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Chapter 1

Specification

In this document we propose the SIV-TEM-PHOTON family of AEAD and hash function, which utilizes
components of PHOTON as the underlying building block. On top of the round functions of PHOTON, a
tweakable block cipher named TEM-PHOTON with 128-bit key and 128-bit tweak is proposed. Combined with
the SIV mode, SIV-TEM-PHOTON-AEAD authenticated encryption is built. By setting the key and tweak of
the TEM-PHOTON to a constant, a permutation is obtained, based on which a Sponge hash function named
SIV-TEM-PHOTON-hash is proposed. Both the AEAD and hash enjoys the long-standing security, as well as
the lightweightness of PHOTON.

1.1 Notations and Preliminaries

1.1.1 Notations

Let {0, 1}∗ be the set of all finite bit strings, including the empty string ε. For a bit string X ∈ {0, 1}∗, |X|
is its length in bits, and we have |ε| = 0. For a bit string X ∈ {0, 1}∗ and an integer n ≥ 1, we define a
parsing operation. For X 6= ε, it is defined as (X[1], . . . , X[x])

n← X, where |X[i]| = n for 1 ≤ i ≤ x − 1,
1 ≤ |X[x]| ≤ n, and X[1]‖ · · · ‖X[x] = X. Here X‖Y is the concatenation of two bit strings X and Y .
The number of blocks, x, is the block length of X. For X = ε, X[1]

n← X, where X[1] = ε. Note that
x = 1 and the block length of X = ε is 1. For a bit string X ∈ {0, 1}∗ and two positive integers n1, n2, we

define a similar parsing operation. If |X| > n1, it is defined as (X[1], . . . , X[x])
n1,n2←−−− X, where |X[1]| = n1,

|X[2]| = · · · = |X[x − 1]| = n2, 1 ≤ |X[x]| ≤ n2, and X[1]‖ · · · ‖X[x] = X. If |X| ≤ n1, including X = ε,

(X[1], . . . , X[x])
n1,n2←−−− X is equivalent to X[1]←− X and x = 1. For a bit string X ∈ {0, 1}∗ and an integer

` ≤ |X|, msb`(X) denotes the first ` bits of X and lsb`(X) denotes the last ` bits of X.
For X ∈ {0, 1}∗ with |X| ≤ `, we define a padding function as pad`(X) = X if |X| = `, and pad`(X) =

X‖10`−1−(|X| mod `) if 0 ≤ |X| < `.

1.1.2 Synthetic Initialization Vector Scheme (SIV-scheme)

SIV scheme [13] combines an encryption scheme E and a pseudorandom function (PRF) F to obtain an
AEAD scheme. We modify the original scheme in two ways.

• We modify the PRF so that it explicitly takes a nonce N as a part of the input.

• The encryption scheme and the PRF share the same key, and we maintain their independence with
domain separation.

Fix the key length k and a block length n. The encryption scheme E takes a key K ∈ {0, 1}k, initial value
(IV) IV ∈ {0, 1}n, and a plaintext M ∈ {0, 1}∗ as input, and returns a ciphertext C ∈ {0, 1}|M |, and we
write C = EIVK (M). The corresponding decryption scheme D takes (K, IV,C) and returns M , and we write
M = DIV

K (C). We require, for any K and IV , M = DIV
K (EIVK (M)).

The PRF F takes a key K ∈ {0, 1}k, a nonce N ∈ {0, 1}∗, associated data (AD) A ∈ {0, 1}∗, and a
plaintextM ∈ {0, 1}∗ as input, and returns a fixed length output T ∈ {0, 1}n, and we write T = FK(N,A,M).
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With these components, the encryption algorithm of SIV scheme SIV.Enc takes a key K, a nonce N ,
AD A, and a plaintext M as input, and returns a pair of ciphertext and tag (C, T ). We write (C, T ) =
SIV.EncK(N,A,M). The decryption algorithm of SIV scheme SIV.Dec takes (K,N,A,C, T ) as input, and re-
turns the corresponding plaintextM or the symbol⊥ indicating rejection. We writeM = SIV.DecK(N,A,C, T )
or ⊥ = SIV.DecK(N,A,C, T ). They are define in Fig. 1.1.

