From: Alperin-Sheriff, Jacob (Fed)

Sent: Thursday, December 28, 2017 5:17 PM

To: pgc-comments

Cc: pgc-forum@list.nist.gov; jsno@snu.ac.kr; leewj422@ccl.snu.ac.kr; mypurist@gmail.com; Yongwoo Lee
Subject: OFFICIAL COMMENT: pgsigRM

So I've been doing some basic testing via adding cpucycles calls to the PQCgenKAT_*.c files, just to see if the numbers | get are
somewhere in the ballpark of what was in specifications (note that I’'ve indeed gotten numbers somewhere in the ballpark for
several so it doesn’t seem to be an issue with my code).

For pgsigrm (specifically pgsigRM-4-12, | haven’t checked the others), | am getting on the order of thousands of times as many
cycles for each of key generation, signing and verification as what the pqgsigRM team gave in their supporting documentation.

It’s quite possible that the submitters meant thousands of cycles instead of total cycles, but | don’t see that anywhere. If not, I'd
like the discrepancy to be explained. Thanks.

(For reference, the definition of cpucycles)

long long cpucycles(void) {
unsigned long long result;
__asm___volatile(".byte 15;.byte 49;shlq $32,%%rdx;orq %%rdx,%%rax" : "=a" (result) :: "%rdx");
return result;

}

—Jacob Alperin-Sheriff

From: Yongwoo Lee <yongwool@ccl.snu.ac.kr>

Sent: Monday, January 01, 2018 10:31 AM

To: Alperin-Sheriff, Jacob (Fed); pqc-comments

Cc: pgc-forum@list.nist.gov; jsno@snu.ac.kr; leewj422@ccl.snu.ac.kr; mypurist@gmail.com
Subject: RE: OFFICIAL COMMENT: pgsigRM

Dear Dr. Alperin-Sheriff

We appreciate for your comments.

We measured the CPU clocks but mistakenly wrote 'cycles' instead of 'clocks'.
We measured the cpu cycles again using the function you sent.

The new measurement is reflected in the table below.

| | security| key generation | singing | verification |

pgsigRM-4-12	128	14639777783	3971208456	139814898
pgsigRM-6-12	196	6395769782	3275234719	198607502
pgsigRM-6-13	256	72162115384	1087667252	956410761

In addition, We are constantly updating the program, you can always check the latest version of our submission on the
website below:

. https://sites.google.com/view/pgsigrm

We will reflect your comments in our documentation and update it soon.

Happy new year!
Jong-Seon No,
Wijik Lee
Young-Sik Kim
Yong-Woo Lee

From: Alperin-Sheriff, Jacob (Fed) [mailto:jacob.alperin-sheriff@nist.gov]

Sent: Friday, December 29, 2017 7:17 AM

To: pgc-comments <pgc-comments@nist.gov>

Cc: pgc-forum@list.nist.gov; jsno@snu.ac.kr; leewjd22@ccl.snu.ac.kr; mypurist@gmail.com; Yongwoo Lee
<yongwool@ccl.snu.ac.kr>

Subject: OFFICIAL COMMENT: pgsigRM

mailto:yongwool@ccl.snu.ac.kr
mailto:mypurist@gmail.com
mailto:leewj422@ccl.snu.ac.kr
mailto:jsno@snu.ac.kr
mailto:pqc-forum@list.nist.gov
mailto:pqc-comments@nist.gov
mailto:mailto:jacob.alperin-sheriff@nist.gov
https://sites.google.com/view/pqsigrm
mailto:mypurist@gmail.com
mailto:leewj422@ccl.snu.ac.kr
mailto:jsno@snu.ac.kr
mailto:pqc-forum@list.nist.gov
mailto:yongwool@ccl.snu.ac.kr

From: Perlner, Ray (Fed)

Sent: Tuesday, January 02, 2018 5:05 PM

To: pgc-comments

Cc: pgc-forum@list.nist.gov; Alperin-Sheriff, Jacob (Fed)
Subject: OFFICIAL COMMENT: pgsigRM

Dear pqgsigRM submitters,

Jacob and | believe we have found an attack on pgsigRM. We believe the punctured columns of the public parity check matrix
can be identified statistically from a few hundred signatures. E.g. When we ran the submitted code to produce signatures for

parameter set 4-12, we found that the bits of the signature corresponding to punctures were set to 1 about 45% of the time,

while the other bits were only set to 1 about 31% of the time.

Best regards,
Ray Perlner

From: Yongwoo Lee <yongwool@ccl.snu.ac.kr>

Sent: Monday, January 08, 2018 7:08 PM

To: Perlner, Ray (Fed); pgc-comments

Cc: pqc-forum@list.nist.gov; Alperin-Sheriff, Jacob (Fed); =& M w4, 0|2, A ML
Subject: RE: [pgc-forum] OFFICIAL COMMENT: pgsigRM

Dear Perlner, Dear All;

Thank for your valuable comments.

As you mentioned, we have checked that the probability of 1's among the punctured/inserted elements is higher

than that of the unpunctured elements in our proposed pgsigRM algorithms.

As you can see Algorithm 3 in the supporting documentation, the punctured/inserted part of the signature is
generated in the following way;

e'_p~T =s"_p + Re_(n-p)AT
where s'_p is generated from the output of SHA512.

Hence the probability of occurrence of ones in the punctured/inserted part of the signatures is about to 1/2 and the
probability of occurrence of ones in the unpunctured part is about w/n.

(Precisely, since we choose e's having Hamming weight smaller than or equal to w as signature, e_p having larger
Hamming weight is likely to be discarded. Hence, the probability of the occurrence of ones in the punctured/inserted

part is slightly lower than 1/2. As you mentioned, it is about 45% in pqgsigRM-4-12.)

As you mentioned, using this difference of the probabilities, an attacker can figure out the punctured/inserted
elements. However, we think that this is not a major threat to the security of our proposed algorithm. Even though
the attacker knows which bits are punctured/inserted in the signature, he cannot figure out the exact locations of the
punctured/inserted bits before permutation.

The number of possible permutation matrices Q's becomes p!(n-p)! (= 22(43071)in pqgsigRM-4-12, 128-bit security)
from n!(= 2243250 in pgsigRM-4-12) if the locations of the punctured/inserted elements are known and it is still
very large number and secure.

Moreover, to our knowledge, it does not reduce the complexity of any known attacks on RM code-based digital
signature schemes such as Minder-Shokrollahi’s attack, Chizhov-Borodin’s attack, Square code attack, or information

set decoding.

However, in order to avoid the possible threats, we'd like to slightly modify the algorithm and the parameters such
that the probabilities of ones in the unpunctured and punctured/inserted parts are the same. The colored lines are

slightly modified in Algorithm 3. (https://sites.google.com/view/pgsigrm/home/documentation, page 9)

Further, some parameters are also modified as in Table 1.
Table 2 shows the average numbers of iterations for signing the submitted algorithm and the modified algorithm,

where the probabilities of ones in the unpunctured and punctured/inserted parts are the same.

Table 1. Parameters of the modified algorithms

Algorithms loriginal p |modified p | w.p | g

pgsigRM-4-12 | 20 | 16 | 7 | 59/256
pgsigRM-5-11 | 10 | 8 | 2 | 220/256
pgsigRM-6-12 | 20 | 8 | 2 | 1
pgsigRM-6-13 | 30 | 16 | 4 | 23/256

Table 2. Average number of iterations for signing

Algorithms |Avg. number of iter. |Avg. number of iter.

| (submitted) | (modified)
pgsigRM-4-12 | 58.165 | 269.886 (4.64 times)
pgsigRM-5-11 | 6090.298 | 77590.397 (12.74 times)
pgsigRM-6-12 | 1774.464 | 277153.557 (156.19 times)
pgsigRM-6-13 | 7.4 | 637.880 (84.2 times)

From: Perlner, Ray (Fed) [mailto:ray.perlner@nist.gov]

Sent: Wednesday, January 3, 2018 7:05 AM

To: pgc-comments <pgc-comments@nist.gov>

Cc: pgc-forum@list.nist.gov; Alperin-Sheriff, Jacob (Fed) <jacob.alperin-sheriff@nist.gov>
Subject: [pgc-forum] OFFICIAL COMMENT: pgsigRM

Dear pqgsigRM submitters,

Jacob and | believe we have found an attack on pgsigRM. We believe the punctured columns of the public parity check
matrix can be identified statistically from a few hundred signatures. E.g. When we ran the submitted code to produce
signatures for parameter set 4-12, we found that the bits of the signature corresponding to punctures were set to 1
about 45% of the time, while the other bits were only set to 1 about 31% of the time.

