (denoted as AEAD), the asso-
ciated data is normally treated as a header for purpose of routing or message
parsing (CCM[11], GCM[12], SpongeWrap[3], and ALE[6]). Usually, the scheme
generates an intermediate state based on a nonce and an associated data, and
then the state will be used in encrypting plaintext (or decrypting ciphertext).

In the definition of OAE2, the associated data is partitioned and provided
with each plaintext (or cipheretxt) segment. The number of associated data
segments must equal to the number of the corresponding message segments.
Moreover, for the situation of encrypting a long message with a short associ-
ated data, such as a message with an IP address, partitioning and padding the
associated data into segments as long as message segments results in unneces-
sary redundant. In particular, when the associated data needs to be verified
before releasing messages, an OAE2 scheme has to store all messages before the
last associated data segment is verified.

When encrypting long messages with long associated data, an OAE2 scheme
partitions both the message and the associated data into segments, and pro-
cesses with a message segment and an associated data segment each time calling
the basic operation. To keep the scheme online, which means that each calling
uses at most ω bits of working memory, the segment size of message and asso-
ciated data should be small enough to satisfy the online memory requirement.

This seems unreasonable compared to the way of processing associated data
in the initial procedure before receiving messages. Therefore, we choose to take
associated data as a header of message and process it before the message input.

3.3 The Underlying Block Cipher

According to the security evaluation of LAEM, the confidentiality and integrity
of the scheme is provable secure, assuming the underlying block cipher is a strong
PRP under the OAE2 measure. Moreover, based on the design requirements, the
algorithm is supposed to perform efficiently in constrained environments. Es-
pecially, components with significant third-party analysis are favorable. There-
fore, instead of designing a new lightweight block cipher hastily, we adopt the
extremely lightweight block cipher Simon [2] as the underlying block cipher EK

of LAEM for instance.
The Simon families of lightweight block ciphers were designed by researchers

from National Security Agency of the USA and published formally in 2013 [2].
Simon is designed to be extremely small in hardware, and also flexible across
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a range of platforms. The encryption procedure of Simon only uses basic op-
erations such as XOR, bitwise AND and rotation. Hence, compared to other
lightweight block ciphers, it has very competitive performance, for instance,
compactness in hardware and small memory footprint.

Simon supports a variety of 10 versions with block size varying from 32-bit
to 128-bit and key size varying from 64-bit to 256-bit. However, according to
the submission requirements about key length and nonce length, together with
the security claims of our scheme, we only choose Simon with 128-bit block size
and 128/192/256-bit key sizes as the underlying block cipher.

Since its publication, Simon has attracted a lot of analytic attention because
of its very simple and novel design, and lack of security analysis in the design
document. Through years of security evaluation in the public, a large num-
ber of cryptanalytic results have been reported in the literature. The attacks
have covered most of the known cryptanalytic techniques against block cipher,
including differential attack, linear attack, impossible differential attack, zero-
correlation linear attack, integral attack and so on. According to the results
of third-party analysis up to now, there are no feasible attacks on full round
Simon, and it surely maintains enough security margin. Therefore, it totally
fulfills the security requirements of underlying block cipher used in LAEM.
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Chapter 4

Features

In this section, we list some main features of LAEM with respect to security
and performance aspects. This scheme has many useful features, especially for
processing network packets, constraint environment applications and so on.

Online. An on-line authenticated encryption algorithm can provide real-time
encryption/decryption without occupying recourse for buffer. This can be very
attractive for some practical application enviorenments, such as constrained
devices. LAEM allows both online encryption and online decryption. Each seg-
ment of decrypted plaintext, as well as encrypted ciphertext, can be released
directly after computation, since the verification cost is negligible. Therefore,
LAEM can offer online authenticated encryption with quite small working mem-
ory, and will not suffer from the problem of releasing unverified plaintext (RUP).

Provable Secure. LAEM is an OAE2-secure scheme when the underlying
block cipher is a strong PRP under the OAE2b measure. We extend OAE2
measure to adapt our variable-length segment-expansion OAE2 scheme which
calls the underlying component only one time in both E .next and E .last.

Fully Parallelizable. LAEM calls the underlying block cipher once perm-bit
plaintext segment and it is fully parallelizable in both encryption and decryption
procedures. Therefore, LAEM is suitable not only for resource constrained en-
vironments, but also for high-performance parallel implementations on modern
general purpose CPUs and dedicated hardwares.

Maximum Message Length. The message length is irrelevant to the secu-
rity bound of LAEM, which allows magnitude data to be processed per key.
Considering the version of LAEM with 128-bit block size and 64-bit segment
length, messages can be partitioned up to 263 segments. Therefore, the amount
of data processed per key is up to 269 bits.

Flexible Parameter Selection. LAEM is a blockcipher-based OAE2 scheme.
The segment size m determines the trade-off between security level and compu-
tation efficiency. Users can choose appropriate value of segment sizem according
to the implementation requirements. Whenm is close to the block size n, LAEM
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achieves high efficiency, nearly rate-1. When m is close to n/2, LAEM achieves
high integrity security level in the cost of being nearly rate-2. According to
the results of security analysis, the integrity security with m < n/2 will be not
higher than that of a scheme with m = n/2. Therefore, we recommend the
value of m to be chosen from [n/2, n].

For example, whenm = n/2 the integrity of LAEM against generic attacks is
upper bounded by 2n/2, and the processing efficiency is rate-2, which means the
scheme requires twice block cipher calls per n-bit data. When m = 2n/3, the
integrity against generic attacks is upper bounded by 2n/3, and the processing
efficiency is rate-1.5, which means the scheme requires one n-bit block cipher
call per 2n/3-bit data.

Extendibility of Underlying Components. LAEM is mainly built based
on an underlying block cipher and a linear mix function ρ. By choosing different
fields and corresponding polynomials p(x), we can build LAEM type schemes
with different segment lengths and block sizes. Taking an n-bit block cipher
as the underlying component and an irreducible polynomial p(x) in Galois field
GF(2n) which satisfies the requirements discussed in Section 3.2, we can build a
LAEM type scheme flexibly. The scheme will use about n-bit working memory in
both encryption and decryption, where n is between 32 and 512, determined by
the underlying block cipher. These make LAEM scheme adjustable in different
environments.

