From: Ward Beullens <Ward.Beullens@esat.kuleuven.be>

Sent: Monday, January 15, 2018 4:55 AM
To: pgc-comments

Cc: pgc-forum@list.nist.gov

Subject: OFFICIAL COMMENT: WalnutDSA
Attachments: walnutdsa.pdf

Dear all,

The paper [1] describes an attack on an earlier version of WalnutDSA. In response, WalnutDSA was adapted to block this
attack by using two braids as private key instead of one. The attached pdf describes a way to circumvent this adaptation,
and shows how to use the method of [1] to attack the adapted scheme.

| have communicated with the designers, who have confirmed that the attack works. However, the new attack has the
same limitation as the attack of [1] that the forged signatures are much longer than signatures made with the legitimate
signing algorithm. WalnutDSA implicitly imposes a bound on the length of the signatures by requiring that the length of
a signature (in terms of the number of artin generators) is encoded in a two byte value. The forgeries of [1] are much
longer than 2716, so the WalnutDSA scheme is not (yet) broken.

The attack paper [1] mentions "If an efficient algorithm to compute short factorizations exists, the increase in
parameters g and N needed to achieve a sufficient level of security would then make WalnutDSA unsuitable for
embedded devices." This statement now also holds for the version of WalnutDSA that is submitted to NIST. Moreover,
the security of Walnut also depend on the hardness of this problem:

Given a long braid s and a pair (M,sigma), find a short (e.g. shorter than 2216) braids s' such that (M,sigma) * s =
(M,sigma) *s'.

On a separate note: | believe the security proof to be flawed. (I did
not discuss this with the designers)

The reduction uses a EUF-CMA adversary to solve their hard problem (the
REM problem). However, the EUF-CMA adversary can make signing queries,
and the security proof does not describe a method to respond to these
queries. Therefore, it seems like the proof only works for a key-only

attack, where no signing queries have to be answered.

Moreover, the proof does not work in the quantum random oracle model,
makes some assumptions and imposes restrictions on the attacker, so even
for key-only attacks the practical value of the security proof seems

very limited.

Kind regards,
Ward

[1] Hart, D., Kim, D., Micheli, G., Perez, G. P., Petit, C., & Quek, Y.
A Practical Cryptanalysis of WalnutDSATM.

WalnutDSA

Ward Beullens
January 15, 2018

1 Definitions

We use the notation of the WalnutDSA white paper[l]. We fix a set of T
values throughout the document, and we denote by * the action of By on
GL(N,F;) x S, of E-multiplication with respect to T'.

Definition 1. The hash of a message m € {0,1}* is E(H(m)) € By, which
18 a pure braid by construction.

Definition 2. For a braid s € Bx we define P(s) to be equal to
(11\/,6) * S € GL(N, Fq) x Sn.

Definition 3. A signature s € By is valid for a message with hash g for the
public key (P(w), P(w")) if and only if

where * stands for E-multiplication with respect to some T-values.

Remark. The above definition of what it means for a signature to be valid is
not completely identical to the definition of the WalnutDSA white paper, where
only the matrixz part of the above equation is required to hold. However, for all
signatures that that are produced by the legitimate Walnut signing algorithm,
the permutation part of the above equation also holds. Therefore we can assume
this stricter definition.

2 Two properties of WalnutDSA

The Walnut digital signature algorithm exhibits two interesting properties. To-
gether, these properties generalize theorem 4 of [2]:

Theorem 1. Suppose that w,w’,s,g € Byx are braids such that s is a valid
signature for a messages with hash g for the public key (P(w), P(w')). Then we
have that s~' is a valid signature for any message with hash g~ for the public
key (P(w'), P(w)).

Proof. By definition we have
P(w)xs = P(g) *w'.
Acting on this by s~! from the left and using the definition of P we get
(In,e)xw = (In,e) * g*w xs*
= (CB(g)r,e) xw s,

where the second equality uses the definition of E-multiplication and the fact

that ¢ is a pure braid. Multiplying the matrix part of this equality by (CB(g)yr)~

from the left (which is compatible with *) we get
(CB(g7 Y 7,e) xw = (1y,e) xw x5,
or equivalently
PlgHsw=Pw)*s!
which shows that s~! is a valid signature for any message with hash g=! for the

public key (P(w’), P(w)). O

Theorem 2. Suppose that w,w’,w”,s1,52,91,92 € By are braids such that
s1 18 a signature for a message with hash g1 that is valid for the public key
(P(w), P(w")), and such that so is a signature for a message with hash g that
is valid for the public key (P(w'), P(w")). Then we have that s1s is a valid
signature for any message with hash gi1gs for the public key (P(w), P(w")).

Proof. using the fact that s; is a valid signature for g;, and using the definition
of E-multiplication we get

P(w) * 51 % 55 = P(g1) *w s9
= (CB(g1)yr - CB(w') 7 -7 (CB(82)) 41, 0w ©0s,)

where o, denotes the permutation of w’. Using that s, is a signature for go for
the public key (P(w'), P(w")) we can continue

P(w) * S§1 % S = (CB(gl)iT . CB(gg)iT . CB(U}//)JJUO'MH)
= P(gng) * 'lU,/ 5

which shows that s1ss is a valid signature for any message with hash g;gs for
the public key (P(w), P(w")). O

3 Attack on WalnutDSA

Our attack uses the factorization attack of Hart et al. [2] on an earlier version
of WalnutDSA as a black box. The earlier version of WalnutDSA uses only one
braid as a private key. Hence, their attack works in the case w = w’.

Assumption. Given a long enough list of signatures si,--- , s for messages
with hashes g1, -+ , g, respectively that are valid for a public key (P(w), P(w)),
and a target hash g, the attack of [2] can forge a signature s that is valid for
any message with hash g for the same public key.

1

3.1 Description of the attack

We will show how an attacker can use a number of valid signature-hash pairs
(s1,91), -, (Sk, gx) that are valid for a public key (P(w), P(w’) to forge a sig-
nature for any message that is valid for the same public key.

For any 4,7 € {1,--- , k} we have that sis;1 is a valid signature for any mes-
sage with hash gigj_1 for the public key (P(w), P(w)). This follows easily from
theorems 1 and 2. Therefore, by collecting k signed messages for (P(w), P(w')),
the attacker can obtain k(k — 1)/2 message-hash pairs for (P(w), P(w)). This
fact, in combination with the attack of [2] allows the attacker to forge a signa-
ture for any hash value ¢ that is valid under the public key (P(w), P(w)).

Let g be the hash of a message that the attacker wants to forge a signature
for. As per the previous paragraph, the attacker can obtain a signature s for
the hash gg; !, which is valid for the public key (P(w), P(w)). Theorem 2 then
says that ss; is a valid signature for any message with hash gg; Lg1 = ¢ for the
public key (P(w), P(w')), so this is a forgery that the attacker was looking for.

3.2 Limitations of the attack

The new attack has the same limitations as the attack of [2], and the counter-
measures proposed in [2] should suffice to also block the new attack. The new
attack produces forged signatures that are roughly twice as long as the forgeries
of [2], but it is easier to collect many signature-hash pairs, which can help to
find shorter forgeries.

References

[1] Iris Anshel, Derek Atkins, Dorian Goldfeld, and Paul E Gunnells. Wal-
nutdsa (tm): A quantum resistant group theoretic digital signature algo-
rithm. TACR Cryptology ePrint Archive, 2017:58, 2017.

[2] Daniel Hart, DoHoon Kim, Giacomo Micheli, Guillermo Pascual Perez,
Christophe Petit, and Yuxuan Quek. A practical cryptanalysis of walnutd-
satm.

From: Derek Atkins <datkins@securerf.com>

Sent: Tuesday, January 16, 2018 4:56 PM

To: ward.beullens@student.kuleuven.be; pqc-comments
Cc: pgc-forum@list.nist.gov

Subject: Re: [pgc-forum] OFFICIAL COMMENT: WalnutDSA

Dear Ward, All,

As pointed out by Ward Beullens,it is possible with his method to generate extremely long forged signatures estimated
at 2730 Artin generators long (which is 2732 bits). The WalnutDSA specification as submitted (which Ward Buellens
notes), limits signature lengths. We have already tested the Dehornoy method, as suggested by both Ward Beullens and
[1], to shorten forged signatures of this form and the result was only a 10% reduction, not nearly enough to reach valid
signature lengths (even a 90% reduction wouldn't come close). Therefore, WalnutDSA, as specified in the NIST
submission, remains a viable method.

In regards to the security proof, in our paper we define a forger to be a randomized algorithm that can make hash
queries to a random oracle and signature queries to a simulator that does not know Priv(S) but can simulate an honest
signer. In our paper, we defined a signature query to be the message and the public key of the signer. The response to
the query is a valid signature.

The forger is trying to generate a signature for a message that hasn’t been queried before while the simulator is trying to
break the hard problem of reversing E-multiplication. It is assumed that the simulator can simulate proper responses to
the forger’s signature queries in a way that is indistinguishable from query responses by a true signer (who knows the
private key).

It is clearly stated in our paper that we assume the signatures produced by the forger are of the same type as those
produced by a true signer, i.e., lie in a certain double coset of the braid group. This is a restrictive assumption which
occurs because of the non-commutativity of the braid group and does not arise in security proofs for cryptosystems
which make use of cyclic groups, for example. We also remark in our paper that Koblitz and Menezes [2] point out that
"although it is a common approach in modern security proofs to restrict the capabilities of the adversary, it is important
to show that certain classes of attacks can be ruled out."

Therefore, we submit that our security proof is not flawed in light of the perspective put forth by Koblitz and Menezes.

-- The WalnutDSA Team

[1] D. Hart; D. Kim; G. Micheli; G. Pascual Perez; C. Petit; Y. Quek, A Practical Cryptanalysis of
WalnutDSA, preprint 2017.