Best regards,
Ray Perlner

You received this message because you are subscribed to the Google Groups "pgc—forum”
group.

To unsubscribe from this group and stop receiving emails from it, send an email to pgc—
forum+unsubscribe@list.nist.gov.

Visit this group at https://groups.google.com/a/list.nist.gov/group/pgc—forum/.

You received this message because you are subscribed to the Google Groups "pgc-forum" group.
2

From: Jacob Alperin-Sheriff <jacobmas@gmail.com>

Sent: Monday, January 08, 2018 10:04 PM

To: Yongwoo Lee

Cc: Perlner, Ray (Fed); pqc-comments; pgc-forum@list.nist.gov; Alperin-Sheriff, Jacob (Fed); .= &M 4
H; Ol?1&; dSAn+d

Subject: Re: [pgc-forum] OFFICIAL COMMENT: pgsigRM

Quick response tonight at home, Ray may add something tomorrow if he wants.

1. "As you mentioned, using this difference of the probabilities, an attacker can figure out the punctured/inserted elements.
However, we think that this is not a major threat to the security of our proposed algorithm. Even though the attacker knows
which bits are punctured/inserted in the signature, he cannot figure out the exact locations of the punctured/inserted bits
before permutation.

The number of possible permutation matrices Q’s becomes p!(n-p)! (= 2*(43071)in pqsigRM-4-12, 128-bit security) from n!(=
2743250 in pgsigRM-4-12) if the locations of the punctured/inserted elements are known and it is still very large number and
secure."

The total number of permutation matrices is irrelevant. The key point is that, by using the difference of
probabilities, an attacker can find some permutation matrix Q' that moves each of the punctured bits
to one of the final p positions of the vector (and ensures the non-punctured bits are all in the first n-p
positions of the vector). Concretely, we may choose Q' to move the leftmost punctured bit to the
leftmost of the final p positions, the next-leftmost punctured bit to the next leftmost of the final p
positions, and so on. Obviously, we will (except with very very very very small probability) have that

Q!=Q.

However, we WILL have that Q*(Q")"{-1} is a block diagonal matrix, i.e.

[U1l 0]

Q*Q)-1}=[0 U2]

where U_1 is an (n-p) x (n-p) permutation matrix and U_2 is a p X p permutation matrix.

Let X=H*(Q"){-1}, where H' is the public key.

Now, note that
[[PANT} |1 {n-k-p}jU_1 | 0]

SM-1}1X = H_m*Q*(Q')M{-1} = [RU_1 | uz2 |

If I'm not mistaken (I will check with Ray and sources of previous attacks tomorrow morning), | believe this means we
can fully break the scheme.

2. As we said in the call for proposals and have reiterated on this forum, "because of limited resources, and also to avoid
moving evaluation targets (i.e., modifying the submitted algorithms undergoing public review), NIST will NOT accept
modifications to the submitted algorithms during this initial phase of evaluation."

The change you have proposed here is clearly a modification to the submitted algorithms, so we will not be accepting it
and we will judge the algorithm as submitted (the same goes for all submissions).

On Mon, Jan 8, 2018 at 7:08 PM, Yongwoo Lee <yongwool@ccl.snu.ac.kr> wrote:

Dear Perlner, Dear All;

Thank for your valuable comments.

As you mentioned, we have checked that the probability of 1's among the punctured/inserted elements is higher than that of
the unpunctured elements in our proposed pqsigRM algorithms.

As you can see Algorithm 3 in the supporting documentation, the punctured/inserted part of the signature is generated in the
following way;

e' p"T=s"_p+Re_(n-p)*T

where s'_p is generated from the output of SHA512.

From: Perlner, Ray (Fed)

Sent: Wednesday, January 10, 2018 5:58 PM

To: Jacob Alperin-Sheriff; Yongwoo Lee

Cc: pgc-comments; pgc-forum@list.nist.gov; Alperin-Sheriff, Jacob (Fed); =& M w-H; 0| &l; 2 G Al
mEt

Subject: RE: [pqc-forum] OFFICIAL COMMENT: pgsigRM

We believe that once the punctured columns are identified, we can reconstruct the entire RM code (with permuted
columns), at which point standard RM attacks like Minder-Shokrollahi and Chizhov-Borodin can be applied.

We also believe that, even if rejection sampling is applied, preventing signatures from giving away information about the
punctured columns, the same information can be recovered relatively inexpensively from the public key alone.
According to the estimate of Minder and Shokrollahi, the original RM generator matrix has at least 2*(rm —r(r-1))
minimum weight codewords (weight 2*(m-r)). These will all be orthogonal to the n-k-p dimensional subcode of the
parity check matrix, which lacks support on the punctured columns. They can all be modified to codewords of the public
code (with modestly increased weight) by substituting the appropriate bits in the punctured columns. (This is analogous
to the signature procedure of the original scheme.) Such near-minimum-weight codewords can be found by standard
information set decoding techniques, at a cost which we estimate to be significantly less than the claimed security level
of any of the submitted parameter sets. Moreover, the punctured columns will be overrepresented in near minimum
weight code words found by this technique.

Here's the procedure for reconstructing the code once you have the punctured columns:

First take the subcode of the public parity check matrix that lacks support on the punctured columns. (Remove the all-
zero punctured columns from this subcode.) Now, you have a n - k-p x n-p submatrix of a parity check matrix for the
original permuted r, m reed muller code. (Note it’s also a submatrix of the permuted parity check matrix if up to p
columns of zeroes are appended.) The dual code of this matrix contains in its rowspace the truncation of all the reed
muller code words from the original code.

Recall that the minimum weight codewords of the original code all have hamming 2/r. Find k-p linearly independent
codewords from the truncated code that have weight 22r. This can be done by information set decoding.

Now find a word in the truncated code with weight 2r-1. (This can also be done by information set decoding.) Append a
1 to this code word, and append a zero to each of the k-p codewords from the previous step. These generate a k-p+1 x
n-p+1 submatrix of a generator matrix of the permuted r,m reed muller code. Likewise, p-1 columns of zeroes could be
appended, and it would still be a submatrix. Repeat this process, switching generator and parity check matrices each
time to fill in all the missing columns of the generator and parity matrices of the punctured RM code.

We haven’t done a full complexity analysis of the above, but crude heuristic estimates suggest the cost to be
somewhere around 2770 for the originally submitted 128 and 192 bit parameters, and 22100 for the 256 bit parameters.

From: Jacob Alperin-Sheriff [mailto:jacobmas@gmail.com]
Sent: Monday, January 08, 2018 10:04 PM

From: Wijik Lee <leewj422@gmail.com>

Sent: Thursday, January 18, 2018 11:23 AM

To: pgc-forum

Cc: jacobmas@gmail.com; yongwool@ccl.snu.ac.kr; pgc-comments; Alperin-Sheriff, Jacob (Fed);
jsno@snu.ac.kr; leewj422@ccl.snu.ac.kr; iamyskim@chosun.ac.kr; Perlner, Ray (Fed)

Subject: Re: [pgc-forum] OFFICIAL COMMENT: pgsigRM

Dear Perlner, Dear All;

Thank for your valuable comments.

1. By slightly modifying our proposed algorithm, we can make the probabilities of the punctured/inserted and the
unpunctured bits equal.

In this case, we believe that it is hard to find the exact locations of the punctured columns from the public key H'.

In your comments, the near-minimum-weight codewords can be found by standard information set decoding
techniques.

In fact, the codewords generated from H’ are not true codewords of RM code but the vectors replaced by the random
bits in the unknown punctured locations.

