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2 HILA5: Key Encapsulation Mechanism and Public Key Encryption Algorithm 

Executive Summary 
Some classes of encrypted data must remain confdential for a long period of time – often 
at least few decades in national security applications. Therefore high-security cryptography 
should be resistant to attacks even with projected future technologies. 

As there are no physical or theoretical barriers preventing progressive development of 
quantum computing technologies capable of breaking current RSA- and Elliptic Curve based 
cryptographic standards (using e.g. polynomial-time quantum algorithms already known 
[PZ03, Sho94]), a need for quantum-resistant algorithms in national security applications 
has been identifed [NSA16]. 

In December 2016 NIST issued a standardization call for quantum-resistant public key 
algorithms, together with requirements and evaluation criteria [NIS16]. This has made 
“Post-Quantum Cryptography” (PQC) central to cryptographic engineers who must now 
design concrete proposals for standardization. Practical issues such as performance, relia-
bility, message and key sizes, implementation and side-channel security, and compatibility 
with existing and anticipated applications, protocols, and standards are as relevant as 
mere theoretical security and asymptotic feasibility when evaluating these proposals. 

Ring-LWE lattice primitives o˙er some of the best performance and key size character-
istics among quantum-resistant candidates [CJL+16]. These algorithms rely on “random 
noise” for security and always have some risk of decryption failure. This reliability issue 
can pose problems when used in non-interactive applications which are not designed to 
tolerate errors. The issue of decryption failure can be addressed via reconciliation methods, 
which is the focus of present work. 

Our proposal, HILA5 [Saa17b] uses a new reconciliation method for Ring-LWE that 
has a signifcantly smaller failure rate than previous proposals while reducing ciphertext 
size and the amount of randomness required. It is based on a simple, deterministic variant 
of Peikert’s reconciliation that works with our new “safe bits” selection and constant-time 
error correction techniques. The new method does not need randomized smoothing to 
achieve non-biased secrets. 

When our reconciliation method is used with the very eÿcient ‘New Hope” [ADPS16b] 
Ring-LWE parametrization, we achieve a decryption failure rate well below 2−128 – which 
compares favourably to the 2−60 failure rate of New Hope, 2−38.9 of Frodo [BCD+16], and 
2−71.9 of Kyber [BDK+17]. This makes the scheme fully suitable for public key encryption 
in addition to interactive key exchange protocols. The reconciliation approach saves about 
40% in ciphertext size when compared to the common LP11 Ring-LWE encryption scheme. 

We perform a combinatorial failure analysis using full probability convolutions, leading 
to a precise understanding of decryption failure conditions on bit level. Even with additional 
implementation security and safety measures the new scheme is still essentially as fast as the 
New Hope but has slightly shorter messages. The new techniques have been instantiated 
and implemented as a Key Encapsulation Mechanism (KEM) and public key encryption 
scheme designed to meet the requirements of NIST’s Post-Quantum Cryptography e˙ort 
at the highest security level. 
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for their support and feedback, especially Dr. Najwa Aaraj and the crypto team at 
DARKMATTER (Abu Dhabi, UAE) and the Mbed TLS team at ARM (Cambridge, UK). 
Further thanks to Sam Scott for reviewing my code and doing the initial Rust port, and 
to Hanno Becker for comments on the draft specifcation. 

There are no patents, overly restrictive intellectual property claims, or other such 
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1 Specifcation 
The purpose of this section is to o˙er a clear functional description of the HILA5 algorithm 
in a way that is suitable for non-expert implementors as a compact starting point. For a 
more abstract treatment and a theoretical justifcation of HILA5, see Section 4.9. 

We are including snippets of C code from our unoptimized reference implementa-
tion, which is available (together with the latest version of this specifcation, optimized 
implementations, and full test data) at https://github.com/mjosaarinen/hila5. 

This reference implementation is not suitable for production use. Our optimized imple-
mentation has signifcantly better performance as it uses more advanced (and preferred) 
algorithmic techniques. The two implementations are fully compatible. 

The HILA5 KEM can be adopted for public key encryption in straightforward fashion. 
We recommend using the AES-256-GCM AEAD [FIP01, Dwo07] in conjunction with the 
KEM when public key encryption functionality is desired. If a suitable AEAD based on 
a large permutation is standardized by NIST (e.g. Keyak [BDP+16], based on SHA-3 
Keccak permutation) at some point in future, we suggest using it for increased security. 

1.1 Rings and Number Theoretic Transforms 
HILA5’s ring arithmetic operates on polynomials of degree n = 1024. Polynomials are 
represented as 1024-element vectors of integers. Each coeÿcient is reduced mod q, where 
q = 3 � 212 + 1 = 12289. Reduction x mod q puts a number in non-negative range Pn−10 � x < q. Let R denote the ring Zq[x]/(xn + 1). Let v(x) = i=0 vix

i be an element of 
R. Its coeÿcients vi 2 [ 0, q − 1 ] (0 � i < n) can also be interpreted as a zero-indexed 
vector v 2 Zn. This algebraic object R is a ring (and not a feld) since not all non-zero q

polynomials have unique inverses. 

Adding and Scaling. Addition, subtraction, and scalar multiplication with an integer 
(scaling) follow the basic rules for polynomials or vectors.  

# include <stdint .h> 
# define HILA5_N 1024 
# define HILA5_Q 12289 

// Vector addition : d = a + b. 

void slow_vadd ( int32_t d[ HILA5_N ], 
const int32_t a[ HILA5_N ], const int32_t b[ HILA5_N ]) 

{ 
for (int i = 0; i < HILA5_N ; i++) 

d[i] = (a[i] + b[i]) % HILA5_Q ; 
}

// Scalar multiplication : v = c * v. 

void slow_smul ( int32_t v[ HILA5_N ], int32_t c) 
{ 

for (int i = 0; i < HILA5_N ; i++) 
v[i] = (c * v[i]) % HILA5_Q ; 

� 

�} � 

Multiplication. For multiplication we use cyclotomic polynomial basis Zq[x]/(xn + 1). 
Products are reduced modulo q and xn +1 and results are therefore bound by degree n − 1 
since xn � q − 1. We may write a direct “negative wrap-around” multiplication rule as: 

i n−1X X 
h = f � g mod (x n + 1) () hi = fjg(i−j) − fjg(n+i−j). (1) 

j=0 j=i+1 

Algorithmically the multiplication rule of Equation 1 requires O(n2) elementary operations. 

https://github.com/mjosaarinen/hila5


5 Markku-Juhani O. Saarinen 

 � 

� 

Number Theoretic Transforms. A very fast O(n log n) multiplication method is available 
for ring R, originally due to Nussbaumer [Nus80]. This method is based on Number 
Theoretic Transforms (NTT). Since HILA5 transmits some quantities in the transformed 
domain, we must specify its encoding details even for a basic O(n2) implementation. 

We use generator g = 1945, with multiplicative order of 211 = 2048 in Z� 12289 and 

g n � −1 (mod q). (2) 

In our reference implementation we store powers of g in table pow1945[2048]. � 

// Slow polynomial ring multiplication : d = a * b ( mod x ̂ 1024 + 1) 

void slow_rmul ( int32_t d[ HILA5_N ], 
const int32_t a[ HILA5_N ], const int32_t b[ HILA5_N ]) 

{ 
int32_t x; 

for ( int i = 0; i < HILA5_N ; i ++) { 
x = 0; 
for ( int j = 0; j <= i ; j ++) // positive side 

x = (x + a[j] * b [ i - j ]) % HILA5_Q ; 
for ( int j = i + 1; j < HILA5_N ; j ++) // negative wraparound 

x = (x - a[j] * b [ HILA5_N + i - j ]) % HILA5_Q ; 
// Force into positive [0 , q -1] range (" constant time " masking ) 
d[i] = x + ( -(( x >> 31) & 1) & HILA5_Q ); 

} 
}�

static int32_t pow1945 [2048]; // powers of g =1945 mod q 
static int pow1945_ok = 0; // true after initialization 

// make sure that the pow1945 [] table is initialized 

void init_pow1945 () 
{ 

if ( pow1945_ok ) // nothing to do then 
return ; 

int x = 1; // 1945^0 = 1 
for ( int i = 0; i < 2048; i ++) { // 1945^1024 = -1 ( mod q) 

pow1945 [i] = x; 
x = (1945 * x) % HILA5_Q ; // consecutive powers 

} 
pow1945_ok = !0; // table now ok 

}� � 

To be compatible with the bit-reversed fast transform in the optimized implementation, 
we need to specify a further helper function 

9 �j k �X xBitRev10(x) = 2i mod 2 . (3)29−i 
i=0  � 

// reverse order of ten bits i.e. 0 x200 -> 0 x001 and vice versa 

int32_t bitrev10 ( int32_t x) 
{ 

int t; 

x &= 0 x3FF ; // 9876543210 original order 
x = (x << 5) | (x >> 5) ; // 4321098765 5/5 bit swap 
t = (x ^ (x >> 4) ) & 0 x021 ; 
x ^= t ^ (t << 4) ; // 0321458769 outer bit swap 
t = (x ^ (x >> 2) ) & 0 x042 ; 
x ^= t ^ (t << 2) ; // 0123456789 inner bit swap 

return x & 0 x3FF ; 
}� � 
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We may now defne the equivalent transform as 
n−1X 

j·(2·BitRev10(i)+1)NTT(v) = v̂ with v̂i = vjg for each i 2 [ 0, n − 1 ]. (4) 
j=0 

Our reference implementation uses this slow method (to avoid confusion with fast trans-
forms, these functions are prefxed with slow_): � 

// Slow number theoretic transform and scaling : d = c * NTT (v). 

void slow_ntt ( int32_t d[ HILA5_N ], const int32_t v[ HILA5_N ], int32_t c ) 
{ 

int k , r; 
int32_t x; 

for ( int i = 0; i < HILA5_N ; i ++) { 
r = 2 * bitrev10 (i) + 1; // bit reverse index 
x = 0; 
k = 0; 
for ( int j = 0; j < HILA5_N ; j ++) { 

x = (x + v[j] * pow1945 [k ]) % HILA5_Q ; 
k = (k + r) & 0 x7FF ; // k = (j * r ) % 2048 next round 

} 
d[i] = (c * x) % HILA5_Q ; // multiply with scalar c 

} 
}� � �

We can also give the inverse transform that, if unscaled, satisfes NTT−1
�
NTT(v) = nv. 

