
SIV-Rijndael256 Authenticated Encryption and Hash Family

Designers/Submitters:

Zhenzhen Bao - Nanyang Technological University, Singapore
Jian Guo - Nanyang Technological University, Singapore

Tetsu Iwata - Nagoya University, Japan
Ling Song - Nanyang Technological University, Singapore and Institute of Information

Engineering, CAS, China

zzbao@ntu.edu.sg, guojian@ntu.edu.sg, tetsu.iwata@nagoya-u.jp, songling@ntu.edu.sg

February 25, 2019

mailto:tetsu.iwata@nagoya-u.jp

Chapter 1

Specification

In this document we propose the SIV-Rijndael256 family of AEAD and hash function, which utilizes Rijndael256
— the predecessor of AES — as the underlying primitive. On top of Rijndael256, SIV-Rijndael256-AEAD uses
the SIV mode to enjoy the strong security against nonce-misuse and unverified plaintext release, and SIV-
Rijndael256-Hash is based on the Sponge construction with Rijndael256 converted into a permutation by setting
the master key to the constant 0. While the Rijndael256 primitive withstands long-term security analysis,
the SIV AEAD mode and Sponge hash function construction come with well accepted security proofs. Due
to the lightweightness of SIV and Sponge, the performances on both software and hardware enjoys that from
Rijndael256 directly.

1.1 Notations and Preliminaries

1.1.1 Notations

Let {0, 1}∗ be the set of all finite bit strings, including the empty string ε. For a bit string X ∈ {0, 1}∗ , |X|
is its length in bits, and we have |ε| = 0. For a bit string X ∈ {0, 1}∗ and an integer n ≥ 1, we define a

nparsing operation. For X ̸ ε, it is defined as (X[1], . . . , X[x]) = n for 1 ≤ i ≤ x − 1,= ← X, where |X[i]|
1 ≤ |X[x]| ≤ n, and X[1]∥ · · · ∥X[x] = X. Here X∥Y is the concatenation of two bit strings X and Y .

nThe number of blocks, x, is the block length of X. For X = ε, X[1] ← X, where X[1] = ε. Note that
x = 1 and the block length of X = ε is 1. For a bit string X ∈ {0, 1}∗ and two positive integers n1, n2, we

n1,n2define a similar parsing operation. If |X| > n1, it is defined as (X[1], . . . , X[x]) ←−−− X, where |X[1]| = n1,
|X[2]| = · · · = |X[x − 1]| = n2, 1 ≤ |X[x]| ≤ n2, and X[1]∥ · · · ∥X[x] = X. If |X| ≤ n1, including X = ε,

n1,n2
(X[1], . . . , X[x]) ←−−− X is equivalent to X[1] ← For a bit string X ∈ {0, 1}∗− X and x = 1. and an integer
ℓ ≤ |X|, msbℓ(X) denotes the first ℓ bits of X and lsbℓ(X) denotes the last ℓ bits of X.

For X ∈ {0, 1}∗ with |X| ≤ ℓ, we define a padding function as padℓ(X) = X if |X| = ℓ, and padℓ(X) =
X∥10ℓ−1−(|X| mod ℓ) if 0 ≤ |X| < ℓ.

1.1.2 Synthetic Initialization Vector Scheme (SIV-scheme)

SIV scheme [35] combines an encryption scheme E and a pseudorandom function (PRF) F to obtain an
AEAD scheme. We modify the original scheme in two ways.

• We modify the PRF so that it explicitly takes a nonce N as a part of the input.

• The encryption scheme and the PRF share the same key, and we maintain their independence with
domain separation.

Fix the key length k and a block length n. The encryption scheme E takes a key K ∈ {0, 1}k, initial value
(IV) IV ∈ {0, 1}n, and a plaintext M ∈ {0, 1}∗ as input, and returns a ciphertext C ∈ {0, 1}|M |, and we

= EIV write C (M). The corresponding decryption scheme D takes (K, IV, C) and returns M , and we write K
= DIV = DIV (EIV M (C). We require, for any K and IV , M (M)).K K K
The PRF F takes a key K ∈ {0, 1}k, a nonce N ∈ {0, 1}∗, associated data (AD) A ∈ {0, 1}∗, and a

plaintext M ∈ {0, 1}∗ as input, and returns a fixed length output T ∈ {0, 1}n, and we write T = FK (N, A, M).

1

Algorithm SIV.EncK (N, A, M)

1. T ← FK (N, A, M)
2. C ← ET (M)K
3. return (C, T)

Algorithm SIV.DecK (N, A, C, T)

1. M ← DT (C)K
2. T ∗ ← FK (N, A, M)

∗3. if T = T then return M
4. else return ⊥

Figure 1.1: The encryption and decryption algorithms of SIV scheme.

Algorithm EIV (M) Algorithm DIV (C)K K

1. (M [1], . . . ,M [m])← M
2. S ← IV

4. S ← E7 (S)K
5. C[i] ← S ⊕ M [i]
6. S ← E7 (S)K
7. C[m] ← msb|M [m]|(S) ⊕ M [m]
8. C ← (C[1], . . . , C[m])
9. return C

n

3. for to −i = 1 1m

1. (C[1], . . . , C[m])
n

5. ← ⊕M [i] S C[i]

← C
2. S ← IV
3. for i = 1 to m − 1
4. S ← E7 (S)K

6. S ← E7 (S)K
7. M [m] ← msb|C[m]|(S) ⊕ C[m]
8. M ← (M [1], . . . ,M [m])
9. return M

Figure 1.2: The definitions of E and D.

With these components, the encryption algorithm of SIV scheme SIV.Enc takes a key K, a nonce N ,
AD A, and a plaintext M as input, and returns a pair of ciphertext and tag (C, T). We write (C, T) =
SIV.EncK (N, A, M). The decryption algorithm of SIV scheme SIV.Dec takes (K, N, A, C, T) as input, and re-
turns the corresponding plaintext M or the symbol ⊥ indicating rejection. We write M = SIV.DecK (N, A, C, T)
or ⊥ = SIV.DecK (N, A, C, T). They are define in Fig. 1.1.

Let E : {0, 1}k ×I ×{0, 1}n → {0, 1}n be the underlying block cipher, where k is the key length, I is the
domain separation space, and n is the block length. We instantiate E and D as in Fig. 1.2. This is an OFB
mode of E. See the overall illustration in Fig. 1.4.

The definition of F is presented in Fig. 1.3. This is a variant of CBC-MAC, where N , A, and M are
processed independently based on the domain separation.

Algorithm FK (N, A, M)

n

1. S ← 0n 15. if |M [m]| = n/2 then
← A 16. S ← S ⊕ (M [m]∥N)2. (A[1], . . . , A[a])

3. if |A[a]| < n then d ← 1 else d ← 2
4. A[a] ← pad (A[a])n

5. for i = 1 to a do
6. S ← S ⊕ A[i]
7. S ← E0 (S)K

17. T ← E4 (S)K
18. if n/2 < |M [m]| < n then
19. S ← S ⊕ (pad (M [m]))n

20. S ← Ed (S)K
21. S ← S ⊕ (0n/2∥N)

8. (M [1], . . . ,M [m])
n← M

9. for i = 1 to m − 1 do
10. S ← S ⊕ M [i]
11. S ← Ed (S)K
12. if |M [m]| < n/2 then
13. S ← S ⊕ (padn/2(M [m])∥N)
14. T ← E3 (S)K

22. T ← E5
K (S)

23. if |M [m]| = n then
24. S ← S ⊕ M [m]
25. S ← Ed (S)K
26. S ← S ⊕ (0n/2∥N)
27. T ← E6 (S)K
28. return T

Figure 1.3: The definitions of F .

2

M [1]

E7
KIV

≤ n

C[1]

n

M [2]

E7
K

C[2]

E7
K msb

M [m]

C[m]

E0
K E0

K0n

A[1]

n

A[2]

E0
K S

n

S

M [1]

E
3/4
K T

M [m− 1]

padn(A[a])

E
1/2
K E

1/2
K

case n/2 < |M [m]| ≤ n

0n/2‖N

padn/2(M [m])‖N
case |M [m]| ≤ n/2

n

S

M [1]

E
1/2
K T

M [m− 1]

E
1/2
K E

1/2
K

padn(M [m])

E
5/6
K

Figure 1.4: The overall structure of SIV scheme. Top: Process of AD A in FK (N, A, M). 2nd: Process of a
plaintext M in FK (N, A, M) for the case |M [m] ≤ n/2. 3rd: Process of M for the case n/2 < |M [m] ≤ n.

