1 Multiplication Algorithm

Let x be a binary vector of dimension n, with Hamming weight close to v/n and y be any binary vector
of dimension n. This document explain a multiplication algorithm that compute x - y.

For that, we will exploit the fact of doing operations by blocks of 32 bits. We consider the multipli-
cation of two vectors x and y, using the matrix vector form. In fact we have that:

x-y =x x rot(y)"

Let y = {vo, -+ ,yn}, we start by subdividing the matrix of size n x n into blocks of 32 bits, we have:

_]yo y31\]y32 y63\ R R
(Yn—1--- Yso| [Ys1 -+ We2| v [Yn—2
rot(y)" = : : : :
]yz ?/33\]?/34 y@s\
(Y1 - 2] sz o Yed| oo

Notice that in our case the parameter n is not multiple of 32, thus the last block in each line of the
obtained matrix is of size less than 32. In fact, the last block is of size 6 = n mod 32. In order to obtain
a block of 32 bits, we apply a padding of zeros 0. We can also do this by using the following mask, let
mask = 232 — 2% (where o = 32 — §). We denote by D, the new matrix.

"yo y31\ ’y32 y63‘ v e yy10-440

[Yo1- Uso] [Ys1 - Ye2| -+ |- Yn20---0
D = : : : 5

(2 - wss| [ysa - WYes] -+ |-y 0---0

[yr - ys2] [yss -~ Yea] =+ |- 0---0

Let 4 = n — ¢, we notice that the matrix D can be build using the following formula:

D[i] = (2°" x yi, 2% X Yir1)modns 5 2° X Y(i431) mod n) for i € [0,n — 1] (1)
[DJ0] D[32] -+ DJu] & mask
D[n—1] D[31] --- Dj[u—1] & mask
Din — 2] : :
D= : DJ0] DJ[0] & mask
: Din — 1] :
D:[Q] D[:34] Dlu+ 2]: & mask
| DJ[1] D[33] -+ DJ[u+ 1] & mask]

The idea of the algorithm is explained by the following toy example. Suppose that the Hamming
weight of vector x is equal to 3:

x = (1,1,0,---,0,1,0)

We have that x -y = x x rot(y)" = x x D, it’s easy to see that

D[0]" Dln—1]" D[2]"
D[32]" ; D[31]" D[34]"

xx D= S5,

(D[y] & mask) " (D[p — 1].& mask) " (D[+ 2].&: mask) "

In fact the position of the 1s in the vector x indicates the rows of the matrix D that we need to xor
to obtain the matrix vector product.

We give a brief description of this algorithm. The Algorithm 1, describes all the steps of the
multiplication of two vectors x and y. The Algorithm 2, is used to compute the value of D[i] for
i € [0,n — 1] using the vector y.

Algorithm 1 Multiplication
1: Imput: a an array of size s that contains the support (positions of the 1s) of the vector x and b an
array of size m = 1+ |n/32] that contains the coordinates of the vector y

2: Qutput: t an array of size m that contains the product x -y
3: mask «— 232 — 29 with o = 32 — § and § = n mod 32

4: D[i], i € [0,n — 1] +— PrecomputeRows(b)

5 for 0 <i< sdo

6: for0<j<m-—1do

7 val <— (32 x j — a[i]) mod n

8: tmp[j] «— Dlval] // tmp being an array of integer of size m
9: end for

10 j+—m-—1

11: wal <— (32 X j — ali]) mod n

12: tmplj] <— D[val] & mask

13: for 0 <k <mdo

14: tlk] «— t[k] ® tmplk]

15: end for
16: end for

Algorithm 2 PrecomputeRows
1: Imput: b an array of size m = 1+ |n/32] that is the coordinates of the vector y
2: Output: D[i], i € [0,n — 1]
3: Compute D[i], i € [0,n — 1] using the equation 1 and the array b.

In the implementation the Algorithm 1 correspond to the function:

// vector.h
void vector_u32_mul (vector_u32* o, vector_u32* vl, vector_u32* v2)

The Algorithm 2 correspond to the function :

// vector.h
int vector_u32_mul_precompute_rows(uint32_t* o, const uint32_t* v)

