
Chapter 1

MERGING SUB EVIDENCE GRAPHS TO
AN INTEGRATED EVIDENCE GRAPH FOR
NETWORK FORENSICS ANALYSIS

Changwei Liu #1 , Anoop Singhal ∗2, Duminda Wijesekera #3

#Department of Computer Science, George Mason University, Fairfax VA 22030
USA 1cliu6@gmu.edu, 3dwijesek@gmu.edu

*National Institute of Standards and Technology, Gaithersburg MD 20899 USA
2anoop.singhal@nist.gov

Abstract	 Evidence graphs model network intrusion evidence and their dependen­
cies to help with network forensics analysis. With quantitative metrics,
probabilistic evidence graphs provide a way to link probabilities associ­
ated with different attack paths with available evidence. Existing work
in evidence graphs assumes that all available evidence forms a single
evidence graph. We show how to merge different evidence graphs with
or without the help of a corresponding attack graph. We show this
by providing algorithms and a possible attack scenario towards a file
server and a database server in an example network environment. An
integrated evidence graph, showing all attacks using global reasoning,
is more useful to forensics analysts and network administrators than
multiple evidence graphs that use local reasoning.

Keywords:	 Probabilistic evidence/attack graphs, Evidence and host probabilities,
Integrated probabilistic evidence graphs, Forensics

1. Introduction

Evidence graphs and attack graphs have been used in security analy­
sis. Because evidence graphs are built from attacks occured in a specific
network environment,they are generally used to help with network foren­
sics analysis by modeling intrusion evidence in the network. In such a
graph, nodes represent host computers that interest forensics investiga­
tors and edges represent dependencies between evidence [1].

mailto:2anoop.singhal@nist.gov
mailto:3dwijesek@gmu.edu
mailto:1cliu6@gmu.edu

2

Attack graphs are used to analyze security vulnerabilities and their
dependencies in an enterprise network. Combining quantitative metrics,
probabilistic attack graphs can estimate probabilities of attack success
in networks [2]. While a good probabilistic attack graph provides po­
tential attack success probabilities to help with forensics investigation
and network configuration adjustment, an attack graph with inaccurate
attack paths or attack success probabilities may mislead investigators or
network administrators. As a solution, [4] proposed to adjust an inaccu­
rate probabilistic attack graph by mapping a corresponding probabilistic
evidence graph to it. The mapping algorithm works well in mapping an
evidence graph to a small-scaled attack graph, but it does not provide a
solution to mapping multiple evidence graphs to one large-scaled attack
graph. The reason for having multiple attack graphs is clear–namely ev­
idence is collected from multiple systems, and investigators have to join
them together to get a complete view of the evidence trail left over by a
distributed attack. To the best of our knowledge, the issue of integrating
evidence graphs has not been discussed in published literature, which is
the main contribution of our paper.

The rest of this paper is organized as follows. Section II describes
related work and definitions. Section III discusses how to integrate two
probabilistic evidence graphs together. Section IV uses a possible attack
scenario to show how to integrate evidence graphs, and finally section V
has our conclusions.

2. Related Work And Definitions

Many papers define attack graphs and evidence graphs. [12] and [13]
define state-based attack graphs where nodes are global states of the sys­
tem and edges are state transitions. However, these state-based attack
graphs create exponentially many states because the definition encodes
nodes as a collection of Boolean variables to cover the entire network
states. A compact representation of attack graphs is defined in [3,14,15],
where nodes represent exploits or conditions and edges represent attack
dependencies. [1] defines an evidence graph as a graph in which nodes
represent host computers involved in attacks and edges represent pre­
processed forensics evidence that correlates those hosts.

NVD from NIST [9] standardizes vulnerability metrics that assign suc­
cess probabilities to exposed individual vulnerabilities. They are used in
attack graphs to compute success probabilities of attacks [3,7]. Evidence
graphs also use quantitative metrics to estimate the admissibility of ev­
idence and the certainty of the host being involved in a specific attack
[1].

3 Changwei Liu , Anoop Singhal & Duminda Wijesekera

We use the following definitions to define evidence graphs, logical
attack graphs [1,3] and both graphs associated with probabilities.

