
PQC - API notes

Most of the API information is derived from the eBATS: ECRYPT Benchmarking of
Asymmetric Systems (https://bench.cr.yp.to/ebats.html). This has been done to facilitate
benchmarking algorithm performance. Please look at the eBATS page for more
information on how to submit an algorithm for performance benchmarking. There are
two sets of API calls listed for each primitive. The first set is the API call directly from the
eBATS page, or something very similar for the Key Establishment section. The second
set of calls is for testing purposes. The calls extend the eBATS calls for functions that
utilize randomness by providing a pointer to specify a randomness string. This will allow
algorithms that utilize randomness to be able to provide reproducible results. For
example, this will allow testing of KAT files.

Public-key Signatures
See https://bench.cr.yp.to/call-sign.html for more information on Public-key
Signature API and performance testing.

The first thing to do is to create a file called api.h. This file contains the following three
lines (with the sizes set to the appropriate values):
 #define CRYPTO_SECRETKEYBYTES 256
 #define CRYPTO_PUBLICKEYBYTES 85
 #define CRYPTO_BYTES 128

Then create a file called sign.c with the following function calls:

 eBATS calls
 Generates a keypair - pk is the public key and sk is the secret key.

 int crypto_sign_keypair(
 unsigned char *pk,
 unsigned char *sk
)

 Sign a message: sm is the signed message, m is the original message,
and sk is the secret key.

 int crypto_sign(
 unsigned char *sm, unsigned long long *smlen,
 const unsigned char *m, unsigned long long mlen,
 const unsigned char *sk
)

 Verify a message signature: m is the original message, sm is the signed
message, pk is the public key.

 int crypto_sign_open(
 unsigned char *m, unsigned long long *mlen,
 const unsigned char *sm, unsigned long long
smlen,
 const unsigned char *pk
)

 KAT calls
 int crypto_sign_keypair_KAT(
 unsigned char *pk,
 unsigned char *sk,
 unsigned char *randomness
)

 int crypto_sign_KAT(
 unsigned char *sm, unsigned long long *smlen,
 const unsigned char *m, unsigned long long mlen,
 const unsigned char *sk,
 unsigned char *randomness
)

Public-key Encryption
See https://bench.cr.yp.to/call-encrypt.html for more information on Public-key
Encryption API and performance testing.

The first thing to do is to create a file called api.h. This file contains the following three
lines (with the sizes set to the appropriate values):
 #define CRYPTO_SECRETKEYBYTES 256
 #define CRYPTO_PUBLICKEYBYTES 64
 #define CRYPTO_BYTES 48

Then create a file called encrypt.c with the following function calls:

 eBATS calls
 Generates a keypair - pk is the public key and sk is the secret key.

 int crypto_encrypt_keypair(
 unsigned char *pk,
 unsigned char *sk
)

 Encrypt a plaintext: c is the ciphertext, m is the plaintext, and pk is the
public key.

 int crypto_encrypt(
 unsigned char *c,unsigned long long *clen,
 const unsigned char *m,unsigned long long mlen,
 const unsigned char *pk
)

 Decrypt a ciphertext: m is the plaintext, c is the ciphertext, and sk is the
secret key.

 int crypto_encrypt_open(
 unsigned char *m,unsigned long long *mlen,
 const unsigned char *c,unsigned long long clen,
 const unsigned char *sk
)

 KAT calls
 int crypto_encrypt_keypair_KAT(
 unsigned char *pk,
 unsigned char *sk,
 unsigned char *randomness
)

 int crypto_encrypt_KAT(
 unsigned char *c,unsigned long long *clen,
 const unsigned char *m,unsigned long long mlen,
 const unsigned char *pk,
 unsigned char *randomness
)

Key Establishment
The calls in the eBATS specification do not meet the calls specified in the call for
algorithms. However, attempts were made to match the specifications for the other
algorithms. (For reference, see https://bench.cr.yp.to/call-dh.html for more
information on Public-key Diffie-Hellman API and performance testing.)

The first thing to do is to create a file called api.h. This file contains the following three
lines (with the sizes set to the appropriate values):
 #define CRYPTO_SECRETKEYBYTES 192
 #define CRYPTO_PUBLICKEYBYTES 64
 #define CRYPTO_BYTES 64

Then create a file called keyestablishment.c with the following function calls:

 eBATS-like calls

 Generate an initiator key-establishment message: kei is the initiator’s key
exchange message and ski is the secret key of the initiator.

 int crypto_keyestablishment_initiator_generate(
 unsigned char *kei,
 unsigned char *ski
)

 Generate a responder key-establishment message: ker is the responder’s
key exchange message, skr is the responder’s secret key, and kei is the initiator’s key
exchange message.

 int crypto_keyestablishment_responder_generate(
 unsigned char *ker,
 unsigned char *skr,
 const unsigned char *kei
)

 Initiator recovery of the shared secret: ss is the shared secret, ker is the
responder’s key exchange message, and ski is secret key of initiator.

 int crypto_keyestablishment_initiator_recover(
 unsigned char *ss,
 const unsigned char *ker,
 const unsigned char *ski
)

 Responder recovery of the shared secret: ss is the shared secret, kei is
the initiator’s key exchange message, and skr is secret key of responder.

 int crypto_keyestablishment_responder_recover(
 unsigned char *ss,
 const unsigned char *kei,
 const unsigned char *skr
)

 KAT calls

 int crypto_keyestablishment_initiator_generate_KAT(
 unsigned char *kei,
 unsigned char *ski,

 unsigned char *randomness
)

 int crypto_keyestablishment_responder_generate_KAT(
 unsigned char *ker,
 unsigned char *skr,
 const unsigned char *kei,
 unsigned char *randomness
)

