
HILA5

Key Encapsulation Mechanism (KEM)
and Public Key Encryption Algorithm

Version 1.0
Friday 24th November, 2017

Author, Owner, and Submitter:

Markku-Juhani O. Saarinen
E-mail: mjos@iki.fi

(Independent Submission)

c/o ARM Ltd., 110 Fulbourn Road, Cambridge CB1 9NJ, United Kingdom
Tel: +44 (0) 1223 400 400

mailto:mjos@iki.fi

2 HILA5: Key Encapsulation Mechanism and Public Key Encryption Algorithm

Executive Summary
Some classes of encrypted data must remain confdential for a long period of time – often
at least few decades in national security applications. Therefore high-security cryptography
should be resistant to attacks even with projected future technologies.

As there are no physical or theoretical barriers preventing progressive development of
quantum computing technologies capable of breaking current RSA- and Elliptic Curve based
cryptographic standards (using e.g. polynomial-time quantum algorithms already known
[PZ03, Sho94]), a need for quantum-resistant algorithms in national security applications
has been identifed [NSA16].

In December 2016 NIST issued a standardization call for quantum-resistant public key
algorithms, together with requirements and evaluation criteria [NIS16]. This has made
“Post-Quantum Cryptography” (PQC) central to cryptographic engineers who must now
design concrete proposals for standardization. Practical issues such as performance, relia-
bility, message and key sizes, implementation and side-channel security, and compatibility
with existing and anticipated applications, protocols, and standards are as relevant as
mere theoretical security and asymptotic feasibility when evaluating these proposals.

Ring-LWE lattice primitives o˙er some of the best performance and key size character-
istics among quantum-resistant candidates [CJL+16]. These algorithms rely on “random
noise” for security and always have some risk of decryption failure. This reliability issue
can pose problems when used in non-interactive applications which are not designed to
tolerate errors. The issue of decryption failure can be addressed via reconciliation methods,
which is the focus of present work.

Our proposal, HILA5 [Saa17b] uses a new reconciliation method for Ring-LWE that
has a signifcantly smaller failure rate than previous proposals while reducing ciphertext
size and the amount of randomness required. It is based on a simple, deterministic variant
of Peikert’s reconciliation that works with our new “safe bits” selection and constant-time
error correction techniques. The new method does not need randomized smoothing to
achieve non-biased secrets.

When our reconciliation method is used with the very eÿcient ‘New Hope” [ADPS16b]
Ring-LWE parametrization, we achieve a decryption failure rate well below 2−128 – which
compares favourably to the 2−60 failure rate of New Hope, 2−38.9 of Frodo [BCD+16], and
2−71.9 of Kyber [BDK+17]. This makes the scheme fully suitable for public key encryption
in addition to interactive key exchange protocols. The reconciliation approach saves about
40% in ciphertext size when compared to the common LP11 Ring-LWE encryption scheme.

We perform a combinatorial failure analysis using full probability convolutions, leading
to a precise understanding of decryption failure conditions on bit level. Even with additional
implementation security and safety measures the new scheme is still essentially as fast as the
New Hope but has slightly shorter messages. The new techniques have been instantiated
and implemented as a Key Encapsulation Mechanism (KEM) and public key encryption
scheme designed to meet the requirements of NIST’s Post-Quantum Cryptography e˙ort
at the highest security level.

Acknowledgements. This is an independent submission, not directly associated with
author’s current or previous employers. However, the author wishes to thank his colleagues
for their support and feedback, especially Dr. Najwa Aaraj and the crypto team at
DARKMATTER (Abu Dhabi, UAE) and the Mbed TLS team at ARM (Cambridge, UK).
Further thanks to Sam Scott for reviewing my code and doing the initial Rust port, and
to Hanno Becker for comments on the draft specifcation.

There are no patents, overly restrictive intellectual property claims, or other such
corporate entanglements. All source code is released under “MIT” License.

3 Markku-Juhani O. Saarinen

Contents
Executive Summary 2

1 Specifcation 4
1.1 Rings and Number Theoretic Transforms 4
1.2 Encoding and Decoding of Ring Polynomials 7
1.3 Random Samplers . 8
1.4 Error Correction Code . 9
1.5 Key Generation . 11
1.6 Key Encapsulation . 12
1.7 Key Decapsulation . 14

2 Performance Analysis 16
2.1 Software Optimizations . 16
2.2 Software Comparison . 16
2.3 Hardware Implementations . 16

3 Known Answer Test Values 17

4 Design and Parameter Selection 17
4.1 Expected Security Strength . 17
4.2 Hard Problem: Introduction to Ring-LWE 17
4.3 Noisy Diÿe-Hellman in a Ring . 18
4.4 Reconciliation . 18

4.4.1 Peikert’s Reconciliation and BCNS Instantiation 19
4.4.2 New Hope Variants . 19

4.5 SafeBits: New Reconciliation Method . 20
4.5.1 Intuition: Selecting Safe Bits . 20
4.5.2 Even safer bits via Peikert’s reconciliation 21
4.5.3 Bob Chooses Key Bits: Ding’s Patents 21

4.6 Analysis of Decryption Failure . 21
4.6.1 Independence Assumption . 22
4.6.2 Computing the Error Distribution 22

4.7 Constant-Time Error Correction . 24
4.7.1 Eÿcient Constant-Time Implementation 25

4.8 Parameter Selection for Reconciliation . 25
4.9 Putting it together: Design Overview of HILA5 26

5 Summary of Resistance to Known Attacks 27

6 Advantages and Limitations 28
6.1 Features . 28
6.2 Compared to New Hope and other (R)LWE Proposals 28

References 29

Note. This is a submission document in response to the NIST call for quantum resistant
algorithm proposals, and the structure of this document mostly follows their December 2016
call for proposals: https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

4 HILA5: Key Encapsulation Mechanism and Public Key Encryption Algorithm

1 Specifcation
The purpose of this section is to o˙er a clear functional description of the HILA5 algorithm
in a way that is suitable for non-expert implementors as a compact starting point. For a
more abstract treatment and a theoretical justifcation of HILA5, see Section 4.9.

We are including snippets of C code from our unoptimized reference implementa-
tion, which is available (together with the latest version of this specifcation, optimized
implementations, and full test data) at https://github.com/mjosaarinen/hila5.

This reference implementation is not suitable for production use. Our optimized imple-
mentation has signifcantly better performance as it uses more advanced (and preferred)
algorithmic techniques. The two implementations are fully compatible.

The HILA5 KEM can be adopted for public key encryption in straightforward fashion.
We recommend using the AES-256-GCM AEAD [FIP01, Dwo07] in conjunction with the
KEM when public key encryption functionality is desired. If a suitable AEAD based on
a large permutation is standardized by NIST (e.g. Keyak [BDP+16], based on SHA-3
Keccak permutation) at some point in future, we suggest using it for increased security.

1.1 Rings and Number Theoretic Transforms
HILA5’s ring arithmetic operates on polynomials of degree n = 1024. Polynomials are
represented as 1024-element vectors of integers. Each coeÿcient is reduced mod q, where
q = 3 � 212 + 1 = 12289. Reduction x mod q puts a number in non-negative range Pn−10 � x < q. Let R denote the ring Zq[x]/(xn + 1). Let v(x) = i=0 vix

i be an element of
R. Its coeÿcients vi 2 [0, q − 1] (0 � i < n) can also be interpreted as a zero-indexed
vector v 2 Zn. This algebraic object R is a ring (and not a feld) since not all non-zero q

polynomials have unique inverses.

Adding and Scaling. Addition, subtraction, and scalar multiplication with an integer
(scaling) follow the basic rules for polynomials or vectors.

include <stdint .h>
define HILA5_N 1024
define HILA5_Q 12289

// Vector addition : d = a + b.

void slow_vadd (int32_t d[HILA5_N],
const int32_t a[HILA5_N], const int32_t b[HILA5_N])

{
for (int i = 0; i < HILA5_N ; i++)

d[i] = (a[i] + b[i]) % HILA5_Q ;
}

// Scalar multiplication : v = c * v.

void slow_smul (int32_t v[HILA5_N], int32_t c)
{

for (int i = 0; i < HILA5_N ; i++)
v[i] = (c * v[i]) % HILA5_Q ;

�

�} �

Multiplication. For multiplication we use cyclotomic polynomial basis Zq[x]/(xn + 1).
Products are reduced modulo q and xn +1 and results are therefore bound by degree n − 1
since xn � q − 1. We may write a direct “negative wrap-around” multiplication rule as:

i n−1X X
h = f � g mod (x n + 1) () hi = fjg(i−j) − fjg(n+i−j). (1)

j=0 j=i+1

Algorithmically the multiplication rule of Equation 1 requires O(n2) elementary operations.

https://github.com/mjosaarinen/hila5

5 Markku-Juhani O. Saarinen

 �

�

Number Theoretic Transforms. A very fast O(n log n) multiplication method is available
for ring R, originally due to Nussbaumer [Nus80]. This method is based on Number
Theoretic Transforms (NTT). Since HILA5 transmits some quantities in the transformed
domain, we must specify its encoding details even for a basic O(n2) implementation.