Definition 1 (Evidence Graph) [1,4]: An evidence graph is a sex­
tuple G=(N,E,N-Attr,E-Attr,L,T), where N is a set of nodes representing
host computers, E ⊆ (Ni × Nj) is a set of directed edges consisting of
a particular data item indicating of activities between source and tar­
get machines, N-Attr is a set of node attributes that include host ID,
attack states, time stamp and host importance, and E-Attr is a set of
edge attributes consisting of event description, evidence impact weight,
attack relevancy and host importance. Functions L : N → 2N−Attr and
T : E → 2E−Attr assign attribute-value pairs to a node and an edge
respectively.

Attack states are one or many of attack source, target, stepping-stone,
and affiliated host computers. Affiliated hosts represent computers that
have suspicious interactions with an attacker, one of victim hosts or
stepping-stone hosts [4].

Definition 2 (Probabilistic Evidence Graph) [4]: In a proba­
bilistic evidence graph G=(N,E,N-Attr,E-Attr,L,T,p), the probability
assignment functions p[0,1] for an evidence edge e and a victim host h
are defined as follows.

a. p(e)=c× w(e) × r(e) × h(e), where w, r and h are weight, relevancy
and the importance [1] of the evidence edge e. Coefficient c indicates
the categories of evidence, which include primary evidence, secondary
evidence and hypothesis testing from expert knowledge. 1, 0.8 and 0.5
are respectively assigned to them in this paper.

b. p(h)=p[(∪eout)∪(∪ein)], where ∪eout means all edges whose source
computer is host h with a particular attack-related state, and ∪ein rep­
resents all edges whose target computer is h with the same state.

The weight of an evidence edge with a value between [0, 1] represents
the impact of the evidence on the attack. Relevancy is the measure of the
evidence impact on the attack success at this specific step, which consists
of three values. An irrelevant true positive is 0, unable to verify is 0.5
and relevant true positive is 1. Lastly, the importance of the evidence
with a value between [0,1] is represented by the bigger importance value
of two hosts connected by the evidence edge.

There are two kinds of evidence used to construct evidence graphs.
While primary evidence is explicit and direct, secondary evidence is
implicit or circumstantial. In some circumstances, the evidence does
not exit or is destroyed. A subject matter expert may insert an edge as
the expert opinion.

Definition 3 (Logical Attack graph)[3,4]: A=(Nr, Np, Nd, E, L,G)
is a logical attack graph, where Nr, Np and Nd are three sets of nodes

4

named derivation, primitive and derived fact nodes respectively, E ⊆
((Np ∪ Nd) × Nr) ∪ (Nr × Nd), L is a mapping from a node to its label,
and G ⊆ Nd is an attacker’s final goal [3].

Figure 1 is a logical attack graph. A primitive fact node is shown as
a box, which represents a specific network configuration or vulnerability
information of a host. A derivation node is shaped as an ellipse, rep­
resenting a successful application of an interaction rule on input facts
including primitive facts and prior derived facts. The successful inter­
action results in a derived fact node represented by a diamond, which is
satisfied by these input facts.

4:hacl(internet,webServer,tcp,80):1

2:RULE 6 (direct network access):1

1:netAccess(webServer,tcp,80):1

3:attackerLocated(internet):1

Figure 1. An Example Attack Graph

Definition 4(Cumulative Probability Function)[4]: Suppose A =
(Nr, Np, Nd, E, L,G, p) is a probabilistic attack graph where the function
p : Np ∪ Nr ∪ Nd → [0,1] assigns probabilities to nodes. If we use ex­
ploits(e) to represent derivation nodes Nr and conditions(c) to represent
primitive facts Np or derived facts Nd, the cumulative probability func­
tion P for “e”and “c”of a probabilistic attack graph P : Np ∪ Nr ∪ Nd →
[0, 1] is computed from p : Np ∪ Nr ∪ Nd → [0, 1] as follows.

1. P(c)= p(c) =1, if the condition is a primitive fact that is always
satisfied.

2. P(c)= p(c) ×
�

P (e), c is the condition of the derived fact node
that is derived from derivation nodes(e). Probability law applies here.

3. P(e)=p(e) ×
�

P (c) , where e ∈ Nr , and c are conditions that
include primitive facts and derived facts from prior step. p(e) can be
obtained from NVD from NIST [9].

We define sub attack graphs and similar nodes that are used in this
paper as follows.