= EIV Bottom: C (M). Note that IV = T .K

1.1.3 Rijndael256

The Rijndael block cipher is a proposal for the Advanced Encryption Standard (AES). Rijndael was selected as
the AES after narrowing the range of supported values for the block length and key length. As well-known,
AES has a unique block length – 128 bits, and supports three key lengths – 128, 192, or 256 bits. Whereas,
the original proposal – Rijndael, supports any independently specified block length b bits and key length k
bits, such that b and k are multiple of 32, 128 ≤ b ≤ 256, and 128 ≤ k ≤ 256.

In the proposal of SIV-Rijndael256, we select Rijndael with fixed block length 256 bits and fixed key
length 128 bits as our building block, and denote this primitive by Rijndael256. Next, we specify Rijndael256
in detail (for the full specification of Rijndael, please refer to [7]).

Rijndael256 is a key-alternating block cipher with block length 256 bits and key length 128 bits. It is
composed of three algorithms – the encryption, the decryption, and the key schedule. In SIV-Rijndael256,
only the encryption and the key schedule of Rijndael256 are used. Hence, we describe these two algorithms
only. The encryption and the different transformations composing it operates on an intermediate result,
called the state. The key schedule and its steps operate on an intermediate result, called the cipher key state.
Both the state and the cipher key state can be pictured as a rectangular array of bytes, as illustrated in
Figure 1.5. In which the number of columns in the state is denoted by Nb which equals 8, and the number
of columns of the cipher key state is denoted by Nk which equals 4.

The encryption of Rijndael256 is of substitution-permutation-networks (SPN) structure. It consists of an
initial key addition, denoted by AddRoundKey, followed by 13 applications of the transformation Round, and
finally one application of FinalRound. Thus, the total number of rounds, denoted by Nr, is 14.

The round transformation Round is composed by the following four basic transformations, called steps.

3

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12

p13

p14

p15

p16

p17

p18

p19

p20

p21

p22

p23

p24

p25

p26

p27

p28

p29

p30

p31

a0,0

a1,0

a2,0

a3,0

a0,1

a1,1

a2,1

a3,1

a0,2

a1,2

a2,2

a3,2

a0,3

a1,3

a2,3

a3,3

a0,4

a1,4

a2,4

a3,4

a0,5

a1,5

a2,5

a3,5

a0,6

a1,6

a2,6

a3,6

a0,7

a1,7

a2,7

a3,7

K0

K1

K2

K3

K4

K5

K6

K7

K8

K9

K10

K11

K12

K13

K14

K15

k0,0

k1,0

k2,0

k3,0

k0,1

k1,1

k2,1

k3,1

k0,2

k1,2

k2,2

k3,2

k0,3

k1,3

k2,3

k3,3

(a) The mapping from plaintext to state (b) The mapping from
key to cipher key state

Figure 1.5: State and cipher key layout

• SubBytes (SB). The SubBytes step is the only non-linear transformation of the cipher. It consists of
an substitution table (or S-box) applied to each byte of the state independently. The S-box, denoted
by SRD, is an 8-bit to 8-bit permutation and is obtained by taking the multiplicative inverse in GF(28)
followed by applying an affine (over GF(2)) transformation. For the multiplicative inverse x 7→ x−1 in

8 4 3GF(28), multiplication is done modulo the irreducible binary polynomial m(x) = x + x + x + x + 1
(or ‘11B’ in hexadecimal representation). The value 00 is mapped onto itself. The affine transformation
and the tabular representation of SRD(xy) can be seen in Appendix A.1.1.

• ShiftRows (SR). The ShiftRows step is a byte transposition that cyclically shifts the rows of the state
to the left. The shift offsets for row 0, 1, 2, 3 are denoted by C0, C1, C2, C3, which equal 0, 1, 3, 4
respectively. Then, the byte at position j in row i moves to position (j − Ci) mod 4.

• MixColumns (MC). The MixColumns step is a linear (over GF(2)) permutation. It consists of a modular
multiplication with a fixed polynomial c(x) operating on each column of the state independently. The
columns of the state are considered as polynomials over GF(28). They are multiplied modulo x4 +1 with

3 2the polynomial c(x) which is given by c(x) = 03·x +01·x +01·x+02. This modular multiplication with
c(x) can be written as a matrix multiplication (denoted by M×C). Let b(x) = c(x)·a(x) (mod x4 +1).
Then ⎤⎡⎤⎡⎤⎡

b0 02 03 01 01 a0 ⎢⎢⎣
b1

b2

⎥⎥⎦ =
⎢⎢⎣

01 02 03 01
01 01 02 03

⎥⎥⎦×
⎢⎢⎣

a1

a2

⎥⎥⎦

b3 03 01 01 02 a3

• AddRoundKey (AK). The key addition, denoted by AddRoundKey, consists of bitwise XORing a round
key to the state. A round key is denoted by ExpandedKey[i], 0 ≤ i ≤ Nr, with length equals the block
length (256 bits). The array of 15 round keys ExpandedKey is derived from the cipher key by applying
the key schedule.

The i-th (1 ≤ i < 14) round transformation Round(State, ExpandedKey[i]) can be written as (see Fig-
ure 1.6)

AddRoundKey ◦ MixColumns ◦ ShiftRows ◦ SubBytes(State, ExpandedKey[i])
The last round transformation FinalRound(State, ExpandedKey[14]) can be written as

AddRoundKey ◦ ShiftRows ◦ SubBytes(State, ExpandedKey[14]).

4

Round function Round

SB SR MC AK

SRD

x
x
x
x x

x
x

x

C ←M× C

Figure 1.6: Graphical representation of the round transformation Round

W[·][0] W[·][1] W[·][2] W[·][3] W[·][4] W[·][5] W[·][6] W[·][7] W[·][8] W[·][9] W[·][10] W[·][11] W[·][12] W[·][13] W[·][14] W[·][15] W[·][16] · · ·

ExpandedKey[0] ExpandedKey[1] · · ·

Figure 1.7: Key expansion and round key selection for Nb = 8 and Nk = 4.

The key schedule of Rijndael256 expands a cipher key (128 bits) into an expanded key array by operating
the Key Expansion. From the expanded key array, the 15 round keys ExpandedKey (256 bits each) are
selected by the Round Key Selection.

• Key expansion. The key expansion of Rijndael256 is the same as that in AES with 128 bits key, except
for the total number of columns in the expanded key array. In Rijndael256, the expanded key array
consists of 4 rows and Nb · (Nr + 1) (i.e., 8 × 15 = 120) columns, which is denoted by W[4][8 × 15]. The
128-bit cipher key is copied into the first four columns of the expanded key array, i.e.,

W[i][j] = ki,j for 0 ≤ i ≤ 3 and 0 ≤ j ≤ 3.

Then, W[i][j] for 4 ≤ j < 120 and 0 ≤ i ≤ 3 is computed as

W[i][j] =

⎧ ⎪⎨ ⎪⎩

W[i][j − 4] ⊕ SRD(W[(i + 1) mod 4][j − 1]) ⊕ RC[j/4], j ≡ 0 mod 4 and i = 0

W[i][j − 4] ⊕ SRD(W[(i + 1) mod 4][j − 1]), j ≡ 0 mod 4

W[i][j] ⊕ W[i][j − 1], otherwise.

where, RC[·] is an array of bytes which are the round constants defined by the recursion rule in GF(28)
with the irreducible polynomial m(x) used to define SRD:

RC[j] =

⎧ ⎪⎨ ⎪⎩

x0 (i.e., 01) j = 0

x1 (i.e., 02) j = 1
j−1x · RC[j − 1] = x j ≥ 2.

• Round key selection. The round key of the i-th round, denoted by ExpandedKey[i] is given by (and
depicted by Figure 1.7)

ExpandedKey[i] = W[·][8i]∥W[·][8i + 1]∥ · · · ∥W[·][8i + 7], 0 ≤ i ≤ 14.

1.1.4 Add 3-bit Tweak into Rijndael256

In SIV-Rijndael256, multiple (explicitly, eight) independent instances of Rijndael256 are required. Thus, a
3-bit tweak is required to act as domain separator.