21 N. Koblitz; A. Menezes, Another look at “provable security,” J. Cryptol. 20, 3-37 (2007).

On Mon, 2018-01-15 at 10:57 +0100, Ward Beullens wrote:
Dear all,

The paper [1] describes an attack on an earlier version of WalnutDSA. In
1

From: Ward Beullens <ward.beullens@student.kuleuven.be>

Sent: Thursday, January 18, 2018 11:28 AM

To: Derek Atkins; pgc-comments

Cc: pgc-forum@list.nist.gov

Subject: Re: [pgc-forum] OFFICIAL COMMENT: WalnutDSA

Dear Derek, All,

| agree that WalnutDSA is not broken yet, but | don't think the attack is insignificant either. After all, the WalnutDSA
team decided it was worthwhile to modify the original scheme in an attempt to block this attack, even at the cost of
doubling the public and private key sizes. (Will this modification be kept, now that is is clear that it does not really block
this attack?)

About the security proof: | don't think my concern was addressed. The proof uses a EUF-CMA forger, but does not give a
way to answer the signing queries of this forger. You say "we define a forger to be a randomized algorithm that can
make hash queries to a random oracle and signature queries to a simulator that does not know Priv(S) but can simulate
an honest signer."

This seems very peculiar to me, do you assume the existence of such a simulator? If this assumption were true, then
WalnutDSA is not secure.

The security proof mentions "The Forger F is defined to be a randomized algorithm that on input a message m €{0, 1}"x,
a signers public key Pub(S), and a coin p, outputs a 4-tuple (m, h, g_p,s), where h=H(m)and g p=G_p(V)and V &
Cloak, s ¢ DC_m,V,H,G. It is assumed that the probability that (m, h, gp,s) is a valid WalnutDSA-I signature is non-
negligible."

This looks like a universal (the message can be freely chosen), key-only attack (there is no mention of signing queries).
How does this relate to the claim that Walnut is EUF-CMA secure?

Kind regards,
Ward

Op 16/01/2018 om 22:55 schreef Derek Atkins:
Dear Ward, All,

As pointed out by Ward Beullens, it is possible with his method to generate extremely long forged
signatures estimated at 2”230 Artin generators long (which is ~2732 bits). The WalnutDSA

specification as submitted (which Ward Buellens notes), limits signature lengths. We have already
tested the Dehornoy method, as suggested by both Ward Beullens and [1], to shorten forged signatures
of this form and the result was only a 10% reduction, not nearly enough to reach valid signature lengths
(even a 90% reduction wouldn't come close). Therefore, WalnutDSA, as specified in the NIST submission,
remains a viable method.

In regards to the security proof, in our paper we define a forger to be a randomized algorithm that can
make hash queries to a random oracle and signature queries to a simulator that does not know Priv(S)
but can simulate an honest signer. In our paper, we defined a signature query to be the message and the
public key of the signer. The response to the query is a valid signature.

1

From: Blackburn, S <S.Blackburn@rhul.ac.uk>

Sent: Monday, January 22, 2018 5:55 AM
To: pgc-comments

Cc: pgc-forum@list.nist.gov

Subject: OFFICIAL COMMENT: WalnutDSA
Attachments: Walnut_private_key_2.pdf

Dear All,

There are fewer than 27512 possibilities for each half of the public key in WalnutDSA. This makes the scheme vulnerable
to ‘square root' attacks (using an approach similar to Pollard-rho). It is recommended that parameter sizes should be
increased so this approach is no longer feasible.

More details are given in the attached pdf, which is also available at the following link:

https://www.dropbox.com/s/dyje618qfb4zvsj/Walnut private key 2.pdf?dl=0

Yours,

Simon Blackburn

Simon R. Blackburn

Professor of Pure Mathematics

Department of Mathematics

Royal Holloway University of London
Egham, Surrey TW20 OEX, United Kingdom
Tel: (+44) (0)1784 443422

E-mail: S.Blackburn@rhul.ac.uk

Web: http://www.ma.rhul.ac.uk/sblackburn

Recovering a Private Key in WalnutDSA

Simon R. Blackburn
Department of Mathematics
Royal Holloway University of London
Egham, Surrey TW20 0EX, United Kingdom
e-mail: s.blackburn@rhul.ac.uk.

January 22, 2018

Abstract

There are fewer than 2512 possibilities for each half of the public
key in WalnutDSA. This makes the scheme vulnerable to ‘square root’
attacks (using an approach similar to Pollard-rho). It is recommended
that parameter sizes should be increased so this approach is no longer
feasible.

1 Introduction

WalnutDSA(TM) is a digital signature scheme proposed by SecureRF for
the NIST Post-quantum standardization call, using techniques from braid
group theory. Parameters for two security levels, at 128- and 256-bits, have
been defined, as well as 40-bit test parameters. This note describes an attack
that recovers an equivalent private key of a signature from the corresponding
public key. Analysis is given to support the claim that the attack recov-
ers an equivalent private key for 256-bit parameters using significantly fewer
than 22° operations (one reasonable estimate being as little as 2% opera-
tions). The 128-bit parameters are possibly also affected, with one estimate
for deriving a private key being as little as 2!%® operations.

The current version of WalnutDSA is specified by Anshel, Atkins, Gold-
feld and Gunnells in [1, 3]. There has been a cryptanalysis due to Hart, Kim,

Micheli, Perez, Petit and Quek [5] of the original proposed scheme [2], which
caused WalnutDSA to be significantly revised by introducing two braids
(rather than the original one) as the private key. A recent note due to
Beullens [4] shows that the new version of WalnutDSA remains vulnerable
to the attack of Hart et al.

We will use the notation in [1, 3] without comment, and we will assume
knowledge of these papers.

2 Recovering the private key

Let X be the set of pairs (M,o), where M is an N x N matrix over Fg,
and where o € Sy is a permutation of {1,2,...,N}. We write 1 € X for
the element (I,e), where [is the identity N x N matrix, and where e is
the identity permutation. The braid group By acts on X (on the right)
via E-multiplication: for x € X and g € By, we write x x g € X for the
E-multiplication of z and g. We write €2 for the orbit of 1 under this action,
so 2 =1x* By.

The private key consists of two N-string braids S, S’ € By, each a product
of Artin generators of length /. The public key consists of the pair of elements
(1x5,1%5") € Q%

The appendix describes an algorithm (using standard techniques) that
takes as input an element w € €2, and outputs an element g € By such that
1% g = w. The algorithm runs in \/ﬁ operations, and uses insignificant
memory. We will apply this algorithm twice, first with w = 1%S and secondly
with w = 1 % S’, to recover an equivalent private key (S,5") € By x By for
WalnutDSA. Each braid in the equivalent private key is a product of length
2\ in the Artin generators for some integer \. We choose A to be as small
as possible so that the elements 1¢g are approximately uniformly distributed
in when g is a length A word in the Artin generators. An accurate value
for A seems hard to determine, but we give a heuristic estimate for \ using
the following argument. A necessary condition for A is that the number of
braids of length A must be at least |{2|. Using the approximations in Anshel
et al. [3] for the number of braids of length A, we set A to be the smallest
integer such that

1< @ -1,

The table below gives the parameters of the attack for 40-, 128- and 256-
bit security levels (SL). The size of) is given as a range of possible values,
computed as follows. The upper bound is N1 ¢V =1 as there are N! choices
for the permutation o and ¢V~ choices for an N x N matrix over F, with
last row (0,0,...,0,1). The lower bound of N!¢V¥V=3) uses the estimate for
the number of choices for M that is used by the authors of the scheme [3,
Section 11] in their security analysis.

SLIN|q| 1o [V9 | ¢] 2x

40 | 8 | 25| 22153 2%953] [2108 28] 1132] [360, 514]
128 | 8 | 2% | [2215:3,22953] | [2108 21481 | 139 | [360, 514]
256 | 8 | 28 | [23%53 24033 | [2168 9232] | 987 | [592, 842)

3 Conclusions

The attack presented here recovers an equivalent 256-bit private key using
significantly fewer than 22°% operations (between 21 and 2%3? operations). It
is quite possible that a 128-bit key might also be recovered in fewer than 2!
operations using this approach (as little as 21% operations is one estimate).
The 40-bit keys (for testing) are unaffected by this attack.

Experiments might provide more precise length estimates, but it seems
likely that the equivalent private key will be comparable in length to the
true private key (at most a factor of 4 longer if we use the estimates of 2\
above). This is likely to lead to forged signatures of about the right length
(particularly if we reduce the length of cloaking elements, which we can do
as we no longer care to keep keys secret). (Previous attacks [4, 5] produce
signatures of length approximately 2?°. These signatures are significantly
longer than signatures produced with the private key, and so would fall foul
of the limit on a signature length proposed in the specification.)

Ward Beullens (who kindly looked at a draft of this note) points out that
the running time of the attack can be improved by a factor of v/N!, at the
expense of possibly slightly longer forgeries, by modifying the algorithm in
the appendix to take the application setting into account. The algorithm in
the appendix should be modified to choose g1, 92 € G so that 1g; € 2 and
wgy ' € Q always have a trivial permutations associated with them.

A minor additional improvement to the algorithm in the appendix can
be made by mandating that the determinant of the matrices associated with
1g: € Q and wg, ' are both 1.

Recommendation: The attack presented here is exponential, and so can
be avoided by increasing parameter sizes. To prevent this attack for k-bit se-
curity level, parameters should be chosen so that ¢V®V=3)=1 > 22¢ So revising
parameters at both 128-bit and 256-bit security levels is recommended.

The authors of WalnutDSA have looked a draft of this note, and confirmed
that they believe the attack to be correct. They suggest increasing N from
8 to 10 to prevent this attack.

References

[1] Iris Anshel, Derek Atkins, Dorian Goldfeld and Paul E. Gunnells, ‘The
Walnut digital signature algorithm (TM) specification’, NIST post-
quantum cryptography standardization project. https://csrc.nist.
gov/projects/post-quantum-cryptography/round-1-submissions.

[2] Iris Anshel, Derek Atkins, Dorian Goldfeld and Paul E. Gunnells, ‘Wal-
nutDSA (TM): A quantum-resistant digital signature algorithm’, Cryp-
tology ePrint archive, Report 2017/1160, 18 September 2017. https:
//eprint.iacr.org/2017/058.