Output (or input) must therefore be scaled back by n−1 � 12277 mod q. � 
// Slow inverse number theoretic transform : d = NTT ̂  -1( v). 

void slow_intt ( int32_t d[ HILA5_N ], const int32_t v[ HILA5_N ]) 
{ 

int k , r; 

for ( int i = 0; i < HILA5_N ; i ++) // zeroise d [] 
d[i] = 0; 

for ( int i = 0; i < HILA5_N ; i ++) { 
r = 2 * bitrev10 (i) + 1; // reverse index 
k = 0; 
for ( int j = 0; j < HILA5_N ; j ++) { 

d[j] = (d[j] + v [ i ] * pow1945 [k ]) % HILA5_Q ; 
k = (k - r) & 0 x7FF ; // inverses are negative 

} 
} 

}� � 
Multiplication no longer requires a full convolution in the transformed domain – a simple 
pointwise multiplication c = a ~ b, ci = ai · bi, suÿces: NTT(a � b) = NTT(a)~ NTT(b). 
This property is analogous to multiplication of polynomials vs. multiplication of points on 
the polynomial curves; (f � g)(x) = f(x)g(x).  

// Pointwise multiplication : d = a (*) b. 

void slow_vmul ( int32_t d[ HILA5_N ], 
const int32_t a[ HILA5_N ], const int32_t b[ HILA5_N ]) 

{ 
for (int i = 0; i < HILA5_N ; i++) 

d[i] = (a[i] * b[i]) % HILA5_Q ; 

� 

�} � 

Complexity. The method given above (Equation 4 or slow_ntt()) clearly has O(n2) 
complexity, but it produces numerically equivalent results to our fast transforms. 

In our optimized implementation we use the O(n log n) Cooley-Tukey [CT65] algorithm, 
with the reduction tricks for this use case suggested recently by Longa and Naehrig [LN16]. 
The various scaling constants that are powers of 3 are artifacts caused by the specifc 
reduction methods suggested in that work. 
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Examples. Consider a vector v = (F0, F1, · · · , Fn−1) of Fibonacci numbers reduced 
mod q: 

v = (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, · · · , 4524, 8293, 528, 8821, 9349). 
Applying the Number Theoretic Transform (Equation 4) we obtain v̂ = NTT(v) : 

v̂ = (10951, 5645, 3732, 4089, 442, · · · , 10237, 754, 6341, 4211, 7921). 

Applying the inverse transform on this result we obtain NTT−1(v̂) = nv or 

NTT−1(v̂) = (0, 1024, 1024, 2048, 3072, · · · , 11912, 333, 12245, 289, 245). 

For randomized testing, one may perform convolution multiplication (Equation 1 and 
function slow_rmul) equivalently via Number Theoretic Transforms as follows:  � 

// a [] and b [] should have the vectors to be multiplied 
slow_rmul (x , a , b); // compute x = a * b directly 

// compute same using NTT transforms and helper array t [] 
init_pow1945 () ; // make sure it ’s initialized 
slow_ntt (t , a , 1) ; // t = NTT (a) 
slow_ntt (y , b , 12277) ; // y = NTT (b) / 1024 
slow_vmul (t , t , y); // pointwise t = t (*) y 
slow_intt (y , t); // y = NTT ̂  -1( t ) = a * b = x !! 

// .. now verify that indeed the products match : x == y� � 

1.2 Encoding and Decoding of Ring Polynomials 
Even though we use the int32_t signed integer type in internal processing, we note that 
each ring coeÿcient fts into dlog2 qe = 14 bits. We can therefore easily store 4 coeÿcients 
with 4 � 14 = 56 bits or 7 bytes. For interoperability we will specify a method of encoding 
a vector of n = 1024 coeÿcients into 14 � 1024/8 = 1792 bytes for transmission or storage. 

We concatenate each 14-bit segment into a continuous byte sequence in little-endian 
fashion. We view the least signifcant bit of frst byte or coeÿcient as “bit zero” and the 
most signifcant bit of the last signifcant byte as the last bit. This serialization method is 
called “packing” and the inverse operation is called “unpacking”. Function prototypes:  

# define HILA5_PACKED14 (14 * HILA5_N / 8) 

// 14 - bit packing ; mod q integer vector v [1024] to byte sequence d [1792] 
void hila5_pack14 ( uint8_t d[ HILA5_PACKED14 ], const int32_t v[ HILA5_N ]); 

// 14 - bit unpacking ; bytes in d [1792] to integer vector v [1024] 
void hila5_unpack14 ( int32_t v[ HILA5_N ], const uint8_t d[ HILA5_PACKED14 ]); 

� 

� � 

Examples. The packed increasing sequence of n integers (0, 1, 2, 3, · · · , 1023) has the 
following hexadecimal encoding into 1792 = 0x700 bytes: 

[0000] : 00 40 00 20 00 0C 00 04 40 01 60 00 1C 00 08 40 
[0010] : 02 A0 00 2C 00 0C 40 03 E0 00 3C 00 10 40 04 20 
[0020] : 01 4C 00 14 40 05 60 01 5C 00 18 40 06 A0 01 6C 
[0030] : 00 1C 40 07 E0 01 7C 00 20 40 08 20 02 8C 00 24 

.... 
[06C0] : 0F DC 43 F7 E0 3D 7C 0F E0 43 F8 20 3E 8C 0F E4 
[06D0] : 43 F9 60 3E 9C 0F E8 43 FA A0 3E AC 0F EC 43 FB 
[06E0] : E0 3E BC 0F F0 43 FC 20 3F CC 0F F4 43 FD 60 3F 
[06F0] : DC 0F F8 43 FE A0 3F EC 0F FC 43 FF E0 3F FC 0F 

Encoding is easiest to do in blocks of four coeÿcients; for example (10951, 5645, 3732, 4089) 
corresponds to exactly seven bytes { 0xC7, 0x6A, 0x83, 0x45, 0xE9, 0xE4, 0x3F }. 

http:fashion.We
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1.3 Random Samplers 
HILA5 requires two kinds of random numbers, uniformly distributed in the range [ 0, q−1 ] 
and sampled from the binomial distribution 16. 

Uniform expander. Sampler Parse(seed) deterministically maps a 256-bit seed value to a 
uniformly distributed ring polynomial using the SHAKE-256 XOF [FIP15]. As noted in 
[GS16], it is more eÿcient to do a rejection sampling on 5q = 61445 (rejection rate 6.25%). � 

# define HILA5_SEED_LEN 32 

// generate n uniform samples from the seed 

void hila5_parse ( int32_t v[ HILA5_N ], const uint8_t seed [ HILA5_SEED_LEN ]) 
{ 

hila5_sha3_ctx_t sha3 ; // init SHA3 state for SHAKE -256 
uint8_t buf [2]; // two byte output buffer 
int32_t x; // random variable 

hila5_shake256_init (& sha3 ); // initialize the context 
hila5_shake_update (& sha3 , seed , HILA5_SEED_LEN ); // seed input 
hila5_shake_xof (& sha3 ); // pad context to output mode 

// fill the vector with uniform samples 
for ( int i = 0; i < HILA5_N ; i ++) { 

do { // rejection sampler 
hila5_shake_out (& sha3 , buf , 2) ; // two bytes from SHAKE -256 
x = (( int32_t ) buf [0]) + ((( int32_t ) buf [1]) << 8) ; // endianness 

} while (x >= 5 * HILA5_Q ) ; // reject 
v[i] = x; // reduction ( mod q) unnecessary 

} 
}� � 

Example. Let seed[32] = { 0, 1, 2, ... 31 }. The output of v = Parse(seed) is 

v = ( 34940, 52800, 640, 45901, 14601, · · · , 46031, 8999, 56069, 2120, 49166 ), 

which is congruent and equivalent to the vector 

v mod q = ( 10362, 3644, 640, 9034, 2312, · · · , 9164, 8999, 6913, 2120, 10 ). 

Binomial distribution. Sampling from the binomial distribution 16 basically involves 
a bit count of 32 random bits and subtracting 16 to put the random variable in range 
[ − 16, 16 ]. This distribution and its properties are analyzed in more detail in Section 4.6. 

16X $ 
bi − b0 where bi, b

0 {0, 1}. (5)16 = i i 

i=0 � 

�} � 

// sample a vector of values from the psi16 distribution 

void hila5_psi16 ( int32_t v[ HILA5_N ]) 
{ 

uint32_t x = 0; // 32 - bit variable 

for ( int i = 0; i < HILA5_N ; i ++) { 

randombytes (( unsigned char *) &x , sizeof (x)); // get 4 random bytes 

x -= (x >> 1) & 0 x55555555 ; // Hamming weight 
x = (x & 0 x33333333 ) + (( x >> 2) & 0 x33333333 ); 
x = (x + (x >> 4) ) & 0 x0F0F0F0F ; 
x += x >> 8; 
x = (x + (x >> 16) ) & 0 x3F ; 

x -= 16; // Make signed in range [0 , q -1] 
v[i] = x + ( -(( x >> 31) & 1) & HILA5_Q ); // " constant time " 

} 
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1.4 Error Correction Code 
The error correction code XE5 is a key component of HILA5. It operates on blocks of 496 
bits, of which 256 bits are used to transport a shared secret message and further 240 bits 
are used to correct errors in it. Together the 256 + 240 = 496 bits match the payload size. 
XE5 is always able to correct at least fve arbitrary bit fips in the payload, and more with 
a high probability. See Section 4.7 for further design information on XE5. 