We use generator g = 1945, with multiplicative order of 211 = 2048 in Z� 12289 and

g n � −1 (mod q). (2)

In our reference implementation we store powers of g in table pow1945[2048]. �

// Slow polynomial ring multiplication : d = a * b (mod x ̂ 1024 + 1)

void slow_rmul (int32_t d[HILA5_N],
const int32_t a[HILA5_N], const int32_t b[HILA5_N])

{
int32_t x;

for (int i = 0; i < HILA5_N ; i ++) {
x = 0;
for (int j = 0; j <= i ; j ++) // positive side

x = (x + a[j] * b [i - j]) % HILA5_Q ;
for (int j = i + 1; j < HILA5_N ; j ++) // negative wraparound

x = (x - a[j] * b [HILA5_N + i - j]) % HILA5_Q ;
// Force into positive [0 , q -1] range (" constant time " masking)
d[i] = x + (-((x >> 31) & 1) & HILA5_Q);

}
}�

static int32_t pow1945 [2048]; // powers of g =1945 mod q
static int pow1945_ok = 0; // true after initialization

// make sure that the pow1945 [] table is initialized

void init_pow1945 ()
{

if (pow1945_ok) // nothing to do then
return ;

int x = 1; // 1945^0 = 1
for (int i = 0; i < 2048; i ++) { // 1945^1024 = -1 (mod q)

pow1945 [i] = x;
x = (1945 * x) % HILA5_Q ; // consecutive powers

}
pow1945_ok = !0; // table now ok

}� �

To be compatible with the bit-reversed fast transform in the optimized implementation,
we need to specify a further helper function

9 �j k �X xBitRev10(x) = 2i mod 2 . (3)29−i
i=0 �

// reverse order of ten bits i.e. 0 x200 -> 0 x001 and vice versa

int32_t bitrev10 (int32_t x)
{

int t;

x &= 0 x3FF ; // 9876543210 original order
x = (x << 5) | (x >> 5) ; // 4321098765 5/5 bit swap
t = (x ^ (x >> 4)) & 0 x021 ;
x ^= t ^ (t << 4) ; // 0321458769 outer bit swap
t = (x ^ (x >> 2)) & 0 x042 ;
x ^= t ^ (t << 2) ; // 0123456789 inner bit swap

return x & 0 x3FF ;
}� �

6 HILA5: Key Encapsulation Mechanism and Public Key Encryption Algorithm

We may now defne the equivalent transform as
n−1X

j·(2·BitRev10(i)+1)NTT(v) = v̂ with v̂i = vjg for each i 2 [0, n − 1]. (4)
j=0

Our reference implementation uses this slow method (to avoid confusion with fast trans-
forms, these functions are prefxed with slow_): �

// Slow number theoretic transform and scaling : d = c * NTT (v).

void slow_ntt (int32_t d[HILA5_N], const int32_t v[HILA5_N], int32_t c)
{

int k , r;
int32_t x;

for (int i = 0; i < HILA5_N ; i ++) {
r = 2 * bitrev10 (i) + 1; // bit reverse index
x = 0;
k = 0;
for (int j = 0; j < HILA5_N ; j ++) {

x = (x + v[j] * pow1945 [k]) % HILA5_Q ;
k = (k + r) & 0 x7FF ; // k = (j * r) % 2048 next round

}
d[i] = (c * x) % HILA5_Q ; // multiply with scalar c

}
}� � �

We can also give the inverse transform that, if unscaled, satisfes NTT−1
�
NTT(v) = nv.

Output (or input) must therefore be scaled back by n−1 � 12277 mod q. �
// Slow inverse number theoretic transform : d = NTT ̂ -1(v).

void slow_intt (int32_t d[HILA5_N], const int32_t v[HILA5_N])
{

int k , r;

for (int i = 0; i < HILA5_N ; i ++) // zeroise d []
d[i] = 0;

for (int i = 0; i < HILA5_N ; i ++) {
r = 2 * bitrev10 (i) + 1; // reverse index
k = 0;
for (int j = 0; j < HILA5_N ; j ++) {

d[j] = (d[j] + v [i] * pow1945 [k]) % HILA5_Q ;
k = (k - r) & 0 x7FF ; // inverses are negative

}
}

}� �
Multiplication no longer requires a full convolution in the transformed domain – a simple
pointwise multiplication c = a ~ b, ci = ai · bi, suÿces: NTT(a � b) = NTT(a)~ NTT(b).
This property is analogous to multiplication of polynomials vs. multiplication of points on
the polynomial curves; (f � g)(x) = f(x)g(x).

// Pointwise multiplication : d = a (*) b.

void slow_vmul (int32_t d[HILA5_N],
const int32_t a[HILA5_N], const int32_t b[HILA5_N])

{
for (int i = 0; i < HILA5_N ; i++)

d[i] = (a[i] * b[i]) % HILA5_Q ;

�

�} �

Complexity. The method given above (Equation 4 or slow_ntt()) clearly has O(n2)
complexity, but it produces numerically equivalent results to our fast transforms.

In our optimized implementation we use the O(n log n) Cooley-Tukey [CT65] algorithm,
with the reduction tricks for this use case suggested recently by Longa and Naehrig [LN16].
The various scaling constants that are powers of 3 are artifacts caused by the specifc
reduction methods suggested in that work.

7 Markku-Juhani O. Saarinen

Examples. Consider a vector v = (F0, F1, · · · , Fn−1) of Fibonacci numbers reduced
mod q:

v = (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, · · · , 4524, 8293, 528, 8821, 9349).
Applying the Number Theoretic Transform (Equation 4) we obtain v̂ = NTT(v) :

v̂ = (10951, 5645, 3732, 4089, 442, · · · , 10237, 754, 6341, 4211, 7921).

Applying the inverse transform on this result we obtain NTT−1(v̂) = nv or

NTT−1(v̂) = (0, 1024, 1024, 2048, 3072, · · · , 11912, 333, 12245, 289, 245).

For randomized testing, one may perform convolution multiplication (Equation 1 and
function slow_rmul) equivalently via Number Theoretic Transforms as follows: �

// a [] and b [] should have the vectors to be multiplied
slow_rmul (x , a , b); // compute x = a * b directly

// compute same using NTT transforms and helper array t []
init_pow1945 () ; // make sure it ’s initialized
slow_ntt (t , a , 1) ; // t = NTT (a)
slow_ntt (y , b , 12277) ; // y = NTT (b) / 1024
slow_vmul (t , t , y); // pointwise t = t (*) y
slow_intt (y , t); // y = NTT ̂ -1(t) = a * b = x !!

// .. now verify that indeed the products match : x == y� �

1.2 Encoding and Decoding of Ring Polynomials
Even though we use the int32_t signed integer type in internal processing, we note that
each ring coeÿcient fts into dlog2 qe = 14 bits. We can therefore easily store 4 coeÿcients
with 4 � 14 = 56 bits or 7 bytes. For interoperability we will specify a method of encoding
a vector of n = 1024 coeÿcients into 14 � 1024/8 = 1792 bytes for transmission or storage.

We concatenate each 14-bit segment into a continuous byte sequence in little-endian
fashion. We view the least signifcant bit of frst byte or coeÿcient as “bit zero” and the
most signifcant bit of the last signifcant byte as the last bit. This serialization method is
called “packing” and the inverse operation is called “unpacking”. Function prototypes:

define HILA5_PACKED14 (14 * HILA5_N / 8)

// 14 - bit packing ; mod q integer vector v [1024] to byte sequence d [1792]
void hila5_pack14 (uint8_t d[HILA5_PACKED14], const int32_t v[HILA5_N]);

// 14 - bit unpacking ; bytes in d [1792] to integer vector v [1024]
void hila5_unpack14 (int32_t v[HILA5_N], const uint8_t d[HILA5_PACKED14]);

�

� �

Examples. The packed increasing sequence of n integers (0, 1, 2, 3, · · · , 1023) has the
following hexadecimal encoding into 1792 = 0x700 bytes:

[0000] : 00 40 00 20 00 0C 00 04 40 01 60 00 1C 00 08 40
[0010] : 02 A0 00 2C 00 0C 40 03 E0 00 3C 00 10 40 04 20
[0020] : 01 4C 00 14 40 05 60 01 5C 00 18 40 06 A0 01 6C
[0030] : 00 1C 40 07 E0 01 7C 00 20 40 08 20 02 8C 00 24

....
[06C0] : 0F DC 43 F7 E0 3D 7C 0F E0 43 F8 20 3E 8C 0F E4
[06D0] : 43 F9 60 3E 9C 0F E8 43 FA A0 3E AC 0F EC 43 FB
[06E0] : E0 3E BC 0F F0 43 FC 20 3F CC 0F F4 43 FD 60 3F
[06F0] : DC 0F F8 43 FE A0 3F EC 0F FC 43 FF E0 3F FC 0F

Encoding is easiest to do in blocks of four coeÿcients; for example (10951, 5645, 3732, 4089)
corresponds to exactly seven bytes { 0xC7, 0x6A, 0x83, 0x45, 0xE9, 0xE4, 0x3F }.

http:fashion.We

	

	

	

8 HILA5: Key Encapsulation Mechanism and Public Key Encryption Algorithm

1.3 Random Samplers
HILA5 requires two kinds of random numbers, uniformly distributed in the range [0, q−1]
and sampled from the binomial distribution 16.

