
DRS : Diagonal dominant Reduction for lattice-based Signature

Thomas PLANTARD,
Arnaud SIPASSEUTH, Cédric DUMONDELLE, Willy SUSILO

Institute of Cybersecurity and Cryptology
School of Computing and Information Technology

University of Wollongong
Australia

1 Background

Defnition 1. We call lattice a discrete subgroup of Rn . We say a lattice is an integer lattice when it is a
subgroup of Zn. A basis of the lattice is a basis as a Z − module.

In our work we only consider full-rank integer lattices (unless specifed otherwise), i.e such that their
basis can be represented by a n × n non-singular integer matrix. It is important to note that just like in
classical linear algebra, a lattice has an infnity of basis. In fact, if B is a basis of L, then so is UB for any
unimodular matrix U (U can be seen as the set of linear operations over Zn on the rows of B that do not
a˙ect the determinant).

Defnition 2 (Minima). We note λi(L) the i−th minimum of a lattice L. It is the radius of the smallest
zero-centered ball containing at least i linearly independant elements of L.

λi+1(L)Defnition 3 (Lattice gap). We note δi(L) the ratio and call that a lattice gap. When mentioned λi(L)
without index and called "the" gap, the index is implied to be i = 1.

Defnition 4. We say a lattice is a diagonally dominant type lattice (of dimension n) if it admits a basis of
the form B = D + R where D = d × Id, d ∈ Z, and R is a "noise" matrix and D + R is a diagonal dominant
matrix as in [1], i.e Pn∀i ∈ [1, n], B[i][i] ≥ |B[i][j]|j=1,i6=j

In our scheme, we use a diagonal dominant lattice as our secret key, and will refer to it as our "reduction
matrix" (as we use this basis to "reduce" our vectors).

Defnition 5. Let F be a subfeld of C, V a vector space over F k, and p a positive integer or ∞. We call
lp norm over V the norm: q
• ∀x ∈ V, kxkp = p

Pk |xi|p
i=1

• ∀x ∈ V, kxk∞ = maxi∈[1,k] |xi|

The norm we use in our scheme is the maximum norm. We note that we also defne the maximum matrix
norm as the biggest value among the sums of the absolute values in a single column.

Defnition 6 (uSVPδ: δ-unique Shortest Vector Problem). Given a basis of a lattice L with its lattice gap
δ > 1, solve SVP.

Defnition 7 (BDDγ : γ-Bounded Distance Decoding). Given a basis B of a lattice L, a point x and a
approximation factor γ ensuring d(x, L) < γλ1(B) fnd the lattice vector v ∈ L closest to x.

1

It has been proved that BDD1/(2γ) reduces itself to uSVPγ in polynomial time and the same goes from
uSVPγ to BDD1/γ when γ is polynomially bounded by n [7], in cryptography the gap is polynomial the
target point x must be polynomially bounded therefore solving one or the other is relatively the same in our
case. To solve those problems, we usually use an embedding technique that extends a basis matrix by one
column and one row vector that are full of zeroes except for one position where the value is set to 1 at the
intersection of those newly added spaces, and then apply lattice reduction techniques on these. As far as our
signature scheme is concerned, the GDDγ is more relevant:

Defnition 8 (GDDγ : γ-Guaranteed Distance Decoding). Given a basis B of a lattice L, any point x and
a approximation factor γ, fnd v ∈ L such that kx − vk ≤ γ.

2 Our scheme

The raw step-by-step idea for Alice to sign a fle from Bob is the following:

• Alice sends a basis P (the public key) of a diagonal dominant lattice L(P) to Bob.
This basis should have big coeÿcients and obfuscate the diagonal dominant structure.

• Bob sends a vector message m (that has big coeÿcients) to Alice.
He challenges Alice to fnd ksk < γ such that m − s ∈ L(P).

• Alice uses a diagonal dominant basis D − M of L(P) to solve the GDDγ on L(P) and m.
She obtains a vector signature s (that has small coeÿcients) and give it to Bob.

• Bob checks if (m − s) ∈ L(P) and ksk < γ for our GDDγ problem.
The signature is correct if and only if this is verifed.

Our scheme is inspired by the scheme proposed by Plantard et al. [9], which was originally inspired by
GGH itself [4].

In this section, we just give a quick overview of our algorithms and explain a bit the ideas behind them.
How we choose to implement it in practice will be more detailed in the implementation section.