Algorithm SIV.EncK(N,A,M)

1. T ← FK(N,A,M)
2. C ← ETK(M)
3. return (C, T )

Algorithm SIV.DecK(N,A,C, T )

1. M ← DT
K(C)

2. T ∗ ← FK(N,A,M)
3. if T ∗ = T then return M
4. else return ⊥

Figure 1.1: The encryption and decryption algorithms of SIV scheme.

Let E : {0, 1}k × (I × {0, 1}t)×{0, 1}n → {0, 1}n be the underlying TBC, where k is the key length, I is
the domain separation space, t is the tweak length, and n is the block length. We instantiate E and D as in
Fig. 1.2. This is an OFB mode of E, where the tweak is fixed to 0t. See the overall illustration in Fig. 1.4.

Algorithm EIVK (M)

1. (M [1], . . . ,M [m])
n←M

2. S ← IV
3. for i = 1 to m− 1
4. S ← E7,0t

K (S)
5. C[i]← S ⊕M [i]

6. S ← E7,0t

K (S)
7. C[m]← msb|M [m]|(S)⊕M [m]
8. C ← (C[1], . . . , C[m])
9. return C

Algorithm DIV
K (C)

1. (C[1], . . . , C[m])
n← C

2. S ← IV
3. for i = 1 to m− 1
4. S ← E7,0t

K (S)
5. M [i]← S ⊕ C[i]

6. S ← E7,0t

K (S)
7. M [m]← msb|C[m]|(S)⊕ C[m]
8. M ← (M [1], . . . ,M [m])
9. return M

Figure 1.2: The definitions of E and D.

The definition of F is presented in Fig. 1.3. This is a variant of CBC-MAC, where we process AD blocks
by using the tweak input of the underlying TBC.

1.1.3 Tweakable Even-Mansour (TEM)

The Even-Mansor construction is an easy way to construct a block cipher from a fixed open permutation [5].
The simplest construction is defined as EK1,K2(x) = K2⊕P (x⊕K1), given the open permutation P , and keys
K1,K2. This is the case when there is only one iteration, and the security strength of the variant of r iterations
( Kr+1⊕Pr(Kr−1⊕Pr−1(· · · (P1(x⊕K1)))) ) is proven to be rn/(r+ 1) bits [3]. The extension to tweakable
block ciphers with 3 iterations and single-key E(K,T, x) = K⊕T ⊕P3(K⊕T ⊕P2(K⊕T ⊕P1(K⊕T ⊕x)))
is proven to offer birthday security, i.e., n/2 bits, by Cogliati et al. [4]. In our design TEM-PHOTON, the
needs are different: a TBC with block length 256 bits and key size 128 bits are needed, we extend the
tweakable Even-Mansour construction to 4 iterations (to be conservative) with the key constructed by K||K
(the concatenation of the same 128-bit key twice) and the tweak by 0128||T , as depicted in Fig. 1.5. We
will show, by the security analysis, the probability of internal differentials (trying to exploit the fact the two
halves of the key are the same) is too small to be utilized in any attack.

1.1.4 PHOTON Permutation

The PHOTON permutation [7] is a family of fixed-key AES-like functions used in the PHOTON hash function.
It has five instances denoted Pt, with state sizes being t = 100, 144, 196, 256 and 288 bits respectively. In
SIV-TEM-PHOTON, P256 is used and will be referred to as the PHOTON permutation for simplicity in this
document.
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Algorithm FK(N,A,M)

1. S ← 0n

2. (A[1], . . . , A[a])
n+t← A

3. if |A[a]| < n+ t then d← 1 else d← 2
4. A[a]← padn+t(A[a])
5. for i = 1 to a do
6. S ← S ⊕msbn(A[i])

7. S ← E
0,lsbt(A[i])
K (S)

8. (M [1], . . . ,M [m])
n+t← M

9. for i = 1 to m− 1 do
10. S ← S ⊕msbn(M [i])

11. S ← E
d,lsbt(M [i])
K (S)

12. if |M [m]| < n then
13. S ← S ⊕ padn(M [m])