We propose to add a 3-bit tweak to the bytes at the second column in the state (i.e., a·,1 shown in
Figure 1.8) before the SubBytes step in each Round and FinalRound (when encoded by a byte, they are put

5

RC
[2i + 1]

d

d

d

d

RC
[2i + 2]

Figure 1.8: The positions of the bytes in the state to which the round constants and the 3-bit tweak d will
be XOR-ed.

at the least significant bits). The position of the XOR-ed byte is chosen to avoid the interaction between
the round constants which are equivalently XOR-ed to a0,0 and a0,4. The additional effect of adding these
3-bit tweak on implementation is negligible. The effect on security is also expected to be small. These can
be viewed as following the Tweakey framework proposed in [15]. In [15], a family of tweakable block ciphers
named Kiasu-BC was proposed. Kiasu-BC has a 128-bit internal state and 64-bit tweakey state. “It is exactly
the AES cipher, except that the tweak value is XOR-ed to the two top rows of the internal state at every
round after the addition of the subkeys (after the AddRoundKey operation)” [15]. In our case, considering
that the number of controllable bit on tweak is quite small and it can be viewed as following the method
of inserting tweak in Kiasu-BC, we believe the impact on security is limited. We will denote the instance
of Rijndael256 inserted with 3-bit tweak d as Rijndael256d , i.e., Rijndael2560 , Rijndael2561 , · · · , Rijndael2567

respectively.

1.2 Specification of SIV-Rijndael256 Family

1.2.1 SIV-Rijndael256-AEAD Authenticated Encryption

The SIV-Rijndael256-AEAD family is the instance of the SIV scheme (specified in Sect. 1.1.2) with multiple
instances of Rijndael256 (specified in Sect. 1.1.3 and Sect. 1.1.4) being the underlying block ciphers.

The SIV-Rijndael256-AEAD family consists of only one instance, with the parameter sizes:

- block size n = 256 bits,

- key size k = 128 bits,

- tag size |T | = 256 bits,

- nonce length |N | = 128 bits.

It supports the following:

- any bit length of associated data |A| ≥ 0,

- any bit length of messages |M | ≥ 0.

Due to the mode, decryption algorithm of the cipher is not necessary.

1.2.2 SIV-Rijndael256 Hash Function

SIV-Rijndael256-Hash adopts the Sponge-like construction (as shown in Fig. 1.9 and 1.10). The difference
with Sponge is that the initial absorbing rate and the squeezing rate are larger than the internal absorbing
rate. Specifically, in SIV-Rijndael256-Hash, both of the initial absorbing bitrate and the squeezing bitrate are
r0, whereas, the internal absorbing bitrate is r1 and output digest size is ds, i.e.,

r0 = 128, r1 = 32, c0 = 128, c1 = 224, ds = 256.

The underlying permutation in SIV-Rijndael256-Hash is the Rijndael256 with the master key set to the constant
0, and we keep the additional input d, and denote the resulted permutation as f [d]. d = 0 is used for all

6

Absorbing Squeezing

M [1]

rr0

0 r
c0

f [d=0]

rr1

r
c1

M [2]

f [d=0]

rr1

r
c1

M [3]

f [d=0]

rr1

r
c1

M [4]

f [d=1/2]

T [1]

rr0

r
c0

f [d=0]

T [2]

rr0

Figure 1.9: SIV-Rijndael256-Hash adopts Sponge-like construction, with initial absorbing bitrate r0, internal
absorbing bitrate r1 and squeezing bitrate r0.

Algorithm SpongeHash[f [0/1/2], pad, r0, r1, ds](M)

Absorption Phase:
r0,r11. (M [1], . . . ,M [m]) ←−−− M

2. if |M | ≤ r0 then
3. d ← (|M [m]| = r0)?1 : 2
4. M [m] ← pad (M [m])r0
5. else
6. d ← (|M [m]| = r1)?1 : 2
7. M [m] ← pad (M [m])r1
8. S ← 0
9. for i = 1 to m − 1

10. S ← S ⊕ (M [i] || 0|S|−|M [i]|)
= f [0](S)11. S

12. S ← f [d](S ⊕ (M [m] || 0|S|−|M [m]|))

Squeezing Phase:

13. T = msbr0 (S)
14. for i = 1 to ⌈ds/r0⌉ − 1

S ← f [0](S)15.
16. T = T || msbr0 (S)
17. return msbds(T)

Figure 1.10: The definition of our modified Sponge construction.

other places, rather than the last call in the absorption phase. The padding rule follows the same as in the
AEAD, i.e., when the last message is of full block (128 bits if |M | ≤ 128, 32 bits otherwise), no padding is
necessary otherwise a bit string of 10∗ is padded, and the corresponding d is defined as 1 for full block, and
2 for non-full block.

7

Chapter 2

Security

2.1 Summary of Expected Security Strength

Attack Model Time Complexity Data Complexity

Key Recovery 128 bits 128 bits
Forgery 128 bits 128 bits

Table 2.1: The security claims of SIV-Rijndael256-AEAD.

collision second-preimage preimage
112 bits 112 bits 128 bits

Table 2.2: The security claims of SIV-Rijndael256-Hash.

2.2 Known Cryptanalytic Attacks on Rijndael with Block Length
256-bit

For SIV-Rijndael256-AEAD, we consider secrete-key attacks on Rijndael. According to the published results
on cryptanalysis of large-block Rijndael, the impossible differential attacks and integral attacks are the most
threatening attacks. This situation is similar with the situation on cryptanalysis of AES with 128-bit key.
Table 2.3 lists current best attacks on Rijndael with 256-bit block and 256-bit key. These attacks shown in
Table 2.3 are under the single-key model, which indicate that when using a 128-bit key the data complexity
should be upper bounded by 2128. For attacks on more than 7 rounds, the data complexity are all close to
or larger than 2128. For general estimation on resistance against the differential attack, we can refer to [38],
in which authors provided updated bound on the number of active S-boxes for Rijndael with 256-bit block,
which can be seen in Table 2.4.

According to the known best attacks, we estimate that the best attacks on Rijndael with 256-bit block
and 128-bit key, i.e., Rijndael256 used in SIV-Rijndael256-AEAD, cannot attack more than 10 rounds out of
the 14 rounds with data complexity lower than 2128.

In SIV-Rijndael256-Hash, we consider known-key attacks on Rijndael. In [39], known-key attacks are
presented which work on 8-round Rijndael with 192-bit block and 9-round Rijndael with 256-bit block. In the
attack on Rijndael with 256-bit block, one can find a pair of values which has 16-byte (128-bit) differences
in both of input and output with 248 computations and 232 amount of memory, while an ideal case requires
264. No similar property is known on 10-round Rijndael with 256-bit block. Besides, for Rijndael with 192-bit
block, better ShiftRows parameters are recommended for resisting truncated differential attack. However,
for Rijndael with 256-bit block, no better ShiftRows parameters than the original one (i.e., (0, 1, 3, 4)) was
recommended. This conclusion on the optimality of the ShiftRows parameters in Rijndael256 is also supported

8

Cipher NR Data (CP) Time (Enc) Memory (Bytes) Attack type Source
7 2130.5 2141 Multiset [16]
7 2153 2182 2122 IDA [31]
7 293.2 2113.2 261 IDA [50]
7 6 × 232 244 Integral [12]

Rijndael-256-256 8 ≈ 2128 ≈ 2128 Integral [12]
9 ≈ 2128 2204 Integral [12]
9 2244.3 2208.8 2189 IDA [50]
9 2132.5 2174.5 Integral [22]
9 2237.3 2159.1 2115.3 IDA [45]
9 2245.3 2127.1 290.9 IDA [45]
10 2244.2 2253.9 2186.8 IDA [45]
10 2244.4 2240.1 2186.4 IDA [23]

IDA: impossible differential attack

Table 2.3: Summary of known attacks on Rijndael-256-256

r 3 4 5 6 7 8 9 10 12 14 20
MNDAS 9 25 41 50 58 65 74 85 105 120 175
MNDAS/r 3 6.25 8.2 8.33 8.28 8.12 8.22 8.5 8.75 8.57 8.75
MNDAS: minimum number of differentially active S-boxes

Table 2.4: Lower bound of the number of active S-box for r rounds of Rijndael-256 [38]

by authors of [38] after trying to find better options among ten possible parameters in terms of lower bound
for the minimum number of active S-boxes.