This implementation operates on unsigned 64-bit integers and assumes a little-endian 
platform. On big-endian systems all input and output words need to be fipped around. 
For initial computation of linear code r = XE5_Cod(d) for sending, zeroize array r[4] 
frst to set the redundancy code there. When receiving, use the transmitted value of r. � 

// Field subcodeword : r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 ( end ) 
// lengths . bit offset : 0 16 32 49 80 99 128 151 176 203 240 
static const int xe5_len [10] = { 16 , 16 , 17 , 31 , 19 , 29 , 23 , 25 , 27 , 37 }; 

// Compute redundancy r [] ( XOR over original ) from data d [] 

void xe5_cod ( uint64_t r [4] , const uint64_t d [4]) 
{ 

int i , j , l; 
uint64_t x , t , ri [10]; 

for (i = 0; i < 10; i ++) // initialize 
ri [i] = 0; 

for (i = 3; i >= 0; i --) { // four words 
x = d[i ]; // payload 
for (j = 1; j < 10; j ++) { 

l = xe5_len [j ]; // length 
t = ( ri [j] << (64 % l)); // rotate 
t ^= x; // payload 
if (l < 32) // extra fold 

t ^= t >> (2 * l); 
t ^= t >> l; // fold 
ri [j] = t & ((1 llu << l) - 1) ; // mask 

} 
x ^= x >> 8; // parity of 16 
x ^= x >> 4; 
x ^= x >> 2; 
x ^= x >> 1; 
x &= 0 x0001000100010001 ; // four parallel 
x ^= (x >> (16 - 1) ) ^ ( x >> (32 - 2) ) ^ (x >> (48 - 3) ); 
ri [0] |= (x & 0 xF ) << (4 * i); 

} 
// pack coefficients into 240 bits ( note output the XOR ) 
r [0] ^= ri [0] ^ ( ri [1] << 16) ^ ( ri [2] << 32) ^ ( ri [3] << 49) ; 
r [1] ^= ( ri [3] >> 15) ^ ( ri [4] << 16) ^ ( ri [5] << 35) ; 
r [2] ^= ri [6] ^ ( ri [7] << 23) ^ ( ri [8] << 48) ; 
r [3] ^= ( ri [8] >> 16) ^ ( ri [9] << 11) ; 

}� � 

Example. We will view the 256-bit data array d as a sequence of 32 bytes frst: 
uint8_t d[32] = { 0x00, 0x01, 0x01, 0x02, 0x03, 0x05, 0x08, 0x0D, 

0x15, 0x22, 0x37, 0x59, 0x90, 0xE9, 0x79, 0x62, 
0xDB, 0x3D, 0x18, 0x55, 0x6D, 0xC2, 0x2F, 0xF1, 
0x20, 0x11, 0x31, 0x42, 0x73, 0xB5, 0x28, 0xDD }; 

When the same data d is interpreted as a little-endian 64-bit words, we have: 
uint64_t d[4] = { 0x0D08050302010100, 0x6279E99059372215, 

0xF12FC26D55183DDB, 0xDD28B57342311120 }; 

The corresponding 240-bit redundancy code r is: 
uint64_t r[4] = { 0x5D193C3A9B0A3171, 0xE439D357352B06CF, 

0xDF517AD4F8F2DE07, 0x492E2AC7B92B }; 

Note that high 16 bits of r[3] are always missing as this array is 240 bits (not 256). 

http:platform.On
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Fixing errors. Upon receiving payload (d, r), frst call r0 = XE5_Cod(d) to perform the 
linear operation. Then one can obtain “corrected” data via d0 = d �XE5_Fix(r � r0). Our 
implementation performs many of these XORs in place. � 

// Fix errors in data d [] using redundancy in r [] 

void xe5_fix ( uint64_t d [4] , const uint64_t r [4]) 
{ 

int i , j , k , l; 
uint64_t x , t , ri [10]; 

ri [0] = r [0]; // unpack 
ri [1] = r [0] >> 16; 
ri [2] = r [0] >> 32; 
ri [3] = (r [0] >> 49) ^ (r [1] << 15) ; 
ri [4] = r [1] >> 16; 
ri [5] = r [1] >> 35; 
ri [6] = r [2]; 
ri [7] = r [2] >> 23; 
ri [8] = (r [2] >> 48) ^ (r [3] << 16) ; 
ri [9] = r [3] >> 11; 

for (i = 0; i < 4; i ++) { // four words 
for (j = 1; j < 10; j ++) { 

l = xe5_len [j ]; // length 
x = ri [j] & ((1 llu << l) - 1) ; // mask 
x |= x << l; // expand 
if (l < 32) // extra unfold 

x |= (x << (2 * l)); 
ri [j] = x; // store it 

} 
x = ( ri [0] >> (4 * i)) & 0 xF ; // parity mask for ri [0] 
x ^= (x << (16 - 1) ) ^ ( x << (32 - 2) ) ^ (x << (48 - 3) ); 
x = 0 x0100010001000100 - ( x & 0 x0001000100010001 ); 
x &= 0 x00FF00FF00FF00FF ; 
x |= x << 8; 

for (j = 0; j < 4; j ++) { // threshold sum 
t = (x >> j) & 0 x1111111111111111 ; 
for (k = 1; k < 10; k ++) 

t += ( ri [k] >> j ) & 0 x1111111111111111 ; 
// threshold 6 -- add 2 to weight and take bit number 3 
t = (( t + 0 x2222222222222222 ) >> 3) & 0 x1111111111111111 ; 
d[i] ^= t << j; // fix bits 

} 
if (i < 3) { // rotate if not last 

for (j = 1; j < 10; j ++) 
ri [j] >>= 64 % xe5_len [j ]; 

} 
} 

}� � 

Example. Let’s fip bits {13, 123, 234} in d and bits {89, 200} in r in previous message: 

d�d0 = 0000000000002000 0800000000000000 0000000000000000 0000040000000000 
r�r0 = 0000000000000000 0000000002000000 0000000000000000 0000000000000100 

uint64_t d[4] = { 0x0D08050302012100, 0x6A79E99059372215, 
0xF12FC26D55183DDB, 0xDD28B1 7342311120 }; 

uint64_t r[4] = { 0x5D193C3A9B0A3171, 0xE439D357372B06CF, 
0xDF517AD4F8F2DE07, 0x492E2AC7B82B }; 

Recomputing linear code di˙erence via xe5_cod(r, d) we obtain r00 = r � XE5_Cod(d): 

r00 = 400000102C004081 0001042020408004 A000401100002110 0000000001000104 

We call the threshold fx function xe5_fix(d, r) and directly get d00 = d0 �XE5_Fix(r00): 

d00 = 0D08050302010100 6279E99059372215 F12FC26D55183DDB DD28B57342311120. 
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1.5 Key Generation 
We will now describe keypair generation for both KEM and public key encryption usage. 

nThe secret key is a random variable a 
$ 

16, stored in NTT domain as â = NTT(a). 
Public value pk consists of a concatenation of a 256-bit random seed for uniform generator 
ĝ = Parse(seed) and the actual public key Â defned as � $ nÂ = 33

�
ĝ ~ â + NTT(e) with error e (6)16. 

Vectors in NTT domain are scaled by 33 = 27 in order to facilitate lazy reduction techniques 
of the optimized implementation. � 

�} � 

# define HILA5_PUBKEY_LEN ( HILA5_SEED_LEN + HILA5_PACKED14 ) 
# define HILA5_PRIVKEY_LEN ( HILA5_PACKED14 + 32) 

// Generate a keypair 

int crypto_kem_keypair ( uint8_t *pk , // HILA5_PUBKEY_LEN = 1824 
uint8_t * sk ) // HILA5_PRIVKEY_LEN = 1824 

{ 
int32_t a[ HILA5_N ], e[ HILA5_N ], t [ HILA5_N ]; 

init_pow1945 () ; // make sure initialized 

// Create Secret Key 
hila5_psi16 (t); // (t is a temporary variable ) 
slow_ntt (a , t , 27) ; // a = 3**3 * NTT ( Psi_16 ) 

// Public Key 
hila5_psi16 (t); // t = Psi_16 
slow_ntt (e , t , 27) ; // e = 3**3 * NTT ( Psi_16 ) -- noise 
randombytes (pk , HILA5_SEED_LEN ) ; // Random seed for g 
hila5_parse (t , pk ); // (t =) g = parse ( seed ) 
slow_vmul (t , a , t); 
slow_vadd (t , t , e); // A = NTT (g * a + e) 
hila5_pack14 ( pk + HILA5_SEED_LEN , t ); // pk = seed | A 

hila5_pack14 (sk , a); // pack secret key 
// SHA3 hash of pubic key is stored with secret key due to API limitation 
hila5_sha3 (pk , HILA5_PUBKEY_LEN , sk + HILA5_PACKED14 , 32) ; 

return 0; // SUCCESS 

Note that we must encode a SHA-3 hash of the public key with the secret key because the 
NIST API does not make the public key available for decryption routines. 

nExample. Rather than sampling from 16, we arbitrarily fx the (untransformed) secret 
key be a cycle-fve sequence a � (−1,+1,−2,−3,+5,−1,+1,−2,−3,+5, · · · ). We have 

33â = ( 11172, 5208, 9207, 8751, 251, · · · , 7603, 3490, 9191, 8666, 8302 ). 

Furthermore we set error e � (+2,+2,−4,+2,+2,−4, · · · ), a cycle of three. The seed 
consists of 32 zero bytes. The transformed quantities and the public key will then be 

33ê = ( 8226, 10812, 6666, 1749, 2228, · · · , 10169, 10648, 5731, 1585, 4171 ) 
ĝ � ( 2034, 8826, 9346, 872, 2929, · · · , 2816, 441, 7160, 2952, 5275 ) 

Â = ( 9713, 3471, 7710, 1152, 67, · · · , 490, 1324, 5696, 10208, 11514 ). � �ˆThe encoded byte vectors pk = ( seed | A ) and sk = 33â | SHA3(pk) are 

uint8_t pk[1824] = { 0x00, 0x00, ... 0x90, 0x05, 0x7E, 0xEA, 0xB3 }; 
uint8_t sk[1824] = { 0xA4, 0x2B, 0x16, 0x75, 0x3F, ... 0xE3, 0x3F }; 
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1.6 Key Encapsulation 

Following the NIST call [NIS16] and Peikert [Pei14], our scheme is formalized as a Key 
Encapsulation Mechanism (KEM), consisting of three algorithms: 

(PK, SK) KeyGen(). Generate a public key PK and a secret key SK. 
(CT,K) Encaps(PK). Encapsulate a (random) key K in ciphertext CT. 

K Decaps(SK,CT). Decapsulate shared key K from CT with SK. 
In this model, reconciliation data is a part of ciphertext produced by Encaps. The three 
KEM algorithms constitute a natural single-roundtrip key exchange: 

Alice Bob 
(PK, SK) KeyGen() 

K Decaps(SK,CT) 

PK−−−!
CT−−− (CT,K) Encaps(PK) 

Even though a KEM cannot encrypt per se, a hybrid “Key Transport” set-up that uses a 
KEM to determine random shared keys for message payload confdentiality (symmetric 
encryption) and integrity (via a message authentication code) is usually preferable to using 
asymmetric encryption directly on payload [CS03]. 