Further, the Hamming weight of those vectors is larger than or equal to d_min — p and we dont know their weight
distribution.

2. If we do not modify the our proposed algorithm, we need to increase the parameters of RM(r,m) to increase the
security level.

In case of RM(6, 13), the security level will be close to 128 bits.

We didn't calculate exact security level yet, however:

-The number of codewords with Hamming weight d_min in the punctured RM codes is reduced.

-The complexiy of finding n-p "independent" codewords with Hamming weight d_min needs more than that of finding n-
p codewords with d_min.

2018 1€ 11 5@ @M 7A| 588 72X UTC+9, Perlner, Ray (Fed) = 0| 2

We believe that once the punctured columns are identified, we can reconstruct the entire RM code (with permuted
columns), at which point standard RM attacks like Minder-Shokrollahi and Chizhov-Borodin can be applied.

We also believe that, even if rejection sampling is applied, preventing signatures from giving away information about
the punctured columns, the same information can be recovered relatively inexpensively from the public key alone.
According to the estimate of Minder and Shokrollahi, the original RM generator matrix has at least 2*(rm —r(r-1))
minimum weight codewords (weight 2*(m-r)). These will all be orthogonal to the n-k-p dimensional subcode of the
parity check matrix, which lacks support on the punctured columns. They can all be modified to codewords of the
public code (with modestly increased weight) by substituting the appropriate bits in the punctured columns. (This is
analogous to the signature procedure of the original scheme.) Such near-minimum-weight codewords can be found by
standard information set decoding techniques, at a cost which we estimate to be significantly less than the claimed

From: Perlner, Ray (Fed)

Sent: Friday, January 19, 2018 10:16 AM

To: Wijik Lee; pgc-forum

Cc: jacobmas@gmail.com; yongwool@ccl.snu.ac.kr; pgc-comments; Alperin-Sheriff, Jacob (Fed);
jsno@snu.ac.kr; leewj422@ccl.snu.ac.kr; iamyskim@chosun.ac.kr

Subject: Re: [pgc-forum] OFFICIAL COMMENT: pgsigRM

I'm confused why you think your point 1 contradicts our claim that we can recover the locations of the
punctured columns from the private key alone.

"In fact, the codewords generated from H' are not true codewords of RM code but the vectors replaced by
the random bits in the unknown punctured locations."

Indeed. If the modified RM codeword in question is a minimum weight codeword, the punctured bits will have
probability 1/2 to be set to 1, while the non-punctured bits will only be 1 with probability dmin/n. Since there
is such a modified codeword for every minimum weight codeword in the original RM code, and their weight is
only expected to be larger than dmin by a little less than p/2, | don't believe it would be difficult to recover
enough such modified codewords to detect the puncturing locations.

While | reiterate, we are not accepting modifications to submitted parameters at this time, | don't think
making the weight distribution of signatures more uniform is sufficient to hide the locations of the punctured
columns.

From: Wijik Lee <leewj422@gmail.com>

Sent: Thursday, January 18, 2018 11:22:57 AM

To: pgc-forum

Cc: jacobmas@gmail.com; yongwool@ccl.snu.ac.kr; pgc-comments; Alperin-Sheriff, Jacob (Fed); jsno@snu.ac.kr;
leewj422@ccl.snu.ac.kr; iamyskim@chosun.ac.kr; Perlner, Ray (Fed)

Subject: Re: [pgc-forum] OFFICIAL COMMENT: pgsigRM

Dear Perlner, Dear All;
Thank for your valuable comments.

1. By slightly modifying our proposed algorithm, we can make the probabilities of the punctured/inserted and the
unpunctured bits equal.

In this case, we believe that it is hard to find the exact locations of the punctured columns from the public key H'.

In your comments, the near-minimum-weight codewords can be found by standard information set decoding
techniques.

In fact, the codewords generated from H’ are not true codewords of RM code but the vectors replaced by the random
bits in the unknown punctured locations.

Further, the Hamming weight of those vectors is larger than or equal to d_min — p and we dont know their weight
distribution.

2. If we do not modify the our proposed algorithm, we need to increase the parameters of RM(r,m) to increase the
security level.

In case of RM(6, 13), the security level will be close to 128 bits.

We didn't calculate exact security level yet, however:

-The number of codewords with Hamming weight d_min in the punctured RM codes is reduced.

-The complexiy of finding n-p "independent" codewords with Hamming weight d_min needs more than that of finding n-
p codewords with d_min.

From: Moody, Dustin (Fed)

Sent: Monday, February 05, 2018 2:12 PM

To: Wijik Lee; pgc-forum

Cc: jacobmas@gmail.com; yongwool@ccl.snu.ac.kr; pgc-comments; Alperin-Sheriff, Jacob (Fed);
jsno@snu.ac.kr; leewj422@ccl.snu.ac.kr; iamyskim@chosun.ac.kr; Perlner, Ray (Fed)

Subject: RE: [pqc-forum] OFFICIAL COMMENT: pgsigRM

Pgsigrm team,

We are working on the program for the 1st NIST PQC workshop, which is quite challenging. We received a large number
of submissions, and only have 2 days.

There are several submissions which have been attacked, with the submitter(s) acknowledging (to some degree) that the
attack(s) are successful. NIST will be evaluating the security of all submissions with respect to the original algorithm and
parameters contained in the submission; for the 1st round, as per the call for proposals: we are not allowing changes to
submitted algorithm or parameters to avoid moving targets. Any team whose submission has successfully been broken
should probably consider withdrawing their submission.

pgsigrm is one of these submissions with an attack. We ask you to consider sending us slides or a video in place or
presenting, as it would help us in creating the workshop program. Right now, the time constraints we have, combined
with the number of submissions is making the schedule difficult. We are still encouraging you to attend, but feel the
time for presentations might be best served by being used for submissions which have not yet been successfully
attacked. Please let us know if you would still like to present, or will instead send us slides or a video.

Please let us know as soon as you can. Thanks,

Dustin

From: Wijik Lee [mailto:leewj422 @gmail.com]

Sent: Thursday, January 18, 2018 11:23 AM

To: pgc-forum <pqgc-forum@list.nist.gov>

Cc: jacobmas@gmail.com; yongwool@ccl.snu.ac.kr; pgc-comments <pgc-comments@nist.gov>; Alperin-Sheriff, Jacob
(Fed) <jacob.alperin-sheriff@nist.gov>; jsno@snu.ac.kr; leewj422 @ccl.snu.ac.kr; iamyskim@chosun.ac.kr; Perlner, Ray
(Fed) <ray.perlner@nist.gov>

Subject: Re: [pgc-forum] OFFICIAL COMMENT: pgsigRM

Dear Perlner, Dear All;

Thank for your valuable comments.

1. By slightly modifying our proposed algorithm, we can make the probabilities of the punctured/inserted and the
unpunctured bits equal.

In this case, we believe that it is hard to find the exact locations of the punctured columns from the public key H'.

In your comments, the near-minimum-weight codewords can be found by standard information set decoding
techniques.

In fact, the codewords generated from H’ are not true codewords of RM code but the vectors replaced by the random
bits in the unknown punctured locations.

From: Perlner, Ray (Fed)

Sent: Friday, March 09, 2018 12:30 PM

To: pgc-comments

Cc: pgc-forum@list.nist.gov

Subject: OFFICIAL COMMENT: pgsigRM

Attachments: Equivalent Key for pgsigRM -- Sage.pdf; Equivalent Key for pgsigRM.sws

Dear pgrmsig submitters,

Jacob, Dustin and | have dramatically improved our attack on your proposed 128 and 192 bit parameters. Our
implementation of the attack on the 192 bit parameters can recover an equivalent private key in a matter of seconds
and we expect similar performance for the 128 bit parameters.

1) We can trivially locate the punctured columns by taking the support of the intersection of the public code and its
dual code. The code will have support everywhere except on the punctured columns. (This applies to all three
parameter sets.)

