

From: Leo Ducas <leo.ducas1@gmail.com>
Sent: Tuesday, December 26, 2017 6:12 AM
To: pqc-comments
Cc: pqc-forum@list.nist.gov
Subject: OFFICIAL COMMENT: DRS

Dear Authors,

I am trying to understand and reproduce your reduction algorithm for signatures.
I've had trouble with the document, where I think there are a few typos (marked
by comments in the following python code).

My implementation ends up getting stuck in an infinite loop. While most
signatures are produced within less than 10000 iterations of the reduction loop,
one sample in (say) 30 does not stop before a million iteration.

I suspect that my implementation is still not conform to yours. In particular I
would be grateful if you could specify more precisely the desired behavior for
the rounded division w[i]/D (toward 0 ? toward -oo ?). Please also let me know if
the typo I suspect are indeed typoes and if I addressed them properly.

Best regards
-- Leo Ducas

==== tentative re-implementation in python

import random
from numpy import zeros, int64
import sys

params
n = 912
D = n
b = 28 // typos ? Sometime referred as B in the document
Nb = 16
N1 = 432
delta = 28

Samples = 100000

def RandomSign():
return random.randint(0, 1)*2 -1

def KeyGen():
L = Nb*[b] + N1 *[1] + (n - 1 - Nb - N1) * [0]
random.shuffle(L)
t = [D] + L
S = zeros((n, n), dtype=int64)

for i in xrange(n): # Typo ? i should start at 0 ?
S[i, i] = t[0]

1

 for j in xrange(1, n):
S[i, (i+j) % n] = t[j] * RandomSign() # typo ? t is one-dimensional

return S

For efficiency, I'm using directly vector operation rather than loops.
I rewrote this assuming that the lign w_l <- w_l + q M_{i,j} is typoed,
and that the correct instruction is w_l <- w_l + q M_{i,l}

Unlike C, Python does not round toward 0 but toward -oo, adding an option
to force this behavior

ROUND_TOWARD_ZERO = True

def Sign(S, v):
w = v
i = 0
it = 0
while True:

it += 1
if it % 1000 == 0:

print it,
sys.stdout.flush()

if ROUND_TOWARD_ZERO and w[i] < 0:
q = - ((-w[i])/D)

else:
q = w[i]/D

w -= q * S[i]

if (max([abs(x) for x in w]) < D):
return w

i = (i + 1) % n

def SignRandom(S):
v = zeros(n, dtype=int64)
f = 2**delta - 1
for i in xrange(n):

Simulate random hash of fresh message
Always chosen positive, as the version with sign is commented out
in the reference implementation
v[i] = random.randint(0, f)

return Sign(S, v)

S = KeyGen()

for a in range(100):
print
print "Sample ", a
SignRandom(S)

2