14. T ← E3,N
K (S)

15. if |M [m]| = n then
16. S ← S ⊕M [m]

17. T ← E4,N
K (S)

18. if n < |M [m]| < n+ t then
19. M [m]← padn+t(M [m])
20. S ← S ⊕msbn(M [m])

21. S ← E
d,lsbt(M [m])
K (S)

22. T ← E5,N
K (S)

23. if |M [m]| = n+ t then
24. S ← S ⊕msbn(M [m])

25. S ← E
d,lsbt(M [m])
K (S)

26. T ← E6,N
K (S)

27. return T

Figure 1.3: The definitions of F .

The internal state of P256 can be seen as an 8 × 8 array of 4-bit cells, where the cell located at row i
and column j is denoted S[i, j] with 0 ≤ i, j < 8. P256 iterates a round function Nr times and Nr is 12 in
the original P256 while it is 20 in SIV-TEM-PHOTON. Each round function consists of four operations (see
Fig. 1.6): AddConstant[r], SubCells, ShiftRows and MixColumnSerial.

- AddConstant[r] consists in adding fixed values to the first column of the internal state. Concretely,
S[i, 0]← S[i, 0]⊕IC[i]⊕RC[r] for all 0 ≤ i < 8, where the internal constant IC = [0, 1, 3, 7, 15, 14, 12, 8]
and RC[r] is a 4-bit round constant for round r. While RC[r] in PHOTON is generated by a 4-bit linear
feedback shift register, we use a 6-bit linear feedback shift register instead for the 20-round P256 and at
each round we take the least significant 4 bits as RC[r]. The update function of the 6-bit linear feedback
shift register is borrowed from LED [8] and defined as follows. Let (rc5, rc4, rc3, rc2, rc1, rc0) be the 6
bits which are initialized to zero. At each round r, (rc5, rc4, rc3, rc2, rc1, rc0) are shifted one position
to the left with rc0 being updated with rc5⊕rc4⊕1. Then, the concatenation of rc3, rc2, rc1 and rc0 is
used as RC[r]. Explicitly, RC = [0x1, 0x3, 0x7, 0xf, 0xf, 0xe, 0xd, 0xb, 0x7, 0xf, 0xe, 0xc, 0x9, 0x3, 0x7,
0xe, 0xd, 0xa, 0x5, 0xb].

- AddDomain[d]: as multiple of permutations are needed in the AEAD design, AddDomain[d] xors the
domain separator d to all cells of the second column at each round, as depicted in Fig. 1.6.

- SubCells is a nonlinear substitution that applies the PRESENT S-box, as shown below, to each cell of
the internal state.

S = [0xc, 0x5, 0x6, 0xb, 0x9, 0x0, 0xa, 0xd, 0x3, 0xe, 0xf, 0x8, 0x4, 0x7, 0x1, 0x2]

- ShiftRows is a cyclic rotation of i-th row by i bytes to the left, for i = 0, ..., 7.

- MixColumnSerial is a multiplication of each column with a matrix M over GF (24) by 8 times, where
GF (24) is defined by the irreducible polynomial x4 + x + 1. The matrix M can be implemented in
an extremely compact way and M8 results in an Maximum Distance Separable (MDS) matrix over
GF (24).
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Figure 1.4: The overall structure of SIV scheme. Top: Process of AD A in FK(N,A,M). 2nd: Process of
a plaintext M in FK(N,A,M) for the case |M [m]| ≤ n. 3rd: Process of M in FK(N,A,M) for the case
n < |M [m]| ≤ n+ t. Bottom: C = EIVK (M). Note that IV = T .

M =




0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
2 4 2 11 2 8 5 6




The original P256 is defined to be the round function,

RoundFunction[r] = MixColumnSerial ◦ ShiftRows ◦ SubCells ◦ AddConstant[r],
iterated for r = 1, · · · , 12. To incorporate the domain separator, we define P256[d] with AddDomain[d] so the
new round function becomes

RoundFunction[r,d] = MixColumnSerial ◦ ShiftRows ◦ SubCells ◦ AddDomain[d] ◦ AddConstant[r].
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Figure 1.5: Tweakable Even-Mansour construction
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Figure 1.6: Round Function of P256 [7], together adding of the domain separator d in the second column.

