
Spix: An Authenticated Cipher

Submission to the NIST LWC Competition

Submitters/Designers:
Riham AlTawy∗, Guang Gong, Morgan He,
Kalikinkar Mandal, and Raghvendra Rohit

∗Corresponding submitter:
Email: raltawy@uwaterloo.ca

Tel: +1-519-888-4567 x45650

Communication Security Lab
Department of Electrical and Computer Engineering

University of Waterloo
200 University Avenue West

Waterloo, ON, N2L 3G1, CANADA

http://comsec.uwaterloo.ca

March 28, 2019

http://comsec.uwaterloo.ca

Contents

1 Introduction 4
1.1 Notations . 5
1.2 Outline . 5

2 Specification 6
2.1 Spix Overview . 6

2.1.1 Recommended parameter set 6
2.1.2 Security claims . 6

2.2 The Mode of Operation . 7
2.2.1 Domain separation . 7
2.2.2 Padding . 9
2.2.3 Initialization . 9
2.2.4 Processing associated data . 10
2.2.5 Encryption . 10
2.2.6 Finalization . 10
2.2.7 Decryption . 10

2.3 The sLiSCP-light Permutation . 10
2.3.1 Step function of the permutation 11
2.3.2 sLiSCP-light permutation instances 13
2.3.3 sLiSCP-light constants . 14

3 Security Analysis 15
3.1 Security of sLiSCP-light . 15

3.1.1 Diffusion . 15
3.1.2 Differential and linear cryptanalysis 16
3.1.3 Algebraic distinguishers . 17
3.1.4 Rotational, slide and invariant subspace distinguishers 17

3.2 Security of Spix . 18

4 Design Rationale 19
4.1 Choice of the Mode: Monkey Duplex Sponge Mode 19
4.2 Spix State Size . 19
4.3 Nonlinear Layer: Simeck Sbox . 20
4.4 Round and Step Constants . 20
4.5 Number of Rounds and Steps . 21

4.5.1 P18 sLiSCP-light instance . 21
4.5.2 P9 sLiSCP-light instance . 21

ii

Spix: Submission to the NIST LWC competition

4.6 Choice of Rate Positions . 22
4.7 Statement . 22

5 Hardware Design 23
5.1 ASIC Implementation . 23
5.2 Round-based implementation of sLiSCP-light 24
5.3 Spix by the Numbers . 25

6 Software Implementations 27
6.1 Bit-sliced Implementation of sLiSCP-light 27
6.2 Spix Optimized Implementation . 29
6.3 Spix Microcontroller Implementation 29

A Other NIST-LWC Submissions Adopting sLiSCP-light Family of
Permutations 33

B Test Vectors 34
B.1 Simeck Sbox . 34
B.2 sLiSCP-light Permutation . 35
B.3 Spix . 35

iii

Chapter 1

Introduction

In a nutshell, Spix is an authenticated encryption algorithm that supports both
messages and associated data (AD). It targets lightweight applications that can
guarantee nonce uniqueness for security. On the top level, Spix adopts the monkey
duplex construction which supports two different calls for its underlying permuta-
tion, where each call invokes a specific number of rounds. In such sense, one may
view Spix as a primitive that uses two instances of the permutation which in this
case is sLiSCP-light [4]. In what follows, we briefly highlight the features of Spix
and then introduce the notations that are used throughout the document.

• Monkey duplexed Sponge-based mode of operation which provides better through-
put (81.8 Kbps for 1 KB messages) [12].

• A partial SPN 256-bit permutation that utilizes a hardware optimized nonlin-
ear function (ASIC area of 2406 GE) [4].

• Provably secure mode with keyed initialization and finalization phases for
added security.

• Small hardware footprint of 2611 GE for constrained devices: small state and
simple mixing.

• 128-bit security with straight out parameters: key size = tag size = security
level.

• Key agile, single pass, nonce-based and inverse-free decryption.

4

Spix: Submission to the NIST LWC competition

1.1 Notations

Notation Description

⊕, �, || Bitwise XOR, AND, and concatenation operator

|X| Length of X in bits

F2 {0,1}
Fn2 n-dimensional vector space over F2

Li Left cyclic shift operator, i.e., for x ∈ Fn2 ,
Li(x) = (xi, xi+1, . . . , xn−1, x0, x1, . . . , xi−1)

zn The concatenation of n z bits where z ∈ {0, 1},
e.g., 1n = 1, 1, . . . , 1︸ ︷︷ ︸

n

φ Empty string

r, c, b rate, capacity and permutation state size in bits

S The state of sLiSCP-light

Sr, Sc r-bit rate part and c-bit capacity part of S

X, X[u] A 64 bit subblock, u-th byte of X starting from left

X i
j The j-th subblock at i-th step of the permutation.

xij,l, x
i
j,r Upper and lower halves of subblock X i

j, i.e., X i
j = xij,l||xij,r

`A Length of vector A in subblocks

1.2 Outline

Chapter 2 gives a complete specification of the Spix Authenticated Encryption (AE)
scheme, along with its underlying operation mode and permutation. Confidentiality
and integrity security goals are also listed in the following chapter. Our cryptanalysis
of the underlying permutation and security claims of Spix are given in Chapter
3. In Chapter 4, we present the rational behind our design features and justify
our parameter choices. Chapter 5 provides our ASIC CMOS implementations and
performance. Software efficiency including bit-sliced implementation of Spix using
SIMD instruction sets and microcontroller implementations, is discussed in Chapter
6. Finally, we conclude with references and appendices.

5

Chapter 2

Specification

In this chapter, we present the specifications of Spix along with its mode of operation
and underlying permutations. We also give its parameter set and a detailed overall
algorithmic description of the whole cipher.

2.1 Spix Overview

Spix is an authenticated cipher which adopts a modified monkey duplex mode of
operation [12]. Spix offers 128-bit security and operates on two instances of a
256-bit sLiSCP-light permutation [4]. At its core, Spix defines the following two
procedures.

- Authenticated Encryption Algorithm E . This procedure takes as an
input secret k-bit key K, a public k-bit nonce N , and a variable length message
M and associated data AD (a.k.a header data). It outputs a ciphertext C with
the same length as M and a k-bit tag T that authenticates N , M , and AD

E(K,N,M,AD) = (C, T)

- Verified Decryption Algorithm D. This procedure operates on the key
K, the nonce N , the ciphertext C and associated data AD. It outputs the
decrypted message M if the calculated tag is equal to the tag T , otherwise, it
outputs ⊥

D(K,N,C,AD, T) ∈ {M,⊥}

2.1.1 Recommended parameter set

Spix uses 128-bit key and utilizes sLiSCP-light with state size 256 bits. In Table 2.1,
we list the recommended parameter set for Spix. The length of each parameter is
given in bits and D denotes the allowed data usage before re-keying is required.

2.1.2 Security claims

Spix assumes nonce respecting adversary and we do not claim security in the event
of nonce reuse. If the verification procedure fails, the decrypted ciphertext and the

6

Spix: Submission to the NIST LWC competition

Table 2.1: Recommended parameter set for Spix

Rate (r) Key (k) Nonce (n) Tag (t) Data (log2(D))

64 128 128 128 60

new tag should not be given as output. Moreover, we claim no security for reduced-
round versions of Spix. We claim 128-bit security for both plaintext confidentiality
and integrity where integrity covers the authenticity of plaintext, associated data
and nonce.

2.2 The Mode of Operation

Spix uses the monkey duplex construction [12] as its operation mode. The adopted
mode is depicted in Figure 2.2 and algorithmically specified in Algorithm 1. Spix’s
mode employs a keyed initialization and finalization phases that makes key recovery
hard even if the internal state is recovered and also renders universal forgery with
the knowledge of the internal state unattainable. The core algorithm of Spix is the
sLiSCP-light-256 permutation (henceforth denoted by P or simply sLiSCP-light)
of b = r + c bits, where b in our case is 256 bits. We denote one iteration of P by
step, and Ps denotes an s-step P. As depicted in Figure 2.1, the state is viewed as a
concatenation of 32 bytes, i.e. S = B0, . . . , B31, where Sr = B8, . . . , B11, B24, . . . , B27

are called the rate bytes and that is where data blocks are absorbed and squeezed.
The remaining 24 bytes are called the capacity bytes and account for Sc. Each
consecutive 8 bytes form a subblock as depicted in the 4-subblock state in Figure 2.1.

B0 B1 B2 B3 B4 B5 B6 B7

B8 B9 B10 B11 B12 B13 B14 B15

B16 B17 B18 B19 B20 B21 B22 B23

B24 B25 B26 B27 B28 B29 B30 B31

rate byte capacity byte

Figure 2.1: Visualization of the internal state of the permutation in Spix.