[3] Iris Anshel, Derek Atkins, Dorian Goldfeld and Paul E. Gunnells, ‘Wal-
nutDSA (TM): A quantum-resistant digital signature algorithm’, Cryp-
tology ePrint archive, Report 2017/1160, 30 November 2017. https:
//eprint.iacr.org/2017/058.

[4] Ward Beullens, ‘WalnutDSA’, NIST Official Comment, 15 January
2018.

[5] Daniel Hart, DoHoon Kim, Giacomo Micheli, Guillermo Pascual Perez,
Christophe Petit and Yuxuan Quek, ‘A practical cryptanalysis of
WalnutDSA (TM)’, Cryptology ePrint archive, Report 2017/1160, 29
November 2017. https://eprint.iacr.org/2017/1160.

A An algorithm from computational group
theory

Let €2 be a finite set, and let G be a group that acts transitively on € (on
the right). Let 1 € Q be fixed. Suppose we are given w € €2, and we wish to

4

find g € G such that 1g = w. We present an algorithm (using standard cryp-
tographic techniques akin to the Pollard-rho discrete logarithm algorithm)
that solves this problem using O(+/]Q]) operations (in expectation).

First, choose a pseudorandom number generator r that takes a seed x € §2
and outputs a pair r(z) = (g,a), where ¢ € G and a € {0,1}. (In our
application, we would fix a positive integer A, and set g to be a random
product of Artin generators of length \. So g = H;\:1 byi., where the integers
n; € {1,2,...,N — 1} and ¢; € {—1,1} are outputs of our pseudorandom
number generator. We choose A large enough so that the elements 1 x g are
approximately uniform in €2.)

We then define a function f: Q — Q by

[=0,
/(@) {wgl if r(z) = (g,1).

Next, we find a collision for f: elements z1,zo € Q with f(z1) = f(x2).
This can be done using standard collision-finding techniques (such as Floyd
cycle finding) in O(1/]Q]) expected time, and constant memory.

Now, r(z1) = (g1,a1) and r(x3) = (ge2,a2) for some group elements
g1,92 € G and bits ay,a2 € {0,1}. We repeat this process using different
pseudorandom generators (and so different functions f) until we have a col-
lision with a; # as. The event that a; # as occurs with probability about
1/2, provided that the distribution of the elements 1g; € Q and wg,' €
are each approximately uniformly distributed in 2. So the expected number
of functions f we need to consider is constant (just 2). So we can find a
collision of this restricted form in O(1/]Q]) expected time.

Without loss of generality, suppose a; = 0 and a; = 1. By the definition
of f, we have 1g; = wg, ', and so g = g1 g5 is the element we are seeking.

As a final comment, we note that the following algorithm (which uses
O(|v/]) memory) is an alternative to the algorithm above: First, choose
O(\/@) elements ¢g; € G' at random. For each element, compute and store
the pair (1g1,g1). Store the pairs in a data structure so that the pair with
a given first coordinate (if it exists) can be efficiently retrieved. Secondly,
choose elements g, € G at random. For each element, compute wg, *. Repeat
until wg, ! is equal to the first coordinate of a pair generated earlier. Then
we have found g, and g, such that that wg, ' = 1g;, and so we may return

g = g192-

From: Derek Atkins <datkins@securerf.com>

Sent: Monday, January 22, 2018 12:12 PM

To: pgc-forum@list.nist.gov; pgc-comments

Subject: OFFICIAL COMMENT: WalnutDSA typographic error
Dear All,

We have found a typographic error in the WalnutDSA specification in section 5.1 on page 5. In the document we
incorrectly repeated the use of variable, so where the spec says "We assume the hash output M is 4l bits long" this
should be "4d bits", meaning we assume that the hash length is a multiple of 4 bits.

We are sorry for the error.

The WalnutDSA Team
Derek Atkins

Chief Technology Officer
SecureRF Corporation

Office: 203.227.3151 x1343
Direct: 617.623.3745

Mobile: 617.290.5355

Email: DAtkins@SecureRF.com

This email message may contain confidential, proprietary and / or legally privileged information and intended only for
the use of the intended recipient(s) and others specifically authorized. Any disclosure, dissemination, copying, distribution
or use of the information contained in this email message, including any attachments, to or by anyone other than the
intended recipient is strictly prohibited. If you received this in error, please immediately advise the sender by reply email
or at the telephone number above, and then delete, shred, or otherwise dispose of this message.

From: Derek Atkins <datkins@securerf.com>

Sent: Monday, January 22, 2018 10:41 PM

To: S.Blackburn@rhul.ac.uk; pgc-comments

Cc: pgc-forum@list.nist.gov

Subject: Re: [pgc-forum] OFFICIAL COMMENT: WalnutDSA

Dear Simon,

Thank you for pointing this out. A very small parameter increase from N=8 to N=10 will fix this with only a small increase
to sizes and performance.

Thanks,
The WalnutDSA Team

On Mon, 2018-01-22 at 10:54 +0000, Blackburn, S wrote:
Dear All,

There are fewer than 22512 possibilities for each half of the public key in WalnutDSA. This makes the
scheme vulnerable to “square root' attacks (using an approach similar to Pollard-rho). It is recommended
that parameter sizes should be increased so this approach is no longer feasible.

More details are given in the attached pdf, which is also available at the following link:

https://www.dropbox.com/s/dyje618qfb4zvsj/Walnut private key 2.pdf?dl=0

Yours,

Simon Blackburn

Simon R. Blackburn

Professor of Pure Mathematics

Department of Mathematics

Royal Holloway University of London
Egham, Surrey TW20 OEX, United Kingdom
Tel: (+44) (0)1784 443422

E-mail: S.Blackburn@rhul.ac.uk

Web: http://www.ma.rhul.ac.uk/sblackburn

Derek Atkins
Chief Technology Officer
SecureRF Corporation

Office: 203.227.3151 x1343
Direct: 617.623.3745

Mobile: 617.290.5355

Email: DAtkins@SecureRF.com

From: Ward Beullens <ward.beullens@student.kuleuven.be>

Sent: Tuesday, January 23, 2018 11:28 AM

To: pgc-comments

Cc: pgc-forum@list.nist.gov

Subject: [pgc-forum] OFFICIAL COMMENT: WalnutDSA
Dear all,

In order to verify a WalnutDSA signature-message pair (s,m) one first converts the message m into a braid, and then one
checks if this braid satisfies some condition involving the signature s.

The way that messages are converted to braids consists of 2 steps:

1) Compute a 512-bit hash digest of the message h. (For the 256-bit security parameters)
2) Convert the hash to a braid with the encoder algorithm described in section 7.

The problem with this approach is that the second step is not injective (e.g 0x0044 , 0x4400 , 0x0404 , 0x0440 are all
mapped to the same braid

g _176), and that the number of braids that are encodings of messages is significantly less than 2A512. This opens up the
possibility of an EUF-CMA attack. An attacker finds two messages m_1 and m_2 that are converted to the same braid,
asks the signing algorithm for a valid signature s for m_1, and returns the valid signature-message pair (s,m_2).

Using a recurrence relation | calculated that the number of different encoding of the 22512 possible hash values is at
most 22483.67, so collision finding takes roughly 22242 computations, slightly less than the target of 22256.

The solution to the problem is to use a hash function with a longer output, or to use an encoding function which is
injective. | believe both methods will lead to a slight increase to the size of the signatures.

Kind regards,
Ward

You received this message because you are subscribed to the Google Groups "pgc-forum" group.
To unsubscribe from this group and stop receiving emails from it, send an email to pgc-forum+unsubscribe@list.nist.gov.
Visit this group at https://groups.google.com/a/list.nist.gov/group/pqc-forum/.

From: Derek Atkins <datkins@securerf.com>

Sent: Tuesday, January 23, 2018 11:48 AM

To: ward.beullens@student.kuleuven.be; pqc-comments
Cc: pgc-forum@list.nist.gov

Subject: Re: [pgc-forum] OFFICIAL COMMENT: WalnutDSA

Dear Ward, all,

Regarding your first comment, the structure of the security proof we give is modeled on that of "Security Proofs and
Signature Schemes" by Pointcheval and Stern (EUROCRYPT 1996). One has to have access to valid signatures for chosen
messages. In their paper, the authors give two models for this (cf. Fig 4 in their paper). In the first model the attacker
has access to a signer Sigma with a private key who must make queries to a hash function f in the process of producing
valid signatures. In the second, the signer Sigma is replaced by a simulator S. The simulator plays the same role; it
produces signatures on message inputs, but does not do so by querying the hash function f using the private key. We
will add another explicit reference to this paper in ours. The point of the proof is that if one assumes the existence of
such a simulator, then one could use it to break the hard problem.

For your second comment, the forger uses the simulator to produce the signatures. This was said explicitly at the
beginning of the security proof.

If you need further clarification of the proof we can discuss it further offline.
The WalnutDSA Team
On Thu, 2018-01-18 at 17:28 +0100, Ward Beullens wrote:

Dear Derek, All,

| agree that WalnutDSA is not broken yet, but | don't think the attack is insignificant either. After all, the
WalnutDSA team decided it was worthwhile to modify the original scheme in an attempt to block this
attack, even at the cost of doubling the public and private key sizes. (Will this modification be kept, now
that is is clear that it does not really block this attack?)

About the security proof: | don't think my concern was addressed. The proof uses a EUF-CMA forger, but
does not give a way to answer the signing queries of this forger. You say "we define a forger to be a
randomized algorithm that can make hash queries to a random oracle and signature queries to a
simulator that does not know Priv(S) but can simulate an honest signer."

This seems very peculiar to me, do you assume the existence of such a simulator? If this assumption
were true, then WalnutDSA is not secure.

The security proof mentions "The Forger F is defined to be a randomized algorithm that on input a
message m €{0, 1}, a signers public key Pub(S), and a coin p, outputs a 4-tuple (m, h, g_p,s), where h
=H(m)and g_p = G_p(V) and V & Cloak, s ¢ DC_m,V,H,G. It is assumed that the probability that (m, h,
gp,s) is a valid WalnutDSA-I signature is non-negligible."