Considering an environment with small working memory, such as 64 bits,
neither a conventional AE scheme wrapped in CHAIN/STREAM protocol or
an OAE1 scheme with intermediate tags is online for the limitation of memory.
Taking a lightweight block cipher as the underlying block cipher, LAEM can
still maintain online encryption and online decryption in such a small working
memory environment.

Lightweight. LAEM uses only one block cipher with a single key. Moreover,
the linear mix function is built with simple addition and multiplication in a
Galois field. Therefore, the scheme needs only a little bit more area costs than
the underlying lightweight block cipher.

One-Pass. Only one pass through the plaintext is required to provide both
integrity and confidentiality. This allows on-the-fly encryption without storing
previous ciphertext blocks.

One-Key. Only one single key is required to process both plaintext and asso-
ciated data, which achieves the minimum key number.
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Chapter 5

Implementation Evaluation

5.1 Hardware Performances

The design of LAEM aims at lightweight authenticated encryption scheme, and
tries to provide confidentiality and integrity protections for constraint environ-
ment applications. The scheme is one-key, one-pass, and fully parallelizable.
Moreover, the underlying block cipher adopted is extremely compact in hard-
ware.

In the LAEM scheme, for each segment of message and associated data
only around one basic operation needs to be called. For the basic operation,
except the underlying block cipher Ek, a linear mix function ρ is also applied.
The linear mix function is defined as ρ(x, y) = (2x ⊕ y, 3x ⊕ y), where the
multiplication is defined in field GF (2128) with primitive polynomial p(x) =
x128 + x7 + x2 + x + 1. By choosing appropriate and simple multiplication
parameters, all of the multiplications can be implemented by a small amount of
shift and XOR operations, which cost little in hardware. Moreover, the message
segments are padded with counter, which can be implemented very efficiently in
hardware. Therefore, the main hardware implementation cost will be dominated
by the underlying block cipher.

For the instance underlying block cipher, we adopt the extremely compact
lightweight block cipher families Simon with 128-bit block size and 128/192/256-
bit key sizes. According to the hardware performances evaluated by the design-
ers, three key sizes versions of Simon 128 costs 1234/1508/1782 GE in the
area-minimizing implementations respectively (quoted from Table 6.1 in [2]).

5.2 Software Performances

Similar to the analysis of hardware performances, the scheme LAEM can be
implemented efficiently in various software platforms. Since LAEM satisfies ad-
vantageous features such as on-line, one-pass, and one-key, the scheme achieves
minimum calls of underlying block cipher and low memory occupations. More-
over, Simon is also designed to be flexible across a range of software platforms.
According to the software performances evaluated by the designers, three key
sizes versions of Simon 128 can achieve 333/335/353 cycles/byte respectively in
high-throughput implementations on 8-bit microcontrollers (quoted from Table
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7.1 in [2]). Moreover, by utilizing the high-speed SSE instructions, they can
also be implemented efficiently on 32/64-bit processors, which achieve about
7.5/7.7/8.0 cycles/byte respectively (quoted from Table A.1 in [2]).
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Chapter 6

Security Evaluation

6.1 Provable Security

6.1.1 Definition of security of OAE2 schemes

We use OAE2b measure to quantify the advantage that an adversary gets in
attacking an OAE2 scheme [20]. OAE2b is a string-oriented formulation, and
employs more realistic accounting of the adversary’s actual resource expenditure
than OAE2a and OAE2c.

Notice that LAEM is not a constant-segment-expansion OAE2 scheme, and
LAEM’s corresponding ideal model and OAE2b measure will be little different
from the ones in [15]. We denote (τ, ω)-expanding segmented-AE scheme Π such
that |Ci| = |Mi|+ τ for i < l, and |Cl| = |Ml|+ ω.

Let Inj(τ) denote the set of all τ -expanding injective functions f : {0, 1}∗ →
{0, 1}∗, where |f(x)| = |x|+ τ . Define IdealOAE(τ, ω) as follows:

for m ∈ Z+, N ∈ {0, 1}∗,M ∈ ({0, 1}∗)m−1 do
fN,M,0 � Inj(τ)
fN,M,1 � Inj(ω)

for m ∈ Z+,M ∈ ({0, 1}∗)m, σ ∈ {0, 1} do
F (N,M, σ)← (fN,Λ,0(M1), fN,M1,0(M2), . . . , fN,M1,...,Mm−2,0(Mm−1),

fN,M1,...,Mm−1,σ(Mm))
ret F

Figure 6.1 defines games Real2BΠ and Ideal2BΠ for a (τ, ω)-expanding seg-
mented AE scheme Π. Given an adversary A with oracles Enc and Dec deter-
mined by these games, we define the adversary’s distinguishing advantage as
follows:

Advoae2b
Π (A) = |Pr[AReal2BΠ ⇒ 1]− Pr[AIdeal2BΠ ⇒ 1]|
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Real2BΠ Ideal2BΠ

proc initialize proc initialize
I, J ← 0 I, J ← 0
K � K F � IdealOAE(τ, 2τ)

proc Enc.init(N) proc Enc.init(N)
if N /∈ N then ret ⊥ if N /∈ N then ret ⊥
I ← I + 1 I ← I + 1

S(I) ← E.init(K,N) N(I) ← N ;M ← ϵ
ret I ret I

proc Enc/Dec.data(i, A) proc Enc/Dec.data(i, A)

if i /∈ [1..I] or S(i) = ⊥ then ret ⊥ if i /∈ [1..I] or A(i) = ⊥ then ret ⊥
S(i) ← E.data(S(i), A) A(i) ← A(i)∥A

proc Enc.next(i,M) proc Enc.next(i,M)

if i /∈ [1..I] or S(i) = ⊥ then ret ⊥ if i /∈ [1..I] or M(i) = ⊥ then ret ⊥
(C, S(i))← E.next(S(i),M) M(i) ←M(i)∥M ;λ← ⌈|M(i)|/m⌉
ret C C ← F (N(i), A(i),M(i), 0)

ret Cλ

proc Enc.last(i,M)

if i /∈ [1..I] or S(i) = ⊥ then ret ⊥ proc Enc.last(i,M)