2) Forthe 192 and 128 bit parameters (rm4,12 and rm 6,11) we can apply the Chizov-Borodin attack starting from
the intersection of the code and its dual code. This will be a subcode of rm4,12 for the 128 bit parameters and
rm5, 12 for the 192 bit parameters. The attack performs best when, instead of simply computing a product code
when the Chizov-Borodin attack calls for it, we start with the union of the two codes being multiplied and add
codewords from the product code until we reach the desired rank (e.g. when squaring the subcode of rm5,12
with 30 punctures, we stop when the rank is 30 less than the expected rank of an rm10,12 code.) The attack
yields a permutation that takes the columns of the public parity check matrix to the columns of a punctured
reed muller code of the appropriate size.

In summary, combining these results with our previous observations, it seems that all the known attacks on the
Sidelnikov cryptosystem carry over with minimal overhead to the punctured case. It is possible that a self-dual instance
of the Sidelnikov cryptosystem might be secure, but it likely requires a code larger than even your largest parameter set
(which is itself based on a self-dual code.) The next large Reed Muller code would be a rm(7,15) code, which would yield
a key size of 32 megabytes. It should also be noted that all disguised Reed Muller codes, including their punctured
variants, are detectably non-random, since, unlike random codes, they have a large intersection with their dual codes.

| have attached the sage file implementing our attack on the 192 bit parameters and a pdf record of the output. Dustin
wishes to apologize for the amateurish coding.

Ray Perlner

3/9/2018 Equivalent Key for pgsigRM -- Sage

Equivalent Key for pqsigRM

Wl='/Users/dmoody/Desktop/pgsigrm3.txt’
f=open(W1l)
L=f.readlines()

pk=L[6].rstrip()[5:]

def hextobin(hx):

nun

return hex string to binary string
b=bin(zZZ(hx,base=16))
return b[2:]

def hexbin(st):

W'

for ct in range(0,len(st)):
ts=hextobin(st[ct])
while len(ts)<4:

ts='0"+ts

W=W+ts

return W

PK=hexbin (pk)

len(PK)/4096
1586

def dual(mat):
matl=mat.rref()
T1=[]
for j in range(0,matl.nrows()):
if matl.row(j)==0:
T1l.append(j)
mat2=matl.delete_rows(T1)
T3=[]
T2=[]
mr=mat2.rank()
for j in range(0,mat2.ncols()):
if j<mr and j not in mat2.pivots():
T3.append(j)
if j>mr-1 and j in mat2.pivots():
T2.append(j)
for j in range(0,len(T2)):
mat2.swap_columns(T3[j]1,T2[]j])
mat2=mat2.rref()
mat3=mat2.submatrix(0,mr,mr,mat2.ncols()-mr)
mat4=mat3.transpose()
i5=matrix.identity(GF(2),mat4.nrows())
mat5=mat4.augment(i5)
for j in range(0,len(T2)):
mat5.swap_columns(T3[j]1,T2[j])
return mat5

R=GF (2)

M=matrix(GF(2), 1586, 4096, lambda i, j: R(PK[j+4096*i]));

M
1586 x 4096 dense matrix over Finite Field of size 2 (use the
'.str()' method to see the entries)

M.rank()
1586

M2=dual (M)

M2
2510 x 4096 dense matrix over Finite Field of size 2 (use the
'.str()' method to see the entries)

M2.rank()
2510

http://localhost:8080/home/admin/202/print 1/4

3/9/2018 Equivalent Key for pgsigRM -- Sage

M3=M.stack(M2)

M3
4096 x 4096 dense matrix over Finite Field of size 2 (use the
'.str()' method to see the entries)

M3.rank()
2570

M4=dual (M3)

M4
1526 x 4096 dense matrix over Finite Field of size 2 (use the
'.str()' method to see the entries)

z23=[1]

for j in range(0,M4.ncols()):
if M4.column(j)==0:
Z3.append(j)
len(Z3)
30
print 23
[154, 345, 571, 601, 958, 1123, 1430, 1471, 1739, 2021, 2186, 2195,

2240, 2441, 2468, 2620, 2770, 2840, 2888, 2932, 2940, 3232, 3490,
3535, 3591, 3875, 3936, 4004, 4067, 4084]

mr4=M4.rank()
mr4
1526
£1g=0
£f1g1=0
for cl in range(0,mr4):
for c2 in range(cl,mr4):
rl=M4.row(cl)
r2=M4.row(c2)

if flg==0:
M5=copy (M4)
flg=1

mm=matrix(GF(2),1,M4.ncols(),lambda i,j: rl[jl*r2[]])
M5=M5.stack (mm)
if c2==mr4-1:
M5=M5.rref ()
W=[]
for rw in range(0,M5.nrows()):
if M5.row(rw)==0:
W.append(rw)
M5=M5.delete_rows (W)
mr=M5.rank()
print cl,mr
if mr==M5.ncols()-13-len(23):
print 'done'
flgl=2
break
if flgl==2:
break
if flgl==2:
break
2768
3399
3726
3888
3973
4018
4036
4044
4047
9 4049
10 4051
11 4052
12 4053
done
1525 4053
done

M5

4053 x 4096 dense matrix over Finite Field of size 2 (use the
'.str()' method to see the entries)

Mé6=dual (M5)
M6

43 x 4096 dense matrix over Finite Field of size 2 (use the '.str()'
http://localhost:8080/home/admin/202/print 2/4

O~V WNEE O

3/9/2018 Equivalent Key for pgsigRM -- Sage
method to see the entries)

M7=M6.rref ()
M7

43 x 4096 dense matrix over Finite Field of size 2 (use the '.str()'
method to see the entries)

Msub=M7.submatrix(0,0,13,4096)
Msub

13 x 4096 dense matrix over Finite Field of size 2 (use the '.str()'
method to see the entries)

M8=matrix(Msub.row(0)+Msub.row(1l))

for j in range(1l,12):
M8=M8.stack(matrix(Msub.row(j)+Msub.row(j+1)))

M8

12 x 4096 dense matrix over Finite Field of size 2 (use the '.str()'
method to see the entries)

ct=0

CSet=M8.columns ()

CSet.sort()

for j in range(0,len(CSet)-1):
if CSet[j]==CSet[j+1]:

ct=ct+1
print ct
30
ZM=matrix.zero(GF(2),1586,4096)
zM

1586 x 4096 dense matrix over Finite Field of size 2 (use the
'.str()' method to see the entries)

def coltobin(col):
sm=0
for j in range(0,12):
sm=sm+2"j*Z%Z(col[1l1-]j])
return sm

for j in range(0,4096):
col=M8.column(j)
tn=coltobin(col)
ZM.set_column(tn,M.column(j))

M
1586 x 4096 dense matrix over Finite Field of size 2 (use the
'.str()' method to see the entries)
S.<x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12>=GF(2)[]
S

Multivariate Polynomial Ring in x1, x2, x3, x4, x5, x6, x7, x8, x9,
x10, x11, x12 over Finite Field of size 2

P=[]
for j in range(0,32):
P.append(S.random_element(5))

def func(fl,j):

st=bin(j)[2:].2£i11(12)

return
f1(2Z(st[0]),2%(st[1]),2%(st[2]),2%(st[3]),22(st[4]),2Z(St[5]),2Z(st[6]),2Z(st[7]),2Z(st[8]),22(st[9]),2ZZ(st[10]),

NM=matrix(GF(2), 1, 4096, lambda i, j: func(P[O0],]));

for jj in range(l,32):
NMl=matrix(GF(2), 1, 4096, lambda i, j: func(P[]Jjl1,])):;
NM=NM.stack(NM1)
NM
32 x 4096 dense matrix over Finite Field of size 2 (use the '.str()'
method to see the entries)
Z5=[]
for j in range(0,4096):
if ZM.column(j)==0:
Z5.append(Jj)
len(Z5)
30

http://localhost:8080/home/admin/202/print 3/4

3/9/2018 Equivalent Key for pgsigRM -- Sage

NM2=matrix(GF(2), 32, 30, lambda i, j: NM[i,Z5[]]11);
NM2

32 x 30 dense matrix over Finite Field of size 2 (use the '.str()'
method to see the entries)

B1l=NM2.left_kernel().basis()

NM3=B1[0]*NM

NM3 in ZM.row_space()
True

http://localhost:8080/home/admin/202/print 4/4

From: Yongwoo Lee <yongwool@ccl.snu.ac.kr>

Sent: Monday, April 02, 2018 3:44 AM

To: pgc-comments

Cc: pqc-forum@list.nist.gov

Subject: RE: [pgc-forum] OFFICIAL COMMENT: pgsigRM

Dear Dr. Perlner, Dr. Moody and Dr. Alperin-Sheriff.