There are many more other cryptanalysis results [23, 45, 39, 22, 46, 29, 12, 50, 31, 18, 47, 34, 41, 4, 3,
10, 32, 19, 6, 9] against classic security notations, and side-channels [42, 13, 43, 49].

In summary, Rijndael-256-256 remains secure as a primitive after twenty years’ cryptanalysis by the
community, and Rijndael256 (Rijndael-256-128) as a special instance of Rijndael-256-256 is supposed to remain
secure with high security margins.

9

Chapter 3

Design Rationale

Our design goals are summarized as follows.

• The AEAD scheme that is suitable for use lightweight applications.

• Strong security guarantee, based on well analyzed and trusted underlying primitive and well established
mode of operation.

• Address misuse cases of nonce-repetition and release of unverified plaintexts.

• Avoid the use of decryption algorithm of the underlying block cipher, for AEAD decryption.

• The hash function can be easily defined by reusing the primitive from the AEAD scheme, under a well
understood mode, slightly modified for efficiently processing short messages.

• All necessary modifications are kept to be minimum, without affecting the security and lightweightness
in hardware/software.

3.1 Choice of SIV

Above goals in mind, we decided to use the SIV mode [36] as our mode of operation. The mode enjoys the
provable security in the strong sense of nonce-misuse case, and it also has the provable security in terms of
release of unverified plaintexts [1]. The combined OFB mode also enables decryption of the AEAD without
the use of decryption algorithm of the underlying block cipher, which saves the gates required in the hardware
implementations and reduces the code size or ROM in software implementations.

Our choice of CBC MAC is to build our scheme on an established standard scheme, which generates the
tag from the associated data and message with well understood proven security. We use OFB mode for its
solid provable security guarantee and its small footprint in implementations. Overall, the mode removes the
use of decryption algorithm, and requires such a small amount of gates to implement that the overall amount
of gates required by the AEAD design is almost the same as that by the underlying Rijndael256 block cipher.

The security bound is the standard birthday bound of the form O(σ2/2n), where σ denotes the total
number of blocks in the security game. With the application for hashing in mind, we adopt a block size of
n = 256, which gives a solid security bound for any lightweight applications.

3.2 Choice of Rijndael
The Rijndael family is a long-standing and well-studied design. From this family, three members are selected
as The Advanced Encryption Standard (AES) by the U.S. National Institute of Standards and Technology
(NIST) in 2001. In the design of SIV-Rijndael256, another member Rijndael256 different from the three
members in AES is selected, in the consideration of minimum dimensions to fit the minimum acceptability
requirements on the AEAD algorithm and Hash function. The block length (256 bits) is selected in the
consideration of the birthday bound (2128) on the security of Hash function for collision-resistance. The key
length (128 bits) is selected considering that any cryptanalytic attack on the AEAD algorithm shall require
more than 2112 computations on a classical computer.

10

Rijndael256 should share both security-related and implementation-related properties with members of
AES. The studies on both security and implementations aspects of AES have been going on for almost two
decades. As a standard worldwide used, AES has become the most understood and deployed cryptographic
scheme. It turns out that members of AES are strong enough to resist practical attacks. In addition, the
performances both on hardware and software of AES are good. More than that, AES can be viewed as
light-weight (1560 GEs) primitive using bit-slicing technique to implement [14]. Accordingly, other members
of Rijndael, particularly Rijndael256, have the same advantages as that of members of AES.

11

Chapter 4

Performance

4.1 Hardware Performance

For hardware, we expect the area cost by SIV-Rijndael256 to be very small when using bit-slicing serial
implementation methods. The mode SIV costs little on top of the cost of the underlying block cipher
Rijndael256. Hence, to estimate the hardware implementation cost of SIV-Rijndael256, we focus on estimating
the hardware implementation cost of Rijndael256.

We estimate the hardware performance of Rijndael256 with area minimization as the optimization target.
The current record of minimized area of AES-128 is kept by the bit-serial implementations provided by Jean
et al. [14]. Using the results in [14], we estimate area and latency of Rijndael256.

Compared with implementations of AES-128, the additional area cost for implementations of Rijndael256
comes from the cost for storing additional 128-bit state bits, the cost for storing the 3 bits (less than 8 3-bit
values), and the cost for XOR-ing with 3-bit domain separators. Among the 128 additional state bits, 12
requires to be stored in scan flip-flops and 116 can be stored in regular flip-flops following methods in [14].
The domain separators can be stored using 8 × 3 regular flip-flops. Table 4.1 lists more detailed estimations
on additional cost. Based on Table 4.1 and 4.2 and the results of AES-128 in [14], we get the estimation for
Rijndael256 which are summarized in Table 4.3.

For latency of Rijndael256, the additional cycle-cost on top of that of AES-128 comes from the fact that
Rijndael256 has more rounds and in each round double number of bits need to be updated. Note that, selecting
and XOR-ing bits of domain separators can be implemented in the same clock cycles for AddRoundKey and
SubBytes, thus cost no additional cycles. Thus, to estimate latency of Rijndael256, we use the following
formula:

2 × (13 × CyclesRound + CyclesFinalRound),

where Cyclesround is the clock cycles took by one complete round of AES, CyclesFinalRound is that took by
the last round and AddRoundKey, 13 is the number of complete round in Rijndael256, where Cyclesround and
CyclesFinalRound for each implementation method is listed in Table 4.3 (column 8 for AES).

From Table 4.3, the hardware performance of Rijndael256 can be very small.
Besides, there are many previous studies on performance of Rijndael, e.g., [40, 28, 25, 37, 11, 27, 21, 24, 44].

UMC 180
GE

UMC 130
GE

UMC 90
GE

Ngate 45
GE

IBM 130
GE

1-bit DFF
1-bit Scan FF
1-bit XOR
2-to-1 MUX

4.67
6.00
2.67
2.33

5.00
6.25
2.75
2.25

4.25
5.75
2.50
2.25

5.67
7.67
2.00
2.33

4.25
5.50
2.00
2.25

Table 4.1: The (estimated) cost of regular flip-flops, 2-input XOR gates, and 2-to-1 Multiplexers in different
libraries.

12

UMC 180
GE

UMC 130
GE

UMC 90
GE

Ngate 45
GE

IBM 130
GE

12 bit of the
additional 128
bit state

72 75 69 92.04 66

116 bit of the
additional 128
bit state

541.72 580 493 657.72 493

Total cost of
the additional
128 bit state

613.72 655 562 749.76 559

8 3-bit domain
seperator

112.08 120 102 136.08 102

3-bit XOR and
Multiplexer

15 15 14.25 12.99 12.75

Total cost of
adding domain
seperator

127.08 135 116.25 149.07 114.75

Table 4.2: The detail estimation on additional cost

Cipher

data
path
δ

bits

UMC 180
GEs

UMC 130
GEs

UMC 90
GEs

Ngate 45
GEs

IBM 130
GEs

Latency Cycles Ref.

AES-128

1 1727 1902 1596 1982 1560 1776/ (9 × 168 + 264) [14]
2 1796 1992 1667 2054 1625 888/ (9 × 84 + 132) [14]
4 1920 2168 1784 2146 1731 520/ (9 × 50 + 70) [14]
8 2112 2360 1968 2337 1912 282/ (9 × 27 + 39) [14]
8 2400 3574 2292 2768 2182 226/ (10 × 21 + 16) [30]

Rijndael256

1 2468 2692 2274 2881 2234 4896/ 2 × (13 × 168 + 264) [14]
2 2537 2782 2345 2953 2299 2448/ 2 × (13 × 84 + 132) [14]
4 2661 2958 2462 3045 2405 1440/ 2 × (13 × 50 + 70) [14]
8 2853 3150 2646 3236 2586 780 / 2 × (13 × 27 + 39) [14]
8 3141 4364 2970 3667 2856 620 / 2 × (14 × 21 + 16) [30]

Table 4.3: Estimations on hardware implementation area and latency of Rijndael256 based on state-of-the-art
results of AES-128

4.2 Software Performance

4.2.1 High-end CPU

We can also estimate the software performance on high-end CPU of Rijndael256 on the basis of best results of
AES software, which can be found in [26, 48, 5, 20, 17, 33] etc. From those result, the software performance
of AES-128 can be 8.5 ∼ 15 cycles per byte using table-based methods, 5 ∼ 8 cycles per byte using bitsliced
methods, and 0.6 ∼ 1.5 cycles per byte using AES-NI [33]. We expect Rijndael256 can perform better
than AES-128 when both implemented using table-based methods or bitsliced methods, because Rijndael256
encrypts messages of doubled length with less than double rounds. Thus, we can use (14/(10×2))×CAES−128

to estimate Rijndael256 software performance, which can be 6 ∼ 10 cycles per byte using Table-based methods,
3.5 ∼ 5.5 cycles per byte using bitsliced methods.