As depicted in Figure 2.2, E operates in four phases: initialization, processing
associated data, encryption, and finalization. Analogously, D runs initialization,
processing associated data, decryption, and finalization stages. Both initialization
and finalization stages call P18, while associated data processing, encryption and
decryption invoke P9.

2.2.1 Domain separation

Spix adopts a lightweight domain separation mechanism where a different 2-bit

7

Spix: Submission to the NIST LWC competition

P
1
8

P
1
8

P
1
8

P
9

P
9

P
9

P
9

P
9

P
1
8

P
1
8

in
it
(N

,K
)

cr

ta
ge

xt
ra

ct
(S

)

t

0x
00

0x
00

0x
01

0x
01

0x
02

0x
02

0x
02

0x
00

0x
00

K
0

K
1

A
D

0
A
D
l A

D
−

1
K

0
K

1

M
0

M
l M
−
2

M
l M
−
1

C
0

C
l M
−
2

C
l M
−
1

In
it

ia
liz

at
io

n
P

ro
ce

ss
in

g
as

so
ci

at
ed

da
ta

E
nc

ry
pt

io
n

F
in

al
iz

at
io

n

(a
)

A
ut

he
nt

ic
at

ed
en

cr
yp

ti
on

al
go

ri
th

m
E

P
1
8

P
1
8

P
1
8

P
9

P
9

P
9

P
9

P
9

P
1
8

P
1
8

in
it
(N

,K
)

cr

ta
ge

xt
ra

ct
(S

)

t

0x
00

0x
00

0x
01

0x
01

0x
02

0x
02

0x
02

0x
00

0x
00

K
0

K
1

A
D

0
A
D
l A

D
−
1

K
0

K
1

M
0

M
l M
−
2

M
l M
−
1

C
0

C
l M
−
2

C
l M
−
1

In
it

ia
liz

at
io

n
P

ro
ce

ss
in

g
as

so
ci

at
ed

da
ta

D
ec

ry
pt

io
n

F
in

al
iz

at
io

n

(b
)

V
er

ifi
ed

de
cr

yp
ti

on
al

go
ri

th
m
D

F
ig

u
re

2.
2:

S
ch

em
at

ic
d
ia

gr
am

of
S
p
ix
E

an
d
D

al
go

ri
th

m
s.

8

Spix: Submission to the NIST LWC competition

constant (see Table 2.2) is XORed to byte B31 when a new phase starts. Their
mixing with the state is illustrated in Figure 2.2, and their concrete integration is
described in Algorithm 1.

Table 2.2: Domain separation constants in Spix

Initialization Proc. AD Enc. & Dec. Finalization

0x00 0x01 0x02 0x00

2.2.2 Padding

Padding is necessary when the length of the processed data is not a multiple of the
rate r value. Since the key size is a multiple of r, we get two key blocks K0 and K1,
so no padding is needed. Afterwards, the padding rule (10∗) which denotes a single
1 followed by required number of 0’s is applied to the message M so that its length
after padding is a multiple of r. The resulting padded message is divided into `M
r-bit blocks M0‖ · · · ‖M`M−1. A similar procedure is carried out on the associated
data AD which results in `AD r-bit blocks AD0‖ · · · ‖AD`AD−1. In the case where no
associated data is present, no processing is necessary. We summarize the padding
rules for the message and associated data below.

padr(M) ←M‖1‖0r−1−(|M | mod r)

padr(AD) ←
{
AD‖1‖0r−1−(|AD| mod r) if |AD| > 0

φ if |AD| = 0

Note that in case of AD or M whose length is a multiple of r, an additional
r-bit padded block is appended to AD or M to distinguish between the processing
of partial and complete blocks.

2.2.3 Initialization

In this phase, the state S is initialized with a 16-byte public nonce N = N0||N1 and
a 16-byte key K0||K1. The nonce and key bytes are loaded in the odd and even
subblocks, respectively (see Figure 2.1). Such function is denoted by init(K,N).
Afterwards, the 18-step sLiSCP permutation, P18 is applied on the state and the
key blocks are absorbed into the state. The initialization steps are described below.

B0, . . . , B7 ← N0[0] . . . , N0[7]

B16, . . . , B23 ← N1[0] . . . , N1[7]

B8, . . . , B15 ← K0[0] . . . , K0[7]

B24, . . . , B31 ← K1[0] . . . , K1[7]

S ← P18(S)

S ← P18(Sr ⊕Ki, Sc), i = 0, 1

9

Spix: Submission to the NIST LWC competition

2.2.4 Processing associated data

Each r-bit block ADi, i = 0, . . . , `AD − 1 is XORed to the Sr part of the internal
state S and 0x01 constant domain separator is XORed to of B31. Then, the 9-step
sLiSCP-light permutation is applied on the whole state.

S ← P9(Sr ⊕ ADi, Sc ⊕ (0c−2‖01)), i = 0, . . . , `AD − 1

2.2.5 Encryption

Similar to the processing of associated data, however, with a different domain sep-
arator, each r-bit message block Mi, i = 0, . . . , `M − 1 is XORed to the Sr part of
the internal state S resulting in the corresponding ciphertext Ci which is extracted
from the Sr part of the state. After the computation of each Ci, the whole internal
state S is permuted by applying 9-step sLiSCP-light.

Ci ← Sr ⊕Mi,

S ← P9(Ci, Sc ⊕ (0c−2‖10)), i = 0, · · · , `M − 1

To keep a minimal overhead, the last ciphertext block C`M−1 is truncated so
that its length is equal to that of the last unpadded message block. The details of
encryption procedure is given in Algorithm 1.

2.2.6 Finalization

In this phase, the domain separator is changed to 0x00 indicating the start of finaliza-
tion phase and the key blocks are absorbed in the state, followed by an application of
P18. Finally, the tagextract(S) function is evaluated where 16-byte tag T = T0||T1 is
extracted as follows: T0[0], . . . , T0[7] = B7, . . . , B15, T1[0], . . . , T1[7] = B24, . . . , B31.
The finalization steps are mentioned below and illustrated in Algorithm 1.

S ← P18(Sr ⊕Ki, Sc), i = 0, 1,

T0 = B7|| . . . ||B15,

T1 = B24|| . . . ||B31

2.2.7 Decryption

The decryption procedure is symmetrical to encryption procedure and illustrated in
Algorithm 1.

2.3 The sLiSCP-light Permutation

sLiSCP-light [4] is a family of iterated permutations based on the partial Sub-
stitution Permutation Network (SPN) construction. In what follows, we give the
specifications of two instances of 256-bit sLiSCP-light permutation where each in-
stance runs for s steps and s ∈ {9, 18}, we denote a given instance by Ps. An
algorithmic description of sLiSCP-light is provided in Algorithm 2.

10

Spix: Submission to the NIST LWC competition

Algorithm 1 Spix algorithm
1: Authenticated encryption(K,N,AD,M):

2: S ← Initialization(N,K)

3: if |AD| 6= 0 then:

4: S ← Processing-Associated-Data(S,AD)

5: (S,C)← Encyption(S,M)

6: T ← Finalization(S,K)

7: return (C, T)

8: Initialization(N,K):

9: S ← init(N,K)

10: S ← P 18(S)

11: for i = 0 to 1 do:

12: S ← (Sr ⊕Ki, Sc)

13: S ← P 18(S)

14: return S

15: Processing-Associated-Data(S,AD):

16: (AD0|| · · · ||AD`AD−1)← padr(AD)

17: for i = 0 to `AD − 1 do:

18: S ← (Sr ⊕ADi, Sc ⊕ 0c−2||01)
19: S ← P 9(S)

20: return S

21: Encryption(S,M):

22: (M0|| · · · ||M`M−1)← padr(M)

23: for i = 0 to `M − 1 do:

24: Ci ←Mi ⊕ Sr

25: S ← (Ci, Sc ⊕ 0c−2||10)
26: S ← P 9(S)

27: C`M−1 ← trunc-msb(C`M−1, |M | mod r)

28: C ← (C0, C1, . . . , C`M−1)

29: return (S,C)

30: padr(X):

31: X ← X||10r−1−(|X| mod r)

32: return X

33: trunc-lsb(X,n):

34: return (xr−n, xr−n+1, . . . , xr−1)

1: Verified decryption(K,N,AD,C, T):

2: S ← Initialization(N,K)

3: if |AD| 6= 0 then:

4: S ← Processing-Associated-Data(S,AD)