Reconciliation data. HILA5 uses a novel reconciliation method based on “Safe Bits”. 
Please see Section 4.5 for a detailed description of this method and analysis of its parameters. 
Note that selector sel, reconciliation rec, and payload pld are all outputs.  � 

# define HILA5_B 799 
# define HILA5_PACKED1 ( HILA5_N / 8) 
# define HILA5_KEY_LEN 32 
# define HILA5_ECC_LEN 30 
# define HILA5_PAYLOAD_LEN ( HILA5_KEY_LEN + HILA5_ECC_LEN ) 

// Create a bit selector , reconciliation bits , and payload ; 
// return nonzero on failure . 

int hila5_safebits ( uint8_t sel [ HILA5_PACKED1 ], 
uint8_t rec [ HILA5_PAYLOAD_LEN ], 
uint8_t pld [ HILA5_PAYLOAD_LEN ], 
const int32_t v[ HILA5_N ]) 

{ 
int i , j , x; 

memset (sel , 0, HILA5_PACKED1 ); // selector array 
memset (rec , 0, HILA5_PAYLOAD_LEN ) ; // reconciliation bits for payload 
memset (pld , 0, HILA5_PAYLOAD_LEN ) ; // the actual payload XOR mask 

j = 0; // reset the bit counter 
for (i = 0; i < HILA5_N ; i ++) { // scan for " safe bits " 

// x in { [737 , 2335] U [3809 , 5407] U [6881 , 8479] U [9953 , 11551] } 
x = v[i] % ( HILA5_Q / 4) ; 
if (x >= (( HILA5_Q / 8) - HILA5_B ) && 

x <= (( HILA5_Q / 8) + HILA5_B )) { 
// set selector bit 

sel [i >> 3] |= 1 << ( i & 7) ; 
x = (4 * v[i ]) / HILA5_Q ; // reconciliation bits 
rec [j >> 3] ^= (x & 1) << (j & 7) ; 
x >>= 1; // payload bits 
pld [j >> 3] ^= (x & 1) << (j & 7) ; 
j ++; // payload bit count 
if (j >= 8 * HILA5_PAYLOAD_LEN ) 

return 0; // SUCCESS : enough bits 
} 

} 
return j; // FAIL : not enough bits 

}� � 



  

  

13 Markku-Juhani O. Saarinen 

nCreating ciphertext. Sender (“Bob”) frst computes his private ephemeral secret b 
$ 

16. 
Scaled representation of public value B̂ makes up the frst 1792 bytes of ciphertext: 

$ nB̂ = ĝ ~ b̂+ NTT(e0) with b̂ = NTT(b) and error e0 (7)16. 

It is then followed by public selector sel (128 bytes), reconciliation data rec for payload 
(32 + 30 = 62 bytes), and encrypted error correction part (30 bytes). The encryption is a 
“one-time-pad” XOR with last 30 bytes of the raw payload. The frst 32 bytes of the raw 
payload z is used to establish the shared secret (See Algorithm 1). � 

# define HILA5_MAX_ITER 100 // Fail hard bound 

// Encapsulate 

int crypto_kem_enc ( uint8_t *ct , // HILA5_CIPHERTEXT_LEN = 2012 
uint8_t * ss , // HILA5_KEY_LEN = 32 
const uint8_t * pk ) // HILA5_PUBKEY_LEN = 1824 

{ 
int i; 
int32_t a[ HILA5_N ], b[ HILA5_N ], e [ HILA5_N ], g[ HILA5_N ], t[ HILA5_N ]; 
uint64_t z [8]; 
uint8_t hash [32]; 
hila5_sha3_ctx_t sha3 ; 

init_pow1945 () ; // make sure initialized 

hila5_unpack14 (a , pk + HILA5_SEED_LEN ); // decode A = public key 

for (i = 0; i < HILA5_MAX_ITER ; i ++) { 

hila5_psi16 (t); // recipients ’ ephemeral secret 
slow_ntt (b , t , 27) ; // b = 3**3 NTT ( Psi_16 ) 
slow_vmul (e , a , b); 
slow_intt (t , e); // t = a * b ( approx . share "y ") 
slow_smul (t , 1416) ; // scale by 1416 = 1 / (3**6 * 1024) 

// Safe bits -- may fail ( with about 1% probability ) ; 
memset (z , 0, sizeof (z)); // ct = .. | sel | sec , z = payload 
if ( hila5_safebits ( ct + HILA5_PACKED14 , // 

ct + HILA5_PACKED14 + HILA5_PACKED1 , ( uint8_t *) z , t) == 0) 
break ; 

} 
if ( i == HILA5_MAX_ITER ) // FAIL : too many repeats 

return -1; 

xe5_cod (& z [4] , z); // create linear ot 
memcpy ( ct + HILA5_PACKED14 + HILA5_PACKED1 + HILA5_PAYLOAD_LEN , 

&z [4] , HILA5_ECC_LEN ); // ct = .. | encrypted error cor . code 

// Construct ciphertext 
hila5_parse (g , pk ); // g = Parse ( seed ) 
hila5_psi16 (t); // noise error 
slow_ntt (e , t , 27) ; // e = 3**3 * NTT ( Psi_16 ) 
slow_vmul (t , g , b); // t = NTT (g * b ) 
slow_vadd (t , t , e); // t = NTT (g * b + e) 
hila5_pack14 (ct , t); // public value in ct 

hila5_sha3_init (& sha3 , HILA5_KEY_LEN ); // final hash 
hila5_sha3_update (& sha3 , " HILA5v10 " , 8) ; // version ident 
hila5_sha3 (pk , HILA5_PUBKEY_LEN , hash , 32) ; // SHA3 ( pk ) 
hila5_sha3_update (& sha3 , hash , 32) ; 
hila5_sha3 (ct , HILA5_CIPHERTEXT_LEN , hash , 32) ; // SHA3 ( ct ) 
hila5_sha3_update (& sha3 , hash , 32) ; 
hila5_sha3_update (& sha3 , z , HILA5_KEY_LEN ); // actual shared secret z 
hila5_sha3_final (ss , & sha3 ); // hash out to ss 

return 0; // SUCCESS 
}�

Final hashes. We see that the fnal shared secret ss is computed as 
ss = SHA3 “HILA5v10” | SHA3(pk) | SHA3(ck) | z 

� 
� 

� 
. (8) 

All hashes are SHA3-256 [FIP15]. First 8 bytes of input is an ASCII version identifer. 
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Example. Let’s use the public key from the key generation Example in Section 1.5. We 
set the ephemeral secret to a cycle-7 sequence and compute its transform: 

b � ( 0,+1,+1,+2,−3,+4,−5, 0,+1,+1,+2,−3,+4,−5, · · · ) 
33b̂ = ( 5361, 11011, 5111, 10968, 6240, · · · , 1901, 10941, 7723, 10979, 9431 ) 

Since the seed is a part of the public key, we end up at the same ĝ value. The scaled 
“approximate shared secret” t = Ab, also known as y (Section 4.3), has value 

y = ( 11982, 1189, 1239, 8956, 11579, · · · , 8947, 10863, 2725, 6368, 1295 ). 

Applying SafeBits, we obtain 1024-bit selector vector sel, which is placed in ciphertext 
after encoded B̂ (below), followed by reconciliation data rec for payload, and the actual 
payload pld which is which is cast as 64-bit words in z. First 32 bytes (z[0..3]) of 
payload is used to create the shared secret, while the latter 30 bytes is used as a “one time 
pad” to XOR encrypt the XE5 error correcting code of that secret. 

uint8_t sel[128] = { 0x26, 0x03, 0xF3, 0x56, 0x26, ... 0x00, 0x00 }; 
uint8_t rec[62] = { 0xF8, 0x82, 0x56, 0x49, 0x9E, ... 0xB0, 0x33 }; 
uint8_t pld[62] = { 0x70, 0xF1, 0x5B, 0xDD, 0x24, ... 0x1A, 0x5F }; 

When constructing ciphertext, we set error to cycle e0 = ( 0,+4, 0,−4, 0,+4, 0,−4, · · · ). 
After transformation and some arithmetic we obtain public value B̂ = 33(b̂~ ĝ+NTT(e0)) 

t = B̂ = ( 9437, 8457, 4675, 10931, 3829, · · · , 8113, 3081, 792, 10698, 8159 ). 

The ciphertext, and the shared secret (after all of the fnal hashing is computed) are: 

uint8_t ct[2012] = { 0xDD, 0x64, 0x42, 0x38, 0x24, ... 0xED, 0x58 }; 
uint8_t ss[32] = { 0xC2, 0x95, 0xA5, 0x2D, 0xBF, ... 0x72, 0x60 }; 

1.7 Key Decapsulation 
Selection and reconciliation. The inverse operation of SafeBits at the recipient side is 
Select. It aims to arrive at the same secret payload data pld, given selector vector sel, 
reconciliation bits rec, and a vector v = x ˇ y that is close the one given to SafeBits.  

// decode selected key bits. return nonzero on failure 

int hila5_select ( uint8_t pld[ HILA5_PAYLOAD_LEN ], 
const uint8_t sel[ HILA5_PACKED1 ], 
const uint8_t rec[ HILA5_PAYLOAD_LEN ], 
const int32_t v[ HILA5_N ]) 

{ 
int i, j, x; 

memset (pld , 0x00 , HILA5_PAYLOAD_LEN ); 

j = 0; 
for (i = 0; i < HILA5_N ; i++) { 

if (( sel[i >> 3] >> (i & 7)) & 1) { 
x = v[i] + HILA5_Q / 8; // reconciliation 
x -= -(( rec[j >> 3] >> (j & 7)) & 1) &

( HILA5_Q / 4); // "90 degrees " if rec bit set 
x = ((2 * ((x + HILA5_Q ) % HILA5_Q )) / HILA5_Q ); 
pld[j >> 3] ^= (x & 1) << (j & 7); 
j++; 
if (j >= 8 * HILA5_PAYLOAD_LEN ) 

return 0; // SUCCESS : got full payload 
}

}

return j; // FAIL: not enough bits 
}�

� 

� 
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Decapsulating ciphertext. The function Decaps() takes “encapsulated” ciphertext ct, 
secret key sk, and arrives at the same shared secret ss as the encapsulation code.  � 

// Decapsulate 

int crypto_kem_dec ( uint8_t *ss , // HILA5_KEY_LEN = 32 
const uint8_t *ct , // HILA5_CIPHERTEXT_LEN = 2012 
const uint8_t * sk ) // HILA5_PRIVKEY_LEN = 1824 