4.2.2 Micro-controllers

For micro-controllers, we also expect the software implementation costs of SIV-Rijndael256 be small in terms
of code size (ROM) and RAM. The base is on the available results both of AES-128 [8] and of primitives
using Rijndael256 as the underlying component [2].

According to [8], for AES-128 encryption with key schedule included, in AVR devices, the code size and
RAM requirement are 1026 bytes and 26 bytes respectively; in MSP devices they are 1022 bytes and 36
respectively; in ARM devices, they are 1208 bytes and 84 bytes respectively.

According to [2], in Atmel AVR devices, an implementation of the hash function – Shrimpton-Stam
construction based on Rijndael-256/256 with 256-bit digest – has code size 734 bytes and RAM 168 bytes.
An implementation of the Davies-Meyer construction based on Rijndael-256/256 with 256-bit digest, has code

13

size 696 bytes and RAM 136 bytes.
Considering the implementation of Rijndael256 on those devices can share the same implementation

techniques and implementation merits of AES-128, and considering that both the SIV mode and the Sponge-
like construction used in SIV-Rijndael256-AEAD and SIV-Rijndael256-Hash cost little on top of the underlying
Rijndael256, we expect the code size (ROM) and RAM requirements of software implementation of SIV-
Rijndael256 in micro-controllers to be small.

14

Chapter 5

References

5.1 Reference/Third-party Analysis on Rijndael
There are many studies on members of AES, which provide references for the security analysis of the member
Rijndael256. Besides, there are also some studies focus on large-block Rijndael covering Rijndael-256-256 which
has 256-bit block and 256-bit key. In the following, we listed published works on large-block Rijndael for
further reference:

Classical Cryptanalysis:

1. Ya Liu, Yifan Shi, Dawu Gu, Bo Dai, Fengyu Zhao, Wei Li, Zhiqiang Liu, and Zhiqiang Zeng. Im-
proved impossible differential cryptanalysis of large-block rijndael. Science China Information Sciences,
62(3):32101, 2019

2. Mahdi Sajadieh, Arash Mirzaei, Hamid Mala, and Vincent Rijmen. A new counting method to bound
the number of active s-boxes in rijndael and 3d. Des. Codes Cryptography, 83(2):327–343, 2017

3. Qingju Wang, Dawu Gu, Vincent Rijmen, Ya Liu, Jiazhe Chen, and Andrey Bogdanov. Improved
impossible differential attacks on large-block Rijndael. In Taekyoung Kwon, Mun-Kyu Lee, and Daesung
Kwon, editors, ICISC 12: 15th International Conference on Information Security and Cryptology,
volume 7839 of LNCS, pages 126–140, Seoul, Korea, November 28–30, 2013. Springer, Heidelberg,
Germany

4. Yu Sasaki. Known-key attacks on Rijndael with large blocks and strengthening ShiftRow parameter.
In Isao Echizen, Noboru Kunihiro, and Ryôichi Sasaki, editors, IWSEC 10: 5th International Workshop
on Security, Advances in Information and Computer Security, volume 6434 of LNCS, pages 301–315,
Kobe, Japan, November 22–24, 2010. Springer, Heidelberg, Germany

5. Yan-Jun Li and Wen-Ling Wu. Improved integral attacks on rijndael. Journal of Information Science
& Engineering, 27(6), 2011

6. Yuechuan Wei, Bing Sun, and Chao Li. New integral distinguisher for Rijndael-256. Cryptology ePrint
Archive, Report 2009/559, 2009. http://eprint.iacr.org/2009/559

7. Marine Minier, Raphael C.-W. Phan, and Benjamin Pousse. Distinguishers for ciphers and known key
attack against Rijndael with large blocks. In Bart Preneel, editor, AFRICACRYPT 09: 2nd Interna-
tional Conference on Cryptology in Africa, volume 5580 of LNCS, pages 60–76, Gammarth, Tunisia,
June 21–25, 2009. Springer, Heidelberg, Germany

8. Jorge Nakahara Jr., Daniel Santana de Freitas, and Raphael Chung-Wei Phan. New multiset attacks
on rijndael with large blocks. In Ed Dawson and Serge Vaudenay, editors, Progress in Cryptology -
Mycrypt 2005, First International Conference on Cryptology in Malaysia, Kuala Lumpur, Malaysia,
September 28-30, 2005, Proceedings, volume 3715 of Lecture Notes in Computer Science, pages 277–295.
Springer, 2005

15

http://eprint.iacr.org/2009/559

9. Samuel Galice and Marine Minier. Improving integral attacks against Rijndael-256 up to 9 rounds.
In Serge Vaudenay, editor, AFRICACRYPT 08: 1st International Conference on Cryptology in Africa,
volume 5023 of LNCS, pages 1–15, Casablanca, Morocco, June 11–14, 2008. Springer, Heidelberg,
Germany

10. Lei Zhang, Wenling Wu, Je Hong Park, Bon Wook Koo, and Yongjin Yeom. Improved impossible
differential attacks on large-block Rijndael. In Tzong-Chen Wu, Chin-Laung Lei, Vincent Rijmen, and
Der-Tsai Lee, editors, ISC 2008: 11th International Conference on Information Security, volume 5222
of LNCS, pages 298–315, Taipei, Taiwan, September 15–18, 2008. Springer, Heidelberg, Germany

11. Jorge Nakahara Jr. and Ivan Carlos Pavão. Impossible-differential attacks on large-block Rijndael.
In Juan A. Garay, Arjen K. Lenstra, Masahiro Mambo, and René Peralta, editors, ISC 2007: 10th
International Conference on Information Security, volume 4779 of LNCS, pages 104–117, Valparaíso,
Chile, October 9–12, 2007. Springer, Heidelberg, Germany

12. Liam Keliher, Henk Meijer, and Stafford Tavares. Completion of computation of improved upper
bound on the maximum average linear hull probability for Rijndael. Cryptology ePrint Archive, Report
2004/074, 2004. http://eprint.iacr.org/2004/074

13. Ralph Wernsdorf. The round functions of RIJNDAEL generate the alternating group. In Joan Daemen
and Vincent Rijmen, editors, Fast Software Encryption – FSE 2002, volume 2365 of LNCS, pages 143–
148, Leuven, Belgium, February 4–6, 2002. Springer, Heidelberg, Germany

14. Sangwoo Park, Soo Hak Sung, Seongtaek Chee, E-Joong Yoon, and Jongin Lim. On the security of
Rijndael-like structures against differential and linear cryptanalysis. In Yuliang Zheng, editor, Advances
in Cryptology – ASIACRYPT 2002, volume 2501 of LNCS, pages 176–191, Queenstown, New Zealand,
December 1–5, 2002. Springer, Heidelberg, Germany

15. Beomsik Song and Jennifer Seberry. Consistent differential patterns of Rijndael. In Pil Joong Lee
and Chae Hoon Lim, editors, ICISC 02: 5th International Conference on Information Security and
Cryptology, volume 2587 of LNCS, pages 149–163, Seoul, Korea, November 28–29, 2003. Springer,
Heidelberg, Germany

16. Elad Barkan and Eli Biham. In how many ways can you write Rijndael? Cryptology ePrint Archive,
Report 2002/157, 2002. http://eprint.iacr.org/2002/157

17. Elad Barkan and Eli Biham. The book of Rijndaels. Cryptology ePrint Archive, Report 2002/158,
2002. http://eprint.iacr.org/2002/158