5: (S,M)← Decyption(S,C)

6: T ′ ← Finalization(S,K)

7: if T ′ 6= T then:

8: return ⊥
9: else:

10: return M

11: Decryption(S,C):

12: (C0|| · · · ||C`C−1)← padr(C)

13: for i = 0 to `C − 2 do:

14: Mi ← Ci ⊕ Sr

15: S ← (Ci, Sc ⊕ 0c−2||10)
16: S ← P 9(S)

17: M`C−1 ← Sr ⊕ C`C−1

18: C`C−1 ← trunc-msb(C`C−1, |C| mod r)||trunc-lsb(M`C−1, r − |C| mod r))

19: M`C−1 ← trunc-msb(M`C−1, |C| mod r)

20: M ← (M0,M1, . . . ,M`C−1)

21: S ← P 9(C`C−1, Sc ⊕ 0c−2||10)
22: return (S,M)

23: Finalization(S,K):

24: for i = 0 to 1 do:

25: S ← P 18(Sr ⊕Ki, Sc)

26: T ← tagextract(S)

27: return T

28: trunc-msb(X,n):

29: if n = 0 then:

30: return φ

31: else:

32: return (x0, x1, . . . , xn−1)

2.3.1 Step function of the permutation

An s-step sLiSCP-light permutation takes an input of 256 bits and produces an
output of 256 bits after applying the step function s times sequentially where b =
8×32. We denote by Ps a 256-bit sLiSCP-light permutation where the step function
is applied s times. A high-level overview of the step function of sLiSCP-light is
depicted in Figure 2.3.

The state of the permutation is divided into four 64-bit subblocks (X i
0, X

i
1, X

i
2, X

i
3),

where i denotes the step number and 0 ≤ i ≤ s − 1. In each step, the state is up-
dated by a sequence of three transformations: SubstituteSubblocks (SSb),
AddStepconstants (ASc), and MixSubblocks (MSb), thus the step function
is defined as

(X i+1
0 , X i+1

1 , X i+
2 , X i+1

3)← MSb ◦ ASc ◦ SSb(X i
0, X

i
1, X

i
2, X

i
3)

We now describe each transformation in detail.

11

Spix: Submission to the NIST LWC competition

SB-64

X i
1

156||sci0

X i
0

SB-64

X i
3

156||sci1

X i
2

X i+1
0 X i+1

1 X i+1
2 X i+1

3

rci0 rci1 SSb

ASc

MSb

Figure 2.3: Step function of sLiSCP-light permutation

2.3.1.1 SubstituteSubblocks (SSb)

This is a partial substitution layer of the SPN structure where the nonlinear opera-
tion is applied to half of the state. It applies the 8-round iterated unkeyed Simeck-64
block cipher [19] (henceforth referred to as Simeck sbox or SB-64) to the odd indexed
subblocks only. The SSb transformation is defined as

SSb(X i
0, X

i
1, X

i
2, X

i
3) = (X i

0, SB-64(X i
1, rc

i
0), X

i
2, SB-64(X i

3, rc
i
1))

Below we provide the details of Simeck sbox SB-64.

Definition 1 (Simeck sbox SB-64 [5]) Let u = 8 and rc = (q7, . . . , q0) where
qj ∈ F2 and 0 ≤ j ≤ 7. A Simeck sbox is a permutation of 64-bit input constructed
by iterating the Simeck-64 block cipher for 8 rounds with round constant addition
γj = 131||qj in place of key addition.

An illustrated description of the Simeck sbox is shown in Figure 2.4 and is given
by:

(x9||x8)← SB-64(x1||x0, rc)
where

xj ← f(5,0,1)(xj−1)⊕ xj−2 ⊕ γj−2, 2 ≤ j ≤ 9 and

f(5,0,1) : F32
2 → F32

2 given by f(5,0,1)(x) = (L5(x)� x)⊕ L1(x)

x1 x0

f(5,0,1)

32
32

γ7, · · · , γ1, γ0
32 32

Figure 2.4: Simeck sbox SB-64

12

Spix: Submission to the NIST LWC competition

2.3.1.2 AddStepconstants (ASc)

In this layer, the step constants of the form 156||sci0 and 156||sci1 are XORed with
the two even indexed subblocks X i

0 and X i
2, respectively, for i = 0, 1, . . . s− 1. Each

scij is a 8-bit constant generated by a 7-bit LFSR. The ASc transformation is given
by

ASc(X i
0, SB-64(X i

1, rc
i
0), X

i
2, SB-64(X i

3, rc
i
1)) = (X i

0 ⊕ 156||sci0, SB-64(X i
1, rc

i
0), X

i
2 ⊕ 156||sci1, SB-64(X i

3, rc
i
1))

2.3.1.3 MixSubblocks (MSb)

In this transformation, each even indexed subblock is replaced by the XOR of its
initial value with its neighboring odd indexed subblock. Then a subblock cyclic left
shift is applied. The MSb transformation is given by

(Xi+1
0 , Xi+1

1 , Xi+1
2 , Xi+1

3)← MSb(Xi
0 ⊕ 156||sci0, SB-64(Xi

1, rc
i
0), X

i
2 ⊕ 156||sci1, SB-64(Xi

3, rc
i
1)),

where

X i+1
0 = SB-64(X i

1), X i+1
1 = X i

2 ⊕ SB-64(X i
3)⊕ 156||sci1,

X i+1
2 = SB-64(X i

3), X i+1
3 = X i

0 ⊕ SB-64(X i
1)⊕ 156||sci0

Algorithm 2 sLiSCP-light permutation (Ps)

1: Input : S0 = X0
0 ||X0

1 ||X0
2 ||X0

3

2: Output : Ss = Xs
0 ||Xs

1 ||Xs
2 ||Xs

3

3: for i = 0 to s− 1 do :
4: Si+1 ← P-step(Si)
5: return(Ss)

6: Function P-step(Si) :
7: X i+1

0 ← SB-64(xi1,l||xi1,r, rci0)
8: X i+1

1 ← SB-64(xi3,l||xi3,r, rci1)⊕X i
2 ⊕ (156||sci1)

9: X i+1
2 ← SB-64(xi3,l||xi3,r, rci1)

10: X i+1
3 ← SB-64(xi1,l||xi1,r, rci0)⊕X i

0 ⊕ (156||sci0)
11: return(X i+1

0 ||X i+1
1 ||X i+1

2 ||X i+1
3)

12: Function SB-64(x1||x0, rc) :
13: rc = (q7, q6, . . . , q0)
14: for j = 2 to 9 do
15: xj ← (L5(xj−1)� xj−1)⊕ L1(xj−1)⊕ xj−2 ⊕ (131||qj−2)
16: return(x9||x8)

2.3.2 sLiSCP-light permutation instances

In Spix, we use two instances of sLiSCP-light. Table 2.3 presents the recommended
parameters for these two instances.

13

Spix: Submission to the NIST LWC competition

Table 2.3: Recommended parameter set for sLiSCP-light used in Spix.

Permutation m Rounds u Steps s Total # rounds (u · s)

P18 32 8 18 144

P9 32 8 9 72

2.3.3 sLiSCP-light constants

As depicted in Figure 2.3, the step funtion of sLiSCP-light is parametrized by two
sets of constants (rci0, rc

i
1) and (sci0, sc

i
1). We call them round and step constants,

respectively. The round constants are used within the Simeck sbox while step con-
stants are XORed to the even subblocks as described earlier. In Table 2.4, we list the
hexadecimal values of constants for sLiSCP-light. More details on how to generate
these constants can be found in [5].

Table 2.4: Round and step constants for sLiSCP-light
step i (rci0, rc

i
1) (sci0, sc

i
1)

0 - 5 (f, 47), (4, b2), (43, b5), (f1, 37), (44, 96), (73, ee) (8, 64), (86, 6b), (e2, 6f), (89, 2c), (e6, dd), (ca, 99)

6 - 11 (e5, 4c), (b, f5), (47, 7), (b2, 82), (b5, a1), (37, 78) (17, ea), (8e, 0f), (64, 04), (6b, 43), (6f, f1), (2c, 44)

12 - 17 (96, a2), (ee, b9), (4c, f2), (f5, 85), (7, 23), (82, d9) (dd, 73), (99, e5), (ea, 0b), (0f, 47), (04, b2), (43, b5)

14

Chapter 3

Security Analysis

In this section, we analyze the security of the Spix by first assessing the behavior
of sLiSCP-light permutation against various distinguishing attacks. We primarily
focus on the diffusion behavior, evaluation of the expected maximum probabilities
of differential and linear characteristics, and algebraic properties of this new design.