This looks like a universal (the message can be freely chosen), key-only attack (there is no mention of
signing queries). How does this relate to the claim that Walnut is EUF-CMA secure?

Kind regards,
Ward

From: Derek Atkins <datkins@securerf.com>

Sent: Tuesday, January 23, 2018 11:50 AM

To: ward.beullens@student.kuleuven.be; pqc-comments
Cc: pgc-forum@list.nist.gov

Subject: Re: [pgc-forum] OFFICIAL COMMENT: WalnutDSA
Dear Ward, All,

Thank you for bringing this to our attention. The encoder can easily be fixed by changing to a 2-bit encoder where each
2-bit input maps directly to a generator g_i. This minor change would make the encoder properly injective.

Thanks,
The WalnutDSA Team

On Tue, 2018-01-23 at 17:28 +0100, Ward Beullens wrote:
Dear all,

In order to verify a WalnutDSA signature-message pair (s,m) one first
converts the message m into a braid, and then one checks if this braid
satisfies some condition involving the signature s.

The way that messages are converted to braids consists of 2 steps:

1) Compute a 512-bit hash digest of the message h. (For the 256-bit
security parameters)

2) Convert the hash to a braid with the encoder algorithm described in
section 7.

The problem with this approach is that the second step is not injective
(e.g 0x0044 , 0x4400 , 0x0404 , 0x0440 are all mapped to the same braid
g_176), and that the number of braids that are encodings of messages is
significantly less than 27°512. This opens up the possibility of an
EUF-CMA attack. An attacker finds two messages m_1 and m_2 that are
converted to the same braid, asks the signing algorithm for a valid
signature s for m_1, and returns the valid signature-message pair (s,m_2).

Using a recurrence relation I calculated that the number of different
encoding of the 27512 possible hash values is at most 27483.67, so
collision Ffinding takes roughly 27242 computations, slightly less than
the target of 27256.

The solution to the problem is to use a hash function with a longer
output, or to use an encoding function which is injective. 1 believe
both methods will lead to a slight increase to the size of the signatures.

Kind regards,
Ward

Derek Atkins
Chief Technology Officer
SecureRF Corporation

Office: 203.227.3151 x1343

From: Ward Beullens <ward.beullens@student.kuleuven.be>

Sent: Tuesday, January 23, 2018 4:15 PM
To: pqc-forum@list.nist.gov
Subject: Re: [pgc-forum] OFFICIAL COMMENT: WalnutDSA

Dear WalnutDSA team,

| had a look at the paper you reference. An entire page of the security proof is devoted to showing how the simulator S
is constructed (i.e. the proof of Lemma 8). This part is missing from the WalnutDSA security proof and this is basically the
concern that | raised.

There is a different way to see that something is wrong with the security proof. Consider these 2 parameters: the length
of the output of the hash function that is used and the length limit that has to be imposed on the signatures. If these
parameters are chosen poorly, the scheme is not secure, so in that case the security proof should fail somewhere.
However, these 2 parameters are not mentioned in the security proof, nor in the formulation of the hard problem that
EUF-CMA security is supposedly reduced to.

If the security proof is correct, can you please pinpoint where the security proof fails if
1) The length of the hash function that is used is too small, and
2) The verification algorithm does not impose a length limit on the signatures.

Kind regards,
Ward

Op 23/01/2018 om 17:47 schreef Derek Atkins:
Dear Ward, all,

Regarding your first comment, the structure of the security proof we give is modeled on that of
"Security Proofs and Signature Schemes" by Pointcheval and Stern (EUROCRYPT 1996). One has to have
access to valid signatures for chosen messages. In their paper, the authors give two models for this (cf.
Fig 4 in their paper). In the first model the attacker has access to a signer Sigma with a private key who
must make queries to a hash function f in the process of producing valid signatures. In the second, the
signer Sigma is replaced by a simulator S. The simulator plays the same role; it produces signatures on
message inputs, but does not do so by querying the hash function f using the private key. We will add
another explicit reference to this paper in ours. The point of the proof is that if one assumes the
existence of such a simulator, then one could use it to break the hard problem.

For your second comment, the forger uses the simulator to produce the signatures. This was said
explicitly at the beginning of the security proof.

If you need further clarification of the proof we can discuss it further offline.
The WalnutDSA Team
On Thu, 2018-01-18 at 17:28 +0100, Ward Beullens wrote:
Dear Derek, All,
| agree that WalnutDSA is not broken yet, but | don't think the attack is insignificant

either. After all, the WalnutDSA team decided it was worthwhile to modify the original
1

From: Ward Beullens <ward@beullens.com>

Sent: Thursday, February 01, 2018 10:21 AM
To: pgc-comments

Cc: pgc-forum@list.nist.gov

Subject: OFFICIAL COMMENT: WalnutDSA
Attachments: WalnutDSAScript.sage.sage

Dear All,

There is an attack that breaks EUF-CMA security of the walnutDSA scheme with 2256 operations for the 256 security bit
parameters, and 2735 operations for the 128 bit security level. | have communicated with the designers, they have
confirmed that the attack seems to work, and they proposed countermeasures.

My previous attack exploited the fact that the range of E composed with H is smaller than 22512, in order to do a
collision attack. Now | have found that this range, after the composition with P gets much smaller.

So, similar to my previous attack, one can easily find two messages m_1 and m_2 such that P(E(H(m_1))) = P(E(H(m_2))),
breaking EUF-CMA security.

Using sage, (I attached the script) | picked a sample of random hashes h_i and computed the matrix part of P(E(h_i)) for
these hashes. Then | calculated that these matrices span a subspace of dimension only 14.

This means that P(E(H(m))) can reach at most (228)*14 = 22112 values, so a collision search costs roughly 2756 steps,
much less than the security level of 22256 that was aimed for.

For the 128 bit security parameters the collision finding would require roughly sqrt((225)*14) = 2~35 E-multiplications,
so it should be feasible to demonstrate this attack in practice.

Kind regards,
Ward

WalnutDSAScript.sage.sage

import random
import itertools

N = 8;
B = BraidGroup(N,"b");
K = GF(2"8);

MS = MatrixSpace(K,N,N);
B.inject_variables();
S = Set();
def RandomNonzeroElement():
whille True:
r = K.random_element()
it r 1= 0:
return r;
def PBG(i,j):
D:

Choosing T values

return B([a for a in range(J-1,i,-1) 1 + [i

Tvals = [RandomNonzeroElement() for i

Tvals[0] = K.one()
Tvals[1] = K.one()

i]+ [-a for a in range(i+1,j)

in range(0,N)];

CBOne = (MS.identity_matrix(),Permutations(N).identity())

#0ne step of E-multiplication
def EmulStep(x,Q9):

M,p = X;

M = copy(M);

p = copy(p):

if (g>0) :
g = Tvals[p(g)-1];
C ; 1;’

else :
a=1;
b = - Tvals[p(-g+1)-1]"(-1);
c = -b;

g = abs(9);

if(g>1):

M.set_column(g-2 , M.column(g-2) + a* M.column(g-1));

M.set_column(g , M.column(g) + c*M.column(g-1));
M.set_column(g-1 , b*M.column(g-1));

return (M,B([g]) -permutation()*p);

#E-multiplication
def Emul(x,b):

return reduce(EmulStep, [xX]+list(b.Tietze()));

#The number of generators per hash value

Length = 256;
#The number of hash values
Samples = 40;

#The generators of the free group

Page 1

WalnutDSAScript.sage.sage
G = [PBG(1,N), PBG(3,N) , PBG(5,N) , PBG(7,N)]

BigMatrix = matrix(K,N*N,Samples);

for i in range(0,Samples):
X = CBOne;
for j in range(O,Length):
X = Emul (X, random.choice(G));
m,p = X
BigMatrix.set_column(i,m.list())

print(*"progress = "+str(100.0*(i)/Samples)+"%"")

print("'Dimension of span of P(E(h_i)) is ')
print(BigMatrix.rank())

Page 2

From: Derek Atkins <datkins@securerf.com>

Sent: Friday, February 02, 2018 1:33 PM

To: ward@beullens.com; pqc-comments

Cc: pgc-forum@list.nist.gov

Subject: Re: [pgc-forum] OFFICIAL COMMENT: WalnutDSA
Attachments: GeneralWalnutEncoder.sage

Dear Ward, All,

Thank you for your comment. You already had pointed out an issue with the encoder that we agreed with and that we
would address with one of several available options. Moreover, we acknowledged this related comment which points
out that the "still-unchanged" encoding as given in the specification resulted in a too-small dimensional (14) subspace
generated by the images of the public keys. As we noted in our most recent response to you, the introduction of an
alternate encoder (see following suggestion) will address both of these issues.

There any many different ways to injectively encode messages into the free subgroup of the pure braid group, and we
can easily opt for a method that takes this into account. One possible way that is similar to what we already do is to
break the hashed message into 128 (or 256) 2-bit blocks and to choose a fixed finite ordering S of certain 4-tuples of
generators. Then as one traverses the blocks one selects a generator from the current tuple from S; at each successive
block one takes the next tuple from S, and then cycles back to the beginning when the end of S is reached. More
precisely, suppose we work in B12. One could take S to be the list

[579B,468A,3579,2468,1357,2468,3579,468A]
and if the hashed message has 2-bit blocks
BLK1, BLK2, ... BLK128

then one does the following:

use BLK1 to select from g5, g7, g9, gB
use BLK2 to select from g4, g6, g8, gA

use BLKS5 to select from g1, g3, g5, g7
use BLK6 to select from g2, g4, g6, g8

use BLK8 to select from g4, g6, g8, gA
use BLK9 to select from g5, g7, g9, gB

and so on. It is easy to verify that one obtains a large subspace this way (see attached Sage program). For example, in
B12 one finds a 102-dimensional subspace generated by the public keys. Over F256 this subspace contains 22816
elements, which should be more than sufficient. Moreover, having the entries repeat in this manner not only remains
injective, continues to hold a dimension of 102 in B12, but also results in a shorter encoding which means a shorter
signature.