Thank you for your comments.
We found that the proposed attacks can be prevented by simply changing the random matrix part of the

generator matrix to another position of the generator matrix.

The public key of pgsigRM is a permuted parity check matrix corresponding to the generator matrix of the
RM code, in which p columns are replaced by random vectors.
Here, we will simply replace another position of the generator matrix with random matrix, instead of “p col

umns”.

For example, in pgsigRM-6-13, G represents the generator matrix of RM (6,13).

We replace the partial matrices, G[3534:3790, 6144: 6656], G[3534:3790, 6656:7168], G[3534:3790, 7168: 76
80], and G[3534:3790, 7680: 8192] with [R|R], where R is a 256 * 256 binary random non-singular matrix an
d this modified generator matrix is referred to as G_m.

(G[3534:3790, 6144: 6656], G[3534:3790, 6656:7168], G[3534:3790, 7168: 7680], and G[3534:3790, 7680: 819
2] originally corresponds to the generator matrix of RM(4,9).)

G_m is described as in Fig.1.

RM(6, 12) RM(&, 12)
RM(5, 11) RM(5, 11)
0
0 RIR RIR RIR BIR

Fig. 1. Generator matrix of modified RM code

Then we can build the parity check matrix H_m corresponding G_m, and generate an (n-k)*(n-k) scrambler
matrix S and n*n permutation matrix Q.
The public key is given as H' = S*H_m*Q.

The private keys are given as S, Q.

In this case, we do not need to obtain e_p separately when signing.
Instead, we can include this process in syndrome decoding.
You can decode this code by simply adding two lines to the original recursive decoding of RM code. Modi

fications are shown in Algorithm 1.(the first two lines in red).

With this modification, there are no all-zero position on the hull of public key.

The probability of 1's in the elements of the signature is not different.

Near-minimum weight codewords are no longer useful for locating the punctured/inserted positions.
Because 1/4 elements of each codeword are replaced by random elements and the minimum weight of th
e code is much less than n/4.

Modifying the generator matrix in this way also prevents square code attack, Chizhov-Borodin attack, and
Minder-Shokrollahi attack.

For 196-bit security,
we replace G[1868: 2124, 2560: 3072] and G[1868: 2124, 3584: 4096] with [R|R], where G is a generator ma
trix of RM(6,12).

For 128-bit security,
we replace G[894: 958, 1536: 1664], G[894: 958, 1664: 1792], G[894: 958, 1792: 1920] and G[894: 958, 1920:
2048] with [R|R], where G is a generator matrix of RM(5,11).

Algorithm 1. Modified decoding of pgsigRM
rec_dec(y, r, m, rear, front):
if front == 3534 and rear == 3790:
y[front : rear] <- the nearest 2-repetition codeword from y[front : rear]
else if r ==
dl <- distance(y[frontrrear], [-1 -1 -1 ... -1]);
d2 <- distance(y[frontrrear], [111 .. 1]);
if d1 < d2:
y[frontrear] <- [-1 -1 -1 ... -1]
else:
y[frontrear] <-[1 11 ..1]

elif r == m:

for i from front to rear:
yli] <- (yli] >=0)? 1. -1
else:
mid = (front + rear)/2
y_v <- copy(y[mid : rear])
y [mid : rear] <- y[mid : rear] * y[front : mid]
rec_dec(y, r-1, m-1, mid, rear)
y [front:mid] <-(y [front: mid] + y [mid : rear] * y_v)/2
rec_dec(y, r, m-1, rear, mid)

y [mid : rear] <- y[mid : rear] * y[front : mid]

Yongwoo Lee.

From: Perlner, Ray (Fed) <ray.perlner@nist.gov>
Sent: Saturday, March 10, 2018 2:30 AM

To: pgc-comments <pgc-comments@nist.gov>

Cc: pqc-forum@list.nist.gov

Subject: [pgc-forum] OFFICIAL COMMENT: pgsigRM

Dear pgrmsig submitters,

Jacob, Dustin and | have dramatically improved our attack on your proposed 128 and 192 bit parameters. Our
implementation of the attack on the 192 bit parameters can recover an equivalent private key in a matter of seconds
and we expect similar performance for the 128 bit parameters.

1) We can trivially locate the punctured columns by taking the support of the intersection of the public code and its
dual code. The code will have support everywhere except on the punctured columns. (This applies to all three
parameter sets.)

2) Forthe 192 and 128 bit parameters (rm4,12 and rm 6,11) we can apply the Chizov-Borodin attack starting from
the intersection of the code and its dual code. This will be a subcode of rm4,12 for the 128 bit parameters and
rm5, 12 for the 192 bit parameters. The attack performs best when, instead of simply computing a product code
when the Chizov-Borodin attack calls for it, we start with the union of the two codes being multiplied and add
codewords from the product code until we reach the desired rank (e.g. when squaring the subcode of rm5,12
with 30 punctures, we stop when the rank is 30 less than the expected rank of an rm10,12 code.) The attack
yields a permutation that takes the columns of the public parity check matrix to the columns of a punctured
reed muller code of the appropriate size.

In summary, combining these results with our previous observations, it seems that all the known attacks on the
Sidelnikov cryptosystem carry over with minimal overhead to the punctured case. It is possible that a self-dual instance
of the Sidelnikov cryptosystem might be secure, but it likely requires a code larger than even your largest parameter set
(which is itself based on a self-dual code.) The next large Reed Muller code would be a rm(7,15) code, which would yield
a key size of 32 megabytes. It should also be noted that all disguised Reed Muller codes, including their punctured
variants, are detectably non-random, since, unlike random codes, they have a large intersection with their dual codes.

| have attached the sage file implementing our attack on the 192 bit parameters and a pdf record of the output. Dustin
wishes to apologize for the amateurish coding.

Ray Perlner

From: Perlner, Ray (Fed)

Sent: Wednesday, April 04, 2018 12:25 PM

To: Yongwoo Lee; pgc-comments

Cc: pqc-forum@list.nist.gov

Subject: RE: [pgc-forum] OFFICIAL COMMENT: pgsigRM

Dear submitters,

We believe that the modification suggested in your previous email makes the RM(6,13) code significantly weaker than
the unmodified code and we believe all of the modified codes in the previous email can be practically broken.

A couple of points to make the notation easier. First, note that WLOG, we may assume that the 256x256 matrix R is an
identity matrix, since (0....0|R|R|R|R|R|R|R|R) and RA-1(0....0| R|R|R|R|R|R|R|R) = (0...0|I|I]I]I]1]1]1]1) generate the
same code. Second, we will think of codewords as being polynomials over the variables (x0, x1, x2 x3 ... x12), where x0
represents the high order bit of the column index and x12 represents the low order bit of the column index. So, for
example, the support of xOx1 is identical to the locations of the modified columns, and the codewords generated by
(0.0 1] L[L[L[E[1]1]1) are of the form x0*x1*p(x5, X6, X7, ... x12), for some polynomial p. Note also that the symmetries of
the modified code are such that it will have the same form if we substitute any degree 1 polynomials for (x0, x1, x2 x3 ...
x12) and reorder the columns accordingly, as long as the above two properties hold. We now describe the procedure for
key recovery.

1) Use information set decoding to find codewords in the modified code that have hamming weight 8. There will be
256 such codewords and their combined support will be the support of x0*x1.

2) We can also easily recover the code generated by x0 and x1. If we take the subcode of the public code that lacks
support on x0*x1 (i.e. the dual code of (1+ x0x1) times the public code) and square it, we get a code whose dual
code (restricted to the columns where x0*x1 lacks support) is generated by 1, x0, and x1.