Definition 5(Sub Logical Attack Graph): A logical attack graph
A�=(Nr

� , Np
� , Nd

� , E�, L�, G�), is a sub logical attack graph of a complete
logical attack graph A=(Nr, Np, Nd, E, L,G), iff

1) Nr
� , Np

� , Nd
� ⊆ Nr, Np, Nd, and

2) E� ⊆ E ∩ ((N1, N2) ∈ E� → N1, N2 ∈ Nr
� ∪ Np

� ∪ Nd
� , and

3) G� ⊆ G, and L� ⊆ L

5 Changwei Liu , Anoop Singhal & Duminda Wijesekera

Definition 6(Similar nodes): In a logical attack graph A=(Nr, Np,
Nd, E, L,G) or an evidence graph G=(N,E,N-Attr,E-Attr,L,T) ,

1) If both N1d and N2d ∈ A, and satisfy the equalities of N1d ≡ N2d ,
N1r ≡ N2r, N1p ≡ N2p, we say that N1d and N2d are similar, which can
be represented as N1d ≈ N2d .

2) If same kinds of hosts N1 and N2 ∈ G, the attack status of N1

is equal to the attack status of N2, and E(N1) ≡ E(N2), where E(N1)
and E(N2) are the evidence edges whose source or destination host is
N1 and N2 respectively, then we say N1 and N2 are similar , which can
be represented as N1 ≈ N2.

[1] suggests normalizing all evidence to five components (1) id, (2)
source, (3) destination, (4) content and (5) time stamp, and use them
as edges to connect hosts in a time order forming an evidence graph.
MulVAL[5] is used to generate a logical attack graph in this paper.

3. Merging Sub Evidence Graphs

It is necessary to merge different probabilistic evidence graphs to­
gether, because an integrated evidence graph, which includes all victim
hosts and attack evidence in the entire network, can provide a global
attack description of the network. In order to have a valid integrated
evidence graph, we use the following guidelines to ensure that the proba­
bilities for merged host nodes or evidence edges won’t violate Definition
2.

a) If a single host involved in different attacks has different attack
status for each attack, we use different nodes to represent each attack
on the same host.

b) If the same victim host exploited by using the same vulnerability
is involved in different attacks, we merge the node in different attacks
into one and give it an increased probability p�(h) = p(h)G1 + p(h)G2 −
p(h)G1 × p(h)G2 . Here, p�(h) is the increased probability of the merged
node. p(h)G1 and p(h)G2 are the host’s probabilities in different evidence
graph G1 and G2 respectively.

c) Similar hosts involved in similar attacks should be grouped together
with an increased probability p�(h) = p(h)G1 +p(h)G2 − p(h)G1 × p(h)G2.

In either (b) or (c) where the host nodes are merged, the correspond­
ing edges representing the same evidence should also be merged. If we
use p(e)G1 and p(e)G2 to represent the evidence probabilities in evidence
graphs G1 and G2 respectively, the merged evidence probability is in­
creased to p�(e) = p(e)G1 + p(e)G2 − p(e)G1 × p(e)G2, where p�(e) is the
new merged evidence edge probability.

6

Figure 2. Evidence Graphs Merging

Figure 2 is an example of two separate evidence graphs(“a)”and “b)”)
and their integrated evidence graph(“c)”). In the two evidence graphs,
suppose that “host2”is attacked by using the same vulnerability from
“host1”and “host3”, and host1 ≈ host3. Both “host2”from graphs
“a)”and “b)”can be merged to a single“host2”node with an increased
probability p�(h2) = 0.5 + 0.9 − 0.5 × 0.9 = 0.95, and both “host1”and
“host3”from two upper graphs can be merged to “host”with an increased
probability p�(h) = p(h1)+p(h3)−p(h1)×p(h3) = 0.5+0.5−0.5×0.5 =
0.75. Correspondingly, the merged evidence should be increased to
p�(e) = p(e1) + p(e3) − p(e1) × p(e3) = 2 × 0.5 − 0.5 × 0.5 = 0.75.

If sub evidence graphs are well constructed with no tainted or miss­
ing evidence, we propose to directly merge sub evidence graphs into an
integrated evidence graph. If not, we suggest to use the attack graph
generated from the same network as a reference to integrate sub evidence
graphs in forming an integrated one, because the attack graph can help
implement the incomplete evidence graph.