The WalnutDSA Team

On Thu, 2018-02-01 at 16:21 +0100, Ward Beullens wrote:
Dear All,

There is an attack that breaks EUF-CMA security of the walnutDSA scheme

1

GeneralWalnutEncoder.sage
Compute the dimentionality of the WalnutDSA Encoder Matrix

import random
import itertools

Note; |If you change N, you should change the definitions of G

down near the end.
N = 12;

B = BraidGroup(N,"b");

K = GF(2"8);

MS = MatrixSpace(K,N,N);
B.inject variables();
S = Set();

def RandomNonzeroElement():
while True:
r = K.random_element()
it r 1= 0:
return r;

def myPerm(b):
p = b.permutation();
return p*Permutations(4).identity();

def isPure(a):
#print(a,a.permutation().cycle_string(Q);
return a.permutation().cycle_string() == "Q";

def getAllBraids(l):
def i1sReduced(a):
for 1 in range(0,len(a)-1):
if a[i] == -a[i1+1]:
return False;
return True;

def toBraid(a):
return B(a);

def AllBraids(l):
S = [i for i1 in range(1,N)] + [-1 for 1 in range(1,N)];
return
itertools. imap(toBraid, itertools.ifilter(isReduced, itertools.product(*([S]1*1))));

S = set();

for 1 in range(0,1+1):
S.update(AllBraids(i))

return S;

def getAllPureBraids(l):
1 = 1/2;
D = dict()
for b in getAllBraids(l):
p = myPerm(b);
if p in D:
D[p]-add(b);
e-

else:
D[p] = set([blD):
PB = set();
for p in D:

pinv = p.inverse();
Page 1

GeneralWalnutEncoder.sage
for a in D[p]:
for b in D[pinv]:
PB.add(a*b);
PB.add(b*a);
return PB;

def PBG(i,j):
return B([a for a in range(jJ-1,i,-1)]+ [1 , 1] + [-a for a in range(i+l,j})

D:;

def getPureBraidGenerators():
S = set();
for 1 in range(1,N):
for j in range(i+1,N):
S_add(PBG(1,j))
return S;

Choosing T values

Tvals = [RandomNonzeroElement() for i in range(O,N)];
Tvals[0] = K.one()

Tvals[1] K.one()

CBOne = (MS.identity matrix(),Permutations(N).identity())
def EmulStep(x,Q9):

M,p = X;

M = copy(M);

p = copy(p):

if (g>0) :
g = Tvals[p(g)-1];
C ; 1;’

else :
a=1;
b = - Tvals[p(-g+1)-1]"(-1);
c = -b;

g = abs(9);

if(g>1):

M.set_column(g-2 , M.column(g-2) + a* M.column(g-1));

M.set_column(g , M.column(g) + c*M.column(g-1));
M.set_column(g-1 , b*M.column(g-1));
return (M,B([g]) -permutation()*p);

def Emul(x,b):
return reduce(EmulStep, [xX]+list(b.Tietze()));

#The number of generators per hash value

Length = 256; #512/2

#The number of hash values (this must be greater than the expected dimension)
Samples = 120;

#The generators of the free group

For B12: 579B,468A,3579,2468,1357

G = [[PBG(5,N), PBG(7,N), PBG(9,N), PBG(11,N)],
[PBG(4,N), PBG(6,N), PBG(8,N), PBG(10,N)],
[PBG(3,N), PBG(5,N), PBG(7,N), PBG(9,N)],
[PBG(2,N), PBG(4,N), PBG(6,N), PBG(8,N)],
[PBG(1,N), PBG(3,N), PBG(5,N), PBG(7,N)],
[PBG(2,N), PBG(4,N), PBG(6,N), PBG(8,N)],

Page 2

GeneralWalnutEncoder.sage

[PBG(3,N), PBG(5,N), PBG(7,N), PBG(9,N)],
[PBG(4,N), PBG(6,N), PBG(8,N), PBG(10,N)] 1

BigMatrix = matrix(K,N*N,Samples);

#for 1 1In range(0,10):
print(*'Choosing: " + str(random.choice(G[i%len(G)])))

for 1 in range(O,Samples):
X = CBOne;
for j in range(O,Length):
X = Emul (X, random.choice(G[j%len(G)]));
m,p = X
BigMatrix.set_column(i,m.list())
print(*"progress = "+str(100.0*(i)/Samples)+"%"")

print("'Dimension of span of P(E(h_i)) is ')
print(BigMatrix.rank())

Page 3

From: Derek Atkins <datkins@securerf.com>

Sent: Wednesday, April 04, 2018 9:06 AM

To: pqc-forum@list.nist.gov

Subject: [pgc-forum] OFFICIAL COMMENT: WalnutDSA -- new exponential attack
All,

Researchers Blackburn and Beullens have notified us about a new exponential attack against WalnutDSA. Although they
have not provided a final version of their paper that they are now posting, we believe it will show that the resulting
attack, prior to our initial response, performs in g*(N — 5/2) time, which is what they said in a draft paper and we
verified with the code they have provided. They further claimed they can reduce this running time to g*(N/2 — 1), but
this assumes t1=t2=1. We have not been able to verify this theoretical run time.

WalnutDSA has multiple parameters that can be adjusted to reach a desired security level and each parameter affects
performance in a different way. We have only studied this attack for a very brief period of time, but assuming their
worst-case analysis of g*(N/2 — 1) is correct, we would propose that the N and g parameters be increased to N=11,
g=M31 for 128-bit security and N=11, q=M61 for 256-bit security (where Mx is the Mersenne Prime 2”x - 1). These
parameter-only changes block their attack (this was confirmed by them).

An additional benefit of these new parameters, specifically changing to a prime field, is that we can easily create
cloaking elements that no longer require t1=t2=1. By taking generators to the fourth power (instead of the 2nd) the t-
value t1 can be randomly chosen while t2 = -t17{-1}. This further complicates this attack and increases its run time by a
sqrt(60*q) factor, which then runs in sgrt(60)*q”((N-1)/2) time (confirmed by them). This allows us to reduce N to 10
and still yield a 27142 and 27277 security level.

Using B10M31, SUPERCOP reports that signature generation is 161 million cycles and signature validation is 175285
cycles, without leveraging AVX. We expect some improvements including when we integrate AVX, and a similar increase
for the 256-bit parameters.

Details about this attack are forthcoming from the researchers, but these updated parameters effectively address it.
Thanks,

The WalnutDSA Team

Derek Atkins
Chief Technology Officer
SecureRF Corporation

Office: 203.227.3151 x1343
Direct: 617.623.3745

Mobile: 617.290.5355

Email: DAtkins@SecureRF.com

This email message may contain confidential, proprietary and / or legally privileged information and intended only for
the use of the intended recipient(s) and others specifically authorized. Any disclosure, dissemination, copying, distribution
or use of the information contained in this email message, including any attachments, to or by anyone other than the
intended recipient is strictly prohibited. If you received this in error, please immediately advise the sender by reply email
or at the telephone number above, and then delete, shred, or otherwise dispose of this message.

You received this message because you are subscribed to the Google Groups "pgc-forum" group.

1

From: Ward Beullens <ward.beullens@student.kuleuven.be>

Sent: Wednesday, April 04, 2018 11:57 AM
To: pgc-comments

Cc: pqc-forum@list.nist.gov

Subject: OFFICIAL COMMENT: WalnutDSA
Dear All,

As was announced by Derek, we have found another practical attack on the Walnut signature scheme. The attack is
described in detail the paper "Practical attacks against the Walnut digital signature scheme", together with the attacks
that were previously announced on the forum.

The paper is now available at ePrint:|https://eprint.iacr.org/2018/318 |

The code for the various attacks is available here : |https://github.com/WardBeullens/Nutcracker

From the conclusion of our paper: “The security of the parameter sets submitted to the NIST PQC project is completely
broken by the attacks.

We show that it is possible to forge signatures or compute equivalent secret keys in under a second for 128-bit security
parameters. Even for 256-bit security parameters this takes less than a minute. Updating the parameters to resist the
best known attack (see Sect. 5) would significantly increase the public key and signature sizes. This would make the
scheme more difficult to implement on the low-resource processors that SecureRF is targeting and destroy the size
advantages of Walnut over other post-quantum signature schemes such as lattice-based, hash-based and multivariate
signature schemes. We note also that these latter schemes have been subject to much more scrutiny, which improves
our confidence in their security.”

We want to address some misconceptions that might arise after reading Derek's message to the forum.

1. In case of doubt, we should make it clear that we shared the full code for our attacks, and earlier drafts of our paper,
with SecureRF. We sent the final version of the code (modulo cleaning up the code a bit) to SecureRF on 24th March,
and answered any questions they asked on their experiments with it. The posted version of our paper only differs from
the last draft we shared in the suggested choice of parameters at the end of Section 5: we informed SecureRF of this
change before posting.

2. "They further claimed they can reduce this running time to g*(N/2 — 1), but this assumes t1=t2=1.": The Walnut
Specification document mandates that the first two t-values, t1 and t2, are fixed to 1. There is no "assumption" here.

3. "We have not been able to verify this theoretical run time." The run time is not theoretical. The code available on
GitHub (and shared with
SecureRF) runs with the run time we would expect from our analysis.

4. "These parameter-only changes block their attack (this was confirmed by them)." We have not confirmed that these
parameters block our attack.
However, we believe this to be the case, and we have proposed similar sized parameters in our paper.