C ← E.last(S(i),M) if i /∈ [1..I] or S(i) = ⊥ then ret ⊥
S ← ⊥ M(i) ←M(i)∥M ;λ← ⌈|M(i)|/m⌉
ret C C ← F (N(i), A(i),M(i), 1)

M(i) ← ⊥
proc Dec.init(j, C) ret Cλ

if N ̸= N then ret ⊥ proc Dec.init(j, C)
I ← I + 1

S(I) ← E.init(K,N) if N ̸= N then ret ⊥
ret I I ← I + 1

N(I) ← N ;C ← ϵ
proc Dec.next(j, C) ret I

if j /∈ [1..J ] or S′(j) = ⊥ then ret ⊥
(M,S′(j))← D.next(S′(j), C) proc Dec.next(j, C)

ret M if j /∈ [1..J ] or C(j) = ⊥ then ret ⊥
C(j) ← C(j)∥C;λ← ⌈|C(j)|/m⌉

proc Dec.last(j, C) if ∃M s.t. F (N(j), A(j),M, 0) = C(j)

if i /∈ [1..J ] or S′(j) = ⊥ then ret ⊥ then ret Mλ

M ← D.last(S′(j), C) else C(j) ← ⊥
S′(j) ← ⊥ ret ⊥
ret M

proc Dec.last(j, C)

if j /∈ [1..J ] or C(j) = ⊥ then ret ⊥
C(j) ← C(j)∥C;λ← ⌈|C(j)|/m⌉
if ∃M s.t. F (N(j), A(j),M, 1) = C(j)

then ret Mλ

else C(j) ← ⊥
ret ⊥

Figure 6.1: OAE2b measure

6.1.2 Main Results

We now prove the OAE2 security of LAEM.

Theorem 1. Let Π be LAEM with the underlying blockcipher E. For any
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adversary A making at most q forward queries of total segment length no more
than σand at most qv backward queries of total segment length no more than σv,
with associated-data of total block length no more than α, we have

Advoae2b
ΠE

(t, tv, q, qv, σ, σv, α) ≤ Advsprp
E (σ + σv + α+ 2q + 2qv)

+
3σ2 + 2σ2

v + 6σσv + α2

2n+1
.

Notice that for each input of Enc.last or Dec.last, we take the input as 2
segments in counting total segment length.

Proof. Our analysis is derived by game-playing argument. To make the analysis
concise, we assume that an adversary always makes valid queries, which means
answers of the encryption (decryption) oracle will not be used to query the
decryption (encryption) oracle; and the adversary will not make queries with
repeating nonce or query a segment after a message ended with an “end” flag.
The situations with ⊥ as output does not happen.

Consider games G0-G5 as shown in Figures 6.2-6.7 in Appendix. G0 cor-
responds to the real LAEM. G1 is identical to G0, except that the underlying
block cipher EK is replaced by a permutation P randomly chosen in Perm(n).
The advantage of distinguishing G0 and G1 is bound by the SPRP security of
EK ,

|Pr[AG0 ⇒ 1]− Pr[AG1 ⇒ 1]| ≤ Advsprp
E (t+ tv, σ + σv + α+ 2q + 2qv).

In game G2, a mapping F : {0, 1}n → {0, 1}n perfectly simulates P . When
called with a fresh input X, F randomly chooses a string Y from {0, 1}n and
maps X into Y ; and when X has been queried before, F finds the corresponding
image Y and return. Then, Pr[AG1 ⇒ 1] = Pr[AG2 ⇒ 1].

Game G3 is identical to G2, except that when the flag bad sets true, G3 will
choose a new value for T (a combination of a state and a counter i). The two
games are identical-until-bad,

|Pr[AG2 ⇒ 1]− Pr[AG3 ⇒ 1]| ≤ Pr[AG2 sets bad].

We estimate the probability of “bad sets ture” by counting the increasing size
of Q0,Q1,Q2 and DomF (·), and bound the probability by (2σ2 + σ2

v + 4σσv +
4qσ + 2qvσ + 2ασ − 2σ − 2qvσv − σv + α2 + 2q2v)/2

n+1.
Notice that the input of F has two parameters, a segment M and a modified

state T . When T is fixed, F can be seen as an injective function about M . We
try to replace F (S ⊕ (M∥[0]n−m)) by a family of injective functions GT (M),
where T ∈ {0, 1}n and M ∈ {0, 1}m. There are two special situations:

1. T1 = T2 for T1, T2 ∈ {0, 1}n, implying to GT1(·) = GT2(·);

2. T1 ⊕ (M1∥[0]n−m) = T2 ⊕ (M2∥[0]n−m) for (T1,M1), (T2,M2) ∈ Q1|(T,M).
BecauseGT (·) is built according to P , T1⊕(M1∥[0]n−m) = T2⊕(M2∥[0]n−m)
implies GT1(M1) = GT2(M2). When this situation happens in queries,
the adversary will know GT1(M) = GT2(M ⊕ δ) for δ = M1 ⊕M2 and all
M ∈ {0, 1}m.
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We avoid two situations by choosing suitable values of T , as we do in game
G3. Therefore, elements in {GT (·)}T∈T1|T are independent of each other. By
replacing F (·) by G·(·), we get the encryption part of game G4 as show in Figure
6.5.

In the decryption of game G3, the adversary can only get an answer not
equal to false when the inequality in line 427 is false in Dec.next of game G3,
or the inequalities in lines 439 and 446 are false in Dec.last. We see that the
probability of setting false inequality depends on the eligible set of M and the
eligible set of C. By the method Rogaway and Shrimpton[21] used in the analysis
of the indistinguishability of DAE and PRI, we simulate the Dec.next of game

G3 by choosing randomly from the set {0, 1}n − {C : (T
(i)
j−1, T

(i)
j , ·, ·, C) ∈ Q2},

and build the Dec.next of game G2. Similar for the Dec.last. With the perfect
simulation of G, game G4 coincides with G3. Thus Pr[AG3 ⇒ 1] = Pr[AG4 ⇒ 1].