3.1	 Merging Evidence Graphs Without Using
An Attack Graph

Suppose we merge two evidence graphs together. Starting from both
victim host nodes, we use the depth first search algorithm [10] to traverse
all host nodes in the first evidence graph or second graph and merge them
to a third evidence graph forming an integrated one. Our algorithm uses
a coloring scheme to keep track of nodes in both sub evidence graphs.
All nodes are initialized white and colored gray when being considered
but with children not yet fully examined. A host is colored black after

http:0.5=0.75
http:0.9=0.95

7 Changwei Liu , Anoop Singhal & Duminda Wijesekera

all its children are fully examined. Having all nodes from both evidence
graphs colored black, the merging is done and the third evidence graph
is the integrated one. The details are in Algorithm 1.

We use G1,G2 and G to represent the two sub evidence graphs and the
integrated evidence graph. Algorithm 1 checks evidence graphs G1 and
G2 to see if there is an identical host node in G. “identical host”means the
same machine that shows in different evidence graphs, but is exploited
by using the same vulnerability. If a host node in G is found identical to
a node in G1 or G2, we keep the one in G and increase its probability. If
there is no such an identical host in G, the node and its corresponding
evidence from G1 or G2 should be added to G.

To begin with, lines 1-3 paint every node in G1 and G2 white and set
the parent of each node as NIL. Lines 4-6 traverse every host node in
graphs G1 and G2. If the node color is white (line 5), DFS-VISIT(h) is

8

called(line 6) to search for one of its undiscovered child nodes by using
depth first search (DFS). In Function DFS-VISIT (h), line 7 paints host
h Gray, implying that this node is discovered but its children have not
been fully examined. Line 8 calls function MERGING(π[h], h, G) to
merge the discovered host node h in either G1 or G2 to the integrated
evidence graph G. The reason why we need π[h] here is that we need to
add the evidence edges between π[h] and h to G later. Line 9 to line 12
iteratively search for an undiscovered child node v of host node h, and
assign node h as the parent of node v. Line 13 paints node h black after
all its children have been discovered. The algorithm terminates when all
nodes from evidence graph G1 and G2 are painted black.

In MERGING function, lines 15-18 decide if h (the node passed from
G1 or G2) is identical to any node in G. If such a node u is found to be
identical to h, node u’s probability is increased to p�(u) = p(u) + p(h) −
p(u) × p(h), and the corresponding evidence probability is increased to
p�(h.e) = p(u.e)+p(h.e)−p(u.e)×p(h.e) (lines 17-18), because the iden­
tical node h and its corresponding evidence are merged into node u in
G. Here, p�(u) is the merged probability of u in G. p(u) and p(h) are
the probabilities of u and h in evidence graph G and G1/G2 before the
merging. Correspondingly, p�(u.e) is the probability of merged evidence
whose source or destination host is u. p(u.e) and p(h.e) are the proba­
bilities of evidence whose source computer or destination computer is u
or h in G and G1/G2 before merging. If there is no such a node in G
that is identical to h, the host node h and its attack probability from
evidence graph G1 or G2 are added to evidence graph G with a new
name u� (lines 19-20). Lines 20-23 find the parent node π[u�] of the new
added node u� in G, which should be identical to π[h] in G1/G2. Oth­
erwise, π[u�] is equal to NIL(line 24). Once the parent of u� has been
decided, lines 25-27 merge the evidence edges and their corresponding
probabilities between π[h] and h in G1 or G2 to π[u�] and u� in G.

3.2	 Merging Evidence Graphs By Referring To
An Attack Graph

Under some circumstances, the constructed evidence graph has un­
connected nodes because of missing evidence edges. In this case, merging
evidence graphs becomes problematic. As a solution, we use an attack
graph of the whole enterprise network to fill in the missing evidence by
mapping sub evidence graphs to the attack graph to find the correspond­
ing attack path. As a byproduct, we enhance the attack graph using the
mapping process.

9 Changwei Liu , Anoop Singhal & Duminda Wijesekera

3.2.1 Processing A Large-scaled Attack Graph. Run­
time overhead has been a problem to a large scaled attack graph. It
is impractical to map evidence graphs that usually have a polynomial
complexity to a large-scaled attack graph that has an exponential num­
ber of nodes(V) and edges(E), because a mapping algorithm [4] using
depth-first search algorithm has a run time O(V + E)[10]. In order to
solve this complexity problem, we use the following methods to reduce
the attack graph complexity.