2.1 Setup: lattice, reduction matrix generation, and a random seed
The algorithm here is straightforward, we just have to generate a diagonal dominant matrix S of size n ∗ n
with a low and bounded noise. To achieve this, we will just generate one frst vector S[1] in three simple
steps.

1. We pick the diagonal coeÿcient d.

2. We pick four non-zero values b, Nb, N1, Δ such that d = b ∗ Nb + N1 +Δ.

3. S[1][1] = d is our vector’s frst coeÿcient.
Elsewhere, we put randomly Nb values b, N1 values 1, and the rest is flled with zeroes.

And now, from S[1] we generate our matrix S in two steps:

1. We generate each vector S[i] by using a circular shift by one column S[i + 1]:
S[i][1] → S[i + 1][2], S[i][2] → S[i + 1][3], ... , S[i][n] → S[i + 1][1].

2. We then multiply every non-zero and non-d coeÿcient by 1 or −1 (just changing the sign randomly).

Then, we have fnished the required steps, and just created a diagonal dominant matrix S = D−M where√
D = d ∗ Id, kMk = b ∗ Nb + N1 = d − Δ and kM [1]k2 = NB ∗ B2 + N1. More details will be given later
and how we decide to choose those "four non-zero values" (b, Nb, N1, Δ), but those choices can be changed
at the user’s discretion as long as the previous equalities hold.

As part of the secret key, we also keep a seed value s that will be used as a seed for random generators,
as we will explain in the next sections.

2

2.2 Setup: public key generation
Like most public-key lattice based cryptosystems, we construct our public key P such that a matrix U such
that P = US where U is unimodular and S is our secret matrix.

We want the coeÿcients of P to be bigger but relatively balanced, while having a fast method to generate
it. Let us describe the following matrices:

����
1 1 1 −1

A+ = and A− = and
1 2 −1 2 ⎫⎤⎡⎧

Ax1 0 . . . 0
. .0 Ax2

.
⎢⎢⎢⎢⎢⎢⎢⎣

⎥⎥⎥⎥⎥⎥⎥⎦

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎬
n/2= i ∈ [1, n/2], xi ∈ {+, −} :T0 . .{+,−} . .

. . . Ax(n/2)−1
0

0 . . . 0 Axn/2

⎪⎪⎪⎪⎪⎪⎪⎩

⎪⎪⎪⎪⎪⎪⎪⎭

where every T ∈ T n/2 is an unimodular matrix composed of A+ and A− in its diagonal and 0 elsewhere.{+,−}
If δ is the maximum size of the coeÿcients in a matrix M , then after being multiplied by a transformation
matrix T ∈ T n/2 , the maximum size of the coeÿcients in TM is at most 3δ, and we will use a matrix in{+,−}

n/2 n/2
T everytime we wish to grow our coeÿcients. Using T , we defne{+,−} {+,−}

Ui = TiPi where Pi ∈ Sn is a permutation matrix and Ti ∈ T n/2 randomly chosen.{+,−}

The point of using permutation matrices Pi is to ensure we use a di˙erent combination of rows at every
growing step. Finally, we will use it to create QR

U = PR+1 i=1 Ui

such that R ≥ 1 is a certain number we choose ourselves and P = U(D − M).

Note that, for every value of R, we obtain di˙erent U , and furthermore, since we are taking both Ti and Pi

randomly, we note that every choice is dependent of the seed we put for our random generators (assuming
they are deterministic like the ones provided by the NIST). Therefore we generate P in the following way:

1. Use our random secret seed s to set our random generators, and P ← S where S is our secret matrix

2. Choose "randomly" Ts,1, a transformation matrix and Ps,1 a permutation matrix

3. Set P ← Ts,1Ps,1P

4. Repeat the last two steps that R − 1 more times and reapply one fnal permutation P ← Ps,R+1P

Finally, we obtain our fnal public-key matrix P .

2.3 Verifcation
To verify our signature, we need some additional information to decide whether s is a valid signature or not
((m − s) ∈ L(P)). We know that (m − s) ∈ L(P) if and only if there exists k ∈ Zn such that (m − s) = kP .

Therefore, given k, m, s, P , just check whether or not we have (m − s) = kP . If the verifcation holds the
signature is valid. Otherwise, it is invalid.

3

2.4 Signature
To generate the signature, we use exactly the same algorithm as the one used by Plantard et al. which in
our case is basically reducing every big coeÿcient |m[i]| > d of a vector message m by a value of q ∗ d such
that |m[i] − q ∗ d| < d, but re-adding some little noise |qb| and |q| in some other coeÿcients m[j] with j 6= i,
i.e

applying m ← m − qS[i] where |m[i] − q ∗ d| < d for every |m[i]| > d until kmk∞ < d.