3) WLOG we may pick two weight 4096 codewords from this dual code, each containing the support of x0x1, and
call them x0 and x1.

4) We may now apply Chizov Borodin to the submatrices of the public code consisting of the support columns of 1+
x0 and 1+x1. Each submatrix has a rowspace equal to an RM (6,12) code and can be attacked cheaply since
GCD(6,12-1) = 1. We need to make sure that the two column orderings agree, but this just amounts to a linear
constraint that the same degree 1 codeword is assigned to be x2, x3 ... x12 in both cases.

5) The Chizov Borodin attack may also be applied to x1 times the public code, but in this case there is a slight
complication. The rowspace of that code contains an RM(6,12) code, but it also contains the codewords
generated by (0....0[I|1]1]I]I|I[I]]). To get rid of these, we may take the intersection of the code with its dual
code, resulting in a subcode of RM (5,12). This will not contain all the codewords from RM(5,12), but it will
contain all degree 4 monomials that do not include a factor of x2*x3*x4. As such, the square of this code will be
identical to RM(8,12), since we can get degree 8 monomials containing x2*x3*x4 e.g. by multiplying
X2*x5*x6*x7*x8 by x3*x4*x9*x10*x11 to get x2*x3*x4*x5*x6*x7*x8*x9*x10*x11. Again we have some linear
constraints on the choice of degree 1 codewords. In particular, all three assignments of degree 1 codewords to
variables (x0, x1, ... x12) must agree, x0 and x1 must agree with our original assignment of variables, and x5, ...
x12 must either be identically 1 or identically 0 on the support of each of the weight 8 codewords extracted in
step 1.

We've verified some of this experimentally, but haven’t yet implemented the whole attack.

From: Yongwoo Lee [mailto:yongwool@ccl.snu.ac.kr]
Sent: Monday, April 02, 2018 3:44 AM
To: pgc-comments <pqc-comments@nist.gov>

From: Yongwoo Lee <yongwool@ccl.snu.ac.kr>

Sent: Wednesday, April 11, 2018 10:31 AM

To: Perlner, Ray (Fed)

Cc pgc-forum@list.nist.gov; pgc-comments; Jong-Seon No; Zl G Al ccl 0| 2| 2lH
Subject: Re: [pgc-forum] OFFICIAL COMMENT: pgsigRM

Follow Up Flag: Follow up
Flag Status: Flagged

Dear Dr. Perlner.

Thank you for your comment.

After reviewing the attacking algorithm you proposed, we found that we could modify our proposed algorithm to defend against that attack.
To be more specific, the inserted matrix does not have to be a generator matrix of 2-repitition codes.

This can be replaced by a generator matrix of any code that has a decoding algorithm which returns a codeword even in the presence of a
large error.

For example, we can partially modify the generator matrix of RM(5,11) with the permuted generator matrix of RM(4, 9), instead of 2-
repitition codeas below.

Experiments have shown that decoding performance is good in this case.(Of course, the decoding requires additional depermutation.)

Applying this idea, we have devised a way to replace the larger part of the generator matrix.

For example, for 128-bit security, the public code is, H' = S*H_m*Q, where H_m is the parity check matrix of the modified RM code, generated
by the modified generator matrix of RM(5,11) as below:

And then, the decoding algorithm becomes:

Algorithm 1. Modified decoding of pgsigRM

rec_dec(y, r, m, rear, front):
ifr==0:
perform MD decoding on RM(0,m)
elifr==m:
perform MD decoding on RM(r,r)
else:
if front == 1024 and rear == 1536:
depermutation on y[front: rear]
mid = (front + rear)/2
y_uv <- copy(y[mid : rear])
y [mid : rear | <- y[mid : rear] * y[front : mid |
rec_dec(y, r-1, m-1, mid, rear)
y [front: mid] <- (y [front: mid | + y [mid : rear | *y_uv)/2
rec_dec(y, r, m-1, rear, mid)
y [mid : rear] <- y[mid : rear] * y[front : mid |
if front == 1024 and rear == 1536:

permutation on y[front : rear]

This modification allows the huge part of generator matrix replaced while achieving good decoding performance.

We also will upload our modified document.

Best regards.

Yongwoo Lee

From: Yongwoo Lee <yongwool@ccl.snu.ac.kr>

Sent: Monday, June 04, 2018 5:42 AM

To: pgc-forum@list.nist.gov; pgc-comments

Cc 'Jong-Seon No'; 'ZI Al 'ccl O] Q| &l &
Subject: RE: [pgc-forum] OFFICIAL COMMENT: pgsigRM
Attachments: doc.pdf

Dear all.

We have updated the documentation and code.
You can see the updated documentation and code below:

https://sites.google.com/view/pgsigrm/home

Yours!

pgsigRM Team.

From: Yongwoo Lee <yongwool@ccl.snu.ac.kr>
Sent: Wednesday, April 11, 2018 11:31 PM
To: Perlner, Ray (Fed) <ray.perlner@nist.gov>

Cc: pac-forum@list.nist.gov; pgc-comments <pgc-comments@nist.gov>; Jong-Seon No <jsno@snu.ac.kr>; Zl G4l

<iamyskim@chosun.ac.kr>; ccl O| 2| 2 <leewjd22@ccl.snu.ac.kr>
Subject: Re: [pgc-forum] OFFICIAL COMMENT: pgsigRM

Dear Dr. Perlner.

Thank you for your comment.

After reviewing the attacking algorithm you proposed, we found that we could modify our proposed algorithm to defend against that attack.
To be more specific, the inserted matrix does not have to be a generator matrix of 2-repitition codes.

This can be replaced by a generator matrix of any code that has a decoding algorithm which returns a codeword even in the presence of a large
error.

For example, we can partially modify the generator matrix of RM(5,11) with the permuted generator matrix of RM(4, 9), instead of 2-repitition
codeas below.

Experiments have shown that decoding performance is good in this case.(Of course, the decoding requires additional depermutation.)

Applying this idea, we have devised a way to replace the larger part of the generator matrix.

http:leewj422@ccl.snu.ac.kr
http:iamyskim@chosun.ac.kr
http:jsno@snu.ac.kr
http:ray.perlner@nist.gov
http:yongwool@ccl.snu.ac.kr
https://sites.google.com/view/pqsigrm/home
http:pqc-forum@list.nist.gov
http:yongwool@ccl.snu.ac.kr

From: Perlner, Ray (Fed)

Sent: Tuesday, June 12, 2018 2:46 PM

To: Yongwoo Lee; pgc-forum®@list.nist.gov; pgc-comments
Cc 'Jong-Seon No'; 'ZI Al 'ccl O] Q| &l &

Subject: RE: [pgc-forum] OFFICIAL COMMENT: pgsigRM

On looking at some modified keys of the form described, Dustin and | found that the dual of the hull of such codes
typically has a lot of code words with hamming weight 4. We suspect, but haven’t yet checked, that the support of such
codewords, as found by standard information set decoding techniques will reveal which columns have been modified.
Given that information, techniques we’ve already described should be sufficient to easily recover the key. Please
comment.

Thanks,
Ray

From: Yongwoo Lee [mailto:yongwool@ccl.snu.ac.kr]
Sent: Monday, June 04, 2018 5:42 AM
To: pqgc-forum@list.nist.gov; pgc-comments <pgc-comments@nist.gov>

Cc: 'Jong-Seon No' <jsno@snu.ac.kr>; 'Z GAl' <iamyskim@chosun.ac.kr>; 'ccl O| 2| & A" <leewj422@ccl.snu.ac.kr>
Subject: RE: [pgc-forum] OFFICIAL COMMENT: pgsigRM

Dear all.
We have updated the documentation and code.
You can see the updated documentation and code below:

https://sites.google.com/view/pgsigrm/home

Yours!

pgsigRM Team.

