

PQC - API notes

Most of the API information is derived from the eBATS: ECRYPT Benchmarking of
Asymmetric Systems (https://bench.cr.yp.to/ebats.html). This has been done to facilitate
benchmarking algorithm performance. Please look at the eBATS page for more
information on how to submit an algorithm for performance benchmarking.

Your functions must have exactly the prototypes shown here. For example, the
crypto_sign_keypair function must have an unsigned char pointer for the
public-key output and then an unsigned char pointer for the secret-key output. Your
functions must return 0 to indicate success, -1 to indicate an error condition (other
negative numbers may be used to indicate specific failures, e.g., out of memory).

Public-key Signatures

See https://bench.cr.yp.to/call-sign.html for more information on Public-key Signature API
and performance testing.

The first thing to do is to create a file called api.h. This file contains the following three
lines (with the sizes set to the appropriate values):

 #define CRYPTO_SECRETKEYBYTES 256

 #define CRYPTO_PUBLICKEYBYTES 85

 #define CRYPTO_BYTES 128

indicating that your software uses a 256-byte (2048-bit) secret key, an 85-byte (680-bit)
public key, and at most 128 bytes of overhead in a signed message compared to the
original message. Additionally, there is a define statement with the algorithm name.
Set this to a value appropriate for your algorithm:

 #define CRYPTO_ALGNAME “UserDefinedAlgName”

Finally, include the function prototypes for the following three functions:
crypto_sign_keypair(), crypto_sign(), and crypto_sign_open().

https://bench.cr.yp.to/call-sign.html
https://bench.cr.yp.to/ebats.html

Then create a file called sign.c with the following function calls:

Generates a keypair - pk is the public key and sk is the secret key.

 int crypto_sign_keypair(

 unsigned char *pk,

 unsigned char *sk

)

Sign a message: sm is the signed message, m is the original message,
and sk is the secret key.

 int crypto_sign(

 unsigned char *sm, unsigned long long *smlen,

 const unsigned char *m, unsigned long long mlen,

 const unsigned char *sk

)

Verify a message signature: m is the original message, sm is the signed
message, pk is the public key.

 int crypto_sign_open(

 unsigned char *m, unsigned long long *mlen,

 const unsigned char *sm, unsigned long long smlen,

 const unsigned char *pk

)

Public-key Encryption

See https://bench.cr.yp.to/call-encrypt.html for more information on Public-key Encryption
API and performance testing.

https://bench.cr.yp.to/call-encrypt.html

The first thing to do is to create a file called api.h. This file contains the following three
lines (with the sizes set to the appropriate values):

 #define CRYPTO_SECRETKEYBYTES 256

 #define CRYPTO_PUBLICKEYBYTES 64

 #define CRYPTO_BYTES 48

indicating that your software uses a 256-byte (2048-bit) secret key, a 64-byte (512-bit)
public key, and at most 48 bytes of overhead in an encrypted message compared to the
original message. Additionally, there is a define statement with the algorithm name.
Set this to a value appropriate for your algorithm:

 #define CRYPTO_ALGNAME “UserDefinedAlgName”

Finally, include the function prototypes for the following three functions:
crypto_encrypt_keypair(), crypto_encrypt(), and
crypto_encrypt_open().

Then create a file called encrypt.c with the following function calls:

Generates a keypair - pk is the public key and sk is the secret key.

 int crypto_encrypt_keypair(

 unsigned char *pk,

 unsigned char *sk

)

Encrypt a plaintext: c is the ciphertext, m is the plaintext, and pk is the
public key.

 int crypto_encrypt(

 unsigned char *c, unsigned long long *clen,

 const unsigned char *m, unsigned long long mlen,

 const unsigned char *pk

)

Decrypt a ciphertext: m is the plaintext, c is the ciphertext, and sk is the
secret key.

 int crypto_encrypt_open(

 unsigned char *m, unsigned long long *mlen,

 const unsigned char *c, unsigned long long clen,

 const unsigned char *sk

)

Key Encapsulation Mechanism (KEM)

The calls in the eBATS specification do not meet the calls specified in the call for
algorithms. However, attempts were made to match the specifications for the other
algorithms.