Uniform expander. Sampler Parse(seed) deterministically maps a 256-bit seed value to a
uniformly distributed ring polynomial using the SHAKE-256 XOF [FIP15]. As noted in
[GS16], it is more eÿcient to do a rejection sampling on 5q = 61445 (rejection rate 6.25%). �

define HILA5_SEED_LEN 32

// generate n uniform samples from the seed

void hila5_parse (int32_t v[HILA5_N], const uint8_t seed [HILA5_SEED_LEN])
{

hila5_sha3_ctx_t sha3 ; // init SHA3 state for SHAKE -256
uint8_t buf [2]; // two byte output buffer
int32_t x; // random variable

hila5_shake256_init (& sha3); // initialize the context
hila5_shake_update (& sha3 , seed , HILA5_SEED_LEN); // seed input
hila5_shake_xof (& sha3); // pad context to output mode

// fill the vector with uniform samples
for (int i = 0; i < HILA5_N ; i ++) {

do { // rejection sampler
hila5_shake_out (& sha3 , buf , 2) ; // two bytes from SHAKE -256
x = ((int32_t) buf [0]) + (((int32_t) buf [1]) << 8) ; // endianness

} while (x >= 5 * HILA5_Q) ; // reject
v[i] = x; // reduction (mod q) unnecessary

}
}� �

Example. Let seed[32] = { 0, 1, 2, ... 31 }. The output of v = Parse(seed) is

v = (34940, 52800, 640, 45901, 14601, · · · , 46031, 8999, 56069, 2120, 49166),

which is congruent and equivalent to the vector

v mod q = (10362, 3644, 640, 9034, 2312, · · · , 9164, 8999, 6913, 2120, 10).

Binomial distribution. Sampling from the binomial distribution 16 basically involves
a bit count of 32 random bits and subtracting 16 to put the random variable in range
[− 16, 16]. This distribution and its properties are analyzed in more detail in Section 4.6.

16X $
bi − b0 where bi, b

0 {0, 1}. (5)16 = i i

i=0 �

�} �

// sample a vector of values from the psi16 distribution

void hila5_psi16 (int32_t v[HILA5_N])
{

uint32_t x = 0; // 32 - bit variable

for (int i = 0; i < HILA5_N ; i ++) {

randombytes ((unsigned char *) &x , sizeof (x)); // get 4 random bytes

x -= (x >> 1) & 0 x55555555 ; // Hamming weight
x = (x & 0 x33333333) + ((x >> 2) & 0 x33333333);
x = (x + (x >> 4)) & 0 x0F0F0F0F ;
x += x >> 8;
x = (x + (x >> 16)) & 0 x3F ;

x -= 16; // Make signed in range [0 , q -1]
v[i] = x + (-((x >> 31) & 1) & HILA5_Q); // " constant time "

}

9 Markku-Juhani O. Saarinen

1.4 Error Correction Code
The error correction code XE5 is a key component of HILA5. It operates on blocks of 496
bits, of which 256 bits are used to transport a shared secret message and further 240 bits
are used to correct errors in it. Together the 256 + 240 = 496 bits match the payload size.
XE5 is always able to correct at least fve arbitrary bit fips in the payload, and more with
a high probability. See Section 4.7 for further design information on XE5.

This implementation operates on unsigned 64-bit integers and assumes a little-endian
platform. On big-endian systems all input and output words need to be fipped around.
For initial computation of linear code r = XE5_Cod(d) for sending, zeroize array r[4]
frst to set the redundancy code there. When receiving, use the transmitted value of r. �

// Field subcodeword : r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 (end)
// lengths . bit offset : 0 16 32 49 80 99 128 151 176 203 240
static const int xe5_len [10] = { 16 , 16 , 17 , 31 , 19 , 29 , 23 , 25 , 27 , 37 };

// Compute redundancy r [] (XOR over original) from data d []

void xe5_cod (uint64_t r [4] , const uint64_t d [4])
{

int i , j , l;
uint64_t x , t , ri [10];

for (i = 0; i < 10; i ++) // initialize
ri [i] = 0;

for (i = 3; i >= 0; i --) { // four words
x = d[i]; // payload
for (j = 1; j < 10; j ++) {

l = xe5_len [j]; // length
t = (ri [j] << (64 % l)); // rotate
t ^= x; // payload
if (l < 32) // extra fold

t ^= t >> (2 * l);
t ^= t >> l; // fold
ri [j] = t & ((1 llu << l) - 1) ; // mask

}
x ^= x >> 8; // parity of 16
x ^= x >> 4;
x ^= x >> 2;
x ^= x >> 1;
x &= 0 x0001000100010001 ; // four parallel
x ^= (x >> (16 - 1)) ^ (x >> (32 - 2)) ^ (x >> (48 - 3));
ri [0] |= (x & 0 xF) << (4 * i);

}
// pack coefficients into 240 bits (note output the XOR)
r [0] ^= ri [0] ^ (ri [1] << 16) ^ (ri [2] << 32) ^ (ri [3] << 49) ;
r [1] ^= (ri [3] >> 15) ^ (ri [4] << 16) ^ (ri [5] << 35) ;
r [2] ^= ri [6] ^ (ri [7] << 23) ^ (ri [8] << 48) ;
r [3] ^= (ri [8] >> 16) ^ (ri [9] << 11) ;

}� �

Example. We will view the 256-bit data array d as a sequence of 32 bytes frst:
uint8_t d[32] = { 0x00, 0x01, 0x01, 0x02, 0x03, 0x05, 0x08, 0x0D,

0x15, 0x22, 0x37, 0x59, 0x90, 0xE9, 0x79, 0x62,
0xDB, 0x3D, 0x18, 0x55, 0x6D, 0xC2, 0x2F, 0xF1,
0x20, 0x11, 0x31, 0x42, 0x73, 0xB5, 0x28, 0xDD };

When the same data d is interpreted as a little-endian 64-bit words, we have:
uint64_t d[4] = { 0x0D08050302010100, 0x6279E99059372215,

0xF12FC26D55183DDB, 0xDD28B57342311120 };

The corresponding 240-bit redundancy code r is:
uint64_t r[4] = { 0x5D193C3A9B0A3171, 0xE439D357352B06CF,

0xDF517AD4F8F2DE07, 0x492E2AC7B92B };

Note that high 16 bits of r[3] are always missing as this array is 240 bits (not 256).

http:platform.On

10 HILA5: Key Encapsulation Mechanism and Public Key Encryption Algorithm

Fixing errors. Upon receiving payload (d, r), frst call r0 = XE5_Cod(d) to perform the
linear operation. Then one can obtain “corrected” data via d0 = d �XE5_Fix(r � r0). Our
implementation performs many of these XORs in place. �

// Fix errors in data d [] using redundancy in r []

void xe5_fix (uint64_t d [4] , const uint64_t r [4])
{

int i , j , k , l;
uint64_t x , t , ri [10];

ri [0] = r [0]; // unpack
ri [1] = r [0] >> 16;
ri [2] = r [0] >> 32;
ri [3] = (r [0] >> 49) ^ (r [1] << 15) ;
ri [4] = r [1] >> 16;
ri [5] = r [1] >> 35;
ri [6] = r [2];
ri [7] = r [2] >> 23;
ri [8] = (r [2] >> 48) ^ (r [3] << 16) ;
ri [9] = r [3] >> 11;

for (i = 0; i < 4; i ++) { // four words
for (j = 1; j < 10; j ++) {

l = xe5_len [j]; // length
x = ri [j] & ((1 llu << l) - 1) ; // mask
x |= x << l; // expand
if (l < 32) // extra unfold

x |= (x << (2 * l));
ri [j] = x; // store it

}
x = (ri [0] >> (4 * i)) & 0 xF ; // parity mask for ri [0]
x ^= (x << (16 - 1)) ^ (x << (32 - 2)) ^ (x << (48 - 3));
x = 0 x0100010001000100 - (x & 0 x0001000100010001);
x &= 0 x00FF00FF00FF00FF ;
x |= x << 8;

for (j = 0; j < 4; j ++) { // threshold sum
t = (x >> j) & 0 x1111111111111111 ;
for (k = 1; k < 10; k ++)

t += (ri [k] >> j) & 0 x1111111111111111 ;
// threshold 6 -- add 2 to weight and take bit number 3
t = ((t + 0 x2222222222222222) >> 3) & 0 x1111111111111111 ;
d[i] ^= t << j; // fix bits

}
if (i < 3) { // rotate if not last

for (j = 1; j < 10; j ++)
ri [j] >>= 64 % xe5_len [j];

}
}

}� �

Example. Let’s fip bits {13, 123, 234} in d and bits {89, 200} in r in previous message:

d�d0 = 0000000000002000 0800000000000000 0000000000000000 0000040000000000
r�r0 = 0000000000000000 0000000002000000 0000000000000000 0000000000000100

uint64_t d[4] = { 0x0D08050302012100, 0x6A79E99059372215,
0xF12FC26D55183DDB, 0xDD28B1 7342311120 };

uint64_t r[4] = { 0x5D193C3A9B0A3171, 0xE439D357372B06CF,
0xDF517AD4F8F2DE07, 0x492E2AC7B82B };

Recomputing linear code di˙erence via xe5_cod(r, d) we obtain r00 = r � XE5_Cod(d):

r00 = 400000102C004081 0001042020408004 A000401100002110 0000000001000104

We call the threshold fx function xe5_fix(d, r) and directly get d00 = d0 �XE5_Fix(r00):

d00 = 0D08050302010100 6279E99059372215 F12FC26D55183DDB DD28B57342311120.