3.1 Security of sLiSCP-light

In what follows, we present the results of our cryptanalysis of the two instances of
sLiSCP-light permutation. Since the permutation is used in a monkey duplex, we
aim to provide evidence of how the instance that is used in the initialization and
finalization phases is secure against various distinguishing attacks in an attempt to
prove that its behavior is as close as possible to that of an ideal permutation. We also
show that the other instance is secure against differential and linear cryptanalysis
which are the most powerful attacks on authenticated ciphers. Our analysis focuses
on providing results related to the diffusion, differential and linear, algebraic degree,
self-symmetry properties of the permutation.

3.1.1 Diffusion

We investigate the following two properties to asses the diffusion behavior of sLiSCP-
light. For the details and results of the adopted methodologies, the reader is referred
to [4].

1. Permutation full bit diffusion. We evaluate the minimum number of steps
required such that each bit in the state depends on all the input state bits.
We find that using 8 rounds of Simeck in sLiSCP-light full bit diffusion is
achieved after four steps.

2. Avalanche effect. We use a uniform random sampling method to evaluate
the average number of flipped bits after four steps corresponding to flipping
one bit in the input state. More precisely, for each bit position in the input
state, we generate 1024 random input states and flip this bit once and count
the number of changed bits in the output state. Then we compute the average
number of changes per bit over these 1024 random samples. We found that

15

Spix: Submission to the NIST LWC competition

the average numbers of flipped bits after 4 steps corresponding to flipping the
individual 256 bit positions for sLiSCP-light spans between 126.98 and 128.90.

Based on the above results, we claim that meet/miss-in-the middle distinguishers
may not cover more than eight steps because eight steps guarantee full bit diffusion
in both the forward and backward directions.

3.1.2 Differential and linear cryptanalysis

In order to evaluate the differential and linear behavior of sLiSCP-light, we first give
our results of analyzing the differential and linear properties of the Simeck sboxes.
Such results are generated using the SAT/SMT tools proposed in [16] coupled with
an optimized differentials and linear masks exhaustive search. Next, we develop a
MILP model for the sLiSCP-light permutation to bound the minimum number of
differentially and linearly active Simeck sboxes in order to evaluate the expected
maximum probabilities of differential and linear characteristics.

Differential analysis of Simeck sbox. Generally, one may derive estimates for the
expected Maximum Differential Probabilities (MDP) and maximum linear squared
correlation (MLSC) of Simeck sboxes by adopting the Markov assumption, hence
ignoring the effect of the constants similar to keyed ciphers (cf. Sec. 5.1 in [3]).
Tighter estimates for the MDP of the constant-based Simeck sboxes can be obtained
by considering the differential effect along with an exhaustive search for the exact
probabilities associated with the expected optimal differentials as shown in [4].

Expected maximum probabilities of differential and linear characteristics.
According to our diffusion and ideal permutation criteria, we wanted to find the
optimal number of rounds, u, for the Simeck-64 sbox, SB-64 so that we achieve the
expected ideal differential and linear behavior in the minimum number of steps, s.
Additionally, we constrained the lower bound on s such that we run the permutation
for at least three times the number of steps required for full bit diffusion. Such
analysis has been carried out simultaneously with bounding the minimum number
of active Simeck sboxes in order to evaluate the tradeoff between the number of
Simeck rounds, u, and permutation steps, s. More formally, for a Simeck sbox
that is iterated for u rounds, let δ and γ denote the log2 scaled MDP and MLSC,
respectively. Given an s-step iterated sLiSCP-light permutation, let ms be the
minimum number of active Simeck sboxes and ds denote the number of steps required
to achieve full bit diffusion. Then we require the following three conditions to hold:

1. The maximum expected differential characteristic probability (MEDCP) and
the maximum expected linear characteristic squared correlation (MELCSC)
to be upper bounded by 2−256 and 2−128, respectively for the permutation
instance used in initialization and finalization, formally, δms ≤ −256 and
γms ≤ −128. For the permutation instance which is used in encryption and
decryption, MEDCP and MELCSC should be upper bounded by 2−128 and
2−64, respectively, formally, δms ≤ −128 and γms ≤ −64.

2. For the ideal permutation, the total number of steps to be lower bounded by
three times the number of steps required for full bit diffusion, formally, s ≥ ds.

16

Spix: Submission to the NIST LWC competition

For the reduced-round permutation, no inbound distinguishers exist.

3. The total number of rounds, u × s in the permutation is minimized as this
directly translates to better performance.

In [4], the tradeoffs between u and s are considered and it has been found that for
SB-64, when u = 8, δ = −15.9, γ = −15.6, the above three conditions are optimally
satisfied when s = 18 and accordingly ms = 18. Moreover, when iterating sLiSCP-
light in a monkey duplex to provide 128-bit security, 9 steps are enough to ensure
resistance against differential and linear cryptanalysis that may be used to launch
forgery attacks through injecting differences in either the associated data or message
blocks. In other words, the expected bounds on the MEDCP and MELCSC are as
follows:

P 18:
(MDP(SB-64))18 = (2−15.9)18 = 2−286.2

(MLSC(SB-64))18 = (2−15.6)18 = 2−280.8

P 9:
(MDP(SB-64))9 = (2−15.9)9 = 2−143.1

(MLSC(SB-64))9 = (2−15.6)9 = 2−140.4

3.1.3 Algebraic distinguishers

The algebraic degree of sLiSCP-light can be upper bounded using a tweaked version
of the division property that is employed to find the degree of an s-step sLiSCP-
light permutation [18, 7]. In [4], it is found that the algebraic degree of SB-64 is 36
which results in an upper bound on the algebraic degree of all component functions
of sLiSCP-light of 247 after only 4 steps. Such numbers suggest that maximum
degree for sLiSCP-light maybe reached after 6 steps of the permutation. In what
follows, we give the results of our integral and zero-sum distingushers.

Integral distinguishers. According to the cryptanalysis presented in [4], we report
that for sLiSCP-light, there exists an 8-step integral distinguishers that can be found
with data and time complexities of 2255.

Zero-sum distinguishers. It is found that the maximum number of steps covered
by zero-sum distinguishers in one direction is at most 7 [4]. Thus following a start
from the middle approach, a 14-step zero-sum distinguisher exists for sLiSCP-
light. Such a distinguisher requires data and time complexities equal to that of the
exhaustive search.

3.1.4 Rotational, slide and invariant subspace distinguishers

A cryptographic permutation where the internal steps can not be distinguished can
exhibit undesired self-symmetry properties. To thwart such properties in sLiSCP-
light, we employ a 7-bit LFSR to generate a tuple of two round constants (rci0, rc

i
1),

and a tuple of two step constants, (sci0, sc
i
1) (see Chapter 2 for details). In order to

mitigate rotational, slide, and invariant subspace distingusihers, we ensure that the
following conditions hold:

• For 0 ≤ i ≤ 17, sci0 6= sci1

17

Spix: Submission to the NIST LWC competition

• For 0 ≤ i ≤ 17, (rci0, rc
i
1) 6= (sci0, sc

i
1)

• For 0 ≤ i, j ≤ 17 and i 6= j, (rci0, rc
i
1) 6= (rcj0, rc

j
1)

• For 0 ≤ i, j ≤ 17 and i 6= j, (sci0, sc
i
1) 6= (scj0, sc

j
1).

3.2 Security of Spix

The security proofs of modes based on the Monkey duplex construction relies on
the indistinguishability of underlying permutation from a random one [9, 11, 10, 15]
in both initialization and finalization phases, as well as the assumption of nonce
respecting adversary. In previous sections, we have shown that there are no dis-
tinguishers for 18 steps of sLiSCP-light. Thus, the security bounds of the monkey
duplex mode are applicable to Spix.

We assume a nonce-respecting adversary, i.e, for a fixed K, nonce N is never
repeated during encryption queries. Then considering a data limit of 2d, k-bit secu-
rity is achieved if c ≥ k + d+ 1 and d << c/2 [10]. The parameter set of Spix (see
Table 2.1) with actual effective capacity 190 (2 bits are lost for domain separation)
satisfy this condition, and hence Spix provides 128-bit security for confidentiality,
integrity and authenticity when d = 60.

Note that we could use r = 96, d = 50 and obtain 112-bit security [15]. However,
this would require an additional 32 XORs and is not efficient in software as r = 64.

18

Chapter 4

Design Rationale

In this chapter, we provide the rationale for our design choices and justify the design
principles of each component of Spix.