Kind regards,
Ward and Simon

https://eprint.iacr.org/2018/318
https://github.com/WardBeullens/Nutcracker

From: Derek Atkins <datkins@securerf.com>

Sent: Sunday, April 08, 2018 4:34 PM

To: ward.beullens@esat.kuleuven.be; pqc-comments
Cc: pqc-forum@list.nist.gov

Subject: Re: [pgc-forum] OFFICIAL COMMENT: WalnutDSA

Dear Ward, All,
I'd like to apologize for the delay in responding; I've been on vacation this week and generally away from my email.
On Wed, 2018-04-04 at 17:57 +0200, Ward Beullens wrote:

From the conclusion of our paper: “The security of the parameter sets
submitted to the NIST PQC project is completely broken by the attacks.
We show that it is possible to forge signatures or compute equivalent
secret keys in under a second for 128-bit security parameters. Even for
256-bit security parameters this takes less than a minute. Updating the
parameters to resist the best known attack (see Sect. 5) would
significantly increase the public key and signhature sizes. This would
make the scheme more difficult to implement on the low-resource
processors that SecureRF is targeting and destroy the size advantages of
Walnut over other post-quantum signature schemes such as lattice-based,
hash-based and multivariate signature schemes. We note also that these
latter schemes have been subject to much more scrutiny, which improves
our confidence in their security.”

In the passage above, and elsewhere in this paper, the authors move away from presenting their attack on Walnut and
rather focus it on the company supporting this work. We strongly believe that this subjective editorializing does not
belong in this paper or the NIST process. In many places in this paper, this style makes it difficult to discern their actual
analysis of Walnut. Our understanding is that NIST is looking to identify candidates for a Post-Quantum era and it has
not included minimum or maximum implementation guidelines. Although we do not yet agree with the authors on what
the final public key and signature sizes will be, we believe that for now, the reader should focus on the fact that we do
agree with the authors that “Updating the parameters to resist the best known attack...” defeats their analysis.

In regards to suitability, we are still studying this paper, additional responses, and its impact on the performance of
WalnutDSA. Using parameters that we have already shared with the authors, and acknowledged in return emails, the
performance still delivers the fastest verification times of all the methods submitted to NIST, and the signature
generation time is not greatly impacted. Furthermore, as a result of parameter-only changes, our very-small code size
for implementation has not been affected.

We want to address some misconceptions that might arise after reading
Derek"s message to the forum.

1. In case of doubt, we should make it clear that we shared the full

code for our attacks, and earlier drafts of our paper, with SecureRF. We
sent the final version of the code (modulo cleaning up the code a bit)
to SecureRF on 24th March, and answered any questions they asked on
their experiments with it. The posted version of our paper only differs
from the last draft we shared in the suggested choice of parameters at
the end of Section 5: we informed SecureRF of this change before posting.

As we stated in our post and confirmed by Ward, we did not receive a final draft of the paper. The last version we
received was March 23, 12 days before the final paper was archived, and we pointed this out because many items and
issues were provided to the authors which either needed further review, were not published, or were already

resolved. For example, we had already addressed the encoder issue repeated in this paper in our January 23, 2018
response, where we suggested using a 2-bit encoder, and subsequently on February 2, 2018, where we suggested a
rotating encoder that utilizes the full space. Earlier, on January 22, 2018, we suggested increasing N to 10. Each of these
suggestions were subsequently confirmed by the authors, but omitted from the paper.

2. "They further claimed they can reduce this running time to g~"(N/2 —
1), but this assumes tl1=t2=1."": The Walnut Specification document
mandates that the first two t-values, tl and t2, are fixed to 1. There
is no "assumption' here.

It would appear this statement is being used to mix two issues —and we are partly responsible. Our submission to NIST
assumes that t1=t2=1 and, in order to comply with NIST’s process, there are to be no changes in responding to attacks
during this initial period. However, outside of this process, we can make any number of suggestions based on input
received. Almost immediately after the authors sent their first outline of the paper, we asked them about the case
when t1,t2 != 1. Separate from this response, and already established, we can block the attack for the case of t1=t2=1 by
choosing N=11, g=M31 and N=11, g=M61 which are parameter-only changes. So their comment is correct, and we
should have separated our comment on your claimed reduced runtime from this assumption and the likely impact of
t1,t2!=1, as you have done now by separating your #2 from #3 comments here.

3. "We have not been able to verify this theoretical run time.'" The run
time is not theoretical. The code available on GitHub (and shared with
SecureRF) runs with the run time we would expect from our analysis.

The latest code you have provided to us and on GitHub has not yet supported your claimed run time of g*(N/2-1), so it is
still theoretical. In running the latest version of the code, it failed to build enough data after nearly a week of running to
verify its growth. Your paper suggests that the attack can get stuck, and indeed even running with small parameters like
N=3 or N=4 and g=7, the attack was getting stuck more often than not, sometimes taking ~12 hours to complete a single
run with a single set of parameters. We did point this out to you before you published your paper.

4. "These parameter-only changes block their attack (this was confirmed
by them)." We have not confirmed that these parameters block our attack.
However, we believe this to be the case, and we have proposed similar
sized parameters in our paper.

This statement seems to contradict your previous statement. If the runtime is not theoretical then simply plugging in
the proposed parameters should be sufficient to confirm they block your attack. In regards to our comment on your
confirming these parameters, our initial discussion was for the case of t1,t2 != 1, and you responded by proposing N=10,
g=2"32, and N=10, q=2"64 (for t1=t2=1). From your April 2 email, one can easily infer it also applies to the case when
t1=t2=1 provided N=11,g=M31 and N=11,g=M61. Most importantly, we confirm that parameter-only changes block
your attack and we appreciate your acknowledging this to be the case.

Thanks,

The WalnutDSA Team

Derek Atkins
Chief Technology Officer
SecureRF Corporation

From: Jacob Alperin-Sheriff <jacobmas@gmail.com>

Sent: Sunday, April 08, 2018 5:29 PM

To: Derek Atkins

Cc: ward.beullens@esat.kuleuven.be; pgc-comments; pgc-forum@list.nist.gov
Subject: Re: [pgc-forum] OFFICIAL COMMENT: WalnutDSA

Given the lack of dispute that Beullens algorithm breaks 128 in < second, 256 in less than a minute, | find it very very
hard to believe that a version of Walnut that resists the Beullens algorithm solely via parameter changes would have
faster verification times than the fastest lattice and multivariate schemes, given that the completely broken 256 bit
parameters already don't seem any faster than the fastest (or at most just barely so).

On Sun, Apr 8, 2018, 4:33 PM Derek Atkins <datkins@securerf.com> wrote:
Dear Ward, All,

I'd like to apologize for the delay in responding; I've been on vacation this week and generally away from my email.

On Wed, 2018-04-04 at 17:57 +0200, Ward Beullens wrote:

From the conclusion of our paper: “The security of the parameter sets
submitted to the NIST PQC project is completely broken by the attacks.
We show that it is possible to forge signatures or compute equivalent
secret keys in under a second for 128-bit security parameters. Even for
256-bit security parameters this takes less than a minute. Updating the
parameters to resist the best known attack (see Sect. 5) would
significantly increase the public key and signature sizes. This would
make the scheme more difficult to implement on the low-resource
processors that SecureRF is targeting and destroy the size advantages of
Walnut over other post-quantum signature schemes such as lattice-based,
hash-based and multivariate signature schemes. We note also that these
latter schemes have been subject to much more scrutiny, which improves
our confidence in their security.”

In the passage above, and elsewhere in this paper, the authors move away from presenting their attack on Walnut and
rather focus it on the company supporting this work. We strongly believe that this subjective editorializing does not
belong in this paper or the NIST process. In many places in this paper, this style makes it difficult to discern their actual
analysis of Walnut. Our understanding is that NIST is looking to identify candidates for a Post-Quantum era and it has
not included minimum or maximum implementation guidelines. Although we do not yet agree with the authors on
what the final public key and signature sizes will be, we believe that for now, the reader should focus on the fact that
we do agree with the authors that “Updating the parameters to resist the best known attack...” defeats their analysis.

In regards to suitability, we are still studying this paper, additional responses, and its impact on the performance of
WalnutDSA. Using parameters that we have already shared with the authors, and acknowledged in return emails, the
performance still delivers the fastest verification times of all the methods submitted to NIST, and the signature
generation time is not greatly impacted. Furthermore, as a result of parameter-only changes, our very-small code size
for implementation has not been affected.

We want to address some misconceptions that might arise after reading
Derek"s message to the forum.

1. In case of doubt, we should make it clear that we shared the full
code for our attacks, and earlier drafts of our paper, with SecureRF. We
sent the final version of the code (modulo cleaning up the code a bit)

1

From: Derek Atkins <datkins@securerf.com>

Sent: Sunday, April 08, 2018 7:10 PM

To: jacobmas@gmail.com

Cc: pqc-forum@list.nist.gov; ward.beullens@esat.kuleuven.be; pgc-comments
Subject: Re: [pgc-forum] OFFICIAL COMMENT: WalnutDSA

Dear Jacob,

Thank you for your email.

Our SUPERCOP runs clocked the verification using the updated 128-bit parameters at 175,285 cycles. If you are
attending the conference, | would be happy to meet and share the SUPERCOP runs with you.

We will also be posting the code with the updated parameters later this week.
-derek

On Sun, 2018-04-08 at 21:28 +0000, Jacob Alperin-Sheriff wrote:

Given the lack of dispute that Beullens algorithm breaks 128 in < second, 256 in less than a minute, | find
it very very hard to believe that a version of Walnut that resists the Beullens algorithm solely via
parameter changes would have faster verification times than the fastest lattice and multivariate
schemes, given that the completely broken 256 bit parameters already don't seem any faster than the
fastest (or at most just barely so).

Derek Atkins
Chief Technology Officer
SecureRF Corporation

Office: 203.227.3151 x1343
Direct: 617.623.3745

Mobile: 617.290.5355

Email: DAtkins@SecureRF.com

This email message may contain confidential, proprietary and / or legally privileged information and intended only for
the use of the intended recipient(s) and others specifically authorized. Any disclosure, dissemination, copying, distribution
or use of the information contained in this email message, including any attachments, to or by anyone other than the
intended recipient is strictly prohibited. If you received this in error, please immediately advise the sender by reply email
or at the telephone number above, and then delete, shred, or otherwise dispose of this message.

From: Anton Menshov <menshov.a.v@gmail.com>

Sent: Friday, May 04, 2018 12:32 PM

To: pgc-comments

Subject: OFFICIAL COMMENT: WalnutDSA -- new practical attack
Dear All,

We recently came up with a new practical attack on WalnutDSA, which works with braids only and which success doesn't
depend on the base finite field.
The attack is described here - https://eprint.iacr.org/2018/393 .