	

11 Markku-Juhani O. Saarinen

1.5 Key Generation
We will now describe keypair generation for both KEM and public key encryption usage.

nThe secret key is a random variable a
$

16, stored in NTT domain as â = NTT(a).
Public value pk consists of a concatenation of a 256-bit random seed for uniform generator
ĝ = Parse(seed) and the actual public key Â defned as � $ nÂ = 33

�
ĝ ~ â + NTT(e) with error e (6)16.

Vectors in NTT domain are scaled by 33 = 27 in order to facilitate lazy reduction techniques
of the optimized implementation. �

�} �

define HILA5_PUBKEY_LEN (HILA5_SEED_LEN + HILA5_PACKED14)
define HILA5_PRIVKEY_LEN (HILA5_PACKED14 + 32)

// Generate a keypair

int crypto_kem_keypair (uint8_t *pk , // HILA5_PUBKEY_LEN = 1824
uint8_t * sk) // HILA5_PRIVKEY_LEN = 1824

{
int32_t a[HILA5_N], e[HILA5_N], t [HILA5_N];

init_pow1945 () ; // make sure initialized

// Create Secret Key
hila5_psi16 (t); // (t is a temporary variable)
slow_ntt (a , t , 27) ; // a = 3**3 * NTT (Psi_16)

// Public Key
hila5_psi16 (t); // t = Psi_16
slow_ntt (e , t , 27) ; // e = 3**3 * NTT (Psi_16) -- noise
randombytes (pk , HILA5_SEED_LEN) ; // Random seed for g
hila5_parse (t , pk); // (t =) g = parse (seed)
slow_vmul (t , a , t);
slow_vadd (t , t , e); // A = NTT (g * a + e)
hila5_pack14 (pk + HILA5_SEED_LEN , t); // pk = seed | A

hila5_pack14 (sk , a); // pack secret key
// SHA3 hash of pubic key is stored with secret key due to API limitation
hila5_sha3 (pk , HILA5_PUBKEY_LEN , sk + HILA5_PACKED14 , 32) ;

return 0; // SUCCESS

Note that we must encode a SHA-3 hash of the public key with the secret key because the
NIST API does not make the public key available for decryption routines.

nExample. Rather than sampling from 16, we arbitrarily fx the (untransformed) secret
key be a cycle-fve sequence a � (−1,+1,−2,−3,+5,−1,+1,−2,−3,+5, · · ·). We have

33â = (11172, 5208, 9207, 8751, 251, · · · , 7603, 3490, 9191, 8666, 8302).

Furthermore we set error e � (+2,+2,−4,+2,+2,−4, · · ·), a cycle of three. The seed
consists of 32 zero bytes. The transformed quantities and the public key will then be

33ê = (8226, 10812, 6666, 1749, 2228, · · · , 10169, 10648, 5731, 1585, 4171)
ĝ � (2034, 8826, 9346, 872, 2929, · · · , 2816, 441, 7160, 2952, 5275)

Â = (9713, 3471, 7710, 1152, 67, · · · , 490, 1324, 5696, 10208, 11514). � �ˆThe encoded byte vectors pk = (seed | A) and sk = 33â | SHA3(pk) are

uint8_t pk[1824] = { 0x00, 0x00, ... 0x90, 0x05, 0x7E, 0xEA, 0xB3 };
uint8_t sk[1824] = { 0xA4, 0x2B, 0x16, 0x75, 0x3F, ... 0xE3, 0x3F };

12 HILA5: Key Encapsulation Mechanism and Public Key Encryption Algorithm

1.6 Key Encapsulation

Following the NIST call [NIS16] and Peikert [Pei14], our scheme is formalized as a Key
Encapsulation Mechanism (KEM), consisting of three algorithms:

(PK, SK) KeyGen(). Generate a public key PK and a secret key SK.
(CT,K) Encaps(PK). Encapsulate a (random) key K in ciphertext CT.

K Decaps(SK,CT). Decapsulate shared key K from CT with SK.
In this model, reconciliation data is a part of ciphertext produced by Encaps. The three
KEM algorithms constitute a natural single-roundtrip key exchange:

Alice Bob
(PK, SK) KeyGen()

K Decaps(SK,CT)

PK−−−!
CT−−− (CT,K) Encaps(PK)

Even though a KEM cannot encrypt per se, a hybrid “Key Transport” set-up that uses a
KEM to determine random shared keys for message payload confdentiality (symmetric
encryption) and integrity (via a message authentication code) is usually preferable to using
asymmetric encryption directly on payload [CS03].

Reconciliation data. HILA5 uses a novel reconciliation method based on “Safe Bits”.
Please see Section 4.5 for a detailed description of this method and analysis of its parameters.
Note that selector sel, reconciliation rec, and payload pld are all outputs. �

define HILA5_B 799
define HILA5_PACKED1 (HILA5_N / 8)
define HILA5_KEY_LEN 32
define HILA5_ECC_LEN 30
define HILA5_PAYLOAD_LEN (HILA5_KEY_LEN + HILA5_ECC_LEN)

// Create a bit selector , reconciliation bits , and payload ;
// return nonzero on failure .

int hila5_safebits (uint8_t sel [HILA5_PACKED1],
uint8_t rec [HILA5_PAYLOAD_LEN],
uint8_t pld [HILA5_PAYLOAD_LEN],
const int32_t v[HILA5_N])

{
int i , j , x;

memset (sel , 0, HILA5_PACKED1); // selector array
memset (rec , 0, HILA5_PAYLOAD_LEN) ; // reconciliation bits for payload
memset (pld , 0, HILA5_PAYLOAD_LEN) ; // the actual payload XOR mask

j = 0; // reset the bit counter
for (i = 0; i < HILA5_N ; i ++) { // scan for " safe bits "

// x in { [737 , 2335] U [3809 , 5407] U [6881 , 8479] U [9953 , 11551] }
x = v[i] % (HILA5_Q / 4) ;
if (x >= ((HILA5_Q / 8) - HILA5_B) &&

x <= ((HILA5_Q / 8) + HILA5_B)) {
// set selector bit

sel [i >> 3] |= 1 << (i & 7) ;
x = (4 * v[i]) / HILA5_Q ; // reconciliation bits
rec [j >> 3] ^= (x & 1) << (j & 7) ;
x >>= 1; // payload bits
pld [j >> 3] ^= (x & 1) << (j & 7) ;
j ++; // payload bit count
if (j >= 8 * HILA5_PAYLOAD_LEN)

return 0; // SUCCESS : enough bits
}

}
return j; // FAIL : not enough bits

}� �

13 Markku-Juhani O. Saarinen

nCreating ciphertext. Sender (“Bob”) frst computes his private ephemeral secret b
$

16.
Scaled representation of public value B̂ makes up the frst 1792 bytes of ciphertext:

$ nB̂ = ĝ ~ b̂+ NTT(e0) with b̂ = NTT(b) and error e0 (7)16.