The first thing to do is to create a file called api.h. This file contains the following four
lines (with the sizes set to the appropriate values):

 #define CRYPTO_SECRETKEYBYTES 192

 #define CRYPTO_PUBLICKEYBYTES 64

 #define CRYPTO_BYTES 64

 #define CRYPTO_CIPHERTEXTBYTES 128

indicating that your software uses a 192-byte (1536-bit) secret key, a 64-byte (512-bit)
public key, a 64-byte (512-bit) shared secret, and at most a 128-byte (1024-bit)
ciphertext. Additionally, there is a define statement with the algorithm name. Set this
to a value appropriate for your algorithm:

 #define CRYPTO_ALGNAME “UserDefinedAlgName”

Finally, include the function prototypes for the following three functions:
crypto_kem_keypair(), crypto_kem_enc(), and crypto_kem_dec().

Then create a file called kem.c with the following function calls:

Generates a keypair - pk is the public key and sk is the secret key.

 int crypto_kem_keypair(

 unsigned char *pk,

 unsigned char *sk

)

Encrypt - pk is the public key, ct is a key encapsulation message
(ciphertext), ss is the shared secret.

 int crypto_kem_enc(

 unsigned char *ct,

 unsigned char *ss,

 const unsigned char *pk

)

Decrypt - ct is a key encapsulation message (ciphertext), sk is the private
key, ss is the shared secret

 int crypto_kem_dec(

 unsigned char *ss,

 const unsigned char *ct,

 const unsigned char *sk

)

Additional functions

A function, randombytes(), will be available to obtain random input. For Known Answer
Tests (KAT), and on the NIST Reference Platforms, this function is AES_CTR_DRBG
(see SP800-90A section 10.2.1.5.1). The function prototype comes from the
SUPERCOP package (https://bench.cr.yp.to/supercop.html). The type for the length
argument is more than needed, but is left for consistency with the SUPERCOP

https://bench.cr.yp.to/supercop.html

package. The calling function shall allocate the storage for x and the xlen parameter
specifies a number of bytes.

 void randombytes(unsigned char *x,
unsigned long long xlen)

To facilitate Known Answer Tests, a function randombytes_init() is provided to
deterministically instantiate AES_CTR_DRBG (see SP 800-90A section 10.2.1.3.1). The
inputs are entropy_input, personalization_string, and security_strength. The
security_strength input shall be set to 256, the personalization_string may be omitted
passing a NULL pointer. The length of entropy_input shall be fixed at 384 bits (48
bytes). This function is only called by the test code to verify KAT values.

 void randombytes_init(unsigned char *entropy_input,
unsigned char *personalization_string,
int security_strength)

A function, seedexpander(), will be available to generate additional pseudorandom
material. The calling function shall allocate the storage for x and the xlen parameter
specifies a number of bytes. This function is used to generate data of arbitrary length
with the additional feature that two calls for 8 bytes will produce the same data as a
single call for 16 bytes.

 void seedexpander(AES_XOF_struct *ctx,
unsigned char *x,
unsigned long xlen)

A function, seedexpander_init(), will be available to initialize the seedexpander()
function. Input values are the seed (a 32 byte value), a diversifier (an 8 byte value), and
a max_length (a value less 2**32). This function must be called whenever
seedexpander() is used.

 void seedexpander_init(AES_XOF_struct *ctx,
unsigned char *seed,
unsigned char *diversifier,
unsigned long maxlength)

The following structure is used to store the context of the seed expander so that multiple
instances can exist concurrently.

typedef struct {
unsigned char buffer[16];
int buffer_pos;
unsigned long length_remaining;
unsigned char key[32];
unsigned char ctr[16];

} AES_XOF_struct;