Kind regards,
Anton, Sasha, and Matvei.

https://eprint.iacr.org/2018/393

From: Derek Atkins <datkins@securerf.com>

Sent: Tuesday, May 15, 2018 7:04 AM

To: pqc-forum@list.nist.gov; menshov.a.v@gmail.com

Subject: Re: [pgc-forum] Fwd: OFFICIAL COMMENT: WalnutDSA -- new practical attack
Dear All,

We were made aware of this attack against WalnutDSA only when it was posted at the end of last week.

The paper does not contain any complexity analysis, and the code they supplied did not work initially (we have since
created a working copy) all of which is making the evaluation and testing of our refutation take a bit longer than we
would normally hope.

When we complete our analysis on the complexity of this attack (shortly), we will provide the details of how it is
defeated.

Thanks,

The WalnutDSA team

Derek Atkins
Chief Technology Officer
SecureRF Corporation

Office: 203.227.3151 x1343
Direct: 617.623.3745

Mobile: 617.290.5355

Email: DAtkins@SecureRF.com

This email message may contain confidential, proprietary and / or legally privileged information and intended only for
the use of the intended recipient(s) and others specifically authorized. Any disclosure, dissemination, copying, distribution
or use of the information contained in this email message, including any attachments, to or by anyone other than the
intended recipient is strictly prohibited. If you received this in error, please immediately advise the sender by reply email
or at the telephone number above, and then delete, shred, or otherwise dispose of this message.

You received this message because you are subscribed to the Google Groups "pgc-forum" group.

To unsubscribe from this group and stop receiving emails from it, send an email to pgc-forum+unsubscribe@list.nist.gov.
Visit this group at https://groups.google.com/a/list.nist.gov/group/pgc-forum/.

https://groups.google.com/a/list.nist.gov/group/pqc-forum
mailto:pqc-forum+unsubscribe@list.nist.gov
mailto:DAtkins@SecureRF.com

From: Derek Atkins <datkins@securerf.com>

Sent: Wednesday, May 23, 2018 3:39 PM

To: pqc-forum@list.nist.gov; menshov.a.v@gmail.com

Subject: Re: [pgc-forum] Fwd: OFFICIAL COMMENT: WalnutDSA -- new practical attack
Dear All,

The WalnutDSA team has had a chance to analyze this attack and run their test code. We have found that this attack
shows that our hard-coded parameter of 3 cloaking elements was too small, and that by increasing that number we can
block this attack.

This attack requires two invariants in order to succeed:
1) The cloaking elements must be conjugates, and
2) It has to know the permutation of the cloaking elements

As we increase the number of cloaking elements in the WalnutDSA signature, we can also invalidate these two
invariants. Specifically, when we add these additional cloaking elements we can do so at randomly chosen points in the
signature, including inside the cloaking elements v, v1, and v2 and inside the private braids. When we insert these
"concealed cloaking elements" in v, vl, and v2, then those elements are no longer conjugates themselves (breaking
invariant #1). Further, these concealed cloaking elements have an unknown permutation, breaking invariant #2. To
counteract this, they would require N! searches to guess their permutations.

If we add Kappa additional concealed cloaking elements in this manner, then it would require (N!)*Kappa additional
work to run this attack. Therefore, if we choose Kappa such that (N!)*Kappa > 2~(2*SecurityLevel) we know there is
sufficient work for an attacker that we again reach our desired security goal.

An added bonus of making this parameter change is that we can now take L to 0, which winds up shrinking our
signatures by over 30%, resulting in a significant size and performance boost!

Thanks,

The WalnutDSA Team

Derek Atkins
Chief Technology Officer
SecureRF Corporation

Office: 203.227.3151 x1343
Direct: 617.623.3745

Mobile: 617.290.5355

Email: DAtkins@SecureRF.com

This email message may contain confidential, proprietary and / or legally privileged information and intended only for
the use of the intended recipient(s) and others specifically authorized. Any disclosure, dissemination, copying, distribution
or use of the information contained in this email message, including any attachments, to or by anyone other than the
intended recipient is strictly prohibited. If you received this in error, please immediately advise the sender by reply email
or at the telephone number above, and then delete, shred, or otherwise dispose of this message.

mailto:DAtkins@SecureRF.com

From: Anton Menshov <menshov.a.v@gmail.com>

Sent: Monday, May 28, 2018 1:21 AM

To: pgc-comments; pgc-forum@list.nist.gov

Subject: Re: [pgc-forum] Fwd: OFFICIAL COMMENT: WalnutDSA -- new practical attack
Dear All,

We would like to note that based on Remark 2.2 of our paper a reader may think that we need to know the permutation
to locate critical letters. But in fact in our attack we only need to know \sigma_w?"{-1}(a) and \sigma_w"{-1}(b) (which is
known since P(w), a, and b are public) to locate all critical letters inside a signature.

So the observation #2 together with the estimation (N!)AKappa is not correct.

Furthermore, even insertions of cloaking elements at randomly chosen points in a signature wouldn't prevent an
attacker to locate all critical letters.

Taking L=0 is a good idea, long conjugators make cloaking elements visible.

Anton.

On Wed, May 23, 2018 at 3:39 PM Derek Atkins <datkins@securerf.com> wrote:
Dear All,

The WalnutDSA team has had a chance to analyze this attack and run their test code. We have found that this attack
shows that our hard-coded parameter of 3 cloaking elements was too small, and that by increasing that number we can
block this attack.

This attack requires two invariants in order to succeed:
1) The cloaking elements must be conjugates, and
2) It has to know the permutation of the cloaking elements

As we increase the number of cloaking elements in the WalnutDSA signature, we can also invalidate these two
invariants. Specifically, when we add these additional cloaking elements we can do so at randomly chosen points in the
signature, including inside the cloaking elements v, v1, and v2 and inside the private braids. When we insert these
"concealed cloaking elements" in v, vl, and v2, then those elements are no longer conjugates themselves (breaking
invariant #1). Further, these concealed cloaking elements have an unknown permutation, breaking invariant #2. To
counteract this, they would require N! searches to guess their permutations.

If we add Kappa additional concealed cloaking elements in this manner, then it would require (N!)*Kappa additional
work to run this attack. Therefore, if we choose Kappa such that (N!)*Kappa > 2~(2*SecurityLevel) we know there is

sufficient work for an attacker that we again reach our desired security goal.

An added bonus of making this parameter change is that we can now take L to 0, which winds up shrinking our
signatures by over 30%, resulting in a significant size and performance boost!

Thanks,

The WalnutDSA Team

From: Simon-Philipp Merz <simon-philipp.merz@new.ox.ac.uk>

Sent: Monday, May 28, 2018 6:36 AM

To: pgc-comments

Cc: pqc-forum@list.nist.gov

Subject: OFFICIAL COMMENT: WalnutDSA -- quantum collision search
Dear All,

following the attack of Simon Blackburn and Ward Beullens, we want to point out that the tight bound of quantum
query complexity for finding 2-collisions of random functions has been revealed to be O(M*{1/3}), where M is the size of
a codomain [1]. Consequently, we have a speedup compared to classical collision finding algorithms.

Applying this result to the attack of Simon Blackburn and Ward Beullens, the newest parameters of WalnutDSA do not
attain the bounds claimed.

As we do not necessarily have T-values equal to 1 anymore we can't permute them towards the end. Thus we may
assume that the T-values are chosen randomly. Then, the complexity of the attack to reverse the E-Multiplication using
the finer subgroups method is dominated by a collision search in the quotient of size g*{N-1} in the first step. Using the
notation from Simons and Wards paper, we need to find k suitable collisions to get the braids c_1,.,c_k in order to
complete the attack. In the implementation by Ward this parameter k has been chosen to equal 60.

Consequently, the query complexity of the first step using quantum collision search would be sqrt(k)*q”*{(N-1)/3}.

For the 128-bit parameters N=10, g=M31 and k=60 this equals roughly 2~{96} instead of 2*{142} and for the 256-bit
parameters N=10, q=M61 and k=60 this yields roughly 2”{186} instead of 2/{277}.

Kind regards,
Simon-Philipp Merz

[1] Brassard, Gilles, Peter Hgyer, and Alain Tapp. "Quantum cryptanalysis of hash and claw-free functions." Latin
American Symposium on Theoretical Informatics. Springer, Berlin, Heidelberg, 1998.

From: Derek Atkins <datkins@securerf.com>

Sent: Tuesday, May 29, 2018 8:38 PM

To: simon-philipp.merz@new.ox.ac.uk; pgc-comments
Cc: pqc-forum@list.nist.gov

Subject: Re: [pgc-forum] OFFICIAL COMMENT: WalnutDSA
Dear All,

On Tue, 2018-05-29 at 13:12 +0000, Simon-Philipp Merz wrote:

Consequently, the query complexity of the first step using quantum collision
search would be sqrt(k)*g™{(N-1)/3}.

For the suggested 128-bit parameters N=10, g=M31 and k=60 this equals roughly
2~{96} instead of 27{142} and for the 256-bit parameters N=10, g=M61 and k=60
this yields roughly 27{186} instead of 2"{277}.

Thank you for this analysis using a quantum computer for collisions. | would argue that this attack, while interesting, is
still less effective than Grover. So given a quantum computer, we believe it would still be more effective to use Grover
than this attack.

Considering in Category 1 only the classical security needs to reach 22128 (quantum security is technically only 2/264),
even under this attack it reaffirms the category 1 and category 5 levels for the proposed parameters.

Thank you,

The WalnutDSA Team

Derek Atkins
Chief Technology Officer
SecureRF Corporation

Office: 203.227.3151 x1343
Direct: 617.623.3745

Mobile: 617.290.5355

Email: DAtkins@SecureRF.com

This email message may contain confidential, proprietary and / or legally privileged information and intended only for
the use of the intended recipient(s) and others specifically authorized. Any disclosure, dissemination, copying, distribution
or use of the information contained in this email message, including any attachments, to or by anyone other than the
intended recipient is strictly prohibited. If you received this in error, please immediately advise the sender by reply email
or at the telephone number above, and then delete, shred, or otherwise dispose of this message.