It is then followed by public selector sel (128 bytes), reconciliation data rec for payload
(32 + 30 = 62 bytes), and encrypted error correction part (30 bytes). The encryption is a
“one-time-pad” XOR with last 30 bytes of the raw payload. The frst 32 bytes of the raw
payload z is used to establish the shared secret (See Algorithm 1). �

define HILA5_MAX_ITER 100 // Fail hard bound

// Encapsulate

int crypto_kem_enc (uint8_t *ct , // HILA5_CIPHERTEXT_LEN = 2012
uint8_t * ss , // HILA5_KEY_LEN = 32
const uint8_t * pk) // HILA5_PUBKEY_LEN = 1824

{
int i;
int32_t a[HILA5_N], b[HILA5_N], e [HILA5_N], g[HILA5_N], t[HILA5_N];
uint64_t z [8];
uint8_t hash [32];
hila5_sha3_ctx_t sha3 ;

init_pow1945 () ; // make sure initialized

hila5_unpack14 (a , pk + HILA5_SEED_LEN); // decode A = public key

for (i = 0; i < HILA5_MAX_ITER ; i ++) {

hila5_psi16 (t); // recipients ’ ephemeral secret
slow_ntt (b , t , 27) ; // b = 3**3 NTT (Psi_16)
slow_vmul (e , a , b);
slow_intt (t , e); // t = a * b (approx . share "y ")
slow_smul (t , 1416) ; // scale by 1416 = 1 / (3**6 * 1024)

// Safe bits -- may fail (with about 1% probability) ;
memset (z , 0, sizeof (z)); // ct = .. | sel | sec , z = payload
if (hila5_safebits (ct + HILA5_PACKED14 , //

ct + HILA5_PACKED14 + HILA5_PACKED1 , (uint8_t *) z , t) == 0)
break ;

}
if (i == HILA5_MAX_ITER) // FAIL : too many repeats

return -1;

xe5_cod (& z [4] , z); // create linear ot
memcpy (ct + HILA5_PACKED14 + HILA5_PACKED1 + HILA5_PAYLOAD_LEN ,

&z [4] , HILA5_ECC_LEN); // ct = .. | encrypted error cor . code

// Construct ciphertext
hila5_parse (g , pk); // g = Parse (seed)
hila5_psi16 (t); // noise error
slow_ntt (e , t , 27) ; // e = 3**3 * NTT (Psi_16)
slow_vmul (t , g , b); // t = NTT (g * b)
slow_vadd (t , t , e); // t = NTT (g * b + e)
hila5_pack14 (ct , t); // public value in ct

hila5_sha3_init (& sha3 , HILA5_KEY_LEN); // final hash
hila5_sha3_update (& sha3 , " HILA5v10 " , 8) ; // version ident
hila5_sha3 (pk , HILA5_PUBKEY_LEN , hash , 32) ; // SHA3 (pk)
hila5_sha3_update (& sha3 , hash , 32) ;
hila5_sha3 (ct , HILA5_CIPHERTEXT_LEN , hash , 32) ; // SHA3 (ct)
hila5_sha3_update (& sha3 , hash , 32) ;
hila5_sha3_update (& sha3 , z , HILA5_KEY_LEN); // actual shared secret z
hila5_sha3_final (ss , & sha3); // hash out to ss

return 0; // SUCCESS
}�

Final hashes. We see that the fnal shared secret ss is computed as
ss = SHA3 “HILA5v10” | SHA3(pk) | SHA3(ck) | z

�
�

�
. (8)

All hashes are SHA3-256 [FIP15]. First 8 bytes of input is an ASCII version identifer.

14 HILA5: Key Encapsulation Mechanism and Public Key Encryption Algorithm

Example. Let’s use the public key from the key generation Example in Section 1.5. We
set the ephemeral secret to a cycle-7 sequence and compute its transform:

b � (0,+1,+1,+2,−3,+4,−5, 0,+1,+1,+2,−3,+4,−5, · · ·)
33b̂ = (5361, 11011, 5111, 10968, 6240, · · · , 1901, 10941, 7723, 10979, 9431)

Since the seed is a part of the public key, we end up at the same ĝ value. The scaled
“approximate shared secret” t = Ab, also known as y (Section 4.3), has value

y = (11982, 1189, 1239, 8956, 11579, · · · , 8947, 10863, 2725, 6368, 1295).

Applying SafeBits, we obtain 1024-bit selector vector sel, which is placed in ciphertext
after encoded B̂ (below), followed by reconciliation data rec for payload, and the actual
payload pld which is which is cast as 64-bit words in z. First 32 bytes (z[0..3]) of
payload is used to create the shared secret, while the latter 30 bytes is used as a “one time
pad” to XOR encrypt the XE5 error correcting code of that secret.

uint8_t sel[128] = { 0x26, 0x03, 0xF3, 0x56, 0x26, ... 0x00, 0x00 };
uint8_t rec[62] = { 0xF8, 0x82, 0x56, 0x49, 0x9E, ... 0xB0, 0x33 };
uint8_t pld[62] = { 0x70, 0xF1, 0x5B, 0xDD, 0x24, ... 0x1A, 0x5F };

When constructing ciphertext, we set error to cycle e0 = (0,+4, 0,−4, 0,+4, 0,−4, · · ·).
After transformation and some arithmetic we obtain public value B̂ = 33(b̂~ ĝ+NTT(e0))

t = B̂ = (9437, 8457, 4675, 10931, 3829, · · · , 8113, 3081, 792, 10698, 8159).

The ciphertext, and the shared secret (after all of the fnal hashing is computed) are:

uint8_t ct[2012] = { 0xDD, 0x64, 0x42, 0x38, 0x24, ... 0xED, 0x58 };
uint8_t ss[32] = { 0xC2, 0x95, 0xA5, 0x2D, 0xBF, ... 0x72, 0x60 };

1.7 Key Decapsulation
Selection and reconciliation. The inverse operation of SafeBits at the recipient side is
Select. It aims to arrive at the same secret payload data pld, given selector vector sel,
reconciliation bits rec, and a vector v = x ˇ y that is close the one given to SafeBits.

// decode selected key bits. return nonzero on failure

int hila5_select (uint8_t pld[HILA5_PAYLOAD_LEN],
const uint8_t sel[HILA5_PACKED1],
const uint8_t rec[HILA5_PAYLOAD_LEN],
const int32_t v[HILA5_N])

{
int i, j, x;

memset (pld , 0x00 , HILA5_PAYLOAD_LEN);

j = 0;
for (i = 0; i < HILA5_N ; i++) {

if ((sel[i >> 3] >> (i & 7)) & 1) {
x = v[i] + HILA5_Q / 8; // reconciliation
x -= -((rec[j >> 3] >> (j & 7)) & 1) &

(HILA5_Q / 4); // "90 degrees " if rec bit set
x = ((2 * ((x + HILA5_Q) % HILA5_Q)) / HILA5_Q);
pld[j >> 3] ^= (x & 1) << (j & 7);
j++;
if (j >= 8 * HILA5_PAYLOAD_LEN)

return 0; // SUCCESS : got full payload
}

}

return j; // FAIL: not enough bits
}�

�

�

15 Markku-Juhani O. Saarinen

Decapsulating ciphertext. The function Decaps() takes “encapsulated” ciphertext ct,
secret key sk, and arrives at the same shared secret ss as the encapsulation code. �

// Decapsulate

int crypto_kem_dec (uint8_t *ss , // HILA5_KEY_LEN = 32
const uint8_t *ct , // HILA5_CIPHERTEXT_LEN = 2012
const uint8_t * sk) // HILA5_PRIVKEY_LEN = 1824

{
int32_t a[HILA5_N], b[HILA5_N];
uint64_t z [8];
uint8_t ct_hash [32];
hila5_sha3_ctx_t sha3 ;

init_pow1945 () ; // make sure initialized

hila5_unpack14 (a , sk); // unpack secret key
hila5_unpack14 (b , ct); // get B from ciphertext
slow_vmul (a , a , b); // a * B
slow_intt (b , a); // shared secret (" x ") in b
slow_smul (b , 1416) ; // scale by 1416 = (3^6 * 1024) ̂ -1

memset (z , 0x00 , sizeof (z));
if (hila5_select ((uint8_t *) z , // reconciliation

ct + HILA5_PACKED14 , ct + HILA5_PACKED14 + HILA5_PACKED1 , b))
return -1; // FAIL : not enough bits

// error correction -- decrypt with " one time pad " in payload
for (int i = 0; i < HILA5_ECC_LEN ; i ++) {

((uint8_t *) &z [4]) [i] ^=
ct [HILA5_PACKED14 + HILA5_PACKED1 + HILA5_PAYLOAD_LEN + i];

}
xe5_cod (& z [4] , z); // linear code
xe5_fix (z , &z [4]) ; // fix possible errors

hila5_sha3_init (& sha3 , HILA5_KEY_LEN); // final hash
hila5_sha3_update (& sha3 , " HILA5v10 " , 8) ; // version identifier
hila5_sha3_update (& sha3 , sk + HILA5_PACKED14 , 32) ; // SHA3 (pk)
hila5_sha3 (ct , HILA5_CIPHERTEXT_LEN , ct_hash , 32) ; // hash the ciphertext
hila5_sha3_update (& sha3 , ct_hash , 32) ; // SHA3 (ct)
hila5_sha3_update (& sha3 , z , HILA5_KEY_LEN); // shared secret
hila5_sha3_final (ss , & sha3);

return 0; // SUCCESS
}� �

Example. Given the ciphertext and secret key from previous examples,

uint8_t ct[2012] = { 0xDD, 0x64, 0x42, 0x38, 0x24, ... 0xED, 0x58 };
uint8_t sk[1824] = { 0xA4, 0x2B, 0x16, 0x75, 0x3F, ... 0xE3, 0x3F };

we arrive at the approximate shared secret x = NTT−1(B̂ ~ â), which is set in variable b:

x = (11982, 1157, 1261, 8932, 11561, · · · , 8967, 10861, 2727, 6374, 1259).

The closeness if x to y (Section 1.6) is demonstrated by

y − x = (0, 32,−22, 24, 18,−56,−10, 40, · · · , 42, 28,−16,−20, 2,−2,−6, 36).