All proofwork can be found in the paper of the original reduction idea [9], however we propose here an
alternative proved bound for the reduction to work, which is much easier to understand and to practically
use: using the norm l1, and supposing that our reduction matrix d ∗ Id − M is diagonal dominant.

Suppose we reduce a vector m by a q times a vector of our diagonal dominant basis S, which only happens
when

∃i ∈ [1, n], |m[i]| > d PnWhich means that we dropped kmk1 by exactly |qd| on one coeÿcient, but added |q| j=1
nP |M [i][j]| at most

on kmk1. Since the diagonal dominance gives d > |M [i][j]|6=ij=1,j

q has the same sign as m[i] and d > 0 so |m[i] − qd| = |m[i]| − |qd| < d < |m[i]|

Pand d < |m[i]|, thus |m[i]| − |qd| < |m[i]|
nkmk1 − |qd| + |q| |M [i][j]|) < kmk16=ij=1,j

thus kmk1 is lower than before : thus, we e˙ectively reduce kmk1 until kmk∞ < d.

Once we have s, we still need the fnal k such that kP = (m − s). To generate the fnal membership
vector k, we basically frst construct its values such that k0(D − M) = k0S = m − s, as we reduce m. At the
frst step, s = m and k = [0, ..., 0]. However, everytime we use the vector s = m − q ∗ S[i], then k[i] ← k[i]+ q
to keep the equality k0S = m − s true.
Once the fnal s is constructed, we know P = U(D − M) and k ← k0U−1 and thus verify

kP = k0U−1U(D − M) = k0(D − M) = (m − s)

As far as the computation of U −1, it is fairly simple. Since QR
U = PR+1 i=1 TiPi = PR+1TRPR...T1P1

we have QR
P −1T −1 T −1U−1 = ()P −1 = P1

T T −1...P T P T
i=1 i i R+1 1 R R R+1

(note that order matters), and knowing

����
2 −1 2 1

A−1 = and A−1 = and+ −−1 1 1 1 ⎧ ⎫⎡ ⎤
A−1

x1
0 . . . 0

.
A−1 .0 x2

. ⎢⎢⎢⎢⎢⎢⎢⎣

⎥⎥⎥⎥⎥⎥⎥⎦

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎬
−(n/2)

= i ∈ [1, n/2], xi ∈ {+, −} :T0{+,−}

. . . A−1 0x(n/2)−1

A−10 . . . 0 xn/2

⎪⎪⎪⎪⎪⎪⎪⎩

⎪⎪⎪⎪⎪⎪⎪⎭

U−1 is thus as easy to compute as U , and also give the exact same maximum coeÿcient growth 3R, and we
proceed very similarly to the generation of the public key, as follows:

4

1. Use our random secret seed s to set our random generators, and k ← k0 where k0(D − M) = m − s.

2. Choose "randomly" T −1, the inverse of a transformation matrix and P −1 the inverse of a permutation s,1 s,1
matrix

3. Set k ← kP −1T −1
s,1 s,1

4. Repeat the last two steps R − 1 more times and reapply one fnal inverse permutation k ← kP −1
s,R+1

Finally, we can give Bob the fnal couple (k, s) as the signature.

3 Security

The initial idea of reducing vectors using diagonal dominant lattices and the maximum norm was done as
a countermeasure against the parallelepiped attack from [8] in Plantard et al’s suggestion at PKC2008 [9]
to fx GGHSign [4]. Their fx using the maximum norm have been unchallenged for almost a decade now
and no critical security failure in their scheme have been discovered to the best of our knowledge. In the
following subsection we will describe the state of the art method to attack it.

3.1 BDD-based attack
The security is based on what is known as the currently most eÿcient way to attack the scheme, a BDD-
based attack as described below.

Input: Pk the public key of full rank n, d the diagonal coeÿcient, φ a BDDγ solver
Output: Sk = (D − M) the secret key
Sk ← d ∗ Idn;
// Loop on every position of the diagonal
foreach {i ∈ [1..n]} do

// Find r the difference between (0, ...0, d, 0, ..., 0) and L(Pk)
r ← φ(L(Pk), Sk[i]);
Sk[i] ← Sk[i] + r;

end
return Sk ;

Algorithm 1: Diagonal Dominant Key recovery attack

Currently, the most eÿcient way to perform this attack will be:

i) to transform a BDD problem into a Unique Shortest Vector Problem (uSVP) (Kannan’s Embedding
Technique [6]), assuming v = (0, ...0, d, 0, ..., 0) � �

v 1
,

B 0

ii) to solve this new uSVP using lattice reduction algorithm.