1.2 Specification of SIV-TEM-PHOTON Family

1.2.1 Specification of TEM-PHOTON

The 4 underlying permutations Permi are defined as the RoundFunction[r,d] iterated for r = 5i−4, 5i−3, · · · , 5i
and i = 1, 2, 3, 4, as depicted in Fig. 1.7. Here, |K| = |T | = 128 bits.
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Figure 1.7: Specification of TEM-PHOTON

1.2.2 SIV-TEM-PHOTON-AEAD Authenticated Encryption

The SIV-TEM-PHOTON-AEAD is then the SIV mode, instantiated with TEM-PHOTON defined above. The
SIV-TEM-PHOTON-AEAD family consists of only one instance, with the parameter sizes:

- block size n = 256 bits,

- key size k = 128 bits,

- tag size |T | = 256 bits,

- nonce length |N | = 128 bits.

It supports the following:

- any bit length of associated data |A| ≥ 0,
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- any bit length of messages |M | ≥ 0.

Due to the mode, decryption algorithm of the cipher is not necessary.

1.2.3 SIV-TEM-PHOTON-hash Hash Function
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Figure 1.8: SIV-TEM-PHOTON-hash adopts Sponge-like construction, with initial absorbing bitrate r0, in-
ternal absorbing bitrate r1 and squeezing bitrate r0.

Algorithm SpongeHash[f [0/1/2],pad, r0, r1, ds](M)

Absorption Phase:

1. (M [1], . . . ,M [m])
r0,r1←−−−M

2. if |M | ≤ r0 then
3. d← (|M [m]| = r0)?1 : 2
4. M [m]← padr0(M [m])
5. else
6. d← (|M [m]| = r1)?1 : 2
7. M [m]← padr1(M [m])
8. S ← 0
9. for i = 1 to m− 1

10. S ← S ⊕ (M [i] || 0|S|−|M [i]|)
11. S = f [0](S)
12. S ← f [d](S ⊕ (M [m] || 0|S|−|M [m]|))

Squeezing Phase:

13. T = msbr0(S)
14. for i = 1 to dds/r0e − 1
15. S ← f [0](S)
16. T = T || msbr0(S)
17. return msbds(T )

Figure 1.9: The definition of our modified Sponge construction.

SIV-TEM-PHOTON-hash adopts the Sponge-like construction (as shown in Fig. 1.8 and 1.9). The dif-
ference with Sponge is that the initial absorbing rate and the squeezing rate are larger than the internal
absorbing rate. Specifically, in SIV-TEM-PHOTON-hash, both of the initial absorbing bitrate and the squeez-
ing bitrate are r0, whereas, the internal absorbing bitrate is r1 and output digest size is ds, i.e.,

r0 = 128, r1 = 32, c0 = 128, c1 = 224, ds = 256.

The underlying permutation in SIV-TEM-PHOTON-hash is the TEM-PHOTON with both the master key K
and tweak T set to the constant 0, and we keep the additional input d, and denote the resulted permutation
as f [d]. d = 0 is used for all other places, rather than the last call in the absorption phase. The padding
rule follows the same as in the AEAD, i.e., when the last message is of full block (128 bits if |M | ≤ 128, 32
bits otherwise), no padding is necessary otherwise a bit string of 10∗ is padded, and the corresponding d is
defined as 1 for full block, and 2 for non-full block.
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Chapter 2

Security

2.1 Summary of Expected Security Strength

Attack Model Time Complexity Data Complexity

Key Recovery 128 bits 128 bits
Forgery 128 bits 128 bits

Table 2.1: The security claims of SIV-TEM-PHOTON-AEAD.

collision second-preimage preimage
112 bits 112 bits 128 bits

Table 2.2: The security claims of SIV-TEM-PHOTON-hash.