In game G4, we have a family {GT (·)}T∈Q1|T of independent injective func-
tions with different values of T randomly chosen from {0, 1}n. Notice that T is
a mark for an injective function GT (·) that GT (·) ̸= GT ′(·) for any T ′ ∈ Q1|T
with T ̸= T ′. It will make no difference to change the subscript T

(i)
j−1 into

(N (i), A(i),M
(i)
1 , . . . ,M

(i)
j−1) for every G

T
(i)
j

(M
(i)
j ). For Enc.last, we build a new

injective funtion G′ with G for a valid query (T1, T2,M1,M2):

G′
T1,T2

(M1,M2) = (GT1(M1)[1, n−m+ |M2|], GT2(M2∥GT1(M1)[n−m+ |M2|+1, n])).

We change (T
(i)
j−1, T

(i)
j ) into (N (i), A(i),M

(i)
1 , . . . ,M

(i)
j−1) as we do to G

T
(i)
j

(M
(i)
j )

for every G′
T

(i)
j−1,T

(i)
j

(M
(i)
j ,M

(i)
j+1).

By adding one bit flag to distinguish G and G′, we get injective functions

like G∗
N(i),A(i),M

(i)
1 ,...,M

(i)
j−1,0

(M
(i)
j ) and G∗

N(i),A(i),M
(i)
1 ,...,M

(i)
j−1,1

(M
(i)
j ,M

(i)
j+1). The

only difference between G∗N,A,M,0 (or G∗N,A,M,1) and HN,A,M,0 � Inj(n−m) (or
HN,A,M,1 � Inj(2(n −m))) is that G∗ always outputs different images, while
H with different subscript values may output same images. The probability of
distinguishing G∗ and H by an adversary is bound by (σ+σv)(σ+σv−1)/2n+1.
We build game G5 with H, thus

|Pr[AG4 ⇒ 1] = Pr[AG5 ⇒ 1]| ≤ (σ + σv)(σ + σv − 1)

2n+1
.

Notice that G5 coincides with Ideal2B. We can get the adversary’s distin-
guishing advantage by summing all these up.

Advoae2b
ΠE

(t, tv, q, qv, σ, σv, α) ≤ |Pr[AG0 ⇒ 1]− Pr[AG5 ⇒ 1]|
≤ Advsprp

E (σ + σv + α+ 2q + 2qv)

+
1

2n+1
(3σ2 + 2σ2

v + 6σσv + 4qσ + 2qvσ

−2qvσv + 2ασ − 3σ − 2σv + α2 + 2q2v)

≤ Advsprp
E (σ + σv + α+ 2q + 2qv)

+
3σ2 + 2σ2

v + 6σσv + α2

2n+1
.
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To compare with other schemes, we give the OAE2c security of LAEM which
separately defines privacy and authenticity requirements as follows.

Theorem 2. Let Π be LAEM with the underlying blockcipher E. For any
adversary A making at most q forward queries of total segment length no more
than σ,

Advoae2c−priv
ΠE

(t, q, σ) ≤ Advsprp
E (t, σ + q) +

(σ + q)2

2n
.

Theorem 3. Let Π be LAEM with the underlying blockcipher E. For any
adversary A making at most q forward queries of total segment length no more
than σ, and at most qv backward queries of total segment length no more than
σv,

Advoae2c−auth
ΠE

(t, tv, q, qv, σ, σv) ≤ Advsprp
E (t+ tv, σ + σv + 2q + 2qv)

+
(σ + σv + q + qv)

2

2n
+

2qv
2n−m

.

6.2 The Underlying Block Cipher

Since the publication of Simon lightweight block cipher family in 2013, it has
attracted many researchers’ attention and a large number of security analysis
results have been reported in the literature. The attacks including differential
attack, linear attack, impossible differential attack, zero-correlation linear at-
tack, integral attack and so on. In this section, we summarize the main attack
results of Simon 128, which is the underlying block cipher used in LAEM.

6.2.1 Differential Attack

Differential attack is the most widely used method to evaluate the security of
block ciphers. Therefore, differential attack on Simon was studied at the earliest
and the publications were richest. The main results include differential charac-
teristics of round-reduced Simon variants searched by various automatic tech-
niques, such as threshold search [4], MILP [24], and SAT/SMT [17]. Moreover,
based on these differential characteristics, Wang et al. [27] proposed a dynamic
key-guessing technique which largely reduced the number of key guesses. Fi-
nally, they presented differential attacks on 50-round Simon 128/128, 51-round
Simon 128/192, and 51-round Simon 128/256 respectively. These are the best
differential attacks so far, which means three versions of Simon 128 with full
rounds are all secure against differential attack.

6.2.2 Linear Attack

Linear attack is one of the most important cryptanalytic techniques and has
showed great power against some block ciphers. It also provides the best attack
results on Simon up to now. In [10], Chen and Wang presented improved linear
attacks on all reduced versions of Simon with dynamic key-guessing technique.
Specifically, the linear attacks can reach up to 49-round Simon 128/128, 51-
round Simon 128/192, and 53-round Simon 128/256 respectively. These are
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the best cryptanalysis results on Simon 128 under secret-key setting. Therefore,
full round Simon 128 maintains enough security margin against known attacks.

6.2.3 Impossible Differential Attack

Impossible differential attack is one of the most powerful cryptanalytic tech-
niques against block cipher. Its main idea is to construct differentials with
probability zero in order to eliminate the wrong key candidates leading to such
impossible differentials. Usually, a miss-in-the-middle approach is used to con-
struct the impossible differential distinguisher.