From: Derek Atkins <datkins@securerf.com>

Sent: Tuesday, May 29, 2018 8:44 PM
To: pqc-forum@list.nist.gov; menshov.a.v@gmail.com; pgc-comments
Subject: Re: [pgc-forum] Fwd: OFFICIAL COMMENT: WalnutDSA -- new practical attack

Dear Anton, All,

On Mon, 2018-05-28 at 01:20 -0400, Anton Menshov wrote:

We would like to note that based on Remark 2.2 of our paper a reader may think that we need to know
the permutation to locate critical letters. But in fact in our attack we only need to know \sigma_w"{-
1}(a) and \sigma_w"{-1}(b) (which is known since P(w), a, and b are public) to locate all critical letters
inside a signature.

You seem to assume that these additional cloaking elements would be inserted consecutively within the signature. That
is an incorrect assumption.

While it is true that a and b are public, and while it is true that P(w) is public for v1, v2, and v3, P(w) is NOT public for the
additional concealed cloaking elements. Also, you will not know \sigma_w"{-1)(a) or \sigma_w"{-1)(b). Moreover, by
inserting these concealed cloaking elements, we also ensure that v1, v2, and v3 are not conjugates, which your attack
requires to succeed.

Originally the cloaking element is created by generating w with a known \sigma_0 and mapping that to a and b (P(w));
then we turn that into a conjugate: w b_i*4 w”{-1}. However when we add the concealed cloaking elements that is no
longer the case. We generate w as before, but then we break it into subwords w_| and w_r. Next, we create a concealed
cloaking element for permutation \sigma_0 . \sigma_w_| -- let's call it CE -- and then we insert it into the left side: w_| CE
w_r. We do the same thing on the right side, split (the original) w”{-1} into subwords w2_| and w2_r and generate a
cloaking element for the (unknown) permutation \sigma_0 . \sigma_w . \sigma_w2_1 => CE2. Then we generate the full
cloaking element w_I CEw_r b_i*4 w2_| CE2 w2_r.

You will note several things:

1) this is no longer a conjugate

2) While you know P(w), you do not know P(CE) or P(CE2)

3) There are now 3 sets of fourth-power entries (the main one, another in CE, and a third in CE2), which could all be at
different b_i

4) For your attack to work as you propose, you would need to remove CE and CE2 first, which requires finding (or
guessing) P(CE) and P(CE2) -- for which there are N! choices each.

5) We have implemented this change in your code, and it indeed blocks your attack.

If you have further questions we suggest you first contact us offline to discuss, and if you feel anything material is
identified, you can always post it to the forum

The WalnutDSA Team

Derek Atkins
Chief Technology Officer
SecureRF Corporation

From: Simon-Philipp Merz <simon-philipp.merz@gmx.de>

Sent: Friday, November 30, 2018 9:15 AM
To: pgc-comments

Cc: pqc-forum@list.nist.gov

Subject: OFFICIAL COMMENT: WalnutDSA

Dear WalnutDSA team, All,

we have found an attack on the most recent instantiation of the Walnut digital signature algorithm which attacks its
"obfuscation procedure". The WalnutDSA team acknowledged our attack of which we informed them in August.
The paper explaining the attack is now available at ePrint: https://eprint.iacr.org/2018/1142|

In braid group cryptography public braids often contain secret braids as a factor and it is hoped that rewriting the
product of braid words hides its individual factors. We provide experimental evidence that this is in general not the case
and make an observation that can be exploited to decompose products in braid groups of the form ABC when only B is
known.

This decomposition allows a universal forgery attack on Walnut signatures for the 128-bit and 256-bit parameters within
seconds, given a single message-signature pair. The attack worked on 99.8% of 128-bit and 100% of 256-bit signatures in
our experiments.

Moreover, we propose a potential countermeasure for our attack that allows to thwart it at the cost of slower signature
generation and increased signature size.

Kind regards,
Christophe and Simon

https://eprint.iacr.org/2018/1142

From: Derek Atkins <datkins@securerf.com>

Sent: Tuesday, December 04, 2018 10:25 AM

To: simon-philipp.merz@new.ox.ac.uk; pgc-comments
Cc: pqc-forum@list.nist.gov

Subject: Re: [pgc-forum] OFFICIAL COMMENT: WalnutDSA
Dear Simon,

Thank you again for your paper.

In your paper, you state that an effective way to block your attack is by adding additional concealed cloaking elements
inside the encoding of E(M). In studying your attack, we agree. At the same time we have come to find that we can
make cloaking elements shorter and still be effective, and have been testing several forms for a while and will share
them with you shortly. In addition, we have means to block the uncloaking method without increasing the signature
size.

The WalnutDSA Team

Derek Atkins
Chief Technology Officer
SecureRF Corporation

Office: 203.227.3151 x1343
Direct: 617.623.3745

Mobile: 617.290.5355

Email: DAtkins@SecureRF.com

This email message may contain confidential, proprietary and / or legally privileged information and intended only for
the use of the intended recipient(s) and others specifically authorized. Any disclosure, dissemination, copying, distribution
or use of the information contained in this email message, including any attachments, to or by anyone other than the
intended recipient is strictly prohibited. If you received this in error, please immediately advise the sender by reply email
or at the telephone number above, and then delete, shred, or otherwise dispose of this message.

From: Anton Menshov <menshov.a.v@gmail.com>

Sent: Friday, December 21, 2018 3:57 PM

To: pgc-forum

Cc: pgc-comments; simon-philipp.merz@new.ox.ac.uk
Subject: Re: OFFICIAL COMMENT: WalnutDSA

Dear All,

We would like to note again that, as we wrote in the message on May 28, 2018, one doesn't need to know the
permutation of a concealed cloaking element to locate critical letters inside a signature since the middle of a cloaking
element always twists 2 particular strands that are determined by sigma_w, a, and b only.

Furthermore, insertion of a cloaking element in a random position inside a signature is equivalent to multiplication of
the signature by some cloaking element on the left.

So the estimation involving Kappa in the message on May 23, 2018 is not correct, as well as the formula (7) in the latest
attack https://eprint.iacr.org/2018/1142.pdf.

We admit that insertion of concealed cloaking elements breaks implementation of our attack on WalnutDSA, since it's
designed for 3 cloaking elements in a signature, but we believe it could be adopted to handle more cloaking elements,
and we doubt that security of the protocol can be increased by adding concealed cloaking elements.

We specifically tested insertion of many (sixty) cloaking elements in random positions of the private key in our attack on
Kayawood protocol https://eprint.iacr.org/2018/604.pdf.

Best,
Anton.

On Friday, November 30, 2018 at 7:01:11 PM UTC-5, Simon-Philipp Merz wrote:

Dear WalnutDSA team, All,

we have found an attack on the most recent instantiation of the Walnut digital signature algorithm which
attacks its "obfuscation procedure". The WalnutDSA team acknowledged our attack of which we informed
them in August. The paper explaining the attack is now available at ePrint: https://eprint.iacr.org/2018/1142

In braid group cryptography public braids often contain secret braids as a factor and it is hoped that rewriting
the product of braid words hides its individual factors. We provide experimental evidence that this is in
general not the case and make an observation that can be exploited to decompose products in braid groups
of the form ABC when only B is known.

https://eprint.iacr.org/2018/1142
https://eprint.iacr.org/2018/604.pdf
https://eprint.iacr.org/2018/1142.pdf

This decomposition allows a universal forgery attack on Walnut signatures for the 128-bit and 256-bit
parameters working within seconds, given a single message-signature pair. The attack worked on 99.8% of
128-bit and 100% of 256-bit signatures in our experiments.

Moreover, we propose a potential countermeasure for our attack that allows to thwart it at the cost of
slower signature generation and increased signature size.

Kind regards,

Christophe and Simon

From: Derek Atkins <datkins@securerf.com>

Sent: Sunday, December 30, 2018 7:29 PM

To: pqc-forum@list.nist.gov; menshov.a.v@gmail.com
Cc: simon-philipp.merz@new.ox.ac.uk; pgc-comments
Subject: Re: [pqc-forum] Re: OFFICIAL COMMENT: WalnutDSA

Dear Anton,
While inserting a concealed cloak may be equivalent to multiplying on the left,
(I, id)*A*v*B = (1,id)*A*B = (l,id)*(AvAM{-1})*A*B

this statement is only useful if an attacker can find the A and B. If v has nested concealed cloaks this takes the search
described in your paper where the permutation being cloaked for is unknown (and hence the N!*{number of nested
concealed cloaks} appears). If the idea is to try eliminating some of the b_i*+/-2 (or b_i*+/-4 which can be used in the
E(M) encoding) to try to find a location of a cloak, this process will alter E(M) and make the simultaneous conjugacies
you require have an unknown middle - or even collapse the E(M) completely. Either way there will be no easy
simultaneous conjugacies with known middles to work with.

The method of attacking Kayawood KAP does not translate to WalnutDSA due to the structure of the signature.
Furthermore, we do not have a classification for all possible cloaks for the identity. We do have new classes of examples
and are currently working on documenting said cloaks.

We again encourage you to talk with us about these topics.
Thanks,

The WalnutDSA Team

Derek Atkins
Chief Technology Officer
SecureRF Corporation

Office: 203.227.3151 x1343
Direct: 617.623.3745

Mobile: 617.290.5355

Email: DAtkins@SecureRF.com

This email message may contain confidential, proprietary and / or legally privileged information and intended only for
the use of the intended recipient(s) and others specifically authorized. Any disclosure, dissemination, copying, distribution
or use of the information contained in this email message, including any attachments, to or by anyone other than the
intended recipient is strictly prohibited. If you received this in error, please immediately advise the sender by reply email
or at the telephone number above, and then delete, shred, or otherwise dispose of this message.

mailto:DAtkins@SecureRF.com

	Structure Bookmarks
	WalnutDSA