2.2 Summary of Known Cryptanalytic Attacks

Differential/Linear cryptanalysis. The underlying TEM cipher is split into four 5-round permutations
by the addition of tweak and key (see Fig. 1.7). According to the design strategy of AES-like functions, any
consecutive four rounds of P256 ensure 81 active S-boxes. Further, upper bounds of the differential probability
and linear hull probability of any 4 rounds can be obtained by adapting the work from [12], which are both
2−128 as explained in [7]. Therefore, a 5-round P256 which certainly activates more S-boxes does not have
any differential or linear hull with probability higher than 2−128. More importantly, at least two 5-round
permutations of the underlying TEM cipher will be active whether there is a key/tweak difference or not,
which gives us much strong confidence in the security against differential/linear attacks.

Internal differential cryptanalysis. The internal difference here is defined to be the difference between
the left half and the right half of the internal state. Note that round constants are added only to the first
column of the internal state in the round function of P256. That is to say, differences are introduced by
AddConstant[r] at each round between the first column and the fifth column of the internal state. Unlike the
traditional differential cryptanalysis, no provable bounds on the number of active S-boxes can be obtained
for such internal differential trails. Therefore, we lower bound the number of active S-boxes experimentally
in the following way. First, let us elaborate a bit more on the setting of attack. In TEM-PHOTON, the
128-bit key is xored to the upper and lower half of the internal state respectively. Additionally, the 128-bit
tweak is xored to the lower half of the internal state at the same time. Since it is less realistic to control
the difference between the left 64-bit key and the right 64-bit key if the key is generated randomly, we just
consider these two parts are the same, i.e., the weak key setting. On the contrary, the tweak difference can
be controlled easily and the same tweak difference will be injected every five rounds. Second, we search for
optimal internal differential trails of reduced-round P256 with constraint programming [6]. However, we only
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obtain optimal 2-round internal differential trails. When the number of rounds is greater than 2, the search
becomes inefficient. Based on the optimal internal differential trails of all possible two consecutive rounds,
we obtain the corresponding minimal numbers of active S-boxes. Lastly, the lower bounds on the number of
active S-boxes of the four 5-round permutations are obtained using mixed integer linear programming [11]
with the bounds on the number of active S-boxes of two consecutive rounds as additional constraints. As
a result, the numbers of active S-boxes of the four 5-round permutations are at least 30, 29, 30 and 29
respectively. In total, there are at least 118 active S-boxes which is enough for a 128-bit key. Note that these
bounds are not tight.

Existing distinguishers of the PHOTON permutation. Besides the original paper of PHOTON [7], so
far there have been two main works on the cryptanalysis of PHOTON in the literature [9, 15], both of which
constructed distinguishers of the underlying keyless permutations. The original paper [7] and the work in [9]
exploited rebound attacks [10], while the work in [15] studied the division property [14] and then proposed
a 12-round zero-sum distinguisher of P256 with time complexity 2184, which is the best cryptanalytic result
on P256 up to date. Since the permutation P256 used in SIV-TEM-PHOTON only differs in the operation
of adding constants, these distinguishers on original P256 still apply (for the underlying permutation in the
hashing mode). If it is the case of AEAD with a 128-bit key, similar distinguishers can be constructed by only
considering “forward direction” (since no decryption is used), which means the length of the distinguishers
will be halved. As can be seen from Tab. 2.3, the length of the distinguishers can be at most 6 rounds.

Number of Rounds Time (Enc) Memory (Blocks) Attack type Source

8 28 24 Rebound attack [7]

9 2184 232 Rebound attack [9]

11 2119 - Division [15]

12 2184 - Division [15]

Table 2.3: Summary of distinguishers on the PHOTON permutation P256
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Chapter 3

Design Rationale

Our design goals are summarized as follows.

• The AEAD scheme that is suitable for use lightweight applications.

• Strong security guarantee, based on well analyzed and trusted components and well established mode
of operation.

• Address misuse cases of nonce-repetition and release of unverified plaintexts.

• Avoid the use of decryption algorithm of the underlying block cipher, for AEAD decryption.

• The hash function can be easily defined by reusing the components from the AEAD scheme, under a
well understood mode, slightly modified for efficiently processing short messages.