Using this method, we obtain a uSVP with a gap

1 1� � � �1 1 n+3 n+1 n+1 n+3 n+1 dn n+1Γ Det(L) Γ2 2γ ≈ √ ≈ √ . (1)
πkM [1]k2 πkM [1]k2

5

Lattice reduction methods are well studied and their strength are evaluated using the Hermite factor.
Let L a d−dimensional lattice, the Hermite factor of a basis B of L is given by

kB[1]k2
.

det(L) 1
n

Consequently, lattice reduction algorithms strengths are given by the Hermite factor of their expected output
basis.

In [3], it was estimated that lattice reduction methods solve USVPγ with γ a fraction of the Hermite
1factor. We will use a conservative bound of for the ratio of the USVP gap to the Hermite factor. 4

To guarantee security against the possibility of an attacker to eliminate the b coeÿcients from any vector
of M by enumerating all the possible combinations, we pick Nb being at least the lowest value such that � �

n2Nb ≥ 2λ
Nb

.

3.2 Expected Security Strength
Di˙erent papers are giving some relations between the Hermite factor and the security parameter λ [5, 10]

, 2192 , 2256 foroften using BKZ simulation [2]. Aiming to be conservative, we are to assume a security of 2128

a Hermite factor of 1.006d , 1.005d , 1.004d respectively. we set D = n, and pick δ = 28, R = 24 and Δ = 32.

Dimension n NB B N1 Δ R δ γ 2λ

912
1160
1518

912
1160
1518

16
23
33

28
25
23

432
553
727

32
32
32

24
24
24

28
28
28

< 1
4 (1.006)

d+1

< 1
4 (1.005)

d+1

< 1
4 (1.004)

d+1

2128

2192

2256

Table 1: Parameter Sets.

Table 1 parameters have been choosen to obtain a USVP gap (Equation 1) with γ < δd+1
for δ = 4

1.006, 1.005, 1.004.

4 Our implementation

While we gave the overall idea in the previous sections, in this section we specify some implementation
choices. Nevertheless those choices are not intrinsic to the scheme and can be changed.
Below is an overview of the main point of our implementation:

4.1 Program parameters, and algorithm changes
The whole scheme is set by 7 parameters:

• n: the dimension

• s: a seed for random generators

• D: the diagonal coeÿcient, also the bound for the max norm of our reduced vectors

• δ: the bound for the max norm of our hashed messages vectors

• λ: the standard security parameter

• Δ: a parameter that defnes an extra sparsity in our reduction matrix

• R: a "round" number, indicating the number of loop iterations used to generate the public key.

6

http:factor.We

Note the introduction of a seed parameter s, that serves in both the public key generation and signature
algorithm, and which interacts (directly or indirectly) with the following functions:

• RdmSeed : s → () determines the output of the two next functions

• RdmPmtn : M → σ(M) randomly permutes the rows of the input matrix, or the values of an input
vector

• RdmSgn : () → {−1, 1} output a random value, −1 or 1

Another important point is that rather than signing a vector message that is given to us, we sign a vector
produced by the hashing of the received message. For now, we will refer to the hashed message vector as
the message.

To maximize eÿciency, we choose those last parameters such that all intermediate computations ft
in 64-bits integers. One intermediate computation that might overfow is while checking the validity of
messages-signatures couples. This is determined by the four parameters δ, Δ, D, R. Here, we choose to fx
D = n, δ = 28,Δ = 32 and R = 24.

We will give all input sizes in the rest of the report in bits.