4.1 Choice of the Mode: Monkey Duplex Sponge

Mode

Our adopted mode is a variation of the sponge duplex construction. Monkey duplex
is proposed to be used in keyed modes where nonce reuse can be effectively mitigated.
Its most important advantage is that it utilizes two instances of the the permutation
each with a different number of rounds. Such a feature enhances the performance
of Spix because the number of rounds of the permutation during absorbing the
message can be optimized by reducing it such that it resists differential attacks in
this specific scenario. It has been shown that under certain conditions of round
number choices, Monkey duplexing security can be reduced to the original sponge
[12, 8]. In addition to the former reasons, the adopted mode offers the following
features:

- Key agility and reverse free decryption. Simple and lightweight mode
where neither key scheduling nor decryption algorithm implementation is re-
quired.

- Keyed initialization and finalization phases. Key recovery is hard even
if the internal state is recovered. Universal forgery with the knowledge of the
internal state is not practical.

- Uniform domain separators. Domain transitions run for all rounds and
they are changed with each new transition because we found that it leads to a
more efficient ASIC implementation. Such mechanism has been shown to be
secure in [15].

4.2 Spix State Size

Following the NIST submission requirements, Spix needs to work with 128-bit keys
and provide a minimum of T = 2112 attack time complexity with data complexity

19

Spix: Submission to the NIST LWC competition

of D = 250 − 1 bytes. For b-bit state with b = r + c, r-bit rate and c-bit capacity,
following the security bounds in [15, 14], to satisfy the security requirements, c
should be at least log2(D

2 + DT) where D = 247 blocks for r = 64 which means
c ≥ 160. Taking hardware area constraints in mind, we found that b = 256 and
r = 64 is an efficient choice. More precisely, we needed r and b to be a multiple
of 64 to have an efficient software implementation and follow the specifications of
the sLiSCP-light structure. Accordingly, practical choices for state sizes would be
b = 256, and 512, so we choose b = 256 as it provides the best trade-off among
hardware and software requirements, security and efficiency. With this choice of
b, Spix is efficiently implemented on wide range of platforms. Moreover, with our
choice, we offer 128-bit security with 260 data complexity.

4.3 Nonlinear Layer: Simeck Sbox

The Simeck sbox, is an unkeyed independently parameterized variant of the round
function of the Simon round function [6]. Moreover, it has set a new record in terms
of hardware efficiency and performance on almost all platforms. In what follows,
we list the reasons that motivated our adoption of Simeck sboxes as the nonlinear
function of sLiSCP-light permutation.

• Simeck has a hardware friendly round function which consists of simple bitwise
XOR, AND and cyclic shift operations. Moreover, the resulting footprint grows
linearly with its input size.

• It is practical to evaluate the Sbox maximum (expected) differential probabil-
ity and maximum (expected) linear squared correlation which are 2−15.8 and
2−15.6, respectively. Accordingly, we can provide an expected bounds against
differential and linear cryptanalysis.

• The Sbox has an algebraic degree of 36 and the output component functions
depend on either 61 or 55 input state bits which enables us to provides guar-
antees against algebraic and diffusion-based attacks.

• Each Simeck sbox is independently parameterized by the associated set of
round constants which suggests that the reported expected bounds against
differential and linear cryptanalysis are not tight, thus, better security is ex-
pected.

4.4 Round and Step Constants

We use the following set of constants to mitigate the self-symmetry distinguishers.

• Three 8-bit unique step constants (sci0, sc
i
1, sc

i
2). The 3-tuple constant

value is unique across all steps, hence it destroys any symmetry between the
steps of the permutation. Accordingly, we mitigate slide distinguishers [13].
We also require that for any step i, sci0 6= sci1 6= sci2 in order to destroy any
symmetry between word shuffle.

20

Spix: Submission to the NIST LWC competition

• Three 8-bit unique round constants (rci0, rc
i
1, rc

i
2). One bit of each round

constant is XORed with the state of the Simeck sbox in each round to destroy
the preservation of any rotational properties. Moreover, we append 31 ‘1’ bits
to each one bit constant which results in a lot of inversions, and accordingly
breaks the propagation of the rotational property in one step.

Our choice of the utilized LFSR polynomial ensures that each tuple of such constants
does not repeat due to the periodicity of the 8-tuple sequence constructed from the
decimated m-sequence of period 127.

4.5 Number of Rounds and Steps

Our rationale for choosing the number of rounds u and number of steps s of Spix
is based on achieving the best trade-off between security and efficiency. In both
instances of sLiSCP-light, we require the value u×s to be minimized while satisfying
the following two conditions:

- For sLiSCP-light instance that is used in initialization and finalization, we
aim that it is indistinguishable from a random permutation.

- For sLiSCP-light instance that is used in AD processing, encryption and de-
cryption, we require that the expected maximum differential probability over
the permutation is less than 2−128 and there exist no start from the middle
distinguishers for it.

4.5.1 P18 sLiSCP-light instance

Diffusion. Our first criteria is that s should be at least 3 × 4 where 4 steps are
required to achieve full bit diffusion in state. This choice adds 33% security margin
against meet/miss-in-the-middle distinguishers, as in 8 steps, full bit diffusion is
achieved in both forward and backward directions. Hence, s ≥ 12.

MEDCP(Ps) < 2−b. Our second criteria is to push the MEDCP value of sLiSCP-
light to below 2−256. This value depends on the MEDCP of u-round Simeck sbox
and the minimum number of such active sboxes in s steps. An in depth automated
analysis was conducted in [4] and it was found that the expected maximum differ-
ential probability of an 8-round iterated Simeck sbox is 2−15.8 and that iterating the
permutation step function for 18 steps results in a minimum of 18 active sboxes.
Accordingly, we have 18×−15.8 = −284.4 < −256.

4.5.2 P9 sLiSCP-light instance

Inbound distinguishers. Following the terminology of the rebound attack, we
denote distingushers that are constructed from input (resp. output) to output (resp.
input) by inbound distinguishers. In the cryptanalysis of sLiSCP-light it was found
the best distinguisher that does not require start from the middle approach may

21

Spix: Submission to the NIST LWC competition

cover up to 8 steps. Accordingly, choosing s > 8 was a safe choice for sLiSCP-light
during AD processing, encryption, and decryption.

MEDCP(Ps) < 2−k. The number of steps in this instance is chosen such than in
addition to being larger than 8, it also should result in an MEDCP value less than
2−128. For s = 9 steps, we get an MEDCP of 9×−15.8 = −142.2 < −128.

4.6 Choice of Rate Positions

We absorb message blocks in subblocks X1 and X3. Such rate positions allow the
input bits to be processed by the Simeck sboxes as soon as possible so we achieve
faster diffusion. Also, our choice forces any injected differences to activate Simeck
sboxes in the first step which also enhances Spix’s resistance to differential and
linear cryptanalysis. This observation has also been confirmed by a third party
cryptanalysis of sLiSCP [17].

4.7 Statement

The authors declare that there are no hidden weaknesses in Spix and sLiSCP-light.

22

Chapter 5

Hardware Design

In this chapter, we provide the details of our ASIC hardware implementation of
sLiSCP-light permutation and Spix. The reported implementations are carried out
using CMOS 65 nm and 130 nm technologies.

5.1 ASIC Implementation

Spix is highly hardware optimized and has very efficient ASIC implementations
particularly because its core permutation sLiSCP-light employ partial layers. More
precisely, the SB-64 boxes, step constant addition, and linear mixing are all applied
on half of the state. Additionally, each SB-64 box is itself a very efficient unkeyed
Feistel round function. The datapath of the round-based ASIC parallel architecture
implementation of sLiSCP-light is depicted in Figure 5.1.

X0 X1 X2 X3

MUX MUX MUX MUX

32 32 32 32

j j j j

SB-64 round SB-64 round

L5

L1 131||qj

32 32

L5

L1 131||q′j

32 3232 32 3232

132 124||sci0 132 124||sci1

Figure 5.1: Parallel datapath of the sLiSCP-light permutation step function.

The implementation of Spix in ASIC is carried out using STMicroelectronics
CMOS 65nm CORE65LPLVT library and IBM CMOS 130nm library. As depicted
in Table 5.1, the parallel implementations in CMOS 65 nm show that the area of
sLiSCP-light is 2397 GE. The area in CMOS 130 nm is 2500 GE. Throughput is

23

Spix: Submission to the NIST LWC competition

calculated by 256
latency

× 100, where latency denotes the number of clock cycles for one
permutation call and is equal to the total number of permutation rounds, s× 8.

Table 5.1: Parallel hardware implementation results of sLiSCP-light instances P18 and
P9. Throughput and power are given at a frequency of 100 kHz.