• All necessary modifications are kept to be minimum, without affecting the security and lightweightness
in hardware/software.

3.1 Choice of SIV

Above goals in mind, we decided to use the SIV mode [13] as our mode of operation. The mode enjoys the
provable security in the strong sense of nonce-misuse case, and it also has the provable security in terms of
release of unverified plaintexts [1]. The combined OFB mode also enables decryption of the AEAD without
the use of decryption algorithm of the underlying tweakable block cipher, which saves the gates required in
the hardware implementations and reduces the code size or ROM in software implementations.

Our choice of CBC MAC is to build our scheme on an established standard scheme, yet, in order to
gain high performance to process associated data, we decided to use a tweakable block cipher (TBC) as the
underlying primitive, a variant of which was first introduced in [4] with underlying component first introduced
in [7]. With this approach, the tag generation part of SIV becomes roughly 1.5 times faster per primitive
call. More precisely, for AD A and a plaintext M , our mode requires roughly |A|/(n + t) TBC calls to
process AD, and |M |/(n+ t) + |M |/n calls to process M , where |M |/(n+ t) calls are for authentication and
|M |/n calls are for encryption. We use OFB mode for its solid provable security guarantee and its small
footprint in implementations. Overall, the mode requires such a small amount of gates to implement that
the overall amount of gates required by the AEAD design is almost the same as that by the underlying P256

permutation, when the keys and tweak inputs are provided by the external controller.
The security bound is the standard birthday bound of the form O(σ2/2n), where σ denotes the total

number of blocks in the security game. With the application for hashing in mind, we adopt a block size of
n = 256, which gives a solid security bound for any lightweight applications.

3.2 Choice of TEM

In order to obtain a TBC, we adopt TEM for our construction. This construction avoids the need for
key/tweak scheduling, and this allows saving logic gates in hardware implementations. Besides, the simplicity
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of the construction allows an extensive security analysis. We use 4 iterations of round-reduced P256 to be
conservative, as constructions with 3 iterations already offers the birthday security [4], and we further reduce
the tweak size by half to reduce the freedom degree attackers might have. We appropriately use round
constants from the design of LED to avoid slide attacks, which effectively act as the domain separation in
the random permutation model.

3.3 Choice of PHOTON

First of all, AES-like permutations offer much confidence in security as one can leverage previous cryptanalysis
works done on AES. It is known that AES-like permutations allow to derive simple proofs on the number
of active S-boxes of any consecutive four rounds. Specifically, at least 92 = 81 S-boxes will be active for
any four rounds of P256 and this bound is tight. Secondly, the PHOTON permutation is lightweight and
the PHOTON hash function has been standardized by ISO since 2016. Notably, the PHOTON permutation
P256 can be implemented with less than 1736 GEs in an extremely compact way. Lastly, the PHOTON
permutation adopts a simple round constant generation, which can be extended naturally to more rounds
without additional costs.

10



Chapter 4

Performance

4.1 Hardware Performance

The hardware performance and implementation cost is expected to be an advantage of SIV-TEM-PHOTON.
The area cost can be very small considering the following two points: 1. the mode SIV costs little on top of
the costs of the underlying block cipher; 2. the underlying block cipher TEM-PHOTON is tweaking on P256

which is one of the most compact primitives with the same dimension.
To estimate the area cost of the hardware implementation of SIV-TEM-PHOTON, we use the available

results on that of the hash function PHOTON-224/32/32, which also uses P256 as its underlying permutation.
PHOTON-224/32/32 adopts Sponge construction with in-/output bitrate 32/32. Considering that the Sponge
construction also costs little on top of the costs of the underlying permutation, it is reasonable to base on
the area of the hardware implementation of PHOTON-224/32/32 to estimate that of SIV-TEM-PHOTON.

According to [7], as for serial ASIC implementations of PHOTON-224/32/32 using the standard cell
library UMCL18G212T3 (with data path s = 4, which is the size of cells in the state), when target at
minimizing area, it costs 1736 GEs and the latency of the underlying permutation is 1716 clock cycles; when
target at minimizing latency, it costs 2786 GEs and the latency of the underlying permutation is 204 clock
cycles.