18. Niels Ferguson, Richard Schroeppel, and Doug Whiting. A simple algebraic representation of Rijndael.
In Serge Vaudenay and Amr M. Youssef, editors, SAC 2001: 8th Annual International Workshop on
Selected Areas in Cryptography, volume 2259 of LNCS, pages 103–111, Toronto, Ontario, Canada,
August 16–17, 2001. Springer, Heidelberg, Germany

19. Kenji Ohkuma, Hideo Shimizu, Fumihiko Sano, and Shinichi Kawamura. Security assessment of Hie-
rocrypt and Rijndael against the differential and linear cryptanalysis (extended abstract). Cryptology
ePrint Archive, Report 2001/070, 2001. http://eprint.iacr.org/2001/070

20. Liam Keliher, Henk Meijer, and Stafford E. Tavares. Improving the upper bound on the maximum
average linear hull probability for Rijndael. In Serge Vaudenay and Amr M. Youssef, editors, SAC
2001: 8th Annual International Workshop on Selected Areas in Cryptography, volume 2259 of LNCS,
pages 112–128, Toronto, Ontario, Canada, August 16–17, 2001. Springer, Heidelberg, Germany

21. Jung Hee Cheon, MunJu Kim, Kwangjo Kim, Jung-Yeun Lee, and SungWoo Kang. Improved im-
possible differential cryptanalysis of Rijndael and Crypton. In Kwangjo Kim, editor, ICISC 01: 4th
International Conference on Information Security and Cryptology, volume 2288 of LNCS, pages 39–49,
Seoul, Korea, December 6–7, 2002. Springer, Heidelberg, Germany

Side-Channel Attacks:

16

http://eprint.iacr.org/2001/070
http://eprint.iacr.org/2002/158
http://eprint.iacr.org/2002/157
http://eprint.iacr.org/2004/074

1. Merrielle Spain and Mayank Varia. Diversity within the rijndael design principles for resistance to
differential power analysis. In Sara Foresti and Giuseppe Persiano, editors, CANS 16: 15th International
Conference on Cryptology and Network Security, volume 10052 of LNCS, pages 71–87, Milan, Italy,
November 14–16, 2016. Springer, Heidelberg, Germany

2. Catherine H. Gebotys, Simon Ho, and C. C. Tiu. EM analysis of Rijndael and ECC on a wireless
Java-based PDA. In Josyula R. Rao and Berk Sunar, editors, Cryptographic Hardware and Embedded
Systems – CHES 2005, volume 3659 of LNCS, pages 250–264, Edinburgh, UK, August 29 – September 1,
2005. Springer, Heidelberg, Germany

3. François-Xavier Standaert, Siddika Berna Örs, and Bart Preneel. Power analysis of an FPGA: Imple-
mentation of Rijndael: Is pipelining a DPA countermeasure? In Marc Joye and Jean-Jacques Quisquater,
editors, Cryptographic Hardware and Embedded Systems – CHES 2004, volume 3156 of LNCS, pages
30–44, Cambridge, Massachusetts, USA, August 11–13, 2004. Springer, Heidelberg, Germany

4. Sung-Ming Yen. Amplified differential power cryptanalysis on Rijndael implementations with expo-
nentially fewer power traces. In Reihaneh Safavi-Naini and Jennifer Seberry, editors, ACISP 03: 8th
Australasian Conference on Information Security and Privacy, volume 2727 of LNCS, pages 106–117,
Wollongong, NSW, Australia, July 9–11, 2003. Springer, Heidelberg, Germany

17

Acknowledgements

The submitters would like to thank Kazuhiko Minematsu of NEC Corporation for various discussions in the
early design stage of our submission.

18

Bibliography

[1] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Nicky Mouha, and Kan Yasuda. How
to securely release unverified plaintext in authenticated encryption. In Palash Sarkar and Tetsu Iwata,
editors, Advances in Cryptology – ASIACRYPT 2014, Part I, volume 8873 of LNCS, pages 105–125,
Kaoshiung, Taiwan, R.O.C., December 7–11, 2014. Springer, Heidelberg, Germany.

[2] Josep Balasch, Baris Ege, Thomas Eisenbarth, Benoit Gérard, Zheng Gong, Tim Güneysu, Stefan
Heyse, Stéphanie Kerckhof, François Koeune, Thomas Plos, Thomas Pöppelmann, Francesco Regazzoni,
François-Xavier Standaert, Gilles Van Assche, Ronny Van Keer, Loïc van Oldeneel tot Oldenzeel, and
Ingo von Maurich. Compact implementation and performance evaluation of hash functions in ATtiny
devices. Cryptology ePrint Archive, Report 2012/507, 2012. http://eprint.iacr.org/2012/507.

[3] Elad Barkan and Eli Biham. The book of Rijndaels. Cryptology ePrint Archive, Report 2002/158, 2002.
http://eprint.iacr.org/2002/158.

[4] Elad Barkan and Eli Biham. In how many ways can you write Rijndael? Cryptology ePrint Archive,
Report 2002/157, 2002. http://eprint.iacr.org/2002/157.

[5] Daniel J. Bernstein and Peter Schwabe. New AES software speed records. In Dipanwita Roy Chowd-
hury, Vincent Rijmen, and Abhijit Das, editors, Progress in Cryptology - INDOCRYPT 2008: 9th
International Conference in Cryptology in India, volume 5365 of LNCS, pages 322–336, Kharagpur,
India, December 14–17, 2008. Springer, Heidelberg, Germany.

[6] Jung Hee Cheon, MunJu Kim, Kwangjo Kim, Jung-Yeun Lee, and SungWoo Kang. Improved impossible
differential cryptanalysis of Rijndael and Crypton. In Kwangjo Kim, editor, ICISC 01: 4th International
Conference on Information Security and Cryptology, volume 2288 of LNCS, pages 39–49, Seoul, Korea,
December 6–7, 2002. Springer, Heidelberg, Germany.

[7] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced Encryption Standard.
Information Security and Cryptography. Springer, 2002.

[8] Daniel Dinu, Yann Le Corre, Dmitry Khovratovich, Léo Perrin, Johann Großschädl, and Alex Biryukov.
Triathlon of lightweight block ciphers for the internet of things. Cryptology ePrint Archive, Report
2015/209, 2015. http://eprint.iacr.org/2015/209.

[9] Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Michael Stay, David Wagner, and Doug
Whiting. Improved cryptanalysis of Rijndael. In Bruce Schneier, editor, Fast Software Encryption –
FSE 2000, volume 1978 of LNCS, pages 213–230, New York, NY, USA, April 10–12, 2001. Springer,
Heidelberg, Germany.

[10] Niels Ferguson, Richard Schroeppel, and Doug Whiting. A simple algebraic representation of Rijndael. In
Serge Vaudenay and Amr M. Youssef, editors, SAC 2001: 8th Annual International Workshop on Selected
Areas in Cryptography, volume 2259 of LNCS, pages 103–111, Toronto, Ontario, Canada, August 16–17,
2001. Springer, Heidelberg, Germany.

[11] Viktor Fischer and Milos Drutarovský. Two methods of Rijndael implementation in reconfigurable
hardware. In Çetin Kaya Koç, David Naccache, and Christof Paar, editors, Cryptographic Hardware and
Embedded Systems – CHES 2001, volume 2162 of LNCS, pages 77–92, Paris, France, May 14–16, 2001.
Springer, Heidelberg, Germany.

19

http://eprint.iacr.org/2015/209
http://eprint.iacr.org/2002/157
http://eprint.iacr.org/2002/158
http://eprint.iacr.org/2012/507

[12] Samuel Galice and Marine Minier. Improving integral attacks against Rijndael-256 up to 9 rounds. In
Serge Vaudenay, editor, AFRICACRYPT 08: 1st International Conference on Cryptology in Africa,
volume 5023 of LNCS, pages 1–15, Casablanca, Morocco, June 11–14, 2008. Springer, Heidelberg, Ger-
many.

[13] Catherine H. Gebotys, Simon Ho, and C. C. Tiu. EM analysis of Rijndael and ECC on a wireless
Java-based PDA. In Josyula R. Rao and Berk Sunar, editors, Cryptographic Hardware and Embedded
Systems – CHES 2005, volume 3659 of LNCS, pages 250–264, Edinburgh, UK, August 29 – September 1,
2005. Springer, Heidelberg, Germany.