4.2 Algorithms
4.2.1 Secret Key Setup

From those initial parameters specifed above, we compute other values for the secret reduction basis which
coeÿcients’ information is based on one initial secret vector:

• NB the number of occurences per vector of the "big" noise {−B, B}, and is the lowest positive number � �
nsuch that 2NB
Nb

≥ 2λ

• B the value of the "big" noise, and is equal to D/(2NB)

• N1 the number of occurences per vector of the small noise {−1, 1}, and is equal to D − (NB B) − Δ

7

Input: - all initial parameters;
- another extra random seed x2;
Output: - x, S the secret key;
// Initialization
S ← 0;
t ← v ∈ Zn;
// Algorithm start
RdmSeed(x2);
t[1] ← D;
// Put B values
for i = 2 ; i < NB ; i = i + 1 do

t[i] ← B;
end
// Put ones
for i = NB + 1 ; i < NB + N1 + 1 ; i = i + 1 do

t[i] ← 1;
end
// Complete with zeroes
for i = NB + N1 + 1 ; i < n ; i = i + 1 do

t[i] ← 0;
end
t ← RdmPmtn(t);
for i = 1 ; i < n ; i = i + 1 do

S[i][i] ← t[0];
for j = 1 ; j < n ; j = j + 1 do

S[i][((i + j) mod n) + 1] ← t[i][j] ∗ RdnSgn();
end

end
// Algorithm ends
return x, S;

Algorithm 2: Secret key generation

Please note that the matrix composed by the absolute values of the secret key is cyclic. This property
allows us to keep only the frst vector and the matrix representing the sign of the coeÿcients. Furthermore,
to encore the frst vector, we use the bits 0 for 0, 11 for a B, 10 for a 1 for the frst vector. We ignore the
frst coeÿcient which is always d: this give us the bit size of the frst vector as (n − 1) + Nb + N1. Then
a sign for every non-zero element (n(N1 + Nb)), and Nx bits the number of bits for the seed s used when
generating P . Therefore the size of the secret key in bits is (n − 1) + (N1 + Nb) + n(N1 + Nb) + Nx =
(n − 1) + (n + 1)(N1 + Nb) + Nx.

4.2.2 Public Key Setup

The public key setup is as described initially. We add an extra value corresponding 263−dlog2(kP k∞)e this will
help us to ensure that there will be no overfow during the verifcation process.

8

Input: - R ∈ N a number of rounds;
- S = (D − M) the reduction matrix of dimension n;
- a random seed x;
Output: - P the public key, and p2 a power of two;
// Initialization
P ← S;
// Algorithm start
RdmSeed(x);
// Apply R rounds
for i = 1 ; i < R ; i = i + 1 do

P ← RdmPmtn(P);
for j = 1 ; j < n − 1 ; j = j + 2 do

t ← RdmSgn();
P [j] = P [j] + t ∗ P [j + 1];
P [j + 1] = P [j + 1] + t ∗ P [j];

end
end
P ← RdmPmtn(P);
// Computes p2

p2 ← dlog2 kP k∞e;
p2 ← 263−p2 ;
// Algorithm ends
return P, p2;

Algorithm 3: Public key generation

The initial size of the coeÿcients of P (which is initially S) are inferior or equal to D. After R rounds,
it is inferior to 3RD. Therefore to encode it, we will need (n ∗ n)(log2(3R ∗ D) + 1) bits (1 extra bit per
coeÿcient due to the sign). We need to add 7 more bits to represent p2 (by its power value), for a total of
(n ∗ n)(log2(3R ∗ D) + 1) + 7.

4.2.3 Signature

The signature algorithm is previously described and we will include the details here for completeness.

9

Input: - A vector v ∈ Zn;
- M the noise matrix;
- s a seed value;
Output: - w a reduced vector, with v ≡ w [L(D + M)], and k such that kP = v − w;
// Initialization
w ← v;
i ← 0;
j ← 0;
k ← [0, ..., 0];
// Algorithm start
// Step 1 : Reduce until all coefficients are low enough
while j 6= n do

j ← 0;
wiq ← ;d

ki ← ki + q;
wi ← wi − qd;
for j = 0 to n − 1 do

l ← i + j mod n;
wl ← wl + qMi,j ;
if |wl| < d then

j ← j + 1;
end

end
i ← i + 1 mod n;

end
// Step 2 : use the seed value to modify k accordingly how P was
RdmSeed(x);
for i = 1 ; i < R ; i = i + 1 do

k ← RdmPmtn(k);
for j = 1 ; j < n − 1 ; j = j + 2 do

t ← RdmSgn();
k[j + 1] = k[j + 1] − t ∗ k[j];
k[j] = k[j] − t ∗ k[j + 1];

end
end
k ← RdmPmtn(k);
// Algorithm ends
return k, v, w;

Algorithm 4: Sign

The size of the message is n(log2(δ) + 1), and the size of the signature is the sum of the size of the
reduced message vector n(log2(D)+1) and the extra information vector k, which is n(64) as explained below
(log2 kkk < 63) which leads to n(log2(D) + 65) in signature size.