Comparing implementations of SIV-TEM-PHOTON with that of PHOTON-224/32/32, additional costs
of area comes from the storage for key, tweak, domain separator (and the XOR gates for addition of them).
However, since key bits and tweak bits are used without schedule in TEM-PHOTON, in the case where they
can be sent multiple times by the external provider, local storage can be saved. In serial implementations
with small data path (e.g., s = 4), adding key, tweak, and larger message blocks can be serialized and thus
require limited number of additional XOR gates (suppose 1-bit XOR gates cost 2.67 GEs, for data path being
4, additional XOR gates cost about (4 + 4 + 3)× 2.67 ≈ 30 GEs).

Hence, in the case where key and tweak do not need to be stored locally, we estimate the area of imple-
mentations of SIV-TEM-PHOTON is close to that of PHOTON-224/32/32.

When key and tweak has to be stored locally, they can be stored using 256 regular 1-bit flip-flops. Suppose
one 1-bit regular flip-flops costs 4.67 GEs, the additional area costed can be estimated as 256×4.67 = 1195.52
GEs.

4.2 Software Performance

The software performance in general purpose processors is a disadvantage of SIV-TEM-PHOTON. According
to [7], the software performance of PHOTON-224/32/32 is about 227 cycles per byte for long messages in an
Intel(R) Core(TM) i7 CPU. In SIV-TEM-PHOTON-AEAD, during the authentication phase, 1.5-block-size
messages are processed per call of the underlying permutation. During the encryption phase, full-block-size
messages are processed per call of the underlying permutation. In the case that message and authenticated
data are with similar length, it can be estimated as processing (1.5 + 1)/2-block-size message per call.
The block size is 256-bit in SIV-TEM-PHOTON-AEAD, which is 8 times of the input bitrate of PHOTON-
224/32/32. TEM-PHOTON has 20 rounds while PHOTON-224/32/32 has only 12 rounds. Thus, we estimate
that for long messages, the performance of SIV-TEM-PHOTON-AEAD be (2/(1.5+1))∗(20/12)∗227∗(1/8) ≈

11



37.9 cycles per bytes. For SIV-TEM-PHOTON-hash which has larger initial absorbing bitrate and lager
squeezing bitrate, the number of cycles per byte is estimated to be less than 227.

However, considering the targeted usage scenario is on constrained devices instead of high-end CPUs, we
focus on the software implementation and performance on micro-controllers which should not be a limitation
of SIV-TEM-PHOTON.

According to a report on the implementation and performance evaluation of Hash functions in ATtiny
devices [2], the code size of PHOTON-256/32/32 (which uses PHOTON P288 as its underlying permutation
with the 8-bit S-box of AES) is 1244 bytes, the RAM requirement is 78 bytes. The code size of PHOTON-
160/36/36 (which uses PHOTON-P196 as its underlying permutation with the 4-bit S-box of PRESENT, which
is the same as the one used in TEM-PHOTON) is 764 bytes, the RAM requirement is 50 bytes. Considering
the performance of PHOTON-224/32/32 should lie in-between that of these two primitives, following the
implementation methods in [2], the code size for TEM-PHOTON should be at the range of 764 ∼ 1244
bytes, and the SRAM requirement should be at the range of 50 ∼ 78 bytes. Besides, our primary bit-sliced
implementation (bit-slicing within a single state) of the underlying TEM-PHOTON requires 768 bytes ROM
(720 for code and 48 for data, including codes for bit-slicing) and 32 bytes RAM (exclude those used for
key/nonce/messages/outputs).

Considering our mode SIV can be implemented with small number of additional instructions and small
number of constants, we expect that in 8-bit AVR devices, the implementations of SIV-TEM-PHOTON require
less than 1000 bytes ROM and less than 64 bytes SRAM.

We note that, in SIV-TEM-PHOTON-AEAD, although the message are processed twice to achieve the
features of SIV, they are processed in large blocks ((256+128)- or 256-bit each) per call of the underlying
TEM-PHOTON. Thus, we expect that the throughput should not be a limitation.
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