From: Yongwoo Lee <yongwool@ccl.snu.ac.kr>
Sent: Wednesday, April 11, 2018 11:31 PM
To: Perlner, Ray (Fed) <ray.perlner@nist.gov>

Cc: pgc-forum@list.nist.gov; pgc-comments <pgc-comments@nist.gov>; Jong-Seon No <jsno@snu.ac.kr>; Zl G Al

<iamyskim@chosun.ac.kr>; ccl O| 2| & A <leewjd22@ccl.snu.ac.kr>
Subject: Re: [pgc-forum] OFFICIAL COMMENT: pgsigRM

Dear Dr. Perlner.

Thank you for your comment.

After reviewing the attacking algorithm you proposed, we found that we could modify our proposed algorithm to defend against that attack.

To be more specific, the inserted matrix does not have to be a generator matrix of 2-repitition codes.
1

http:leewj422@ccl.snu.ac.kr
http:iamyskim@chosun.ac.kr
http:jsno@snu.ac.kr
http:ray.perlner@nist.gov
http:yongwool@ccl.snu.ac.kr
https://sites.google.com/view/pqsigrm/home
http:leewj422@ccl.snu.ac.kr
http:iamyskim@chosun.ac.kr
http:jsno@snu.ac.kr
http:mailto:yongwool@ccl.snu.ac.kr

From: Yongwoo Lee <yongwool@ccl.snu.ac.kr>

Sent: Thursday, October 04, 2018 12:41 AM

To: Perlner, Ray (Fed); pgc-forum®@list.nist.gov; pgc-comments
Cc 'Jong-Seon No'; 'ZI @Al 'ccl 0| Q| &l &

Subject: {Disarmed} [pqgc-forum] OFFICIAL COMMENT: pgsigRM

Dear Perlner.

Sorry for late answer.

It seems natural that the minimum weight of the dual of hull is as small as four.

The reason for this is the dimension of the dual of hull is large, and it is not a well-designed code.
However, we have found an attack algorithm that finds half of the permutation Q using the statistical char
acteristic of low weight codewords of the dual of hull.

However, we found that we could modify pgsigRM'’s public code slightly to prevent these attacks, which re

duces the signing time.

Cryptanalysis of pgsigRM using the low weight Hamming weight codewords of the dual of the hull.

Collecting the low weighted codewords of the dual of the hull of the public code shows that the probabilit
y bit 1 is different depending on the location.

For example, in pgsigRM-5-11, the bits of c(n/4, ..., 2n/4 -1) (indices before permutation Q) are always 0, w
here c is a codeword of of the dual of the hull with Hamming weight less than or equal to 8.

In addition c(0, ..., n/4 -1) are more probable to be 1 and c(2n/4, ..., n-1) is less probable to be one. Using

this fact, we can design an attack algorithm to reveal the half of permutation Q.

An attacker can easily obtain the dual of hull of public code.

Next, by information set decoding, he can collect low weight codewords of the dual of the hull. Since the t
arget weight is small, the information set decoding can efficiently be done. Using the statistical feature, he
can divide the permutation into three parts: (0, ..., n/4-1), (n/4, ..., 2n/4-1), and (2n/4, ..., n-1).

Note that for any codeword c of pgsigRM, c(O, ..., n/2-1) is a original RM(r, m-1).

Chizhov-Borodin’s attack can be performed on c(O, ..., n/2-1), which makes it to find out the half of permu
tation Q.

Hull vulnerability of pgsigRM

The hull of the previously proposed pqgsigRM's public code is a subset of original RM code. There is a thre
at by Minder-Shokrollahi's attack using the property.

Hence, we have to design our public code such that its hull is not a subset or many codewords of the hul

[is not in RM code.

Modified version of pgsigRM preventing those attacks

In summary, the following two properties should be considered.

There should be no statistical characteristics of the low weight codeword in the dual of the hull.

Hull should not be the subset of original RM code. Moreover, there should be many codewords in the hull
of public code which are not RM code.

In addition, since RM code has a u|u+v structure, we have to consider:

The hull is not a u | u code.

Moreover, we propose method to reduce the signing time.

Modified RM code

We define ¥sigma_(p)*1(.) and Wsigma_(p)*2(.) as two distinct partial permutations which are randomly pe

rmute of p columns out of n/4 columns.

The modified code C is given as:

C = {(Wsigma_(p)1)(x|x|x|x) | x in RM(r,m-2)} + {(0|x|O|x) | x in RM(r-1, m-2)}
+{(0|0]x|x) | x in RM(r-1, m-2)} + {(#tsigma_(p)”~2)(0[0|0|x) | x in RM(r-2, m-2)}

which is described in the document.

C satisfies the above four conditions that public code should have.

Also, it is resistant to all attacks against the proposed RM code based crypto algorithms until this point.

Please refer to the updated pgsigRM document for details on performance analysis, parameters, and so on

link: https://sites.google.com/view/pgsigrm/home/documentation

Thanks,
pqsigRM Team.

From: Perlner, Ray (Fed) <ray.perlner@nist.gov>
Sent: Wednesday, June 13, 2018 3:46 AM
To: Yongwoo Lee <yongwool@ccl.snu.ac.kr>; pgc-forum@list.nist.gov; pgc-comments <pgc-comments@nist.gov>

Cc: 'Jong-Seon No' <jsno@snu.ac.kr>; ' &2 Al <jamyskim@chosun.ac.kr>; 'ccl O] 2| & A" <leewj422 @ccl.snu.ac.kr>
Subject: RE: [pgc-forum] OFFICIAL COMMENT: pgsigRM

On looking at some modified keys of the form described, Dustin and | found that the dual of the hull of such codes

typically has a lot of code words with hamming weight 4. We suspect, but haven’t yet checked, that the support of such
2

http:leewj422@ccl.snu.ac.kr
http:iamyskim@chosun.ac.kr
http:jsno@snu.ac.kr
http:yongwool@ccl.snu.ac.kr
http:ray.perlner@nist.gov
https://sites.google.com/view/pqsigrm/home/documentation

From: Yongwoo Lee <yongwool@ccl.snu.ac.kr>

Sent: Thursday, October 04, 2018 9:00 PM

To: pgc-forum@list.nist.gov; pgc-comments; Perlner, Ray (Fed)
Cc 'Jong-Seon No’; 'ZI P Al" 'ccl O] &l

Subject: RE: [pgc-forum] OFFICIAL COMMENT: pgsigRM

Dear all.

We modified the email yesterday for readability as follows.

It is easy to check that the minimum Hamming weight of the dual of hull

of the public code (H’) in the previous document is as small as four.

The reason for this is that the dimension of the dual of hull is large

and it is not a well-designed code.

However, we have found an attack algorithm to find half of the permutation Q

using the statistical characteristic of low Hamming weight codewords of the dual of hull.

However, we found that we could modify pgsigRM'’s public code slightly

to prevent these attacks as in the revised pgsigRM document,

which reduces the signing time.

1) Cryptanalysis of pgsigRM using the low Hamming weight codewords

of the dual of the hull in the previous document.

Collecting the low Hamming weight codewords of the dual of the hull of the public code

shows that the probability of bit 1 is different depending on the location.

For example, in pgsigRM-5-11, the bits of c(n/4, ..., 2n/4 -1) (indices before permutation Q) are always O,
where c is a codeword of of the dual of the hull with Hamming weight less than or equal to 8.

In addition, the elements of c(0, ..., n/4 -1) are more probable to be 1 and

the element of c(2n/4, .., n-1) is less probable to be 1.

Using this fact, we can design an attack algorithm to reveal the half of permutation Q.

An attacker can easily obtain the dual of hull of the public code.

Next, by information set decoding, he can collect low Hamming weight codewords of the dual of the hull.
Since the target Hamming weight is small, the information set decoding can efficiently be done.

Using the statistical feature, he can divide the permutation into three parts: (O, ..., n/4-1), (n/4, ..., 2n/4-1), a
nd (2n/4, ..., n-1).

Note that for any codeword c of pgsigRM, c(0, .., n/2-1) is a codeword of RM(r, m-1).

1

Chizhov-Borodin's attack can be performed on c(0, ..., n/2-1), which makes it possible to find out the half
of permutation Q.

Thus, pgsigRM in the previous document is not secure.