10

k0(D − M) = v − w

kk0k ≤ kv − wkk(D − M)−1k
1 ≤ kv − wkkD−1 k

1 − M
D

1 ≤ kv − wkkD−1kk k
1 − M

D

≤ kv − wkkD−1kkk1 +
M
+ (

M
)2 + ...k

D D

≤ kv − wkkD−1k(k1k + k M k + k M k2 + ...)
D D

1 ≤ kv − wkkD−1kk k
1 − k M kD

1 ≤ kv − wkk k
D − kMk
1 ≤ kv − wk
Δ
1 δ + 1 ≤ (δ + 1) =
Δ Δ

therefore :

k = k0U−1

kkk ≤ kk0kkU−1k
δ + 1 kkk ≤ k kkU−1k
Δ

(δ + 1)3R

kkk ≤
Δ

(δ+1)3R

and one can note that log2() < 63, from the parameters for δ, Δ, R we proposed earlier, which Δ
e˙ectively gives us a 64-bits bound for k.

4.2.4 Verifcation

Given a hashed message vector v, the signature (k, w), the verifcation is reduced to the equality test
kP = (v − w). However, as the computation kP might overfow (the maximum size of k depends of
δ, Δ, R, and P ’s ones from D, R). In the following verifcation algorithm we recursively cut k into two parts
k = r + p2q where p2 is a power of 2 that is lower than 263/kP k, which ensures rP is not overfowing.

Given P, 2k t = v − w and k = r + p2q with krk < p2, we have kP − t = c with c = 0 if and only if
kP = v − w. Therefore

c+t−rP qp2P + rP − t = c → qP = p2

and thus p2 should divide t − rP if c = 0: if not, that means c 6= 0 and the verifcation returns FALSE.
Otherwise, we set k0 ← q and t0 ← t − rP and repeat

c(qP − t−rP) → (k0P − t0 0)= = cp2 p2

0where c becomes exactly the integer c/p2 regardless of its value (if it didn’t fail before). The verifcation
stops when both t0 = 0 and k0 = 0. Note that both need to be 0 at the same time, if only one of them is 0
then the verifcation fails.

The verifcation, given k, v, w, P is then as follow:

11

Input: - A vector v ∈ Zn;
- P, p2 the public key matrix and its associated power of 2;
- w the reduced form of v;
- k the extra information vector;
Output: - w a reduced vector, with v ≡ w [L(D + M)];
// Algorithm start
// Test for max norm first
if kwk∞ > D then return FALSE ;
// Loop Initialization
q ← k;
t ← v − w;
while q 6 6= 0 ∧ t = 0 do

r ← q mod p2;
t ← rP − t;
// Check correctness
if t 6 mod y then return FALSE ;= 0
t ← t/p2;
q ← (q − r)/p2;
if (t = 0) Y (q = 0) then return FALSE ;

end
// Algorithm ends
return TRUE ;

Algorithm 5: Verify

4.2.5 Potential speedups and modifcations

The frst one, would be to use the seed for the generation of the secret key that we reuse for the signature
scheme. That way, we would have no need to store the sign data and recover it on the fy. This would trans-
form a quadratic size memory part of the secret key to a constant size part. In experimentations however,
this has increased the signing time signifcantly and therefore we have decided to not apply it.

The second one is to change the reduction order to a random one each time (i.e from m[1],m[2]..., m[n]
successively to m[ρ(1)],m[ρ(2)]..., m[ρ(n)] where rho is a random permutation) : this would barely slow
down the algorithm reduction but provide an extra layer of security against side-channel attacks. On top of
that, experimentations showed that given a vector v, a valid answer w is not unique: therefore we can also
choose to compute some extra steps at certain randomly chosen positions to blur the amount of computations
actually done to solve GDDγ . However, one need to ensure that the process is deterministic assuming fxed
parameters.

A third one would be to change the unimodular matrices we use for both the verifcation and the public
key generation: we could use bigger blocks (i.e not 2 ∗ 2) that could be better balanced.

4.2.6 KAT fles, speed tests and architecture

To build the KAT fles, we use the Makefle provided by the NIST (as described in the example) along with
the fles rng.c, rng.h and P QCgenKAT _sign.c provided by the NIST, and combine them with our own
written fles (all .c and .h) in the same folder.