One should obviously also test that the shared secret ss fully matches.

uint8_t ss[32] = { 0xC2, 0x95, 0xA5, 0x2D, 0xBF, 0x0B, 0x86, 0x03,
0xAC, 0x49, 0xB4, 0x1A, 0x5B, 0xE1, 0xEE, 0xBD,
0x64, 0x0E, 0x34, 0x7D, 0x16, 0xC1, 0x58, 0xE1,
0xBD, 0xA0, 0x75, 0x96, 0x14, 0xB1, 0x72, 0x60 };

	

	

16 HILA5: Key Encapsulation Mechanism and Public Key Encryption Algorithm

2 Performance Analysis
We have chosen to recycle “New Hope” [ADPS16b] ring (n, q) and sampler (q, 16)
parameters as they have been extensively vetted for security and were originally selected
for performance. The HILA5 reconciliation and error correction methods are novel, and
greatly increase reliability, but have a negligible performance penalty. Hence New Hope
software and hardware performance analysis on any given target is largely applicable.

2.1 Software Optimizations
A signifcant e˙ort has been dedicated (by several research groups) on the optimized
implementation these particular NTT and Sampler components. There already exists a
number of permissively licensed open source implementations and a body of publications
detailing specifc optimizations for these NTT and sampler parameters.

There are at least two very fast AVX2 Intel optimized versions of the NTT core and
16 sampler – the original [ADPS16b] and one by Longa and Naehrig [LN16]. Further

sampler optimizations have been suggested in [GS16]. Implementations have also been
reported for ARM Cortex-M MCUs [AJS16] and the ARM NEON instruction set [SS17].

New Hope has also been integrated in TLS stacks and cryptographic toolkits in
2016-17 by Google (BoringSSL), the Open Quantum Safe project, Microsoft (MS Lattice
Library), ISARA Corporation, and possibly others. Many of these components and protocol
integration techniques are recyclable for a HILA5 implementation.

2.2 Software Comparison
Our prototype implementation was integrated into a branch of the Open Quantum Safe
(OQS) framework1 where it was benchmarked against other quantum-resistant KEM
schemes [SM16]. A slight (under 4%) performance di˙erence observed between HILA5 and
New Hope is principally due to our use of error correction and use of SHAKE-256 rather
than faster but less secure SHAKE-128. Note that HILA5 message size is slightly smaller
and failure rate is signifcantly better than that of New Hope.

Table 1 summarizes the results. Testing was performed on an Ubuntu 17.04 system with
Core i7-6700 @ 3.40 GHz. We are also including RSA numbers with OpenSSL 1.0.2 (system
default implementation) on this target for reference and scale. A single Elliptic Curve DH
operation requires 45.4µs for the NIST P-256 curve (highly optimized implementation),
and 331.7µs for NIST P-521.

2.3 Hardware Implementations
Vast majority of HILA5 hardware implementation footprint is taken by the ring arithmetic
and hash function components, and therefore equivalent New Hope numbers are very
instructive. Envieta [FNSW17] reports FPGA implementations on New Hope on Intel
Arria 10 (266,240 bits of memory, 22 DSP, 6485 Registers, 300 MHz, 40,030 CLKs) and
Xilinx Zynq (5 BRAM, 27 DSP, 6988 Registers, 180 Mhz, 40,030 CLKs). Kuo et al.
[KLC+17] also report a New Hope implementation on Xilinx Zynq (13 BRAM, 32 DSP,
12,707 FFs, 19,781 LUTs, 13,024 slice registers, 114 MHz, 22,597 CLKs).

In all cases the key exchange required only a fraction of millisecond of computation for
full key exchange; this is faster than any comparable classical alternative. NTT operations
dominate the hardware implementation area and time.

1Open Quantum Safe project home: https://openquantumsafe.org/

https://openquantumsafe.org/
mailto:i7-6700@3.40

17 Markku-Juhani O. Saarinen

Table 1: Comparison of HILA5 to other Open Quantum Safe implementations [SM16].

Scheme
Init

KeyGen()
Public
Encaps()

Private
Decaps()

KEX
Total

Data
Tot. xfer

New Hope [ADPS16b]
HILA5 [This work]
BCNS15 [BCNS15]

LWE Frodo [BCD+16]
SIDH CLN16 [CLN16]

60.7µs
68.7µs
951.6µs
2.839ms
10.3ms

92.3µs
89.9µs
1546µs
3.144ms
22.9ms

16.2µs
16.9µs
196.9µs
84.9µs
9.853ms

169.2µs
175.4µs
2.694ms
6.068ms
43.1ms

3,872 B
3,836 B
8,320 B
22,568 B
1,152 B

RSA-2048 [OpenSSL]
RSA-4096 [OpenSSL]

60ms
400ms

15.9µs
55.7µs

559.9µs
3.687ms

N/A
N/A

N/A
N/A

3 Known Answer Test Values
Various intermediate values can be found in examples of Section 1. Full 100-iteration KAT
set is included in the submission:

KAT/PQCkemKAT_1824.req, 13590 bytes
SHA-256 = 36c27b6089b8910733a01fea1136469769b3ca3c35f2b375cfcc592f2112cfaa

KAT/PQCkemKAT_1824.rsp, 1152399 bytes
SHA-256 = 7d4336c35a0a5d3ed9be28aa2d812be03f6765572e788c7477a2a0839bb34e42

4 Design and Parameter Selection
This section contains reasoning for our design and parameter selection.

4.1 Expected Security Strength
Our design goal and security claim is that HILA5 meets NIST’s “Category 5” post-quantum
security requirement ([NIS16], Section 4.A.5): Compromising key K (shared secret ss) in
a passive attack requires computational resources comparable to or greater than those
required for key search on a block cipher with a 256-bit key (e.g. AES 256).

NIST requires at least IND-CPA [BDPR98] security from a KEM scheme (Section 1.6).
For a KEM without “plaintext”, this essentially means that valid (PK,CT,K) triplets are
computationally indistinguishable from (PK,CT,K0), where K0 is random. The design also
provides IND-CCA secure KEM-DEM [CS03] public key encryption if used in conjunction
with an appropriate AEAD [Rog02] such as NIST approved AES256-GCM [FIP01, Dwo07].
These properties are derived from [Pei14].

4.2 Hard Problem: Introduction to Ring-LWE
Notation. Let R be a ring with elements v 2 Zn. We use cyclotomic polynomial basis q

Zq[x]/(xn + 1). See Section 1.1 for further information about arithmetic in this ring.

Defnition 1 (Informal). With all distributions and computations in ring R, let s, e be
elements randomly chosen from some non-uniform distribution ̃ , and g be a uniformly
random public value. Determining s from (g,g � s + e) in ring R is the (Normal Form
Search) Ring Learning With Errors (RLWER,˜) problem.

Typically ̃ is chosen so that each coeÿcient is a Discrete Gaussian or from some
other “Bell-Shaped” distribution that is relatively tightly concentrated around zero. The
hardness of the problem is a function of n, q, and ̃ .

18 HILA5: Key Encapsulation Mechanism and Public Key Encryption Algorithm

References and notes on RLWE problem. The Learning With Errors (LWE) problem
in cryptography originates with Regev [Reg05] who showed its connection to fundamental
lattice problems in a quantum setting. Regev also showed equivalence of search and
decision variants [Reg09].

These ideas were extended to ring setting (RLWE) starting with [LPR10]. The
connection between a uniform secret s and a secret chosen from ̃ is provided by Applebaum
et al. [ACPS09] for LWE case, and for the ring setting in [LPR13].

Due to these reductions, the informal problem of Defnition 1 can be understood to
describe “RLWE”. Best known methods for solving the problem expand an RLWE instance
to the general (lattice) LWE, and therefore RLWE falls under “lattice cryptography”
umbrella. For a recent review of its concrete hardness, see [APS15].

4.3 Noisy Diÿe-Hellman in a Ring
A key exchange method analogous to Diÿe-Hellman can be constructed in R in a straight-
forward manner, as frst described in [AGL+10, Pei09]. Let g

$ R be a uniformly random
common parameter (“generator”), and ˜ a non-uniform distribution.

Alice Bob
a
$
˜ private keys b

$
˜

e
$
˜ noise e0 $ ˜

A = g � a + e public keys B = g � b + e0

x = B � a

A−−−!
B−−−

shared secret y = A � b

We see that that the way messages A,B are generated makes the security of the scheme
equivalent to Defnition 1. This commutative scheme “almost” works like Diÿe-Hellman be-
cause the shared secrets only approximately agree; x ˇ y. Since the ring R is commutative,
substituting A and B gives

x = (g � b + e0) � a = g � a � b + e0 � a (9)
y = (g � a + e) � b = g � a � b + e � b. (10)

The distance � therefore consists only of products of “noise” parameters:

� = x − y = e0 � a − e � b. (11)

We observe that each of {a,b, e, e0} in � are picked independently from ̃ , which should
be relatively “small’ and zero-centered. The coeÿcients of both x and y are dominated
by common, uniformly distributed factor g � a � b ˇ x ˇ y. Up to n shared bits can be
decoded from coeÿcients of x and y by a simple binary classifer such as b 2xi c ˇ b2yi c. q q

This type of generation will generate some disagreeing bits due to error �, however.
Furthermore, the output of the classifer is slightly biased when q is odd. This is why
additional steps are required.