[14] Jérémy Jean, Amir Moradi, Thomas Peyrin, and Pascal Sasdrich. Bit-sliding: A generic technique for
bit-serial implementations of SPN-based primitives - applications to AES, PRESENT and SKINNY.
In Wieland Fischer and Naofumi Homma, editors, Cryptographic Hardware and Embedded Systems –
CHES 2017, volume 10529 of LNCS, pages 687–707, Taipei, Taiwan, September 25–28, 2017. Springer,
Heidelberg, Germany.

[15] Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and keys for block ciphers: The TWEAKEY
framework. In Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology – ASIACRYPT 2014,
Part II, volume 8874 of LNCS, pages 274–288, Kaoshiung, Taiwan, R.O.C., December 7–11, 2014.
Springer, Heidelberg, Germany.

[16] Jorge Nakahara Jr., Daniel Santana de Freitas, and Raphael Chung-Wei Phan. New multiset attacks on
rijndael with large blocks. In Ed Dawson and Serge Vaudenay, editors, Progress in Cryptology - Mycrypt
2005, First International Conference on Cryptology in Malaysia, Kuala Lumpur, Malaysia, September
28-30, 2005, Proceedings, volume 3715 of Lecture Notes in Computer Science, pages 277–295. Springer,
2005.

[17] Emilia Kasper and Peter Schwabe. Faster and timing-attack resistant AES-GCM. Cryptology ePrint
Archive, Report 2009/129, 2009. http://eprint.iacr.org/2009/129.

[18] Liam Keliher, Henk Meijer, and Stafford Tavares. Completion of computation of improved upper
bound on the maximum average linear hull probability for Rijndael. Cryptology ePrint Archive, Report
2004/074, 2004. http://eprint.iacr.org/2004/074.

[19] Liam Keliher, Henk Meijer, and Stafford E. Tavares. Improving the upper bound on the maximum
average linear hull probability for Rijndael. In Serge Vaudenay and Amr M. Youssef, editors, SAC 2001:
8th Annual International Workshop on Selected Areas in Cryptography, volume 2259 of LNCS, pages
112–128, Toronto, Ontario, Canada, August 16–17, 2001. Springer, Heidelberg, Germany.

[20] Robert Könighofer. A fast and cache-timing resistant implementation of the AES. In Tal Malkin, editor,
Topics in Cryptology – CT-RSA 2008, volume 4964 of LNCS, pages 187–202, San Francisco, CA, USA,
April 7–11, 2008. Springer, Heidelberg, Germany.

[21] Henry Kuo and Ingrid Verbauwhede. Architectural optimization for a 1.82Gbits/sec VLSI implementa-
tion of the AES Rijndael algorithm. In Çetin Kaya Koç, David Naccache, and Christof Paar, editors,
Cryptographic Hardware and Embedded Systems – CHES 2001, volume 2162 of LNCS, pages 51–64,
Paris, France, May 14–16, 2001. Springer, Heidelberg, Germany.

[22] Yan-Jun Li and Wen-Ling Wu. Improved integral attacks on rijndael. Journal of Information Science
& Engineering, 27(6), 2011.

[23] Ya Liu, Yifan Shi, Dawu Gu, Bo Dai, Fengyu Zhao, Wei Li, Zhiqiang Liu, and Zhiqiang Zeng. Im-
proved impossible differential cryptanalysis of large-block rijndael. Science China Information Sciences,
62(3):32101, 2019.

[24] A. K. Lutz, J. Treichler, Frank K. Gürkaynak, Hubert Kaeslin, G. Basler, Antonia Erni, S. Reichmuth,
P. Rommens, Stephan Oetiker, and Wolfgang Fichtner. 2Gbit/s hardware realizations of RIJNDAEL
and SERPENT: A comparative analysis. In Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar,
editors, Cryptographic Hardware and Embedded Systems – CHES 2002, volume 2523 of LNCS, pages
144–158, Redwood Shores, CA, USA, August 13–15, 2003. Springer, Heidelberg, Germany.

20

http://eprint.iacr.org/2004/074
http://eprint.iacr.org/2009/129

[25] Massoud Masoumi, Farshid Raissi, and Mahmoud Ahmadian. NanoCMOS-molecular realization of
Rijndael. In Louis Goubin and Mitsuru Matsui, editors, Cryptographic Hardware and Embedded Systems
– CHES 2006, volume 4249 of LNCS, pages 285–297, Yokohama, Japan, October 10–13, 2006. Springer,
Heidelberg, Germany.

[26] Mitsuru Matsui and Junko Nakajima. On the power of bitslice implementation on intel core2 processor.
In Pascal Paillier and Ingrid Verbauwhede, editors, Cryptographic Hardware and Embedded Systems –
CHES 2007, volume 4727 of LNCS, pages 121–134, Vienna, Austria, September 10–13, 2007. Springer,
Heidelberg, Germany.

[27] Máire McLoone and John V. McCanny. High performance single-chip FPGA Rijndael algorithm imple-
mentations. In Çetin Kaya Koç, David Naccache, and Christof Paar, editors, Cryptographic Hardware
and Embedded Systems – CHES 2001, volume 2162 of LNCS, pages 65–76, Paris, France, May 14–16,
2001. Springer, Heidelberg, Germany.

[28] Nele Mentens, Lejla Batina, Bart Preneel, and Ingrid Verbauwhede. A systematic evaluation of compact
hardware implementations for the Rijndael S-box. In Alfred Menezes, editor, Topics in Cryptology –
CT-RSA 2005, volume 3376 of LNCS, pages 323–333, San Francisco, CA, USA, February 14–18, 2005.
Springer, Heidelberg, Germany.

[29] Marine Minier, Raphael C.-W. Phan, and Benjamin Pousse. Distinguishers for ciphers and known key
attack against Rijndael with large blocks. In Bart Preneel, editor, AFRICACRYPT 09: 2nd International
Conference on Cryptology in Africa, volume 5580 of LNCS, pages 60–76, Gammarth, Tunisia, June 21–
25, 2009. Springer, Heidelberg, Germany.

[30] Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang. Pushing the limits: A
very compact and a threshold implementation of AES. In Kenneth G. Paterson, editor, Advances in
Cryptology – EUROCRYPT 2011, volume 6632 of LNCS, pages 69–88, Tallinn, Estonia, May 15–19,
2011. Springer, Heidelberg, Germany.

[31] Jorge Nakahara Jr. and Ivan Carlos Pavão. Impossible-differential attacks on large-block Rijndael.
In Juan A. Garay, Arjen K. Lenstra, Masahiro Mambo, and René Peralta, editors, ISC 2007: 10th
International Conference on Information Security, volume 4779 of LNCS, pages 104–117, Valparaíso,
Chile, October 9–12, 2007. Springer, Heidelberg, Germany.

[32] Kenji Ohkuma, Hideo Shimizu, Fumihiko Sano, and Shinichi Kawamura. Security assessment of Hie-
rocrypt and Rijndael against the differential and linear cryptanalysis (extended abstract). Cryptology
ePrint Archive, Report 2001/070, 2001. http://eprint.iacr.org/2001/070.

[33] Jin Hyung Park and Dong Hoon Lee. FACE: Fast AES CTR mode encryption techniques based on
the reuse of repetitive data. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2018(3):469–499, 2018. https://tches.iacr.org/index.php/TCHES/article/view/7283.

[34] Sangwoo Park, Soo Hak Sung, Seongtaek Chee, E-Joong Yoon, and Jongin Lim. On the security of
Rijndael-like structures against differential and linear cryptanalysis. In Yuliang Zheng, editor, Advances
in Cryptology – ASIACRYPT 2002, volume 2501 of LNCS, pages 176–191, Queenstown, New Zealand,
December 1–5, 2002. Springer, Heidelberg, Germany.

[35] Phillip Rogaway and Thomas Shrimpton. A Provable-Security Treatment of the Key-Wrap Problem. In
EUROCRYPT, pages 373–390, 2006.

[36] Phillip Rogaway and Thomas Shrimpton. A provable-security treatment of the key-wrap problem. In
Serge Vaudenay, editor, Advances in Cryptology – EUROCRYPT 2006, volume 4004 of LNCS, pages
373–390, St. Petersburg, Russia, May 28 – June 1, 2006. Springer, Heidelberg, Germany.