1. Use the method suggested in [6] to group hosts that have similar
vulnerabilities together and assign the grouped node a higher probability
p(h)= p(h1 ∪ h2) = p(h1)+ p(h2) − p(h1) × p(h2), where h is the grouped
machine node, h1 and h2 represent host 1 and host 2 that have similar
vulnerabilities.

2. Attack success probility also represents the attack reachability.
Drop those hosts that have low reachability[8]. We use a value 0.02 as
the minimum reachability in this paper.

3. Drop off all paths where the destination computer does not expand
further to the desired victim hosts and all hosts that are not involved in
the desired attack paths. In addition, if there are multiple exploits at
the same host, neglect those exploits for which Common Vulnerability
Scoring System (CVSS) is smaller than a preselected threshold value.

3.2.2 Merging Algorithm. Algorithm 2 is designed to use an
attack graph to merge evidence graphs that have missing evidence. It
enhances Algorithm 1 by looking up the missing evidence in the attack
graph A. Line 1 to Line 27 are exactly the same as Algorithm 1. Line
28 to Line 32 aim to find the missing evidence between a new added
node u� and its parent node π[u�] in the attack graph A (if the evidence
is missing in both G1 and G2 , we search for it in A). To be specific,
line 22 to line 24 search for the evidence edges between π[h] and h in

�G1 or G2, which correspond to evidence edges between π[u�] and u in
G. If these evidence edges are found, they are added as the evidence
edges between π[u�] and u� in G(ine 25 to line 27). If not, the evidence
is missing in both the sub evidence graphs G1 and G2. In this case,
lines 29 to 31 traverse all derived nodes in attack graph A to find the
corresponding nodes of π[u�] and u� from G, and mark them black. Line
32 adds the found attack paths between the two marked nodes in the
attack graph A to the integrated evidence graph G as the evidence edges

�between π[u�] and u .
To sum up, if two evidence graphs are so well constructed that there

are no missing evidence edges or nodes, algorithm 1 is used. Otherwise,
algorithm 2 is used.

10

3.3 Complexity Analysis

We use “n”and “e”to represent the numbers of all nodes and edges
in both evidence graphs. In algorithm 1, lines 1 to 3 have an O(n) run
time, since the three lines only go through every single node once. Lines
4 to 6 traverse every node to do a depth first search (“DFS-VISIT”),
which has an O(n) run time. In this “DFS-VISIT”function, line 8 calls
the “MERGING”function, where we can see there are two “for”loops,
which take a O(n2) run time. Lines 9 to 13 run depth first search to
traverse every single edge and node in both evidence graphs to find the

11 Changwei Liu , Anoop Singhal & Duminda Wijesekera

current node’s next un-marked child node, which takes O(n+e) time as
proved in [10]. If we add all these run time up, we can see algorithm 1
has a complexity O(n + n × (n × e + n × n2)) =O(n2 × e + n4). For most
evidence graphs, e is polynomial to n since there are usually at most
three edges between two nodes, so the run time is polynomial.

Algorithm 2 is similar to algorithm 1, except that algorithm 2 has
to traverse all derived nodes in the corresponding attack graph to find
attack steps corresponding to missing evidence in the evidence graphs.
This is done by a “for”loop between lines 29 to 31. Suppose we use
“m”to represent node number in the attack graph, the complexity of
algorithm 2 is O(n + n × (n × e + n × n2 × m)) = O(n2 × e + n4 × m),
which is determined by m, since e is only polynomial to n.

Complexity has been a hindrance of using attack graph. [3] has proved
that a logical attack graph for a network with N machines has a size at
most O(N2). However, in a large-scaled network with a big N, an O(N2)
size can still be a problem. By using the methods in 3.2.1, we could
greatly reduce the number of N. Besides, because an evidence graph is
usually smaller than an attack graph, if we only keep the hosts involved
in evidence graphs in the corresponding attack graph, the size of the
attack graph can be even smaller. Therefore, the complexity of algorithm
2 is polynomial instead of exponential, because “m”(equivalent to N) is
polynomial.

4. An Example Of An Attack Scenario

We simulated an attack scenario by using a small example network in
Figure 3. In this network, the external firewall controls network access
from the Internet to the enterprise network, where the Apache Tom­
cat webserver using Firefox 3.6.17 hosts a webpage that allows Internet
users’ visit via port 8080. The internal firewall controls the access to
MySQL database server and fileserver. The webserver can access the
database server via the default port 3306 and the fileserver through the
NFS protocol. There are also workstations with IE6 installed in this
network, which have direct access to internal database server.