{ 
int32_t a[ HILA5_N ], b[ HILA5_N ]; 
uint64_t z [8]; 
uint8_t ct_hash [32]; 
hila5_sha3_ctx_t sha3 ; 

init_pow1945 () ; // make sure initialized 

hila5_unpack14 (a , sk ); // unpack secret key 
hila5_unpack14 (b , ct ); // get B from ciphertext 
slow_vmul (a , a , b); // a * B 
slow_intt (b , a); // shared secret (" x ") in b 
slow_smul (b , 1416) ; // scale by 1416 = (3^6 * 1024) ̂  -1 

memset (z , 0x00 , sizeof (z)); 
if ( hila5_select (( uint8_t *) z , // reconciliation 

ct + HILA5_PACKED14 , ct + HILA5_PACKED14 + HILA5_PACKED1 , b)) 
return -1; // FAIL : not enough bits 

// error correction -- decrypt with " one time pad " in payload 
for ( int i = 0; i < HILA5_ECC_LEN ; i ++) { 

(( uint8_t *) &z [4]) [i] ^= 
ct [ HILA5_PACKED14 + HILA5_PACKED1 + HILA5_PAYLOAD_LEN + i ]; 

} 
xe5_cod (& z [4] , z); // linear code 
xe5_fix (z , &z [4]) ; // fix possible errors 

hila5_sha3_init (& sha3 , HILA5_KEY_LEN ); // final hash 
hila5_sha3_update (& sha3 , " HILA5v10 " , 8) ; // version identifier 
hila5_sha3_update (& sha3 , sk + HILA5_PACKED14 , 32) ; // SHA3 ( pk ) 
hila5_sha3 (ct , HILA5_CIPHERTEXT_LEN , ct_hash , 32) ; // hash the ciphertext 
hila5_sha3_update (& sha3 , ct_hash , 32) ; // SHA3 ( ct ) 
hila5_sha3_update (& sha3 , z , HILA5_KEY_LEN ); // shared secret 
hila5_sha3_final (ss , & sha3 ); 

return 0; // SUCCESS 
}� � 

Example. Given the ciphertext and secret key from previous examples, 

uint8_t ct[2012] = { 0xDD, 0x64, 0x42, 0x38, 0x24, ... 0xED, 0x58 }; 
uint8_t sk[1824] = { 0xA4, 0x2B, 0x16, 0x75, 0x3F, ... 0xE3, 0x3F }; 

we arrive at the approximate shared secret x = NTT−1(B̂ ~ â), which is set in variable b: 

x = ( 11982, 1157, 1261, 8932, 11561, · · · , 8967, 10861, 2727, 6374, 1259 ). 

The closeness if x to y (Section 1.6) is demonstrated by 

y − x = ( 0, 32,−22, 24, 18,−56,−10, 40, · · · , 42, 28,−16,−20, 2,−2,−6, 36 ). 

One should obviously also test that the shared secret ss fully matches. 

uint8_t ss[32] = { 0xC2, 0x95, 0xA5, 0x2D, 0xBF, 0x0B, 0x86, 0x03, 
0xAC, 0x49, 0xB4, 0x1A, 0x5B, 0xE1, 0xEE, 0xBD, 
0x64, 0x0E, 0x34, 0x7D, 0x16, 0xC1, 0x58, 0xE1, 
0xBD, 0xA0, 0x75, 0x96, 0x14, 0xB1, 0x72, 0x60 }; 
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2 Performance Analysis 
We have chosen to recycle “New Hope” [ADPS16b] ring (n, q) and sampler (q, 16) 
parameters as they have been extensively vetted for security and were originally selected 
for performance. The HILA5 reconciliation and error correction methods are novel, and 
greatly increase reliability, but have a negligible performance penalty. Hence New Hope 
software and hardware performance analysis on any given target is largely applicable. 

2.1 Software Optimizations 
A signifcant e˙ort has been dedicated (by several research groups) on the optimized 
implementation these particular NTT and Sampler components. There already exists a 
number of permissively licensed open source implementations and a body of publications 
detailing specifc optimizations for these NTT and sampler parameters. 

There are at least two very fast AVX2 Intel optimized versions of the NTT core and 
16 sampler – the original [ADPS16b] and one by Longa and Naehrig [LN16]. Further 

sampler optimizations have been suggested in [GS16]. Implementations have also been 
reported for ARM Cortex-M MCUs [AJS16] and the ARM NEON instruction set [SS17]. 

New Hope has also been integrated in TLS stacks and cryptographic toolkits in 
2016-17 by Google (BoringSSL), the Open Quantum Safe project, Microsoft (MS Lattice 
Library), ISARA Corporation, and possibly others. Many of these components and protocol 
integration techniques are recyclable for a HILA5 implementation. 

2.2 Software Comparison 
Our prototype implementation was integrated into a branch of the Open Quantum Safe 
(OQS) framework1 where it was benchmarked against other quantum-resistant KEM 
schemes [SM16]. A slight (under 4%) performance di˙erence observed between HILA5 and 
New Hope is principally due to our use of error correction and use of SHAKE-256 rather 
than faster but less secure SHAKE-128. Note that HILA5 message size is slightly smaller 
and failure rate is signifcantly better than that of New Hope. 

Table 1 summarizes the results. Testing was performed on an Ubuntu 17.04 system with 
Core i7-6700 @ 3.40 GHz. We are also including RSA numbers with OpenSSL 1.0.2 (system 
default implementation) on this target for reference and scale. A single Elliptic Curve DH 
operation requires 45.4µs for the NIST P-256 curve (highly optimized implementation), 
and 331.7µs for NIST P-521. 

2.3 Hardware Implementations 
Vast majority of HILA5 hardware implementation footprint is taken by the ring arithmetic 
and hash function components, and therefore equivalent New Hope numbers are very 
instructive. Envieta [FNSW17] reports FPGA implementations on New Hope on Intel 
Arria 10 (266,240 bits of memory, 22 DSP, 6485 Registers, 300 MHz, 40,030 CLKs) and 
Xilinx Zynq (5 BRAM, 27 DSP, 6988 Registers, 180 Mhz, 40,030 CLKs). Kuo et al. 
[KLC+17] also report a New Hope implementation on Xilinx Zynq (13 BRAM, 32 DSP, 
12,707 FFs, 19,781 LUTs, 13,024 slice registers, 114 MHz, 22,597 CLKs). 

In all cases the key exchange required only a fraction of millisecond of computation for 
full key exchange; this is faster than any comparable classical alternative. NTT operations 
dominate the hardware implementation area and time. 

1Open Quantum Safe project home: https://openquantumsafe.org/ 

https://openquantumsafe.org/
mailto:i7-6700@3.40
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Table 1: Comparison of HILA5 to other Open Quantum Safe implementations [SM16]. 

Scheme 
Init 

KeyGen() 
Public 
Encaps() 

Private 
Decaps() 

KEX 
Total 

Data 
Tot. xfer 

New Hope [ADPS16b] 
HILA5 [This work] 
BCNS15 [BCNS15] 

LWE Frodo [BCD+16] 
SIDH CLN16 [CLN16] 

60.7µs 
68.7µs 
951.6µs 
2.839ms 
10.3ms 

92.3µs 
89.9µs 
1546µs 
3.144ms 
22.9ms 

16.2µs 
16.9µs 
196.9µs 
84.9µs 
9.853ms 

169.2µs 
175.4µs 
2.694ms 
6.068ms 
43.1ms 

3,872 B 
3,836 B 
8,320 B 
22,568 B 
1,152 B 

RSA-2048 [OpenSSL] 
RSA-4096 [OpenSSL] 

60ms 
400ms 

15.9µs 
55.7µs 

559.9µs 
3.687ms 

N/A 
N/A 

N/A 
N/A 

3 Known Answer Test Values 
Various intermediate values can be found in examples of Section 1. Full 100-iteration KAT 
set is included in the submission: 

KAT/PQCkemKAT_1824.req, 13590 bytes 
SHA-256 = 36c27b6089b8910733a01fea1136469769b3ca3c35f2b375cfcc592f2112cfaa 

KAT/PQCkemKAT_1824.rsp, 1152399 bytes 
SHA-256 = 7d4336c35a0a5d3ed9be28aa2d812be03f6765572e788c7477a2a0839bb34e42 

4 Design and Parameter Selection 
This section contains reasoning for our design and parameter selection. 

4.1 Expected Security Strength 
Our design goal and security claim is that HILA5 meets NIST’s “Category 5” post-quantum 
security requirement ([NIS16], Section 4.A.5): Compromising key K (shared secret ss) in 
a passive attack requires computational resources comparable to or greater than those 
required for key search on a block cipher with a 256-bit key (e.g. AES 256). 

NIST requires at least IND-CPA [BDPR98] security from a KEM scheme (Section 1.6). 
For a KEM without “plaintext”, this essentially means that valid (PK,CT,K) triplets are 
computationally indistinguishable from (PK,CT,K0), where K0 is random. The design also 
provides IND-CCA secure KEM-DEM [CS03] public key encryption if used in conjunction 
with an appropriate AEAD [Rog02] such as NIST approved AES256-GCM [FIP01, Dwo07]. 
These properties are derived from [Pei14]. 

4.2 Hard Problem: Introduction to Ring-LWE 
Notation. Let R be a ring with elements v 2 Zn. We use cyclotomic polynomial basis q

Zq[x]/(xn + 1). See Section 1.1 for further information about arithmetic in this ring. 

Defnition 1 (Informal). With all distributions and computations in ring R, let s, e be 
elements randomly chosen from some non-uniform distribution ̃ , and g be a uniformly 
random public value. Determining s from (g,g � s + e) in ring R is the (Normal Form 
Search) Ring Learning With Errors (RLWER,˜) problem. 

Typically ̃  is chosen so that each coeÿcient is a Discrete Gaussian or from some 
other “Bell-Shaped” distribution that is relatively tightly concentrated around zero. The 
hardness of the problem is a function of n, q, and ̃ . 
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References and notes on RLWE problem. The Learning With Errors (LWE) problem 
in cryptography originates with Regev [Reg05] who showed its connection to fundamental 
lattice problems in a quantum setting. Regev also showed equivalence of search and 
decision variants [Reg09]. 

These ideas were extended to ring setting (RLWE) starting with [LPR10]. The 
connection between a uniform secret s and a secret chosen from ̃ is provided by Applebaum 
et al. [ACPS09] for LWE case, and for the ring setting in [LPR13]. 

Due to these reductions, the informal problem of Defnition 1 can be understood to 
describe “RLWE”. Best known methods for solving the problem expand an RLWE instance 
to the general (lattice) LWE, and therefore RLWE falls under “lattice cryptography” 
umbrella. For a recent review of its concrete hardness, see [APS15]. 

4.3 Noisy Diÿe-Hellman in a Ring 
A key exchange method analogous to Diÿe-Hellman can be constructed in R in a straight-
forward manner, as frst described in [AGL+10, Pei09]. Let g 

$ R be a uniformly random 
common parameter (“generator”), and ˜ a non-uniform distribution. 