There have been several impossible differential attacks on various variants of
Simon. The main results about Simon 128 contains an impossible differential
attack on 22-round for all three key sizes presented in [1]. Then Boura et al. [8]
further improved the results up to 27-round Simon 128/128, 28-round Simon
128/192, and 30-round Simon 128/256.

6.2.4 Zero-correlation Linear Attack

Zero-correlation linear attack is one of the recent cryptanalytic techniques pro-
posed by Bogdanov and Rijmen in [7]. Its main idea is to construct linear
approximation with correlation zero. For the version of Simon with 128-bit
block size, the best zero-correlation linear attack was reported in [23]. First,
they presented 19-round zero-correlation linear approximations of Simon 128,
and then based on the distinguisher they provided zero-correlation linear attacks
on 32-round Simon 128/192 and 34-round Simon 128/256, respectively.

6.2.5 Integral Attack

Integral attack is a traditional cryptanalytic technique which exploits a dis-
tinguisher whose outputs have the zero-sum property with respect to a set of
chosen inputs. Recently, integral attack has developed significantly since Todo
[25] proposed a generalized integral property, called division property, at EURO-
CRYPT 2015. It becomes a powerful cryptanalytic technique against bit-based
block cipher, or cipher with low algebraic degree round function.

In [25], based on the division property, Todo presented integral distinguish-
ers of Simon for each state size by viewing the round function as an Sbox of
algebraic degree two. Their results shows that Simon 128 has 13-round integral
distinguisher. Later, Todo et al. further introduced bit-based division property
in [26], which can treat each bit of Simon independently. However, bit-based
division property was only applicable to Simon 32 since the time and mem-
ory complexity is computationally impractical for larger block size. Therefore,
they introduced a new technique called lazy propagation which evaluated only
a part of all propagations. This technique can evaluate the number of rounds
that bit-based division property cannot find integral distinguishers. As a re-
sult, they theoretically proved that Simon 128 do not have 29-round integral
distinguishers.
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6.2.6 MITM Attack

Meet-in-the-middle attack is a powerful cryptanalytic technique against block
cipher, especially for cipher with simple key schedules. Moreover, in recent years
meet-in-the-middle attack have developed a lot and many new techniques, such
as sieve-in-the-middle[9], match box[13] etc, have been proposed.

By exploiting the weaknesses of the linear key schedules of Simon, a match
box meet-in-the-middle attack on round-reduced Simon was presented in [22].
For the versions of Simon 128/192 and Simon 128/256, the match box meet-
in-the-middle attack can both achieve 25-round with very low data complexity.
For the version of Simon 128/128, a basic meet-in-the-middle attack is more
effective which can achieve 19-round. All of these analysis results are far away
from full-round.

6.2.7 Known-key Attack

Besides the security evaluation of Simon under classical secret single-key model,
the resistance of Simon against known-key attacks has also been studied. Known-
key attacks (also called known-key distinguishers) were introduced by Knudsen
and Rijmen at ASIACRYPT 2007 [16] and have been applied to PRSEENT to
get a full round known-key attack in [5]. Unlike the setting of classical secret-key
model, the adversary in the known-key model knows the randomly chosen key.
With the knowledge of the key, the adversary is supposed to find a non-random
property that an ideal cipher should not have.

In [14], Hao et al. proposed known-key attacks on various versions of round-
reduced Simon. Specifically, for the underlying block cipher Simon with 128-bit
block used in LAEM, the known-key attack can achieve up to 63-round. Hence,
even in the known-key model, full round Simon 128 still has enough security
margin.
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Appendix: Figures

Game G0

000 proc initialize
001 K � K

100 proc Enc.init(N(i)) 200 proc Dec.init(N(i))

101 S
∗(i)
0 ← EK(N(i)) 201 S

∗(i)
0 ← EK(N(i))

102 proc Enc.data(A
(i)
j ) 202 proc Dec.data(A

(i)
j )

103 Y
(i)
j ← EK(A

(i)
j ) 203 Y

(i)
j ← EK(A

(i)
j )

104 S
∗(i)
j ← 2 · S∗(i)

j−1 ⊕ Y
(i)
j 204 S

∗(i)
j ← 2 · S∗(i)

j−1 ⊕ Y
(i)
j

105 proc Enc.data*(A
(i)
j ) 205 proc Dec.data*(A

(i)
j )

106 if |A(i)
j | = n then Y

(i)
j ← EK(A

(i)
j ) 206 if |A(i)

j | = n then Y
(i)
j ← EK(A

(i)
j )

107 S
∗(i)
j ← 2 · S∗(i)

j−1 ⊕ Y
(i)
j 207 S

∗(i)
j ← 2 · S∗(i)

j−1 ⊕ Y
(i)
j

108 else Y
(i)
j ← EK(A

(i)
j ∥10

n−|A(i)
j

|−1
) 208 else Y

(i)
j ← EK(A

(i)
j ∥10

n−|A(i)
j

|−1
)

109 S
∗(i)
j ← 3 · S∗(i)

j−1 ⊕ Y
(i)
j 209 S

∗(i)
j ← 3 · S∗(i)

j−1 ⊕ Y
(i)
j

110 S
(i)
0 ← S

∗(i)
j 210 S

(i)
0 ← S

∗(i)
j

111 proc Enc.next(M
(i)
j ) 211 proc Dec.next(C

(i)
j )

112 C
(i)
j ← EK(3 · S(i)

j−1 ⊕ (M
(i)
j ∥[j]n−m)) 212 M

′(i)
j ← 3 · S(i)

j−1 ⊕ E−1
K (C

(i)
j )

113 S
(i)
j ← 2 · S(i)

j−1 ⊕ (M
(i)
j ∥[j]n−m) 213 if M

′(i)
j [m + 1, n] ̸= [i]n−m then ret false

114 ret C
(i)
j 214 else M

(i)
j ←M

′(i)
j [1,m]

215 ret M
(i)
j

115 proc Enc.last(M
(i)
j ,M

(i)
j+1) 216 proc Dec.last(C

(i)
j , C

(i)
j+1)