Instance Steps ASIC Technology Latency Area Throughput Power

[s] [nm] [Cycles] [GE] [kbps] [µW]

P18 18
65

144
2406

177.7
4.77

130 2513 7.27

P9 9
65

72
2406

355.5
4.77

130 2513 7.27

Design flow and metrics. The Synopsys Design Compiler Version D-2010.03-SP4
is used to synthesize the RTL of the designs into netlist based on the STMicroelec-
tronics CMOS 65 nm CORE65LPLVT 1.20V and IBM CMOS 130 nm CMR8SF-
LPVT Process SAGE v2.0 standard cell libraries with both having a typical 1.2V
voltage. Cadence SoC Encounter v09.12-s159 1 is used to finalize the place and
route phase in order to generate the layout of the designs. We use Mentor Graphics
ModelSim SE 10.1a to conduct functional simulation of the designs and perform
timing simulation by using the timing delay information generated from SoC En-
counter. We provide the areas and power consumption of both sLiSCP-light and
Spix after the logic synthesis.

We determine the power consumption based on the activity information gener-
ated from the timing simulation with a frequency of 100 kHz, and a duration time
of 0.1s using SoC Encounter v09.12-s159 1. We specifically use 100 kHz clock fre-
quency because it is widely used for benchmarking purpose in resource constrained
applications and 0.1s is long enough to provide an accurate activity information for
all the signals.

5.2 Round-based implementation of sLiSCP-light

Our round-based implementation executes one step of the permutation in u clock
cycles, where u = 8, and requires the components as given in Table 5.2. As depicted
in Figure 5.1, all four 64-bit registers are divided into two parts to accommodate
the Feistel execution of the SB-64 boxes. Two counters i and j of 5 and 3 bits,
respectively are utilized, where i (0 ≤ i ≤ 17 or 8) controls the permutation step
function and j (0 ≤ j ≤ 7) controls the round function of SB-64 box.

During each clock cycle when 0 ≤ j < 7, we first XOR the right half of registers
X1 (resp. X3) with 131||qj where qj is a round constant bit (see Section 2.3.3). Next,
the right half output of the SB-64 round function (dashed box) on registers X1 and
X3 is fed back to the left half of the registers, and the left half of the registers is
shifted to the right half. When j equals 7, the left half of the register X3 is replaced
by the XORed value of the right half of register X1, left half of register X0 and 132.
At the same time, the left half of the register X1 is XORed with the right half of
the register X0, and then is XORed with 124||sci0.

24

Spix: Submission to the NIST LWC competition

The generated new value is then shifted to the right half of the register X3.
The same process takes place between X2 and X3 to update the value of X1. At
the same time, the values of registers X1 and X3 are shifted into the registers X0

and X2 respectively. Multiplexers are used at the inputs of X1 and X3 to make
a selection between the output of the SB-64 boxes when j = 7 and the cyclically
shifted registers. Finally, a new permutation step begins where i is incremented by
1 and j is reset to 0.

Table 5.2: Breakdown of the number of discrete components in both sLiSCP-light
and Spix where XOR is 1-bit xor operation and MUX is 2-1 1-bit multiplexer.

Block Discrete component sLiSCP-light Spix

Mode
Mux - 64

XOR - 64

State
Registers 4× 64

MUX 128

SB-64 boxes
AND 2× 32

XOR 2× 65

Add step constants XOR 2× 8

Mix Subblocks XOR 2× 64

LFSR
Registers 7

XOR 9

5.3 Spix by the Numbers

In Table 5.3, we give a numerical summary of Spix that covers its implementation
results in CMOS 65 nm and 130 nm technologies, performance, power, and recom-
mended parameters. Throughput in Table 5.3 is given for 1 KB messages and no
AD.

Throughput for processing an l-block data of length 64l bits is given by:

64l

5(144) + 72(l + 1)
× 100,

where five P18 permutation calls are needed for initialization and finalization, l calls
of P9 are invoked for data authenticated encryption, and an extra P9 call for the
padding data block. Note that if the data length is not a multiple of 64, then no
extra padding block is processed and thus 72 clock cycles should be deducted from
the total cycles in the denominator of the above equation. Analogously, if associated
data is processed, where its size is multiple of 64, then an extra 72 clock cycles should
be added to the total cycles in the denominator of the above equation.

25

Spix: Submission to the NIST LWC competition

Table 5.3: Parallel hardware implementation results of Spix. Throughput and power are
given at a frequency of 100 kHz for processing 1 KB message with no AD.

ASIC Technology Parameters Latency Area Throughput Power

[nm] r c t [Cycles) [GE] [kbps] [µW]

65
64 192 128 10008

2611
81.8

4.77

130 2742 7.27

26

Chapter 6

Software Implementations

In this chapter, we present a bit-sliced implementation of sLiSCP-light using SIMD
instruction sets, then augment it with the implementation of the monkey duplex
mode to implement Spix. We also provide microcontroller implementation results.

6.1 Bit-sliced Implementation of sLiSCP-light

We use different instructions in the SSE2 and AVX2 instruction sets to implement
the sLiSCP-light where the SSE2 and AVX2 instruction sets support 128-bit and
256-bit SIMD registers, known as XMM and YMM, respectively. The operations
used in the sLiSCP-light permutation are bitwise XOR, AND and left cyclic shift. In
our implementation, packing and unpacking of data are two salient tasks which are
performed at the beginning and end, and during the execution of the permutation.

Recall that in the SSb layer, the Simeck sbox is applied only on the odd indexed
subblocks. That is, the operations on every block are not homogeneous. The key idea
for our software implementation of the sLiSCP-light permutation is to separate the
state of the permutation among different registers for performing the homogeneous
operations. For instance, when four parallel instances of sLiSCP-light are evaluated
using YMM registers, we pack data for the Simeck sbox operation into two YMM
registers and other subblocks are stored in two other YMM registers. This allows
us to perform the same kind of operations in different registers to achieve efficiency
in the implementation.

Packing and Unpacking for sLiSCP-light. There are two different types of pack-
ing and unpacking operations in our implementation: 1) one pair is performed at the
beginning and end of the permutation execution; and 2) the other one is performed
at the beginning and end of the SSb layer in each step. We start by describing the
first one. Let us denote the sLiSCP-light state by Si = si0s

i
1s
i
2s
i
3s
i
4s
i
5s
i
6s
i
7 where each

sij is a 32-bit word, 0 ≤ i ≤ 3 and 0 ≤ j ≤ 7. We first load four independent states
S0, S1, S2, S3 of sLiSCP-light into four 256-bit registers and then pack as follows:

27

Spix: Submission to the NIST LWC competition

PACK(R0, R1, R2, R3) :

R0 ← s00s
0
1s

0
4s

0
5s

1
0s

1
1s

1
4s

1
5;

R1 ← s20s
2
1s

2
4s

2
5s

3
0s

3
1s

3
4s

3
5;

R2 ← s02s
0
3s

0
6s

0
7s

1
2s

1
3s

1
6s

1
7;

R3 ← s22s
2
3s

2
6s

2
7s

3
2s

3
3s

3
6s

3
7;

The unpacking operation, denoted by UNPACK(), is performed in the reverse order
of the packing operation. Both operations are implemented using vpermd and
vperm2i128, vpunpcklqdq and vpunpckhqdq instructions. Let us assume that
we wish to apply the Simeck sbox on disjoint 64 bits (i.e., a2ia2i+1) in the registers
A = a0a1a2a3a4a5a6a7 and B = b0b1b2b3b4b5b6b7. Due to the Feistel nature of the
Simeck sbox, we regroup the data in A and B for the homogeneity of operations in
the round function of the Simeck sbox. For this, we need the second pair of packing
and unpacking operation for the SSb layer, which are given by

PACK SSb(A,B) : UNPACK SSb(A,B) :
A← a0a2a4a6b0b2b4b6; A← a0b0a1b1a2b2a3b3;
B ← a1a3a5a7b1b3b5b7; B ← a4b4a5b5a6b6a7b7;

Translating 4-Parallel sLiSCP-light Instances. In sLiSCP-light’s design, the
construction of Simeck sbox is based on the Feistel structure consisting of constant-
distance left cyclic shift, bitwise AND and XOR operations. We create an instruction
for one round execution of the Simeck sbox, denoted by ROAX, which is given by

ROAX(A,B, t1, t2) :

tmp← A; C ← 0xfffffffe;

A← (ROT5(A)&A)⊕ ROT1(A);

A← A⊕B ⊕ (C ⊕ t1, C ⊕ t2, · · · , C ⊕ t1, C ⊕ t2);
B ← tmp;

where A and B are either a XMM or YMM register, ROT5(A) (resp. ROT1(A))
denotes the left cyclic shift by 5 (resp. 1) on every ai in A, which is implemented
using vpslld and vpsrld instructions. When A = a0a1a2a3a4a5a6a7, the swap
block operation is defined as SWAPBLK(A) = a2a3a0a1a6a7a4a5. The evaluation of
four parallel instances of sLiSCP-light is given in Algorithm 3.