As far as the speed tests are concerned, we used the following options:

12

WARN_OPTS = -Wall -Wextra -Wno-format-overfow -Wno-sign-compare -Wno-unused-but-set-variable
-Wno-unused-but-set-variable -Wno-unused-parameter -pedantic -Wno-parentheses

CFLAGS = -std=c11 $(WARN_OPTS) -fno-verbose-asm -march=native -Ofast
-funroll-loops

LDFLAGS = -lssl -lcrypto

For the following speed tests, we only use the functions crypto_sign_keypair, crypto_sign_open,
crypto_sign as defned by the NIST. A fraction of the time is thus spent in allocating structures and
deallocating them. Setup are done with 103 keys per dimension and security parameter, and for each of
those keys 10 signatures and verifcations are done for a total of 104 signatures and 104. Times are displayed
in seconds.

Dimension 512 768 1024 1280 1536 1792 1920 2048

Setup 48.680 100.553 188.313 319.1648 503.852 695.525 714.524 818.250
Signature 31.678 55.679 98.144 165.895 269.771 368.692 365.248 396.058

V erification 350.312 707.984 1203.507 1932.834 3072.41937 4234.666 4183.861 5019.465

Figure 1: Tests for λ = 128, R = 24, Δ = 32, δ = 28

Dimension 512 768 1024 1280 1536 1792 1920 2048

Setup 44.530 100.072 183.321 294.075 431.868 599.778 688.423 791.948
Signature 28.209 53.924 91.771 144.400 210.276 289.601 338.314 374.911

V erification 320.416 702.817 1137.230 1835.790 2645.116 3620.419 4138.517 4910.150

Figure 2: Tests for λ = 192, R = 24, Δ = 32, δ = 28

Dimension 512 768 1024 1280 1536 1792 1920 2048

Setup 44.593 104.411 210.255 309.667 451.837 614.799 726.933 832.339
Signature 27.475 55.251 108.2089 152.499 221.203 295.443 355.666 385.401

V erification 316.5690 730.978 1392.252 1906.629 2745.214 3694.047 4267.227 5058.264

Figure 3: Tests for λ = 256, R = 24, Δ = 32, δ = 28

The command "lscpu" gave us the following information about the processor we used to make those tests:

• Architecture: x86_64

• CPU op-mode(s): 32-bit, 64-bit

• Byte Order: Little Endian

• CPU(s): 16

• On-line CPU(s) list: 0-15

• Thread(s) per core: 2

• Core(s) per socket: 4

• Socket(s): 2

• NUMA node(s): 2

13

• Vendor ID: GenuineIntel

• CPU family: 6

• Model: 44

• Model name: Intel(R) Xeon(R) CPU X5647 @ 2.93GHz

• Stepping: 2

• CPU MHz: 2925.883

• BogoMIPS: 5851.76

• Virtualisation: VT-x

• L1d cache: 32K

• L1i cache: 32K

• L2 cache: 256K

• L3 cache: 12288K

• NUMA node0 CPU(s): 0,2,4,6,8,10,12,14

• NUMA node1 CPU(s): 1,3,5,7,9,11,13,15

• Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clfush dts acpi mmx
fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon pebs bts rep_good
nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2
ssse3 cx16 xtpr pdcm pcid dca sse4_1 sse4_2 popcnt aes lahf_lm tpr_shadow vnmi fexpriority ept
vpid dtherm ida arat

The command "cat /proc/meminfo" gave us this information about the memory capacity we used to make
those tests:

• MemTotal: 16414628 kB

• MemFree: 13267160 kB

• MemAvailable: 15789276 kB

• Bu˙ers: 149600 kB

• Cached: 2426328 kB

• SwapCached: 0 kB

• Active: 553700 kB

• Inactive: 2045192 kB

• Active(anon): 27392 kB

• Inactive(anon): 8804 kB

• Active(fle): 526308 kB

• Inactive(fle): 2036388 kB

• Unevictable: 5312 kB

14

mailto:X5647@2.93GHz

• Mlocked: 5312 kB

• SwapTotal: 16761852 kB

• SwapFree: 16761852 kB

• Dirty: 0 kB

• Writeback: 0 kB

• AnonPages: 28288 kB

• Mapped: 33676 kB

• Shmem: 9284 kB

• Slab: 463324 kB

• SReclaimable: 354528 kB

• SUnreclaim: 108796 kB

• KernelStack: 4416 kB

• PageTables: 3412 kB

• NFS_Unstable: 0 kB

• Bounce: 0 kB

• WritebackTmp: 0 kB

• CommitLimit: 24969164 kB

• Committed_AS: 463396 kB

• VmallocTotal: 34359738367 kB

• VmallocUsed: 0 kB

• VmallocChunk: 0 kB

• HardwareCorrupted: 0 kB

• AnonHugePages: 0 kB

• ShmemHugePages: 0 kB

• ShmemPmdMapped: 0 kB

• CmaTotal: 0 kB

• CmaFree: 0 kB

• HugePages_Total: 0

• HugePages_Free: 0

• HugePages_Rsvd: 0

• HugePages_Surp: 0

• Hugepagesize: 2048 kB

• DirectMap4k: 157156 kB

15

• DirectMap2M: 6121472 kB

• DirectMap1G: 10485760 kB

The command "cat /etc/os-release" gave us this information about the operating system we used to make
those tests:

• NAME="Ubuntu"

• VERSION="17.10 (Artful Aardvark)"

• ID=ubuntu

• ID_LIKE=debian

• PRETTY_NAME="Ubuntu 17.10"

• VERSION_ID="17.10"

• HOME_URL="https://www.ubuntu.com/"

• SUPPORT_URL="https://help.ubuntu.com/"

• BUG_REPORT_URL="https://bugs.launchpad.net/ubuntu/"

• PRIVACY_POLICY_URL="https://www.ubuntu.com/legal/terms-and-policies/privacy-policy"

• VERSION_CODENAME=artful

• UBUNTU_CODENAME=artful

4.2.7 NIST-approved primitives (random and hashes)

We used the random chars generators from rng.c and rng.h that were provided to us, along with the KAT
fles. Everytime we initialize our random functions, we use the NIST-provided generators to obtain a pool
of random bits where we can extract as many bits as we want. Once we detect that the pool is depleted, we
generate a fresh pool without changing the seed. Here’s how we implemented our random generators:

• RdmSgn reads one bit b from our pool and returns (2b − 1).

• RdmPmtn flls a global array A of size n with random values such that A[i] ≤ i.
We generate ρ ∈ Sn from A by computing the product ρ = (1 (1+A[n−1]))(2 (2+A[n−2]))...(n A[1]).

When hashing a random message to the message space, we used SHAKE512 to guarantee 256-bits col-
lision resistance.

References

[1] Richard A Brualdi and Herbert J Ryser. Combinatorial matrix theory, volume 39. Cambridge University
Press, 1991.

[2] Yuanmi Chen and Phong Q Nguyen. Bkz 2.0: Better lattice security estimates. In International
Conference on the Theory and Application of Cryptology and Information Security, pages 1–20. Springer,
2011.

[3] Nicolas Gama and Phong Q Nguyen. Predicting lattice reduction. In Advances in Cryptology–
EUROCRYPT 2008, pages 31–51. Springer, 2008.

16

http:SUPPORT_URL="https://help.ubuntu.com
http:HOME_URL="https://www.ubuntu.com
http:VERSION_ID="17.10
http:VERSION="17.10

[4] Oded Goldreich, Shaf Goldwasser, and Shai Halevi. Public-key cryptosystems from lattice reduction
problems. In Advances in Cryptology - CRYPTO’97, pages 112–131. Springer, 1997.

[5] Je˙ Ho˙stein, Jill Pipher, John M Schanck, Joseph H Silverman, William Whyte, and Zhenfei Zhang.
Choosing parameters for ntruencrypt. In Cryptographers’ Track at the RSA Conference, pages 3–18.
Springer, 2017.

[6] Ravi Kannan. Minkowski’s convex body theorem and integer programming. Mathematics of operations
research, 12(3):415–440, 1987.

[7] Vadim Lyubashevsky and Daniele Micciancio. On bounded distance decoding, unique shortest vectors,
and the minimum distance problem. In Advances in Cryptology-CRYPTO 2009, pages 577–594. Springer,
2009.

[8] Phong Q Nguyen and Oded Regev. Learning a parallelepiped: Cryptanalysis of ggh and ntru signatures.
Journal of Cryptology, 22(2):139–160, 2009.

[9] Thomas Plantard, Willy Susilo, and Khin Than Win. A digital signature scheme based on cvp max).
In International Workshop on Public Key Cryptography, pages 288–307. Springer, 2008.

[10] Joop van de Pol and Nigel P Smart. Estimating key sizes for high dimensional lattice-based systems.
In IMA International Conference on Cryptography and Coding, pages 290–303. Springer, 2013.

17