4.4 Reconciliation
Let x ˇ y be two vectors in Zn with a relatively small di˙erence in each coeÿcient; theq

distribution of the distance �i = xi − yi is strongly centered around zero. In reconciliation,
we wish the holders of x and y (Alice and Bob, respectively) to be able to arrive at
exactly the same shared secret (key) k with a small amount of communication c. However,
single-message reconciliation can also be described simply as a part of an encryption
algorithm (not a protocol).

19 Markku-Juhani O. Saarinen

0

q
2

q
4

k = 0

c = 0

k = 1

c = 1

k = 0

c = 1

k = 1

c = 0

3q
4

Bob:

0

when c = 0

3q
8

7q
8

k = 1

k = 0

0

when c = 1

k = 1

k = 0

q
8

5q
8

Alice:

Figure 1: Simplifed view of Peikert’s original reconciliation mechanism [Pei14], ignoring
randomized rounding. Alice and Bob have points x ̌ y 2 Zq that are close to each other.
Bob uses y to choose k and c as shown on left, and transmits c to Alice. Alice can use

qx, c to always arrive at the same shared bit k0 if |x − y| < 8 , as shown on right. Without
randomized smoothing the two halves k = 0 and k = 1 have an area of unequal size (when
q is an odd prime) and the resulting key will be slightly biased.

4.4.1 Peikert’s Reconciliation and BCNS Instantiation

In Peikert’s reconciliation for odd modulus [Pei14], Bob frst generates a randomization
vector r such that each ri 2 {0,±1} is uniform modulo two. Bob can then determine the
public reconciliation c and shared secret k via

ci =
�
2(2yi − ri)

q

�
mod 2 ki =

�
2yi − ri

q

ˇ
mod 2. (12)

qWe defne disjoint helper sets I0 = [0, b 2
q c] and I1 = [−b q

2c,−1] and E = [− 4
q , 4). Alice

uses x to arrive at the shared secret k0 = k via ˆ
0, if 2xi 2 Ici + E mod 2qki

0 = (13)1, otherwise.

This mechanism is illustrated in Figure 1. Peikert’s reconciliation was adopted for the
Internet-oriented “BCNS” instantiation [BCNS15], which has a vanishingly small failure

< 2−16384probability; Pr(k0 6 .= k)

4.4.2 New Hope Variants

“New Hope” is a prominent, more recent instantiation of Peikert’s key exchange scheme
[ADPS16b]. New Hope is parametrized at n = 1024, yet produces a 256-bit secret key k.
This allowed the designers to develop a relatively complex reconciliation mechanism that

1024uses 256 = 4 coeÿcients of x and 2 � 4 = 8 bits of reconciliation information to reach
< 2−60 failure rate.

In a follow-up paper [ADPS16a] the New Hope authors let Bob unilaterally choose
the secret key, and signifcantly simplifed their approach. This version also uses four
coeÿcients, but requires 3 � 4 = 12 bits of reconciliation (or “ciphertext”) information per

< 2−60key bit. The total failure probability is the same .
Note that despite having a higher failure probability, the security level of New Hope

(Section 4.4.2) is higher than that of BCNS (Section 4.4.1). Security of RLWE is closely
related to the entropy and deviation of noise distribution ̃ in relation to modulus q.
Higher noise ratio increases security against attacks, but also increases failure probability
[APS15]. This is a fundamental trade-o˙ in all Ring-LWE schemes.

20 HILA5: Key Encapsulation Mechanism and Public Key Encryption Algorithm

0

q
2

q − 1
0

q
4

3q
4

q
2

d = 1

d = 1d = 1

d = 1
k = 0

k = 0k = 1

k = 1
c = 0

c = 0 c = 1

c = 1

q
8

3q
8

5q
8

7q
8

−b

−b

−b

−b

+b

+b

+b

+b
d = 0

d = 0 d = 0

d = 0

d = 0d = 0
d = 1

k = 1 k = 0

d = 1 q
4

3q
4

q
4 − b

q
4 + b

3q
4 + b

3q
4 − b

2y 2yFigure 2: We use k = b c (k = 1 on left half) instead of signed rounding k = b2 2 + �e
(k = 1 in lower half) of Peikert (Figure 1). Illustration on the left gives intuition for the
simple key bit selection and SafeBits without reconciliation. Bob uses window parameter b
to select “safe” bits d = 1 which are farthest away from the negative (k = 1) / positive
(k = 0) threshold. The bit selection d is sent to Alice, who then chooses the same bits
as part of the shared secret k0. On right, safe bit selection when reconciliation bits c are
used; this doubles the SafeBits “area”. Each section constitutes a fraction 2b+1 , so bits are q
unbiased. The number of shared bits is not constant, however.

References and notes on reconciliation. The term “reconciliation” comes from Quantum
Cryptography. Standard Quantum Key Distribution (QKD) protocols such as BB84 [BB84]
result in approximately agreeing shared secrets, which must be reconciled over a public
channel with the help of classical information theory and cryptography [BBR88, BS93].
Ding et al. describe functionally similar (but mathematically very di˙erent) “Robust
Extractors” in later versions of [DXL12] and patents [Din15, Din16] (See Section 4.5.3).

4.5 SafeBits: New Reconciliation Method
We defne the key and reconciliation bit generation rule from Bob’s share y to be

ki =
�
2yi

q

�
and ci =

�
4yi

q

�
mod 2. (14)

Input yi can be assumed to be uniform in range [0, q − 1]. If taken in this plain form, the
generator is slightly biased towards zero, since the interval for ki = 0, [0, b q

2c] is 1 larger
than the interval [d 2

q e, q − 1] for ki = 1 when q is odd.

4.5.1 Intuition: Selecting Safe Bits

Let’s assume that we don’t need all n bits given by the ring dimension. There is a
straight-forward strategy for Bob to select m indexes in y that are most likely to agree.
These safe coeÿcients are those that are closest to center points of k = 0 and k = 1 ranges,
which in this case are 4

q and 34
q , respectively. Bob may choose a boundary window b, which

defnes shared bits to be used, and then communicate his binary selection vector d to
Alice: ˆ � � � �3q 3q1 if yi 2 b 4

q e − b, b q or yi 2 b 4 e − b, b e + b
di = 4e + b 4 (15)0 otherwise.

This simple case is illustrated on left side of Figure 2.
Since y is uniform in Zn, the Hamming weight of d = SafeBits(y) satisfes Wt(d) = qPn−1

i=1 di ̌ 4b+2 n. Note that if not enough bits for the required shared secret payload can q

	
	

	

	 	

	

	

21 Markku-Juhani O. Saarinen

be obtained with bound b, Bob should re-randomize y rather than raising b as that can
have an unexpected e˙ect on failure rate. If there are too many selection bits for desired
payload, one can just ignore them.

Importantly, both partitions are of equal size 2b+1 and therefore k is unbiased if there
are no bit failures. If Alice also uses the simple rule k0 = b 2xi c to derive key bits (without i q

qci), the distance between shares must be at least |xi − yi| > 4 − b for a bit error to occur.

4.5.2 Even safer bits via Peikert’s reconciliation

Let Bob use Equation 14 to determine his private key bits ki and reconciliation bits ci.
Bob also uses a new d = SafeBits(y, b) function that allows for Peikert-style reconciliation: ˆ

1 if |(yi mod b 4
q e)− b q

8c| � b
di = (16)0 otherwise.

Note that there are now four “safe zones” (Figure 2, right side). Bob sends his bit selection
vector d to Alice, along with reconciliation bits ci at selected positions with di = 1. Alice
can then get corresponding k0 using ci viai � ��� j m j m2 q q

ki
0 = xi − ci + mod q . (17)

q 4 8

Both parties derive a fnal key of length m � Wt(d) bits by concatenating the selected bits.
Since y is uniform, each partition is still of size 2b+ 1, and the expected weight is now Pn−1Wt(d) = i=1 di ̌ 8b+4n, allowing the selection to be made essentially twice as tight q
while producing unbiased output.

4.5.3 Bob Chooses Key Bits: Ding’s Patents

Note that Bob is choosing the safe bits; he can use the direct rule of Equation 16, but
really doesn’t have to. In fact, such randomization may help security. With practical b
boundaries there are typically many more bits with di = 1 than there are payload bits
(Table 2); Bob can therefore directly choose much of the k secret, as in traditional public
key encryption. Therefore patents [Din15, Din16] are not applicable as HILA5 does not
perform reconciliation or joint-control key exchange as presented that work. This was also
the rationale for “simple” New Hope variant [ADPS16a].