For the SSE2 implementation, we use four 128-bit XMM registers to pack two
parallel instances of the sLiSCP-light permutation. As the SSE2 implementation of
sLiSCP-light is similar to the AVX2 implementation, the details are omitted. The
implementation results of the two instances of sLiSCP-light on both platforms are
presented in Table 6.1.

28

Spix: Submission to the NIST LWC competition

Algorithm 3 Four parallel instances of sLiSCP-light computation

1: Input: (R0, R1, R2, R3)
2: Output: (R0, R1, R2, R3)
3: (R0, R1, R2, R3)← PACK(R0, R1, R2, R3);
4: for j from 0 to s− 1 do
//SSb layer

5: R2, R3 ← PACK SSb(R2, R3);
6: for i from 0 to u− 1 do
7: R2, R3 ← ROAX(R2, R3, rc

j
0[i], rc

j
1[i]); . rcj0[i] : i-th lsb of rcj0

8: end for
9: R2, R3 ← UNPACK SSb(R2, R3);
//ASc layer

10: C ← 0xffffff00; D ← 0xffffffff;
11: R0 ← R0 ⊕ (D,C ⊕ scj0, D,C ⊕ scj1, D,C ⊕ scj0, D,C ⊕ scj1);
12: R1 ← R1 ⊕ (D,C ⊕ scj0, D,C ⊕ scj1, D,C ⊕ scj0, D,C ⊕ scj1);

//MSb layer
13: tmp0← R0; tmp1← R1;
14: R0 ← R2;
15: R1 ← R3;
16: R2 ← SWAPBLK(R2 ⊕ tmp0);
17: R3 ← SWAPBLK(R3 ⊕ tmp1);
18: end for
19: return (R0, R1, R2, R3)← UNPACK(R0, R1, R2, R3);

6.2 Spix Optimized Implementation

We implement the Spix in C using SSE2 and AVX2 instruction sets and mea-
sure its performance on two different Intel processors Skylake and Haswell. The
code is compiled using gcc 5.4.0 on 64-bit machines with the compiler flags -O2
-funroll-all-loops -march=native. For AVX2 and SSE2 implementa-
tions, we evaluate 4 and 2 parallel instances of Spix, respectively, and compute the
throughput for 1024-bit message and 128-bit associated data. Table 6.1 presents the
performance results in cycles per byte for both implementations. In our implemen-
tation, we include the costs for all packing and unpacking operations.

6.3 Spix Microcontroller Implementation

We implement the 18 and 9-step sLiSCP-light (P18, P9) permutations and Spix on
three distinct microcontroller platforms. For Spix, we implement only encryption
as decryption is the same as encryption, except updating the rate with ciphertext.
Our codes were written in assembly language to achieve optimal performances. We
choose: 1) the Atmel ATmega128, an 8-bit mocrocontroller with 128 Kbytes of
programmable flash memory, 4.448 Kbytes of RAM, and 32 general purpose registers
of 8 bits, 2) MSP430F2370, a 16-bit mocrocontroller from Texas Instruments with 2.3
Kbytes of programmable flash memory, 128 bytes of RAM, and 12 general purpose

29

Spix: Submission to the NIST LWC competition

Table 6.1: Benchmarking the results for the two instances of the sLiSCP-light
permutation and Spix. The throughput is measured in cycles per byte (cpb).

Cryptographic Speed Instruction CPU Name
primitive [cpb] Set Spec.

P18

16.40 SSE2 Skylake
10.19 AVX2 Intel i7-6700 CPU@3.40GHz
19.28 SSE2 Haswell
10.52 AVX2 Intel i7-4790 CPU@3.60GHz

P9

8.63 SSE2 Skylake
5.12 AVX2 Intel i7-6700 CPU@3.40GHz
9.58 SSE2 Haswell
5.47 AVX2 Intel i7-4790 CPU@3.60GHz

Spix

87.29 SSE2 Skylake
46.87 AVX2 Intel i7-6700 CPU@3.40GHz
94.00 SSE2 Haswell
56.00 AVX2 Intel i7-4790 CPU@3.60GHz

registers of 16 bits, and 3) ARM Cortex M3 LM3S9D96, a 32-bit microcontroller
with 524.3 Kbytes of programmable flash memory, 131 Kbytes of RAM, and 13
general purpose registers of 32 bits. We focus on four key performance measures,
namely throughput (cycles/bit), code size (Kbytes), energy (nJ), and RAM (Kbytes)
consumptions.

Spix is instantiated with a random 128-bit key and 128-bit nonce. Table 6.2
presents the performance of Spix on the previously mentioned platforms.

Table 6.2: Performance of Spix on microcontrollers at a clock frequency of 16 MHz
Cryptographic Platform #AD #M Memory usage [Bytes] Setup Throughput Energy/bit

primitive blocks blocks SRAM Flash [Cycles] [Kbps] [nJ]

P18

8-bit ATmega128
- -

161 1262 128377 31.91 3879
16-bit MSP430F2013 24 1409 52294 78.33 211
32-bits LM3S9D96 352 946 10900 375.78 887

Spix

8-bit ATmega128
0 16

175 1550 1667042 9.83 12591
16-bit MSP430F2013 50 1845 677818 24.17 685
32-bits LM3S9D96 408 1210 139569 117.39 2839
8-bit ATmega128

2 16
175 1644 1795322 9.13 13560

16-bit MSP430F2013 50 1891 730340 22.43 738
32-bits LM3S9D96 424 1326 150313 109.00 3058

30

Bibliography

[1] Aagaard, M., AlTawy, R., Gong, G., Mandal, K., and Rohit, R.
ACE: An authenticated encryption and hash algorithm. Submission to NIST-
LWC.

[2] AlTawy, R., Gong, G., He, M., Jha, A., Mandal, K., Nandi, M., and
Rohit, R. SpoC: Submission to NIST-LWC.

[3] AlTawy, R., Rohit, R., He, M., Mandal, K., Yang, G., and Gong,
G. sLiSCP: Simeck-based Permutations for Lightweight Sponge Cryptographic
Primitives. In SAC (2017), C. Adams and J. Camenisch, Eds., Springer,
pp. 129–150.

[4] Altawy, R., Rohit, R., He, M., Mandal, K., Yang, G., and Gong,
G. SLISCP-light: Towards hardware optimized sponge-specific cryptographic
permutations. ACM Trans. Embeded Computing Systems 17, 4 (2018), 81:1–
81:26.

[5] Altawy, R., Rohit, R., He, M., Mandal, K., Yang, G., and Gong, G.
Towards a cryptographic minimal design: The sLiSCP family of permutations.
IEEE Transactions on Computers 67, 9 (2018), 1341–1358.

[6] Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks,
B., and Wingers, L. The SIMON and SPECK families of lightweight
block ciphers. Cryptology ePrint Archive, Report 2013/404, 2013. http:
//eprint.iacr.org/2013/404.

[7] Bernstein, D. J., Kölbl, S., Lucks, S., Massolino, P. M. C., Mendel,
F., Nawaz, K., Schneider, T., Schwabe, P., Standaert, F.-X., Todo,
Y., and Viguier, B. Gimli: a cross-platform permutation, 2017.

[8] Bertoni, G., Daemen, J., Peeters, M., and Assche, G. Caesar sub-
mission: Ketje v2, 2014. http://ketje.noekeon.org/Ketjev2-doc2.
0.pdf.

[9] Bertoni, G., Daemen, J., Peeters, M., and Van Assche, G. Sponge
functions. In ECRYPT hash workshop (2007), vol. 2007.

[10] Bertoni, G., Daemen, J., Peeters, M., and Van Assche, G. On the
security of the keyed sponge construction. In Symmetric Key Encryption Work-
shop (2011).

31

http://eprint.iacr.org/2013/404
http://eprint.iacr.org/2013/404
http://ketje.noekeon.org/Ketjev2-doc2.0.pdf
http://ketje.noekeon.org/Ketjev2-doc2.0.pdf

Spix: Submission to the NIST LWC competition

[11] Bertoni, G., Daemen, J., Peeters, M., and Van Assche, G. Duplexing
the sponge: Single-pass authenticated encryption and other applications. In
SAC (2012), A. Miri and S. Vaudenay, Eds., Springer, pp. 320–337.