Alice Bob 
a 
$ 
˜ private keys b 

$ 
˜ 

e 
$ 
˜ noise e0 $ ˜ 

A = g � a + e public keys B = g � b + e0 

x = B � a 

A−−−!
B−−−

shared secret y = A � b 

We see that that the way messages A,B are generated makes the security of the scheme 
equivalent to Defnition 1. This commutative scheme “almost” works like Diÿe-Hellman be-
cause the shared secrets only approximately agree; x ˇ y. Since the ring R is commutative, 
substituting A and B gives 

x = (g � b + e0) � a = g � a � b + e0 � a (9) 
y = (g � a + e) � b = g � a � b + e � b. (10) 

The distance � therefore consists only of products of “noise” parameters: 

� = x − y = e0 � a − e � b. (11) 

We observe that each of {a,b, e, e0} in � are picked independently from ̃ , which should 
be relatively “small’ and zero-centered. The coeÿcients of both x and y are dominated 
by common, uniformly distributed factor g � a � b ˇ x ˇ y. Up to n shared bits can be 
decoded from coeÿcients of x and y by a simple binary classifer such as b 2xi c ˇ b2yi c. q q

This type of generation will generate some disagreeing bits due to error �, however. 
Furthermore, the output of the classifer is slightly biased when q is odd. This is why 
additional steps are required. 

4.4 Reconciliation 
Let x ˇ y be two vectors in Zn with a relatively small di˙erence in each coeÿcient; theq

distribution of the distance �i = xi − yi is strongly centered around zero. In reconciliation, 
we wish the holders of x and y (Alice and Bob, respectively) to be able to arrive at 
exactly the same shared secret (key) k with a small amount of communication c. However, 
single-message reconciliation can also be described simply as a part of an encryption 
algorithm (not a protocol). 



19 Markku-Juhani O. Saarinen 

0

q
2

q
4

k = 0

c = 0

k = 1

c = 1

k = 0

c = 1

k = 1

c = 0

3q
4

Bob:

0

when c = 0
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q
8

5q
8

Alice:

Figure 1: Simplifed view of Peikert’s original reconciliation mechanism [Pei14], ignoring 
randomized rounding. Alice and Bob have points x ̌  y 2 Zq that are close to each other. 
Bob uses y to choose k and c as shown on left, and transmits c to Alice. Alice can use 

qx, c to always arrive at the same shared bit k0 if |x − y| < 8 , as shown on right. Without 
randomized smoothing the two halves k = 0 and k = 1 have an area of unequal size (when 
q is an odd prime) and the resulting key will be slightly biased. 

4.4.1 Peikert’s Reconciliation and BCNS Instantiation 

In Peikert’s reconciliation for odd modulus [Pei14], Bob frst generates a randomization 
vector r such that each ri 2 {0,±1} is uniform modulo two. Bob can then determine the 
public reconciliation c and shared secret k via 

ci = 
�
2(2yi − ri) 

q 

� 
mod 2 ki = 

�
2yi − ri 

q 

ˇ 
mod 2. (12) 

qWe defne disjoint helper sets I0 = [0, b 2
q c] and I1 = [−b q 

2c,−1] and E = [− 4
q , 4 ). Alice 

uses x to arrive at the shared secret k0 = k via ˆ 
0, if 2xi 2 Ici + E mod 2qki 

0 = (13)1, otherwise. 

This mechanism is illustrated in Figure 1. Peikert’s reconciliation was adopted for the 
Internet-oriented “BCNS” instantiation [BCNS15], which has a vanishingly small failure 

< 2−16384probability; Pr(k0 6 .= k)

4.4.2 New Hope Variants 

“New Hope” is a prominent, more recent instantiation of Peikert’s key exchange scheme 
[ADPS16b]. New Hope is parametrized at n = 1024, yet produces a 256-bit secret key k. 
This allowed the designers to develop a relatively complex reconciliation mechanism that 

1024uses 256 = 4 coeÿcients of x and 2 � 4 = 8 bits of reconciliation information to reach 
< 2−60 failure rate. 

In a follow-up paper [ADPS16a] the New Hope authors let Bob unilaterally choose 
the secret key, and signifcantly simplifed their approach. This version also uses four 
coeÿcients, but requires 3 � 4 = 12 bits of reconciliation (or “ciphertext”) information per 

< 2−60key bit. The total failure probability is the same . 
Note that despite having a higher failure probability, the security level of New Hope 

(Section 4.4.2) is higher than that of BCNS (Section 4.4.1). Security of RLWE is closely 
related to the entropy and deviation of noise distribution ̃  in relation to modulus q. 
Higher noise ratio increases security against attacks, but also increases failure probability 
[APS15]. This is a fundamental trade-o˙ in all Ring-LWE schemes. 
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q
4 + b

3q
4 + b

3q
4 − b

2y 2yFigure 2: We use k = b c (k = 1 on left half) instead of signed rounding k = b2 2 + �e 
(k = 1 in lower half) of Peikert (Figure 1). Illustration on the left gives intuition for the 
simple key bit selection and SafeBits without reconciliation. Bob uses window parameter b 
to select “safe” bits d = 1 which are farthest away from the negative (k = 1) / positive 
(k = 0) threshold. The bit selection d is sent to Alice, who then chooses the same bits 
as part of the shared secret k0. On right, safe bit selection when reconciliation bits c are 
used; this doubles the SafeBits “area”. Each section constitutes a fraction 2b+1 , so bits are q
unbiased. The number of shared bits is not constant, however. 

References and notes on reconciliation. The term “reconciliation” comes from Quantum 
Cryptography. Standard Quantum Key Distribution (QKD) protocols such as BB84 [BB84] 
result in approximately agreeing shared secrets, which must be reconciled over a public 
channel with the help of classical information theory and cryptography [BBR88, BS93]. 
Ding et al. describe functionally similar (but mathematically very di˙erent) “Robust 
Extractors” in later versions of [DXL12] and patents [Din15, Din16] (See Section 4.5.3). 

4.5 SafeBits: New Reconciliation Method 
We defne the key and reconciliation bit generation rule from Bob’s share y to be 

ki = 
�
2yi 

q 

� 
and ci = 

�
4yi 

q 

� 
mod 2. (14) 

Input yi can be assumed to be uniform in range [0, q − 1]. If taken in this plain form, the 
generator is slightly biased towards zero, since the interval for ki = 0, [ 0, b q 

2c ] is 1 larger 
than the interval [ d 2

q e, q − 1 ] for ki = 1 when q is odd. 

4.5.1 Intuition: Selecting Safe Bits 

Let’s assume that we don’t need all n bits given by the ring dimension. There is a 
straight-forward strategy for Bob to select m indexes in y that are most likely to agree. 
These safe coeÿcients are those that are closest to center points of k = 0 and k = 1 ranges, 
which in this case are 4 

q and 34 
q , respectively. Bob may choose a boundary window b, which 

defnes shared bits to be used, and then communicate his binary selection vector d to 
Alice: ˆ � � � �3q 3q1 if yi 2 b 4

q e − b, b q or yi 2 b 4 e − b, b e + b 
di = 4e + b 4 (15)0 otherwise. 

This simple case is illustrated on left side of Figure 2. 
Since y is uniform in Zn, the Hamming weight of d = SafeBits(y) satisfes Wt(d) = qPn−1 

i=1 di ̌  4b+2 n. Note that if not enough bits for the required shared secret payload can q 
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be obtained with bound b, Bob should re-randomize y rather than raising b as that can 
have an unexpected e˙ect on failure rate. If there are too many selection bits for desired 
payload, one can just ignore them. 

Importantly, both partitions are of equal size 2b+1 and therefore k is unbiased if there 
are no bit failures. If Alice also uses the simple rule k0 = b 2xi c to derive key bits (without i q 

qci), the distance between shares must be at least |xi − yi| > 4 − b for a bit error to occur. 

4.5.2 Even safer bits via Peikert’s reconciliation 

Let Bob use Equation 14 to determine his private key bits ki and reconciliation bits ci. 
Bob also uses a new d = SafeBits(y, b) function that allows for Peikert-style reconciliation: ˆ 

1 if |(yi mod b 4
q e)− b q 

8c| � b 
di = (16)0 otherwise. 

Note that there are now four “safe zones” (Figure 2, right side). Bob sends his bit selection 
vector d to Alice, along with reconciliation bits ci at selected positions with di = 1. Alice 
can then get corresponding k0 using ci viai � ��� j m j m2 q q

ki 
0 = xi − ci + mod q . (17) 

q 4 8 

Both parties derive a fnal key of length m � Wt(d) bits by concatenating the selected bits. 
Since y is uniform, each partition is still of size 2b+ 1, and the expected weight is now Pn−1Wt(d) = i=1 di ̌  8b+4n, allowing the selection to be made essentially twice as tight q
while producing unbiased output. 

4.5.3 Bob Chooses Key Bits: Ding’s Patents 

Note that Bob is choosing the safe bits; he can use the direct rule of Equation 16, but 
really doesn’t have to. In fact, such randomization may help security. With practical b 
boundaries there are typically many more bits with di = 1 than there are payload bits 
(Table 2); Bob can therefore directly choose much of the k secret, as in traditional public 
key encryption. Therefore patents [Din15, Din16] are not applicable as HILA5 does not 
perform reconciliation or joint-control key exchange as presented that work. This was also 
the rationale for “simple” New Hope variant [ADPS16a]. 

4.6 Analysis of Decryption Failure 
Recall that we use the well-analyzed and optimized external ring parameters (q = 12289, 
n = 1024, and ̃  = 16) from New Hope [ADPS16a, ADPS16b] in our proposal. 
Defnition 2. Let k be a binomial distribution source 

kX $ 
k = bi − b0 where bi, b

0 {0, 1}. (18)i i 

i=0 � 2k 
�

2−2k nFor random variable X from k we have P (X = i) = . Furthermore, k+i k 

is a source of R elements where each one of n coeÿcients is independently chosen from 
k. Since scheme is uses k = 16, a typical sampler implementation just computes the 

Hamming weight of a 32-bit random word and subtracts 16. 
Lemma 1. Let ", "0 be vectors of length 2n from 2n. Individual coeÿcients � = �i ofk 

distance Equation 11 will have distribution equivalent to 
2nX 

� = " i "
0 
i. (19) 

i=1 
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Figure 3: The error distribution E of � = xi − yi (which we compute with high precision) 
is bell-shaped with variance ̇ 2 = 217. Its statistical distance to corresponding discrete 
Gaussian (with same ̇ ) is ˇ 2−12.6, which has a signifcant e˙ect on the bit failure rate. 
This is why we compute the discrete distributions numerically. 