2) Hull vulnerability of pgqsigRM

The hull of the previously proposed pgsigRM's public code is a subset of original RM code,
which makes it possible to attack pgsigRM by Minder-Shokrollahi's attack.
Hence, we have to design our public code such that its hull is not a subset of RM code

or many codewords in the hull is not in RM code.

3) Modified version of pgqsigRM preventing those attacks in the modified document

In summary, the following two properties should be considered.
i) There should be no statistical characteristics of the low Hamming weight codewords in the dual of t
he hull.
i) Hull should not be the subset of the original RM code. Moreover, there should be many codewords
in the hull of public code which are not in RM code.
In addition, since RM code has a u|u+v structure, we have to consider:
iii) The hull should not be a (u | u) code.

iv) Moreover, we propose method to reduce the signing time.

Thus, modified RM code in the modified version of pgsigRM is given as follows:

We define ¥sigma_(p)~1(.) and Wsigma_(p)"2(.) as two distinct partial permutations

which are randomly permute p columns out of n/4 columns of generator matrix.

The modified code C is given as:
C = {X|[X|X|X)}; X denotes (#sigma_(p)*1)(RM(r,m-2))
+ {(OX|0]X)}; X denotes RM(r-1, m-2)
+ {(0[0|X|X)}; X denotes RM(r-1, m-2)
+ {(0|0|0|X)}; X denotes (Wsigma_(p)"2)(RM(r-2, m-2))
which is described in the document in details.
C satisfies the above four conditions that the public code of the modified pgsigRM should have.
Also, it is resistant to all attacks against the proposed RM code based crypto algorithms upto this point.

Please refer to the updated pqgsigRM document for details on performance analysis, parameters, and so on

link: https://sites.google.com/view/pgsigrm/home/documentation
2

https://sites.google.com/view/pqsigrm/home/documentation

Thanks,
pqgsigRM Team.

From: Yongwoo Lee <yongwool@ccl.snu.ac.kr>
Sent: Thursday, October 4, 2018 1:41 PM
To: 'Perlner, Ray (Fed)' <ray.perlner@nist.gov>; pgc-forum@list.nist.gov; 'pgc-comments' <pgc-comments@nist.gov>

Cc: 'Jong-Seon No' <jsno@snu.ac.kr>; 'Z GAl' <iamyskim@chosun.ac.kr>; 'ccl O| | & A" <leewj422@ccl.snu.ac.kr>
Subject: {Disarmed} [pgc-forum] OFFICIAL COMMENT: pgsigRM

Dear Perlner.

Sorry for late answer.

It seems natural that the minimum weight of the dual of hull is as small as four.

The reason for this is the dimension of the dual of hull is large, and it is not a well-designed code.
However, we have found an attack algorithm that finds half of the permutation Q using the statistical char
acteristic of low weight codewords of the dual of hull.

However, we found that we could modify pgsigRM'’s public code slightly to prevent these attacks, which re

duces the signing time.

Cryptanalysis of pgsigRM using the low weight Hamming weight codewords of the dual of the hull.

Collecting the low weighted codewords of the dual of the hull of the public code shows that the probabilit
y bit 1 is different depending on the location.

For example, in pgsigRM-5-11, the bits of c(n/4, ..., 2n/4 -1) (indices before permutation Q) are always 0, w
here c is a codeword of of the dual of the hull with Hamming weight less than or equal to 8.

In addition c(0, ..., n/4 -1) are more probable to be 1 and c(2n/4, ..., n-1) is less probable to be one. Using

this fact, we can design an attack algorithm to reveal the half of permutation Q.

An attacker can easily obtain the dual of hull of public code.

Next, by information set decoding, he can collect low weight codewords of the dual of the hull. Since the t
arget weight is small, the information set decoding can efficiently be done. Using the statistical feature, he
can divide the permutation into three parts: (0, ..., n/4-1), (n/4, ..., 2n/4-1), and (2n/4, ..., n-1).

Note that for any codeword c of pgsigRM, c(O, ..., n/2-1) is a original RM(r, m-1).

Chizhov-Borodin’s attack can be performed on c(O, ..., n/2-1), which makes it to find out the half of permu
tation Q.

Hull vulnerability of pgsigRM

http:leewj422@ccl.snu.ac.kr
http:iamyskim@chosun.ac.kr
http:jsno@snu.ac.kr
http:ray.perlner@nist.gov
http:yongwool@ccl.snu.ac.kr

From: Yongwoo Lee <yongwool@ccl.snu.ac.kr>

Sent: Wednesday, October 10, 2018 8:27 PM

To: pqc-forum@list.nist.gov; pgqc-comments
Cc: Jong-Seon No; ZIHAl: 0|2 &l ccl
Subject: [pgc-forum] OFFICIAL COMMENT: pgsigRM
Dear all.

For modified pqgsigRM, the signing time has decreased noticeably.

Modified pgsigRM uses a variant of RM code created by performing a partial column permutation of the submatrices of
the generator matrix of the original RM code.

That is, instead of applying a permutation over the entire columns of submatrices of the generation matrix, the only p
columns of the submatrices are selected and permuted.

The signing of pgsigRM continues to generate and decode the random syndrome until it finds an error with a Hamming
weight less than the error weight parameter w.

Numerical analysis shows that this partial permutation reduces the number of iterations by reducing the Hamming
weight of errors corresponding to arbitrary syndromes.

The following table shows average CPU cycles for key generation, signing, and verification for the previous pgsigRM and
the modified pgsigRM.

1) Previous pgsigRM

- pasigRM511 pgsigRM612 pgsigRM613

keygen 2,835,134,117 15,508,497,124 148,083,372,103
sign 35,474,570,593 33,833,504,050 782,682,818
verif. 32,654,852 136,814,529 539,106,661

2) Modified pqsigRM

- pqgsigRM511 pgsigRM612 pqgsigRM613

Keygen 2,801,693,623 15,818,410,252 199,070,582,764
sign 11,416,574 15,654,185 125,877,121
verif. 2,264,385 7,018,003 36,536,323
Thanks.

pgsigRM Team.

2018.10.5. 27 9:59, Yongwoo Lee <yongwool@ccl.snu.ac.kr> ZFAd:

Dear all.

We modified the email yesterday for readability as follows.

It is easy to check that the minimum Hamming weight of the dual of hull
of the public code (H') in the previous document is as small as four.
The reason for this is that the dimension of the dual of hull is large

and it is not a well-designed code.

http:yongwool@ccl.snu.ac.kr
http:pqc-forum@list.nist.gov
http:yongwool@ccl.snu.ac.kr

From: Yongwoo Lee <yongwool@ccl.snu.ac.kr>

Sent: Tuesday, June 11, 2019 5:57 AM

To: Jong-Seon No

Cc: pgc-forum@list.nist.gov; 2 F4!; ccl O] 2| &AH
Subject: Re: [pgc-forum] OFFICIAL COMMENT: pgsigRM
Attachments: image002.png

Dear all.

We have updated pqgsigRM.

Using code and decoding to find small weight error vectors for a given syndrome, we can reduce the iterations needed
to sign in the CFS signature scheme.

It can be implemented as a constant-time algorithm that ensures successful signatures, with dozens to thousands of
iterations.

We also resolved all the issues mentioned in pgc-forum by further modifying using adding/removing some rows of
generator matrix.

You can see the document in the Archive:
https://eprint.iacr.org/2019/678

Thanks.
pgsigRM team.

20194 5& 21 (2 2F 2:19, Jong-Seon No <jsno@snu.ac.kr>'=l O] /.

Dear Dr. Ray Perlner;

[am one of submitters of pqsigRM

and enjoyed your talk at CBC, Darmstadt last weekend.

In fact, we totally modified our proposal, pgsigRM,

called a modified pqsigRM as attached.

We think that the modified pgsigRM is robust against all known attacks.
Now, there is no code-based post-quantum signature scheme

in the second round. As you said, standardization should be diverse

RM(6, 12) RM(6, 12)

RM(5, 11) RM(5, 11)
0
0 RIR RIR R|R RIR
0 RMB9 0 AMBY

0 R 3,10