[12] Bertoni, G., Daemen, J., Peeters, M., and Van Assche, G.
Permutation-based encryption, authentication and authenticated encryption.
DIAC (2012).

[13] Biryukov, A., and Wagner, D. Slide attacks. In FSE (1999), L. Knudsen,
Ed., Springer, pp. 245–259.

[14] Chakraborti, A., Datta, N., Nandi, M., and Yasuda, K. Beetle family
of lightweight and secure authenticated encryption ciphers. IACR Transactions
on Cryptographic Hardware and Embedded Systems 2018, 2 (2018), 218–241.

[15] Jovanovic, P., Luykx, A., and Mennink, B. Beyond 2c/2 security
in sponge-based authenticated encryption modes. In ASIACRYPT (2014),
P. Sarkar and T. Iwata, Eds., Springe, pp. 85–104.

[16] Kölbl, S., Leander, G., and Tiessen, T. Observations on the Simon
block cipher family. In CRYPTO (2015), R. Gennaro and M. Robshaw, Eds.,
Springer, pp. 161–185.

[17] Liu, Y., Sasaki, Y., Song, L., and Wang, G. Cryptanalysis of reduced
sliscp permutation in sponge-hash and duplex-AE modes. In SAC (2018),
C. Cid and J. Michael J. Jacobson, Eds., vol. 11349, Springer, pp. 92–114.

[18] Todo, Y., and Morii, M. Bit-based division property and application to
simon family. In FSE (2016), Springer, pp. 357–377.

[19] Yang, G., Zhu, B., Suder, V., Aagaard, M. D., and Gong, G. The
simeck family of lightweight block ciphers. In CHES (2015), T. Güneysu and
H. Handschuh, Eds., Springer, pp. 307–329.

32

Appendix A

Other NIST-LWC Submissions
Adopting sLiSCP-light Family of
Permutations

In Table A.1, we list our other NIST-LWC submissions whose underlying permuta-
tion adopts a similar design as the sLiSCP-light [4] family of permutations. Spix
adopts sLiSCP-light in a monkey duplex to offer higher throughput than generic
Sponge-based AE schemes. ACE is an all in one primitive that utilizes a generalized
version of sLiSCP-light with state size 320-bit and a different linear layer to offer
both hashing and authenticated encryption functionalities. SpoC is an authenti-
cated cipher that enables tighter bound on the underlying state size to offer same
security as other generic AE schemes, thus allowing larger rate size. SpoC adopts
sLiSCP-light-192 and sLiSCP-light-256 to enable different performance and hence
different target applications. In Table A.1, the submissions are classified based on
their functionalities, mode of operation parameters and ASIC CMOS 65 nm hard-
ware area.

Table A.1: Submissions with sLiSCP-light like permutations
Algorithm Permutation Functionality Parameters (in bits) Mode of operation Area

State Rate Security [GE]

ACE-AE and ACE-H [1] ACE AEAD & Hash 320 64 128 Unified sLiSCP sponge 4286

Spix sLiSCP-light-256 AEAD 256 64 128 Monkey Duplex 2611

SpoC-64 [2] sLiSCP-light-192 AEAD 192 64 128 SpoC 2329
SpoC-128 [2] sLiSCP-light-256 AEAD 256 128 128 SpoC 3020

33

Appendix B

Test Vectors

B.1 Simeck Sbox

Test vector for Simeck sbox with input = 0000000000000000 and rc = 0x07.

Round State

0 0000000000000000

1 FFFFFFFF00000000

2 FFFFFFFFFFFFFFFF

3 00000000FFFFFFFF

4 0000000100000000

5 FFFFFFFC00000001

6 FFFFFF9AFFFFFFFC

7 00000C2DFFFFFF9A

8 00001C1E00000C2D

34

Spix: Submission to the NIST LWC competition

B.2 sLiSCP-light Permutation

Table B.1: Test vector for sLiSCP-light permutation
Step State

0 0000000000000000 0000000000000000 0000000000000000 0000000000000000

1 00000C6F00000426 FFFFE3C3FFFFF348 00001C3C00000C2C FFFFF390FFFFFB2E

2 1DE1A7CF6E2DEA09 62A63FBB4C7F5233 9D59DC78B380A174 E21E545F91D211A9

3 2F11A3C5964A2121 EE5762E6E896794D 8CF14161A4E92756 CD0FFBF5079834CA

4 88343AFEBA25720B 9DBD1D318AFC04E4 EEB3A3AFD1EADC9E 58DA66C4D390ACA3

5 43505BFAD90F2156 73381560F8362948 62744930D6230A0B 349B9EFB9CD5ACBB

6 209FDCD6B4BC6E7B C944D232D517F4EB 54CF64FDFCCB0179 9C3078D3924CB0E7

7 CDF5132B02768F42 0C645033E732AA5D A754CB31E40654CE 1295300249351E2E

8 E3551361FF666A96 11E7A1F154C787FD 494C953F4F3E2C3C D15FFFB502EF1A5A

9 5BD8FE9BE803B316 F11CA614E5E599A6 47AFCCD455244A9E 47721205E89A26E4

10 F197723AA428B1A2 FC546679B9B26621 440455521369D3FC 55B0735EB3D4FDDF

11 8F17F61709A80DEE C96925615D4B740C 72928FCCB1DD5801 817F7BD2527F4323

12 2B858D69E03F180C 96536EBDE32B1437 1B3E1E8EAD09B372 5B6D84811668EACE

13 32D1FCDF790EF884 FE7457572B23191C 1AB5B62679D5551D E6AB8E4966CE1F55

14 DCEF74D18CA6AA09 60A8131451FF0FD5 85E25ACDD7D5A52D 11C177F10A57AD14

15 4D930DEA642F22ED A3E7DE93A806267E D9FA7BA1802C7C58 6E8386C41776770E

16 40D8429E26CB7CC2 C299816562B93DAE E49C053B1D6ABEB1 F2B4B08BBD1BA120

17 87994BD3E40B3A9E 9EB7A40050ADB69C 85D45EC4B238F79F 38BEF6B23D3FB958

18 C14FD32FDD8C4F91 3D7CD37CE4C0FC40 47577247A907F46A B9296703C6788A4C

B.3 Spix

Key 00111122335588DD 00111122335588DD

Nonce 111122335588DD00 111122335588DD00

Associated data 1122335588DD0011 1122335588DD00

Plaintext 335588DD00111122 335588DD001111

Ciphertext 4FEF0A8A5681A6D8EEC67E0B450F95

Tag 58B18A5FA8A59353D8F160B0A2019A23

35

	1 Introduction
	1.1 Notations
	1.2 Outline

	2 Specification
	2.1 Spix Overview
	2.1.1 Recommended parameter set
	2.1.2 Security claims

	2.2 The Mode of Operation
	2.2.1 Domain separation
	2.2.2 Padding
	2.2.3 Initialization
	2.2.4 Processing associated data
	2.2.5 Encryption
	2.2.6 Finalization
	2.2.7 Decryption

	2.3 The sLiSCP-light Permutation
	2.3.1 Step function of the permutation
	2.3.2 sLiSCP-light permutation instances
	2.3.3 sLiSCP-light constants

	3 Security Analysis
	3.1 Security of sLiSCP-light
	3.1.1 Diffusion
	3.1.2 Differential and linear cryptanalysis
	3.1.3 Algebraic distinguishers
	3.1.4 Rotational, slide and invariant subspace distinguishers

	3.2 Security of Spix

	4 Design Rationale
	4.1 Choice of the Mode: Monkey Duplex Sponge Mode
	4.2 Spix State Size
	4.3 Nonlinear Layer: Simeck Sbox
	4.4 Round and Step Constants
	4.5 Number of Rounds and Steps
	4.5.1 P18 sLiSCP-light instance
	4.5.2 P9 sLiSCP-light instance

	4.6 Choice of Rate Positions
	4.7 Statement

	5 Hardware Design
	5.1 ASIC Implementation
	5.2 Round-based implementation of sLiSCP-light
	5.3 Spix by the Numbers

	6 Software Implementations
	6.1 Bit-sliced Implementation of sLiSCP-light
	6.2 Spix Optimized Implementation
	6.3 Spix Microcontroller Implementation

	A Other NIST-LWC Submissions Adopting sLiSCP-light Family of Permutations
	B Test Vectors
	B.1 Simeck Sbox
	B.2 sLiSCP-light Permutation
	B.3 Spix