We assume that the objective of the attacker is to gain access to
database tables in the database server and to comprise the fileserver.
For the attack plan to the database server, we use two methods:(1)
a SQL injection attack by exploiting a java servlet code on the web-
server; (2) direct access by compromising a workstation. The java
servlet code on the webserver does not sanitize input values: theS­
tatement.executeQuery(”select * from profiles where name=’Alice’ AND
password=’ ”+passWord+” ’ ”);, which corresponds to CWE89 in NVD

12

Figure 3. Experiment Network

Table 1. Role Configuration In The Attacks.

Attacker 129.174.128.148

Stepping Stone Workstation CVE-2009-1918

Stepping Stone/Affiliated Web server CWE89/CVE-2011-236

Victim Database server/File server CVE-2003-0252

[12]. The workstations run Windows XP SP3 operating system with IE6,
which has a vulnerability CVE-2009-1918 [9]. This vulnerability allows
an attacker to use social engineering, easily enabling the attacker’s ma­
chine to control the workstations. For the attack plan on the fileserver,
we assume to use vulnerability in the NFS service daemons (CVE-2003­
0252) to compromise the file server. The webserver, as a stepstone to
attack towards fileserver, can be compromised by using its vulnerability
CVE-2011-2365 on Firefox 3.6.17. All of the attack roles and vulnera­
bilities on all computers are stated in Table 1.

4.1 Use Algorithm 1 to Merge Evidence Graphs

We modeled evidence from the above attack scenario as a vector (id,
source, destination, content, time stamp) and used Graphviz [11] to gen­
erate two evidence graphs (“a)”and “b)”in Figure 4). In both graphs,
solid edges represent primary evidence and second evidence, which has
coefficient 1 and 0.8 respectively. Dotted edges represent expert knowl­
edge with a coefficient 0.5. The probabilities for the evidence edges and
hosts are calculated by using Definition 2.

We applied algorithm 1 to both evidence graphs to generate the in­
tegrated evidence graph(“c)”in Figure 4). Because the workstations
in the two sub evidence graphs are involved in the same attack, they

13 Changwei Liu , Anoop Singhal & Duminda Wijesekera

Figure 4. Evidence graphs for the experiment network attack scenario

are merged into a single node with an increased probability p�(h) =
p(h.G1)+ p(h.G2) −p(h.G1)×p(h.G2) = 1+1−1×1 = 1. Here, p(h.G1)
and p(h.G2) represent the probabilities of p(h) in evidence graph G1 and
G2 respectively.

4.2 Use Algorithm 2 to Merge Evidence Graphs

4.2.1 Reducing Attack Graph Complexity. In order to
have a succinct visual effect, we only took two workstations out of many
in Figure 3 for an attack graph generation. With all vulnerability infor­
mation mentioned above, we generated an attack graph by using Mul­
VAL[5](Figure 5). In this graph, we can see there are two exactly same
attack paths on the left side and right side. If we merge two workstations
to one, we can get Figure 6 that obviously has a smaller complexity than
Figure 5 because of less host nodes. Correspondingly, the grouped host
nodes have updated probabilities as follows.

p�(21) = p(21) + p(31) − p(21) × p(31) = 0.8 + 0.8 − 0.8 × 0.8 = 0.96;
p�(20) = p(20) + p(30) − p(20) × p(30) = 0.8 + 0.8 − 0.8 × 0.8 = 0.96;
p�(19) = p(19) + p(29) − p(19) × p(29) = 0.8 + 0.8 − 0.8 × 0.8 = 0.96;
p�(18) = p(18) + p(28) − p(18) × p(28) = 0.8 + 0.8 − 0.8 × 0.8 = 0.96.

4.2.2 Merging Evidence Graphs . By referring to the com­
pact attack graph in Figure 6, we used Algorithm 2 to integrate the
two evidence graphs. In order to simulate having missing evidence in
evidence graphs, we assume the evidence from web server to fileserver in
graph “b)”in Figure 4 has not been found. The corresponding integrated

http:0.8=0.96
http:0.8=0.96
http:0.8=0.96
http:0.8=0.96

14

Figure 5. Attack graph with two workstations

Figure 6. Attack graph with grouped workstations

evidence graph is in Figure 7. In this graph, the edges colored in red are
merged from both evidence graphs, and the black attack path between
“Web Server ”and “fileserver ”is the corresponding attack path (between
node 6 and node 28) from the attack graph. This new added attack path
between the “Web Server”and the “fileserver”means the webserver has
been used as a step stone to comprise file server by using the vulnerabil­
ity of “CVE-2003-0252”in NVD[9] (RPC requests to mountd that does
not contain newlines).