Proof. When we investigate the multiplication rule of Equation 1, we see that each 
coeÿcient of independent polynomials {a,b, e, e0} (or its inverse) in � is used in compu-

k kX 

tation of each �i = � exactly once. One may equivalently pick coeÿcients of ", "0 from 
{±e,±e0 ,±sA,±sB}, without repetition. Therefore coeÿcients of " i, "0 are independent i 

X 

and have distribution k. 

4.6.1 Independence Assumption 

Even though all of the variables in the sum of individual element � = �i are independent in 
Equation 19, they are reused in other sums for �j , i 6= j. Therefore, while the average-case 
distribution of each one of the n coeÿcients of � is the same and precisely analyzable, they 
are not fully independent. In this work we perform error analysis on a single coeÿcient and 
then simply expand it to the whole vector. This independence assumption is analogous 
to our extension of LWE security properties to Ring-LWE with more structure and less 
independent variables. 

The assumption is supported by our strictly bound error distribution k and the 
structure of convolutions of signed random vectors (Equation 1). Our error estimate has a 
signifcant safety margin, however. 

4.6.2 Computing the Error Distribution 

The distribution of the product from two random variables from k in Equation 19 is 
no longer binomial. Clearly its range is [ − k2, k2 ], but not all values are possible; for 
example, primes p > k cannot occur in the product. However, it is easy to verify that the 
product is zero-centered and its standard deviation is exactly vuut � 2k 

�� 2k
� 

˙ = k+i k+j k(ij)2 = . (20)24k 2
i=−k j=−k 

Hence, we may estimate � of Equation 19 using the Central Limit Theorem as a Gaussian 
distribution with deviation 

kp
˙ = 2n (21)2

With our parameter selection this yields ̇  ̌  362.0386 (variance ̇ 2 = 217). However, 
the distribution of X = " i "0 in Equation 19 is far from being “Bell-shaped” – its (total i 

variation) statistical distance to a discrete Gaussian (with the same ̇  = 8) is ˇ 0.307988. 
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Figure 4: Relationship between individual bit failure rate and the selection window b. 
Dotted line is the rate derived from Gaussian approximation – it’s up to 2× lower. 

To calculate more accurate error distributions, we observe that since our domain 
Zq is fnite, we may always perform full convolutions between statistical distributions 
of independent random variables X and Y to arrive at the distribution of X + Y . The 
distributions can be represented as vectors of q real numbers. In order to get the exact shape 
of the error distribution we start with X, which is a “square” of 16 and can be computed 
via binomial coeÿcients, as is done in Equation 20. The error distribution (Equation 
19) is a sum X +X + · · · +X of 2n independent variables from that distribution. Using 
the convolution summing rule we can create a general “scalar multiplication algorithm” 
(analogous to square-and-multiply exponentiation) to quickly arrive at E = 2048 ×X. 

We implemented fnite distribution evaluation arithmetic in 256-bit foating point 
precision using the GNU MPFR library2. From these computations we know that the 
statistical distance of E to a discrete Gaussian with (same) ̇ 2 = 217 is approximately 
0.0001603 or 2−12.6. Figure 3 illustrates this error distribution. 

Proposition 1. Bit selection mechanism of Section 4.5.2 yields unbiased shared secret 
bits k = k0 if y is uniform. Discrete failure rate for individual bits k =6 k0 can be computed 
with high precision in our instance. 

Proof. Consider Bob’s k value from in Equation 14, Bob’s c and Alice’s k0 from Equation 
17, and the four equivalently probable SafeBits ranges in Equation 16. With our q = 12289 
instantiation the four possible k 6= k0 error conditions are: 

Failure Case Bob’s yi range for Y Alice’s Failing xi 

k = 0, c = 0, k0 = 1 [ 1536− b, 1536 + b ] [ 4609, 10752 ] 
k = 0, c = 1, k0 = 1 [ 4608− b, 4608 + b ] [ 0, 1535 ] [ [ 7681, 12288 ] 
k = 1, c = 0, k0 = 0 [ 7680− b, 7680 + b ] [ 0, 4608 ] [ [ 10753, 12288 ] 
k = 1, c = 1, k0 = 0 [ 10752− b, 10752 + b ] [ 1536, 7680 ] 

We examine each case separately (See Figure 2). Since the four non-overlapping yi ranges 
are of the same size 2b+1 and together constitute all selectable points di = 1 (Equation 16), 
the distribution of k = k0 is uniform. Furthermore, bit fail probability k =6 k0 is the average 
of these four cases. For each case, compute distribution Y which is uniform in the range 
of yi. Then convolute it with error distribution to obtain X = Y + E, the distribution 
of xi. The probability of failure is the sum of probabilities in X in the corresponding xi 

failure range. 
2The GNU MPFR is a widely available, free C library for multiple-precision foating-point computations 

with correct rounding: http://www.mpfr.org/ 
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4.7 Constant-Time Error Correction 
We observe that in HILA5 the error correction mechanism operates on secret data. As with 
all other components of the scheme it is highly desirable that decoding can be implemented 
with an algorithm that requires constant processing time regardless of number of errors 
present. We are not aware of satisfactory constant-time decoding algorithms for BCH, 
Reed-Solomon, or other standard block multiple-error correcting codes [MS77, vL99]. 

We chose to design a linear block code, XE5, specifcally for HILA5. The design 
methodology is general, and a similar approach was used by the author for the Trunc8 
Ring-LWE lightweight authentication scheme [Saa17c]. 

Defnition 3. XE5 has a block size of 496 bits, out of which 256 bits are message bits 
m = (m0,m1, · · · ,m255) and 240 bits r provide redundancy. Redundancy is divided into 
ten subcodewords r0, r1, · · · , r9 of varying bit length |ri| = Li with 

(L0, L1, · · · , L9) = (16, 16, 17, 31, 19, 29, 23, 25, 27, 37). (22) 

Bits in each ri are indexed r(i,0), r(i,1), · · · , r(i,Li−1). Each bit k 2 [0, L0 − 1] in frst 
subcodeword r0 satisfes the parity equation 

15X 
r0,k = m(16k+j) (mod 2) (23) 

j=0 

and bits in r1, r2, · · · , r9 satisfy the parity congruence X 
ri,k = mj (mod 2). (24) 

j−k | Li 

We see that r0,k in Equation 23 is the parity of k + 1:th block of 16 bits, while the ri,k 

in Equation 24 is parity of all mj at congruent positions j � k (mod Li). 

Defnition 4. For each message bit position mi we can assign corresponding integer 
“weight” wi 2 [ 0, 10 ] as a sum 

9X 
wi = r(0,bi/16c) + r(j,i mod Lj ). (25) 

j=1 

Lemma 2. If message m only has a single nonzero bit me, then we = 10 and wi � 1 for 
all i 6= e. p
Proof. Since each Li � |m| and all Li�1 are coprime (each is a prime power) it follows 
from the Chinese Remainder Theorem that any nonzero i 6 j pair can simultaneously = 
satisfy both ri,a mod Li = 1 and rj,a mod Lj = 1 only at a = e. Similar argument can be 
made for pairing r0,a with ri�1. Since the residues can be true pairwise only at e, weight 
wa cannot be 2 or above when a 6= e. Case we = 10 follows directly from Defnition 3. 

Defnition 5. Given XE5 input block m | r, we derive the redundancy check r0 from m 
via Equations 23 and 24. Furthermore we have distance r� = r � r0. Message distance 
weight vector w� is derived from r� via Equation 25. 

Since the code is entirely linear, Lemma 2 implies a direct way to correct a single error 
in m using Defnition 5 – just fip bit mx at position x where w� = 10. In fact any two x 

redundancy subcodewords ri and rj would be suÿcient to correct a single error in the 
message; it’s where w� � 2. It’s easy to see if the single error is in the redundancy part i 

(ri or rj) instead of the message – this is not an issue since in that case w� � 1 for all x.x 

Such reasoning leads to our error correction strategy that is valid for up to fve errors. 
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Theorem 1. Let m | r be an XE5 message block as in Defnition 5. Changing each bit 
�mi when w � 6 will correct a total of fve bit errors in the block. i 

Proof. We frst note that if all fve errors are in the redundancy part r, then w� � 5 andi 

no modifcations in payload are done. If there are 4 errors in r and one in payload we still 
have wx 

� � 6 at the payload error position mx, etc. For each message error mx, each of 
ten subcodeword ri will contribute one to weight w� unless there is another congruent x 

error my – i.e. we have bx/16c = by/16c for r0 or x � y (mod Li) for ri�1. Four errors 
cannot generate more than four such congruences (due to properties shown in the proof of 
Lemma 2), leaving ffth correctable via remaining six subcodewords (w� � 6).i 

In order to verify the correctness of our implementation, we also performed a full P5 496!exhaustive test (search space i!(496−i)! ˇ 2
37.8). Experimentally XE5 corrects 99.4%i=0 

of random 6-bit errors and 97.0% of random 7-bit errors. 

4.7.1 Eÿcient Constant-Time Implementation 

The code generation and error correcting schemes can be implemented in bit-sliced fashion, 
without conditional clauses or table lookups on secret data. Please see listings in Section 
1.4 for an example implementation that runs in constant time. 

The block is encoded simply as a 496-bit concatenation m | r. The reason for the 
ordering of Li in Equation 22 is so that they can be packed into byte boundaries: 17+31 = 
48, 19 + 29 = 48, 23 + 25 = 48 and 27 + 37 = 64. 

4.8 Parameter Selection for Reconciliation 
As can be seen in Figure 4, the relationship between window size b and bit failure rate is 
almost exponential. Some representative window sizes and payloads are given in Table 2, 
which also puts our selection b = 799 in context. Five-error correction (Section 4.7) lowers 
the message failure probability to roughly (2−27)5 ˇ 2−135 or even lower as 99% of six-bit 
errors are also corrected. We therefore meet the 2−128 message failure requirement with a 
signifcant safety margin. 

Table 2: How b = 799 was chosen: Potential window b sizes for SafeBits (Equation 16) 
selection with di˙erent payload sizes. We target a payload of 496 bits, of which 256 are 
actual key bits and 240 bits are used to encrypt a fve-error correcting code from XE5. 