116 if |M(i)
j+1| > m then ret ⊥ 217 if |C(i)

j+1| > m then ret ⊥
117 C∗(i) ← EK(3 · S(i)

j−1 ⊕ (M
(i)
j ∥[j]n−m)) 218 M ′(i) ← 3 · S(i)

j−1 ⊕ E−1
K (C

(i)
j+1)

118 C
(i)
j ← C∗(i)[1, n−m + |M(i)

j+1|] 219 ⊕EK(|C| − (i + 1) · (n−m))

119 Z(i) ← C∗(i)[n−m + |M(i)
j+1|, n] 220 if M

′(i)
j+1[m + 1, n] ̸= [0]n−m then ret false

120 M∗(i) ←M
(i)
j+1∥Z

(i)∥[0]n−m 221 else M
(i)
j+1 ←M

′(i)
j+1[1, |C

(i)
j | − n + m]

121 C
(i)
j+1 ← EK(3 · S(i)

j+1 ⊕M∗(i) ⊕ EK(|M |)) 222 Z(i) ←M
′(i)
j+1[|C

(i)
j | − n + m + 1,m]

122 ret (C
(i)
j , C

(i)
j+1) 223 X

(i)
j ← E−1

K (C
(i)
j ∥Z

(i))

224 M
′(i)
j ← 3 · S(i)

j−1 ⊕X
(i)
j

225 if M
′(i)
j [m + 1, n] ̸= [i]n−m then ret false

226 else M
(i)
j ←M

′(i)
j [1,m]

227 ret (M
(i)
j ,M

(i)
j+1)

Figure 6.2: Game G0 in the proof of Theorem 1.
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Game G2 Game G3

002 proc initialize
003 F (x)← undef for all x
004 Q0,Q1,Q2 ← ∅

300 proc Enc.init(N(i))

301 if F (N(i)) = undef then

302 F (N(i)) � {0, 1}n − DomF (·)
303 S

∗(i)
0 ← F (N(i));M(i) ← ϵ

304 proc Enc.data(A
(i)
j )

305 if F (A
(i)
j ) = undef then

306 F (A
(i)
j ) � {0, 1}n − DomF (·)

307 Y
(i)
j ← F (A

(i)
j )

308 S
∗(i)
j ← 2 · S∗(i)

j−1 ⊕ Y
(i)
j

309 proc Enc.data*(A
(i)
j )

310 if |A(i)
j | = n then A

∗(i)
j ← A

(i)
j

311 else A
∗(i)
j ← A

(i)
j ∥10

n−|A(i)
j

|−1

312 if F (A
∗(i)
j ) = undef then

313 F (A
∗(i)
j ) � {0, 1}n − DomF (·)

314 Y
(i)
j ← F (A

∗(i)
j )

315 if |A(i)
j | = n then S

∗(i)
j ← 2 · S∗(i)

j−1 ⊕ Y
(i)
j

316 S
∗(i)
j ← 3 · S∗(i)

j−1 ⊕ Y
(i)
j

317 S
(i)
0 ← S

∗(i)
j

318 if S
(i)
0 ∈ Q0 then

319 bad← true S
(i)
0 � {0, 1}n −Q0

320 Q0 ← Q0 ∪ {S(i)
0 }

321 proc Enc.next(M
(i)
j )

322 T
(i)
j−1 ← 3 · S(i)

j−1 ⊕ [j]n

323 if T
(i)
j−1 ∈ Q1|T or T

(i)
j−1 ⊕ (M

(i)
j ∥[0]n−m) ∈ DomF (·) then

324 bad← true T
(i)
j−1 � {0, 1}n −Q1|T − ((M

(i)
j ∥[0]n−m)⊕ DomF (·))

325 if F (T
(i)
j−1 ⊕ (M

(i)
j ∥[0]n−m)) = undef then

326 F (T
(i)
j−1 ⊕ (M

(i)
j ∥[0]n−m)) � {0, 1}n − RanF (·)

327 C
(i)
j ← F (T

(i)
j−1 ⊕ (M

(i)
j ∥[0]n−m));S

(i)
j ← 2 · S(i)

j−1 ⊕ (M
(i)
j ∥[j]n−m)

328 Q1 ← Q1 ∪ {(T (i)
j−1,M

(i)
j , C

(i)
j )}

329 ret C
(i)
j

330 proc Enc.last(M
(i)
j ,M

(i)
j+1)

331 if F (|M(i)|) = undef then

332 F (|M(i)|) � {0, 1}n − DomF (·)
333 T

(i)
j−1 ← 3 · S(i)

j−1 ⊕ [j]n;T
(i)
j ← 3 · S(i)

j−1 ⊕ F (|M(i)|)
334 if T

(i)
j−1 ∈ Q1|T or T

(i)
j−1 ⊕ (M

(i)
j ∥[0]n−m) ∈ DomF (·) then

335 bad← true T
(i)
j−1 � {0, 1}n −Q1|T − ((M

(i)
j ∥[0]n−m)⊕ DomF (·))

336 if F (T
(i)
j−1 ⊕ (M

(i)
j ∥[0]n−m)) = undef then

337 F (T
(i)
j−1 ⊕ (M

(i)
j ∥[0]n−m)) � {0, 1}n − RanF (·)

338 C∗(i) ← F (T
(i)
j−1 ⊕ (M

(i)
j ∥[0]n−m))

339 C
(i)
j ← C∗(i)[1, n−m + |M(i)

j+1|];Z
(i) ← C∗(i)[n−m + |M(i)

j+1|+ 1, n]

340 M∗(i) ←M
(i)
j+1∥Z

(i)∥[0]n−m

341 if T
(i)
j ⊕M∗(i) ∈ DomF (·) then

342 bad← true T
(i)
j � {0, 1}n −Q1|T − (M∗(i) ⊕ DomF (·))

343 if F (T
(i)
j ⊕M∗(i)) = undef then

344 F (T
(i)
j ⊕M∗(i)) � {0, 1}n − RanF (·)

345 C
(i)
j+1 ← F (T

(i)
j ⊕M∗(i))