5. Conclusion

We developed two algorithms to integrate sub probabilistic evidence
graphs to an integrated probabilistic evidence graph. Our first algo­

15 Changwei Liu , Anoop Singhal & Duminda Wijesekera

Figure 7. Integrated evidence graph by referring to Figure 6

rithm directly merges probabilistic evidence graphs without paying any
attention to infrastructural vulnerabilities. Our second algorithm merges
multiple evidence graphs in the presence of an attack graph that captures
the infrastructural vulnerabilities and their dependencies in the form of
an attack graph. This algorithm is used under the circumstance where
the evidence is tampered or missing. Because our second algorithm
could result in a long runtime if the attack graph has a big complexity,
we showed some approximations that would shrink the attack graph in
order to reduce the runtime. We used an example attack scenario to
show that both algorithms work well in getting an integrated evidence
graph.

Disclaimer

This paper is not subject to copyright in the United States. Com­
mercial products are identified in order to adequately specify certain
procedures. In no case does such identification imply recommendation
or endorsement by the National Institute of Standards and Technology,
nor does it imply that the identified products are necessarily the best
available for the purpose.

References

[1] W.	 Wang, T.E. Daniels, A graph based approach toward network
forensics analysis, ACM Transactions on Information and Systems
Security 12 (1) (2008).

[2] A.	 Singhal,X. Ou,Security Risk Analysis of Enterprise Networks
Using Probabilistic Attack Graphs, NIST InterAgency Report 7788,

16

September 2011.

[3] Ou, X., Boyer, W.F., McQueen, M.A.,	 A scalable approach to at­
tack graph generation, In 13th ACM Conference on Computer and
Communications Security(CCS), pp. 336345 (2006).

[4] C.	 Liu, A. Singhal, D. Wijesekera, Mapping Evidence Graphs
to Attack Graphs, IEEE International Workshop on Information
Forensics and Security, December, 2012.

[5] MulVAL V1.1, Jan 30, 2012, http://people.cis.ksu.edu/ xou/mulval/.

[6] J.	 Homer, A. Varikuti, X. Ou, M. A. McQueen, Improving at­
tack graph visualization through data reduction and attack group­
ing, 5th International Workshop on Visualization for Cyber Security
(VizSEC 2008), Cambridge, MA, U.S.A., September 2008.

[7] L.	 Wang, T. Islam, T. Long, A. Singhal, and S. Jajodia, An
attack graph-based probabilistic security metric, In Proceedings of
The 22nd Annual IFIP WG 11.3 Working Conference on Data and
Applications Security (DBSEC08), 2008.

[8] V.	 Mehta, C. Bartzis, H. Zhu, E. Clarke, and J. Wing, Rank­
ing attack graphs, In Proceedings of Recent Advances in Intrusion
Detection (RAID), September 2006.

[9] National Vulnerability Database, http://nvd.nist.gov/.

[10] T.H.	 Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction
to Algorithms, MIT University Press, Cambridge, 2001.

[11] http://graphviz.org/.

[12] S.	 Jha, O. Sheyner, and J.M. Wing,Two formal analysis of attack
graph, In Proceedings of the 15th Computer Security Foundation
Workshop (CSFW02), 2002.

[13] O.	 Sheyner, J. Haines, S. Jha, R. Lippmann, and J.M. Wing,
Automated generation and analysis of attack graphs, In Proceedings
of the 2002 IEEE Symposium on Security and Privacy (S&P02),
pages 273284, 2002.

[14] P.	 Ammann, D. Wijesekera, and S. Kaushik, Scalable, graph-
based network vulnerability analysis, In Proceedings of the 9th ACM
Conference on Computer and Communications Security (CCS02),
pages 217224, 2002.

[15] Kyle	 Ingols ,Richard Lippmann and Keith Piwowarski, Practical
Attack Graph Generation for Network Defense, Computer Security
Applications Conference, 2006. ACSAC ’06. 22nd Annual, pages
121-130.

http:http://graphviz.org
http:http://nvd.nist.gov
http:http://people.cis.ksu.edu