Payload 
bits� 

m ̌  r × n 

Selection 
Window 

b 

Selection 
Ratio 

r = 4(2b+1) 
q 

Bit fail 
Probability 

p 

Payload 
Failure 

1− (1− p)m 

128 
256 
384 
496† 
512 
768 
1024 

191 
383 
575 
799 
767 
1151 
1535 

0.124664 
0.249654 
0.374644 
0.520465 
0.499634 
0.749613 
0.999593 

2−51.4715 

2−46.5521 

2−41.5811 

2−36.0359 

2−36.8063 

2−28.1151 

2−20.7259 

2−44.4715 

2−38.5521 

2−32.9962 

2−27.0818 

2−27.8063 

2−18.5302 

2−10.7263 

� This is the minimum number of payload bits you get with 50% probability. The actual 
nnumber is binomially distributed with density f(k) = 
� � 

rk(1− r)n−k. Probability of at 
nleast m bits is therefore 

P
f(k). 

k 

k=m 
† The payload could be 533 bits with 50% probability. We get 496 bits with 99% probability 
– this safety margin was chosen to minimize repetition rate (to ̌  1 100 ). 

http:sizes.We
http:corrected.We
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4.9 Putting it together: Design Overview of HILA5 
Algorithm 1 contains a pseudocode overview of the HILA5 Key Encapsulation Mechanism 
(and Public Key Encryption algorithm), using a number of auxiliary functions.3 

Algorithm 1 Protocol fow of the HILA5 KEM. 
Alice Bob 

(PK, SK) KeyGen() 
$ {0, 1}256s Public random seed. 

ĝ Parse(s) Expand to “generator” in NTT domain. 
na 

$ 
16 Randomize Alice’s secret key. 

â NTT(a) Transform it. 
ne 

$ 
16 Generate masking noise. 

Â ĝ ~ â + NTT(e) Compute Alice’s public key in NTT domain. 
# Keep SK = â and h(PK). Keep secret key (and hash of public key). 

ˆ! Send PK = s | A Send public key to Bob. 
PK−−−! 

(CT,K) Encaps(PK) 
nRandomize Bob’s ephemeral secret key. b 

$ 
16 

Transform it. b̂ NTT(b) 
Bob’s version of shared secret. y NTT−1(Â ~ b̂) 

Get payload and reconciliation values. (d,k, c) SafeBits(y) 
(Fail hard after more than a dozen restarts.) If k = FAIL restart Encaps() 

Split to message and redundancy mask. m | z = k 
Error correction code, encrypt it. r XE5_Cod(m)� z 

Get “generator” from Alice’s seed. ĝ Parse(s) 
nGenerate masking noise. e0 $ 
16 

Compute Bob’s one-time public value. B̂ ĝ ~ b̂+ NTT(e0) 
Keep fnal hash. V is a version identifer. # K = h( V | h(PK) | h(CT) | m )

ˆSend ciphertext to Alice. Send CT = B | d | c | r 
CT−−− 

K Decaps(SK,CT) 
x NTT−1(B̂ ~ â) Alice’s version of the shared secret. 

k0 Select(x,d, c) Get payload with the help of reconciliation. 
m0 | z0 = k0 Split to message and redundancy mask. 

r0 XE5_Cod(m0) Get error correction code from Alice’s version. 
m00 XE5_Fix(r � z0 � r0)�m0 Decrypt and apply Bob’s error correction. 
# K0 = h( V | h(PK) | h(CT) |m00 ) Keep fnal hash. V is a version identifer. 

Notation and auxiliary functions. We represent elements of R in two di˙erent domains; 
the normal polynomial representation v and Number Theoretic Transform representation 
v̂. Convolution (polynomial multiplication) in the NTT domain is a linear-complexity 
operation, written x̂ ~ ŷ. Addition and subtraction work as in normal representation. The 
transform and its inverse are denoted here by NTT(v) = v̂ and NTT−1(v̂) = v, respectively. 
See Section 1.1 for more information about these transforms. 

3Hila is Finnish for a lattice. HILA5 – especially when written as “Hila V” – also refers to hilavitkutin, 
a nonsensical placeholder name usually meaning an unidentifed, incomprehensibly complicated apparatus. 
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The hash h(x) is SHA3-256 [FIP15]. Function Parse() (Section 1.3) deterministically 
samples a uniform ĝ 2 R based on arbitrary seed s using SHA3’s XOF mode SHAKE-
256 [FIP15]. While New Hope uses the slightly faster SHAKE-128 for this purpose, we 
consistently use SHAKE-256 or SHA3-256 in all parts of HILA5. Binomial distribution 
values 16 can be computed directly from 32 random bits (Section 1.3, Defnition 2). 

Bob’s reconciliation function SafeBits() (Section 1.6) captures Equations 14 and 16 
from Section 4.5. Conversely, Alice’s reconciliation function Select() (Section 1.7) captures 
Equation 17. The XE5 error correction functions r = XE5_Cod(m) and m0 = XE5_Fix(r� 
r0)�m are defned in Sections 1.4 and 4.7. Here we have “error key” k = m | r with the 
payload key m 2 {0, 1}256 and redundancy r 2 {0, 1}240. 

Encoding – shorter messages. Ring elements, whether or not in NTT domain, are 
encoded into |R| = dlog2 qen bits = 1, 792 bytes. This is the private key size. Alice’s public 
key PK with a 256-bit seed s and Â is 1, 824 bytes. Ciphertext CT is |R|+n+m+ |r| bits 
or 2, 012 bytes; 36 bytes less than New Hope [ADPS16b], 196 bytes less than the variant 
of [ADPS16a], and 1, 572 bytes less than LP11 [LP11]. 

Encryption: From noisy Diÿe-Hellman to noisy ElGamal. Modifcation of the scheme 
for public-key encryption is straightforward. Compared to the more usual “LP11” Ring-
LWE Public Key Encryption construction [LP11] our reconciliation approach saves about 
44 % in ciphertext size. See Section 5 of [Pei14] for details of the formal security argument. 

For active security we suggest that K is used as keying material for an AEAD (Au-
thenticated Encryption with Associated Data) [Rog02] scheme such as AES256-GCM 
[Dwo07, FIP01] or Keyak [BDP+16] in order to protect message integrity. 

5 Summary of Resistance to Known Attacks 
Quantum attacks. Our new reconciliation mechanism has no e˙ect on the security against 
(quantum) lattice attacks, so attack estimates for “New Hope” parameters are applicable 
[ADPS16b, AGVW17]. The main attacks considered are primal and dual variants of Block 
Korkin Zolotarev (BKZ) algorithm [SE94, CN11]. Currently this implies 2255 quantum 
security, with 2199 attacks plausible, which is well above the 2128 margin. 

The only other component used by HILA5 is SHA3 [FIP15]. Pre-image security (but 
not collision resistance [CNPS17]) is expected from SHA3 and SHAKE-256 in HILA5. 
Breaking the construction via these algorithms is expected to require approximately 2166 
logical-qubit-cycles [AMG+16, CBHS17, Unr17]. 

Algebraic structure of Ring-LWE. Some researchers (notably authors of CRYSTALS -
Kyber [BDK+17]) see risks in the algebraic structure of Ring-LWE and NTRU instances, 
and use that to motivate their use of Module-LWE. However, no actual attacks have been 
disclosed against our Ring-LWE parameters, and recent work such as [AD17, AGVW17] 
seems to reaÿrm the original security estimates. 

Biases and classical attacks. Shared secret bits are unbiased. The shared key K also 
includes plaintext PT and ciphertext CT in the fnal hash to protect against a class of 
active attacks. 

Timing and side-channel attacks. The scheme has been designed from ground-up to be 
resistant against timing and side-channel attacks. The sampler 16 is constant-time, as is 
our error correction code XE5. Ring arithmetic can also be implemented in constant time, 
but leakage can be further minimized via blinding [Saa17a] (Section 6). 



28 HILA5: Key Encapsulation Mechanism and Public Key Encryption Algorithm 

6 Advantages and Limitations 

Spec sheet: HILA5 
Algorithm Purpose: Key Encapsulation and Public Key Encryption. 
Underlying problem: Ring-LWE (Learning With Errors in a Ring.) 
Public key size: 1824 Bytes (+32 Byte private key hash.) 
Private key size: 1792 Bytes (640 Bytes compressed.) 
Ciphertext size: 2012 Byte expansion (KEM) + payload + MAC. 
Failure rate: < 2−128, consistent with security level. 
Classical security: 2256 (Category 5 – Equivalent to AES-256). 
Quantum security: 2128 (Category 5 – Equivalent to AES-256). 

6.1 Features 
+ Very fast. HILA5 key generation and private key operations are an order of 

magnitude faster than those of current RSA- or Elliptic Curve based algorithms. 

+ Drop-in compatible. HILA5 is essentially drop-in compatible with current public 
key encryption applications. There are no practical usage restrictions. Key sizes and 
message expansion are of similar magnitude to current cryptographic standards. 

+ Compact implementation. HILA5 can be implemented on a wide range of target 
platforms, from most lightweight MCUs to high end vector architectures. 

+ Side-channel resistant. HILA5 has been designed from ground up to be resistant 
against side-channel attacks such as timing attacks. 

+ Well understood parameters. Our Ring-LWE lattice parameters have attracted 
a lot of research and can be considered to be conservative choices with a signifcant 
security margin. No vulnerabilities are known. 

– No signatures. HILA5 does only key encapsulation (KEM), key exchange, and 
public key encryption. However, signature algorithms such as BLISS [DDLL13, 
Saa17a] use very similar ring parameters. 

6.2 Compared to New Hope and other (R)LWE Proposals 
+ HILA5 doesn’t fail. The algorithm has much lower failure probability, under 2−128 

– compared to 2−38.9 for recommended parameters of Frodo [BCD+16], 2−60 for New 
Hope [ADPS16b], and even 2−71.9 for Kyber [BDK+17]. Non-negligible decryption 
failure rate is not acceptable in public key encryption applications. 

+ Less randomness required. Reconciliation method produces unbiased secrets 
without randomized smoothing; the system therefore requires less true randomness. 

+ Non-malleable. Computation of the fnal shared secret in HILA5 KEM uses the 
full public key and ciphertext messages, thereby reinforcing non-malleability and 
making a class of adaptive attacks infeasible. 

+ Shorter messages. Ciphertext messages are slightly smaller than New Hope’s. 

+ Patent free. Since the sender can choose the message (see Section 4.5), Ring-LWE 
key exchange patents [Din15, Din16] are even less applicable on this scheme. 

– Slightly slower. Slight (< 5 %) performance penalty when compared to New Hope. 
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