346 Q1 ← Q1 ∪ {(T (i)
j−1,M

(i)
j , C∗(i))}

347 Q2 ← Q2 ∪ {(T (i)
j−1, T

(i)
j ,M

(i)
j ,M

(i)
j+1, C

(i)
j )}

348 ret (C
(i)
j , C

(i)
j+1)

Figure 6.3: Encryption of Games G2 and G3 in the proof of Theorem 1. Game
G3 contains the corresponding boxed statements, but game G2 doesn’t.
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Game G2 Game G3

400 proc Dec.init(N(i))

401 if F (N(i)) = undef then

402 F (N(i)) � {0, 1}n − RanF (·)
403 S

∗(i)
0 ← F (N(i));C(i) ← ϵ

404 proc Dec.data(A
(i)
j )

405 if F (A
(i)
j ) = undef then

406 F (A
(i)
j ) � {0, 1}n − DomF (·)

407 Y
(i)
j ← F (A

(i)
j )

408 S
∗(i)
j ← 2 · S∗(i)

j−1 ⊕ Y
(i)
j

409 proc Dec.data*(A
(i)
j )

410 if |A(i)
j | = n then A

∗(i)
j ← A

(i)
j

411 else A
∗(i)
j ← A

(i)
j ∥10

n−|A(i)
j

|−1

412 if F (A
∗(i)
j ) = undef then

413 F (A
∗(i)
j ) � {0, 1}n − DomF (·)

414 Y
(i)
j ← F (A

∗(i)
j )

415 if |A(i)
j | = n then S

∗(i)
j ← 2 · S∗(i)

j−1 ⊕ Y
(i)
j

416 S
∗(i)
j ← 3 · S∗(i)

j−1 ⊕ Y
(i)
j

417 S
(i)
0 ← S

∗(i)
j

418 if S
(i)
0 ∈ Q0 then

419 bad← true S
(i)
0 � {0, 1}n −Q0

420 Q0 ← Q0 ∪ {S(i)
0 }

421 proc Dec.next(C
(i)
j )

422 T
(i)
j−1 ← 3 · S(i)

j−1 ⊕ [j]n

423 if T
(i)
j−1 ∈ Q1|T then

424 bad← true T
(i)
j−1 � {0, 1}n −Q1|T

425 if F−1(C
(i)
j ) = undef then

426 F−1(C
(i)
j ) � {0, 1}m − DomF (·)

427 if (F−1(C
(i)
j )⊕ T

(i)
j−1)[m + 1, n] ̸= [0]n−m then ret false

428 else M
(i)
j ← (F−1(C

(i)
j )⊕ T

(i)
j−1)[1,m]

429 Q1 ← Q1 ∪ {(T (i)
j−1,M

(i)
j , C

(i)
j )}

430 ret M
(i)
j

431 proc Dec.last(C
(i)
j , C

(i)
j+1)

432 if F (|C(i)| − (i + 1) · (n−m)) = undef then

433 F (|C(i)| − (i + 1) · (n−m)) � {0, 1}n − RanF (·)
434 T

(i)
j−1 ← 3 · S(i)

j−1 ⊕ [j]n;T
(i)
j ← 3 · S(i)

j−1 ⊕ F (|C(i)| − (i + 1) · (n−m))

435 if T
(i)
j ∈ Q2|T then

436 bad← true T
(i)
j � {0, 1}n −Q2|T

437 if F−1(C
(i)
j+1) = undef then

438 F−1(C
(i)
j+1) � {0, 1}n − DomF (·)

439 if (F−1(C
(i)
j+1)⊕ T

(i)
j )[m + 1, n] ̸= [0]n−m then ret false

440 else M
′(i)
j+1 ← (F−1(C

(i)
j+1)⊕ T

(i)
j )

441 M(i) ←M
′(i)
j+1[1, |C

(i)
j | − n + m];Z(i) ←M

′(i)
j+1[|C

(i)
j | − n + m + 1, n]

442 if T
(i)
j ∈ Q1|T then

443 bad← true T
(i)
j−1 � {0, 1}n −Q1|T

444 if F−1(C
(i)
j ∥Z

(i)) = undef then

445 F−1(C
(i)
j ∥Z

(i)) � {0, 1}n − DomF (·)
446 if (F−1(C

(i)
j ∥Z

(i))⊕ T
(i)
j−1)[m + 1, n] ̸= [0]n−m then ret false

447 else M
′(i)
j ← (F−1(C

(i)
j ∥Z

(i))⊕ T
(i)
j−1)[1,m]

448 Q1 ← Q1 ∪ {(T (i)
j−1,M

(i)
j , C

(i)
j ∥Z

(i))}
449 Q2 ← Q2 ∪ {(T (i)

j−1, T
(i)
j ,M

(i)
j ,M

(i)
j+1, C

(i)
j+1)}

450 ret (M
(i)
j ,M

(i)
j+1)

Figure 6.4: Decryption of Games G2 and G3 in the proof of Theorem 1. Game
G3 contains the corresponding boxed statements, but game G2 doesn’t.
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Game G4

005 proc initialize
006 Gx(y)← undef for all x, y
007 Q1,Q2,P ← ∅

500 proc Enc.init(N(i))

501 proc Enc.data(A
(i)
j )

502 proc Enc.data*(A
(i)
j )

503 proc Enc.next(M
(i)
j )

504 T
(i)
j−1 � {0, 1}n −Q1|T − ((M

(i)
j ∥[0]n−m)⊕ P)

505 G
T

(i)
j−1

(M
(i)
j−1) � {0, 1}n − RanG(·)

506 C
(i)
j ← G

T
(i)
j−1

(M
(i)
j−1)

507 P ← P ∪ {T (i)
j−1 ⊕ (M

(i)
j ∥[0]n−m)}

508 Q1 ← Q1 ∪ {(T (i)
j−1,M

(i)
j , C

(i)
j )}

509 ret C
(i)
j

510 proc Enc.last(M
(i)
j ,M

(i)
j+1)

511 T
(i)
j−1 � {0, 1}n −Q1|T − ((M

(i)
j ∥[0]n−m)⊕ P)

