
1 BCH Codes
For any positive integers m ≥ 3 and t ≤ 2m−1, there exists a binary BCH code with the following
parameters [3]

• Block length n = 2m − 1

• Number of parity-check digits n − k ≤ mδ, with δ, the correcting capacity of the code and k the
number of information bits

• Minimum distance dmin ≥ 2δ + 1

We denote this code by BCH[n, k, δ]. Let α be the primitive element in GF(2m), the generator
polynomial g(x) of the BCH[n, k, δ] code is given by:

g(x) = LCM{φ1(x), φ2(x), · · · , φ2δ(x))}

with φi(x) being the minimal polynomial of αi.
Depending on the parameters of the HQC scheme, we construct shortened BCH codes such that

k = 256 from the two following BCH codes BCH-1 and BCH-2 (codes from [3]):

code n k δ
BCH-1 1023 513 57
BCH-2 1023 483 60

We obtain the following shortened codes

code n k δ
BCH-S1 766 256 57
BCH-S2 796 256 60

The shortened codes are obtained by substracting 257 (and 227) from BCH-1 (from BCH-2), thus,
we have the following BCH codes:

• BCH-S1[766 = 1023− 257, 256 = 513− 257, 57]

• BCH-S2[796 = 1023− 227, 256 = 483− 227, 60]

We notice that shortening the BCH code does not affect the correcting capacity.

In our case, we will be working in GF(210), for that we use the primitive polynomial of degree
1 + X3 + X10 to build this field (polynomial from [3]). We precomputed the generator polynomials for
the two codes that we will be using in our implementation (BCH-S1 and BCH-S2) and we included their
Hexadecimal formats in the file parameters.h.

2 BCH Decoding
We give a brief reminder on decoding BCH codes following [3]. Consider the BCH code defined by [n, k, δ],
with n = 2m−1 (m ≥ 0 of positive integer) and suppose that a code word v(x) = v0+v1x+ · · ·+vn−1x

n−1

is transmitted and that during transmission, error occurred in the following received vector:

r(x) = r0 + r1x+ r2x
2 + · · ·+ rn−1x

n−1

1



We have that the location of errors are given by the error polynomial e(x) = e0+e1x+e2x
2+· · ·+en−1x

n−1,
if ei = 1, then there is an error occurred at that location. Then we can write

r(x) = v(x) + e(x)

We define the set of syndromes S1, S2, · · · , S2δ as Si = r(αi), with α being the primitive element in
GF(2m). We have that r(αi) = e(αi), since v(αi) = 0 (v is a code word). Suppose that e(x) has t errors
at locations j1, · · · , jt, then

e(x) = xj1 + xj2 + · · ·+ xjt ,

we obtain the following set of equations, where αj1 , αj2 , · · · , αjt are unknown:

S1 = αj1 + αj2 + · · ·+ αjt

S2 = (αj1)2 + (αj2)2 + · · ·+ (αjt)2

S3 = (αj1)3 + (αj2)3 + · · ·+ (αjt)3

...

S2δ = (αj1)2δ + (αj2)2δ + · · ·+ (αjt)2δ

The goal of a BCH decoding algorithm is to solve this system of equations. We define the error location
numbers by βi = αji , which indicate the location of the error. The equations above, can be expressed as
follows:

S1 = β1 + β2 + · · ·+ βt

S2 = β2
1 + β2

2 + · · ·+ β2
t

S3 = β3
1 + β3

2 + · · ·+ β3
t

...

S2δ = β2δ
1 + β2δ

2 + · · ·+ β2δ
t

we define the error location polynomial as:

σ(x) = (1 + β1x)(1 + β2x) · · · (1 + βtx)

= σ0 + σ1x+ σ2x
2 + · · ·+ σtx

t

We can see that, the roots of σ(x) are β−1
1 , β−1

2 , · · · , β−1
t which are the inverses of the error location

numbers.
We can summarize the decoding procedure of a BCH[n, k, δ] code by the following steps:

1. The first step is the computation of 2× δ syndromes using the received polynomial

2. The second step is the computation of the error-location polynomial σ(x) from the 2× δ syndromes
computed in the first step (in our implementation we will use the Simplified Berlekamp’s Algorithm
[2])

3. The third step is to find the error-location numbers by calculating the roots of the polynomial σ(x)
and returning their inverse (in our implementation we will be using the Chien search algorithm [1])

4. The fourth step is the correction of errors in the received polynomial

Remark 1 As mentioned before, in our implementation, we deal with shortened BCH code. We notice
that we will be using the same decoding procedure described above.

2



2.1 Syndromes computations

// bch.h
void syndrome_gen(syndrome_set* synd_set, gf_tables* tables, vector_u32* v)

The syndromes are computed by evaluating the received polynomial stored in the vector v at the 2×
PARAM DELTA consecutive roots of the generator polynomial αi, i = 1, 2, · · · , 2 ∗ PARAM DELTA. Let
us denote by p(x) the polynomial in the vector v, thus the syndromes are

p(α), p(α2), · · · , p(α2×PARAM DELTA)

and they are stored as GF (210) elements in the structure synd set which is the output the function.

2.2 Computing the Error-Location Polynomial

// bch.h
void get_error_location_poly(sigma_poly* sigma, gf_tables* tables, syndrome_set* synd_set);

This function implements the simplified Berlekamp’s algorithm for finding the error location polyno-
mial for binary BCH codes.

The algorithm has initial conditions: Tableau à faire (format Lin Costello) Following XX, we define

• t: the correcting capacity of the BCH code

• S1, S2, · · · , S2t: the set of syndromes

1. If dµ = 0
σ(µ+1)(x) = σ(µ)(x)

lµ+1 = lµ

2. If dµ 6= 0, find another row ρ prior to µth row such that:

• dµ 6= 0 (the discrepancy of the rwo is not equal to zero)
• 2 ∗ ρ− lρ is maximum

Then compute
σ(µ+1)(x) = σ(µ)(x) + dµd

−1
ρ x2(µ−ρ)σ(ρ)(x)

and set
lµ+1 = max(lµ, lρ + 2(µ− ρ)

3. In either case the new value of discrepancy is

dµ+1 = S2µ+3 + σ
(µ+1)
1 S2µ+2 + · · ·+ σ

(µ+1)
lµ+1

S2µ+3−lµ+1 .

4. Increment µ and compute µ− lµ

5. Repeat steps 1 to 4, until σ(t)(x) is computed

2.3 Finding the Error-Location Numbers

// bch.h
void chien_search(uint16_t* error_pos, uint16_t* size, gf_tables* tables, sigma_poly* elp);

3



2.4 Error correction

// bch.h
void error_poly_gen(vector_u32* error_poly, uint16_t* error_pos, uint16_t size)

References
[1] Robert Chien. Cyclic decoding procedures for bose-chaudhuri-hocquenghem codes. IEEE Transactions

on information theory, 10(4):357–363, 1964.

[2] Laurie L Joiner and John J Komo. Decoding binary bch codes. In Southeastcon’95. Visualize the
Future., Proceedings., IEEE, pages 67–73. IEEE, 1995.

[3] Shu Lin and Daniel Costello. Error control coding: Fundamentals and applications. 1983.

4