[37] Atri Rudra, Pradeep K. Dubey, Charanjit S. Jutla, Vijay Kumar, Josyula R. Rao, and Pankaj Rohatgi.
Efficient Rijndael encryption implementation with composite field arithmetic. In Çetin Kaya Koç, David
Naccache, and Christof Paar, editors, Cryptographic Hardware and Embedded Systems – CHES 2001,
volume 2162 of LNCS, pages 171–184, Paris, France, May 14–16, 2001. Springer, Heidelberg, Germany.

21

https://tches.iacr.org/index.php/TCHES/article/view/7283
http://eprint.iacr.org/2001/070

[38] Mahdi Sajadieh, Arash Mirzaei, Hamid Mala, and Vincent Rijmen. A new counting method to bound
the number of active s-boxes in rijndael and 3d. Des. Codes Cryptography, 83(2):327–343, 2017.

[39] Yu Sasaki. Known-key attacks on Rijndael with large blocks and strengthening ShiftRow parameter. In
Isao Echizen, Noboru Kunihiro, and Ryôichi Sasaki, editors, IWSEC 10: 5th International Workshop
on Security, Advances in Information and Computer Security, volume 6434 of LNCS, pages 301–315,
Kobe, Japan, November 22–24, 2010. Springer, Heidelberg, Germany.

[40] Akashi Satoh, Sumio Morioka, Kohji Takano, and Seiji Munetoh. A compact Rijndael hardware archi-
tecture with S-box optimization. In Colin Boyd, editor, Advances in Cryptology – ASIACRYPT 2001,
volume 2248 of LNCS, pages 239–254, Gold Coast, Australia, December 9–13, 2001. Springer, Heidel-
berg, Germany.

[41] Beomsik Song and Jennifer Seberry. Consistent differential patterns of Rijndael. In Pil Joong Lee and
Chae Hoon Lim, editors, ICISC 02: 5th International Conference on Information Security and Cryptol-
ogy, volume 2587 of LNCS, pages 149–163, Seoul, Korea, November 28–29, 2003. Springer, Heidelberg,
Germany.

[42] Merrielle Spain and Mayank Varia. Diversity within the rijndael design principles for resistance to
differential power analysis. In Sara Foresti and Giuseppe Persiano, editors, CANS 16: 15th International
Conference on Cryptology and Network Security, volume 10052 of LNCS, pages 71–87, Milan, Italy,
November 14–16, 2016. Springer, Heidelberg, Germany.

[43] François-Xavier Standaert, Siddika Berna Örs, and Bart Preneel. Power analysis of an FPGA: Implemen-
tation of Rijndael: Is pipelining a DPA countermeasure? In Marc Joye and Jean-Jacques Quisquater,
editors, Cryptographic Hardware and Embedded Systems – CHES 2004, volume 3156 of LNCS, pages
30–44, Cambridge, Massachusetts, USA, August 11–13, 2004. Springer, Heidelberg, Germany.

[44] François-Xavier Standaert, Gaël Rouvroy, Jean-Jacques Quisquater, and Jean-Didier Legat. Efficient
implementation of Rijndael encryption in reconfigurable hardware: Improvements and design tradeoffs.
In Colin D. Walter, Çetin Kaya Koç, and Christof Paar, editors, Cryptographic Hardware and Embedded
Systems – CHES 2003, volume 2779 of LNCS, pages 334–350, Cologne, Germany, September 8–10, 2003.
Springer, Heidelberg, Germany.

[45] Qingju Wang, Dawu Gu, Vincent Rijmen, Ya Liu, Jiazhe Chen, and Andrey Bogdanov. Improved
impossible differential attacks on large-block Rijndael. In Taekyoung Kwon, Mun-Kyu Lee, and Daesung
Kwon, editors, ICISC 12: 15th International Conference on Information Security and Cryptology, volume
7839 of LNCS, pages 126–140, Seoul, Korea, November 28–30, 2013. Springer, Heidelberg, Germany.

[46] Yuechuan Wei, Bing Sun, and Chao Li. New integral distinguisher for Rijndael-256. Cryptology ePrint
Archive, Report 2009/559, 2009. http://eprint.iacr.org/2009/559.

[47] Ralph Wernsdorf. The round functions of RIJNDAEL generate the alternating group. In Joan Daemen
and Vincent Rijmen, editors, Fast Software Encryption – FSE 2002, volume 2365 of LNCS, pages
143–148, Leuven, Belgium, February 4–6, 2002. Springer, Heidelberg, Germany.

[48] HongJun Wu. Hongjun’s optimized C-code for AES-128 and AES-256. eSTREAM Project, 2007.

[49] Sung-Ming Yen. Amplified differential power cryptanalysis on Rijndael implementations with expo-
nentially fewer power traces. In Reihaneh Safavi-Naini and Jennifer Seberry, editors, ACISP 03: 8th
Australasian Conference on Information Security and Privacy, volume 2727 of LNCS, pages 106–117,
Wollongong, NSW, Australia, July 9–11, 2003. Springer, Heidelberg, Germany.

[50] Lei Zhang, Wenling Wu, Je Hong Park, Bon Wook Koo, and Yongjin Yeom. Improved impossible
differential attacks on large-block Rijndael. In Tzong-Chen Wu, Chin-Laung Lei, Vincent Rijmen, and
Der-Tsai Lee, editors, ISC 2008: 11th International Conference on Information Security, volume 5222
of LNCS, pages 298–315, Taipei, Taiwan, September 15–18, 2008. Springer, Heidelberg, Germany.

22

http://eprint.iacr.org/2009/559

Appendix A

Appendix

A.1 Tabular Representation of Some Mappings Used in Rijndael256

A.1.1 The S-box SRD of Rijndael256

The affine (over GF(2)) transformation f composing the S-box SRD of Rijndael256 is defined by [7]:

b = f(a)
⇕⎤⎡ ⎤⎡⎤⎡⎤⎡

b7 1 1 1 1 1 0 0 0 a7 0 ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b6

b5

b4

b3

b2

b1

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a6

a5

a4

a3

a2

a1

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊕

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
0
0
0
1

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

b0 1 1 1 1 0 0 0 1 a0 1

y
0 1 2 3 4 5 6 7 8 9 a b c d e f

x

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

63
CA
B7
04
09
53
D0
51
CD
60
E0
E7
BA
70
E1
8C

7C
82
FD
C7
83
D1
EF
A3
0C
81
32
C8
78
3E
F8
A1

77
C9
93
23
2C
00
AA
40
13
4F
3A
37
25
B5
98
89

7B
7D
26
C3
1A
ED
FB
8F
EC
DC
0A
6D
2E
66
11
0D

F2
FA
36
18
1B
20
43
92
5F
22
49
8D
1C
48
69
BF

6B
59
3F
96
6E
FC
4D
9D
97
2A
06
D5
A6
03
D9
E6

6F
47
F7
05
5A
B1
33
38
44
90
24
4E
B4
F6
8E
42

C5 30
F0 AD
CC 34
9A 07
A0 52
5B 6A
85 45
F5 BC
17 C4
88 46
5C C2
A9 6C
C6 E8
0E 61
94 9B
68 41

01
D4
A5
12
3B
CB
F9
B6
A7
EE
D3
56
DD
35
1E
99

67
A2
E5
80
D6
BE
02
DA
7E
B8
AC
F4
74
57
87
2D

2B
AF
F1
E2
B3
39
7F
21
3D
14
62
EA
1F
B9
E9
0F

FE
9C
71
EB
29
4A
50
10
64
DE
91
65
4B
86
CE
B0

D7
A4
D8
27
E3
4C
3C
FF
5D
5E
95
7A
BD
C1
55
54

AB
72
31
B2
2F
58
9F
F3
19
0B
E4
AE
8B
1D
28
BB

76
C0
15
75
84
CF
A8
D2
73
DB
79
08
8A
9E
DF
16

Table A.1: The tabular representation of SRD(xy) [7]

23

A.1.2 The Round Constants Used in Rijndael256

i 0 1 2 3 4 5 6 7
RC[i] 00 01 02 04 08 10 20 40

i 8 9 10 11 12 13 14 15
RC[i] 80 1B 36 6C D8 AB 4D 9A

i 16 17 18 19 20 21 22 23
RC[i] 2F 5E BC 63 C6 97 35 6A

i 24 25 26 27 28 29 30 31
RC[i] D4 B3 7D FA EF C5 91 39

Table A.2: The round constants RC[·] [7]

24