512 G
T

(i)
j−1

(M
(i)
j ) � {0, 1}n − RanG(·)

513 C∗(i) ← G
T

(i)
j−1

(M
(i)
j )

514 C
(i)
j ← C∗(i)[1, n−m + |M(i)

j+1|]
515 Z(i) ← C∗(i)[n−m + |M(i)

j+1|+ 1, n]

516 P ← P ∪ {T (i)
j−1 ⊕ (M

(i)
j ∥[0]n−m)}

517 T
(i)
j � {0, 1}n − ((M

(i)
j+1∥Z

(i)∥[0]n−m)⊕ P)
518 G

T
(i)
j

(M
(i)
j+1∥Z

(i)) � {0, 1}n − RanG(·)

519 C
(i)
j+1 ← G

T
(i)
j

(M
(i)
j+1∥Z

(i))

520 P ← P ∪ {T (i)
j ⊕ (M

(i)
j+1∥Z

(i)∥[0]n−m)}
521 Q1 ← Q1 ∪ {(T (i)

j−1,M
(i)
j , C∗(i))}

522 Q2 ← Q2 ∪ {(T (i)
j−1, T

(i)
j ,M

(i)
j ,M

(i)
j+1, C

(i)
j )}

523 ret (C
(i)
j , C

(i)
j+1)

Figure 6.5: Encryption of Games G4 in the proof of Theorem 1
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Game G4

600 proc Dec.init(N(i))

601 proc Dec.data(A
(i)
j )

602 proc Dec.data*(A
(i)
j )

603 proc Dec.next(C
(i)
j )

604 T
(i)
j−1 � {0, 1}n −Q1|T

605 M̃ ← {0, 1}m − {M : (T
(i)
j−1,M, ·) ∈ Q1}

606 C̃ ← {0, 1}n − {C : (T
(i)
j−1, ·, C) ∈ Q1}

607 θ � [0..|C̃|]
608 if θ ≤ |M̃| then
609 M

(i)
j ← the θth string of M̃

610 G
T

(i)
j−1

(M
(i)
j )← C

(i)
j ; ret M

(i)
j

611 Q1 ← Q1 ∪ {(T (i)
j−1,M

(i)
j , C

(i)
j )}

612 else ret false

613 proc Dec.last(C
(i)
j , C

(i)
j+1)

614 T
(i)
j−1 � {0, 1}n −Q1|T ;T

(i)
j � {0, 1}n −Q2|T

615 M̃ ← {0, 1}m − {M : (T
(i)
j−1, T

(i)
j , ·,M, ·) ∈ Q2}

616 C̃ ← {0, 1}n − {C : (T
(i)
j−1, T

(i)
j , ·, ·, C) ∈ Q2}

617 θ � [0..|C̃|]
618 if θ ≤ |M̃| then
619 M

′(i)
j+1 ← the θth string of M̃;

620 G
T

(i)
j

(M
′(i)
j+1)← C

(i)
j+1; ret M

(i)
j

621 M
(i)
j+1 ←M

′(i)
j+1[1, |C

(i)
j | − n + m]

622 Z(i) ←M
′(i)
j+1[n−m + |C(i)

j |+ 1,m]

623 else ret false

624 M̃ ← {0, 1}m − {M : (T
(i)
j−1,M, ·) ∈ Q1}

625 C̃ ← {0, 1}n − {C : (T
(i)
j−1, ·, C) ∈ Q1}

626 θ � [0..|C̃|]
627 if θ ≤ |M̃| then
628 M

(i)
j ← the θth string of M̃

629 G
T

(i)
j−1

(M
(i)
j )← C

(i)
j ∥Z

(i); ret (M
(i)
j ,M

(i)
j+1)

630 Q1 ← Q1 ∪ {(T (i)
j−1,M

(i)
j , C

(i)
j ∥Z

(i))}
631 Q2 ← Q2 ∪ {(T (i)

j−1, T
(i)
j ,M

(i)
j ,M

(i)
j+1, C

(i)
j )}

632 P ← P ∪ {T (i)
j−1 ⊕ (M

(i)
j ∥[0]n−m), T

(i)
j ⊕ (M

(i)
j+1∥Z

(i)∥[0]n−m)}
633 else ret false

Figure 6.6: Decryption of Game G4 in the proof of Theorem 1
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Game G5

008 proc initialize
009 H ← IdealOAE(τ, 2τ)

700 proc Enc.init(N(i)) 800 proc Dec.init(N(i))

701 M(i) ← ϵ 801 C(i) ← ϵ

702 proc Enc.data/data*(A
(i)
j ) 802 proc Dec.data/data*(A

(i)
j )

703 A(i) ← A(i)∥A(i)
j 803 A(i) ← A(i)∥A(i)

j

704 proc Enc.next(M
(i)
j ) 804 proc Dec.next(C

(i)
j )

705 C(i) ← H
N(i),A(i),M(i),0

(M
(i)
j ) 805 if ∃M(i)

j s.t. H
N(i),A(i),M(i),0

(M
(i)
j ) = C(i)

706 M(i) ←M(i)∥M(i)
j 806 then ret M

(i)
j ; M(i) ←M(i)∥M(i)

j

707 ret C
(i)
j 807 else ret flase

708 proc Enc.last(M
(i)
j ,M

(i)
j+1) 808 proc Dec.last(C

(i)
j , C

(i)
j+1)

709 if |M(i)
j+1| > m then ret ⊥ 809 if |C(i)

j+1| > m then ret ⊥
710 (C

(i)
j , C

(i)
j+1)← H

N(i),A(i),M(i),1
(M

(i)
j ,M

(i)
j+1) 810 if ∃(M(i),M

(i)
j+1) s.t. (C

(i)
j , C

(i)
j+1)

711 ret (C
(i)
j , C

(i)
j+1) = H

N(i),A(i),M(i),1
(M(i),M

(i)
j+1)

811 then ret (M
(i)
j ,M

(i)
j+1)

812 else ret false

Figure 6.7: Game G5 in the proof of Theorem 1.
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