4.6 Analysis of Decryption Failure
Recall that we use the well-analyzed and optimized external ring parameters (q = 12289,
n = 1024, and ̃ = 16) from New Hope [ADPS16a, ADPS16b] in our proposal.
Defnition 2. Let k be a binomial distribution source

kX $
k = bi − b0 where bi, b

0 {0, 1}. (18)i i

i=0 � 2k
�

2−2k nFor random variable X from k we have P (X = i) = . Furthermore, k+i k

is a source of R elements where each one of n coeÿcients is independently chosen from
k. Since scheme is uses k = 16, a typical sampler implementation just computes the

Hamming weight of a 32-bit random word and subtracts 16.
Lemma 1. Let ", "0 be vectors of length 2n from 2n. Individual coeÿcients � = �i ofk

distance Equation 11 will have distribution equivalent to
2nX

� = " i "
0
i. (19)

i=1

	

	

	

22 HILA5: Key Encapsulation Mechanism and Public Key Encryption Algorithm

3q 3qb q b q b q−b q −b e −b q −b q b e2e 8 4e 8e 0 8e 4e 8 2e

0.0000
0.0002
0.0004
0.0006
0.0008
0.0010
0.0012

-6000-5000-4000-3000-2000-1000 0 1000 2000 3000 4000 5000 6000

Figure 3: The error distribution E of � = xi − yi (which we compute with high precision)
is bell-shaped with variance ̇ 2 = 217. Its statistical distance to corresponding discrete
Gaussian (with same ̇) is ˇ 2−12.6, which has a signifcant e˙ect on the bit failure rate.
This is why we compute the discrete distributions numerically.

Proof. When we investigate the multiplication rule of Equation 1, we see that each
coeÿcient of independent polynomials {a,b, e, e0} (or its inverse) in � is used in compu-

k kX

tation of each �i = � exactly once. One may equivalently pick coeÿcients of ", "0 from
{±e,±e0 ,±sA,±sB}, without repetition. Therefore coeÿcients of " i, "0 are independent i

X

and have distribution k.

4.6.1 Independence Assumption

Even though all of the variables in the sum of individual element � = �i are independent in
Equation 19, they are reused in other sums for �j , i 6= j. Therefore, while the average-case
distribution of each one of the n coeÿcients of � is the same and precisely analyzable, they
are not fully independent. In this work we perform error analysis on a single coeÿcient and
then simply expand it to the whole vector. This independence assumption is analogous
to our extension of LWE security properties to Ring-LWE with more structure and less
independent variables.

The assumption is supported by our strictly bound error distribution k and the
structure of convolutions of signed random vectors (Equation 1). Our error estimate has a
signifcant safety margin, however.

4.6.2 Computing the Error Distribution

The distribution of the product from two random variables from k in Equation 19 is
no longer binomial. Clearly its range is [− k2, k2], but not all values are possible; for
example, primes p > k cannot occur in the product. However, it is easy to verify that the
product is zero-centered and its standard deviation is exactly vuut � 2k

�� 2k
�

˙ = k+i k+j k(ij)2 = . (20)24k 2
i=−k j=−k

Hence, we may estimate � of Equation 19 using the Central Limit Theorem as a Gaussian
distribution with deviation

kp
˙ = 2n (21)2

With our parameter selection this yields ̇ ̌ 362.0386 (variance ̇ 2 = 217). However,
the distribution of X = " i "0 in Equation 19 is far from being “Bell-shaped” – its (total i

variation) statistical distance to a discrete Gaussian (with the same ̇ = 8) is ˇ 0.307988.

	

23 Markku-Juhani O. Saarinen

−20

−25

−30

−35

−40

−45

−50

−55

4(2b+1)SafeBits selection ratio r = q

Figure 4: Relationship between individual bit failure rate and the selection window b.
Dotted line is the rate derived from Gaussian approximation – it’s up to 2× lower.

To calculate more accurate error distributions, we observe that since our domain
Zq is fnite, we may always perform full convolutions between statistical distributions
of independent random variables X and Y to arrive at the distribution of X + Y . The
distributions can be represented as vectors of q real numbers. In order to get the exact shape
of the error distribution we start with X, which is a “square” of 16 and can be computed
via binomial coeÿcients, as is done in Equation 20. The error distribution (Equation
19) is a sum X +X + · · · +X of 2n independent variables from that distribution. Using
the convolution summing rule we can create a general “scalar multiplication algorithm”
(analogous to square-and-multiply exponentiation) to quickly arrive at E = 2048 ×X.

We implemented fnite distribution evaluation arithmetic in 256-bit foating point
precision using the GNU MPFR library2. From these computations we know that the
statistical distance of E to a discrete Gaussian with (same) ̇ 2 = 217 is approximately
0.0001603 or 2−12.6. Figure 3 illustrates this error distribution.

Proposition 1. Bit selection mechanism of Section 4.5.2 yields unbiased shared secret
bits k = k0 if y is uniform. Discrete failure rate for individual bits k =6 k0 can be computed
with high precision in our instance.

Proof. Consider Bob’s k value from in Equation 14, Bob’s c and Alice’s k0 from Equation
17, and the four equivalently probable SafeBits ranges in Equation 16. With our q = 12289
instantiation the four possible k 6= k0 error conditions are:

Failure Case Bob’s yi range for Y Alice’s Failing xi

k = 0, c = 0, k0 = 1 [1536− b, 1536 + b] [4609, 10752]
k = 0, c = 1, k0 = 1 [4608− b, 4608 + b] [0, 1535] [[7681, 12288]
k = 1, c = 0, k0 = 0 [7680− b, 7680 + b] [0, 4608] [[10753, 12288]
k = 1, c = 1, k0 = 0 [10752− b, 10752 + b] [1536, 7680]

We examine each case separately (See Figure 2). Since the four non-overlapping yi ranges
are of the same size 2b+1 and together constitute all selectable points di = 1 (Equation 16),
the distribution of k = k0 is uniform. Furthermore, bit fail probability k =6 k0 is the average
of these four cases. For each case, compute distribution Y which is uniform in the range
of yi. Then convolute it with error distribution to obtain X = Y + E, the distribution
of xi. The probability of failure is the sum of probabilities in X in the corresponding xi

failure range.
2The GNU MPFR is a widely available, free C library for multiple-precision foating-point computations

with correct rounding: http://www.mpfr.org/

B
it

fa
ilu

re
 r

at
e:

 l
og
2 (
P
r(
k
 6=

k
 0)
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

http://www.mpfr.org/
http:00.10.20.30.40.50.60.70.80.91
http:realnumbers.In

24 HILA5: Key Encapsulation Mechanism and Public Key Encryption Algorithm

4.7 Constant-Time Error Correction
We observe that in HILA5 the error correction mechanism operates on secret data. As with
all other components of the scheme it is highly desirable that decoding can be implemented
with an algorithm that requires constant processing time regardless of number of errors
present. We are not aware of satisfactory constant-time decoding algorithms for BCH,
Reed-Solomon, or other standard block multiple-error correcting codes [MS77, vL99].

We chose to design a linear block code, XE5, specifcally for HILA5. The design
methodology is general, and a similar approach was used by the author for the Trunc8
Ring-LWE lightweight authentication scheme [Saa17c].

Defnition 3. XE5 has a block size of 496 bits, out of which 256 bits are message bits
m = (m0,m1, · · · ,m255) and 240 bits r provide redundancy. Redundancy is divided into
ten subcodewords r0, r1, · · · , r9 of varying bit length |ri| = Li with

(L0, L1, · · · , L9) = (16, 16, 17, 31, 19, 29, 23, 25, 27, 37). (22)

Bits in each ri are indexed r(i,0), r(i,1), · · · , r(i,Li−1). Each bit k 2 [0, L0 − 1] in frst
subcodeword r0 satisfes the parity equation

15X
r0,k = m(16k+j) (mod 2) (23)

j=0

and bits in r1, r2, · · · , r9 satisfy the parity congruence X
ri,k = mj (mod 2). (24)

j−k | Li

We see that r0,k in Equation 23 is the parity of k + 1:th block of 16 bits, while the ri,k

in Equation 24 is parity of all mj at congruent positions j � k (mod Li).

Defnition 4. For each message bit position mi we can assign corresponding integer
“weight” wi 2 [0, 10] as a sum

9X
wi = r(0,bi/16c) + r(j,i mod Lj). (25)

j=1

Lemma 2. If message m only has a single nonzero bit me, then we = 10 and wi � 1 for
all i 6= e. p
Proof. Since each Li � |m| and all Li�1 are coprime (each is a prime power) it follows
from the Chinese Remainder Theorem that any nonzero i 6 j pair can simultaneously =
satisfy both ri,a mod Li = 1 and rj,a mod Lj = 1 only at a = e. Similar argument can be
made for pairing r0,a with ri�1. Since the residues can be true pairwise only at e, weight
wa cannot be 2 or above when a 6= e. Case we = 10 follows directly from Defnition 3.

Defnition 5. Given XE5 input block m | r, we derive the redundancy check r0 from m
via Equations 23 and 24. Furthermore we have distance r� = r � r0. Message distance
weight vector w� is derived from r� via Equation 25.

Since the code is entirely linear, Lemma 2 implies a direct way to correct a single error
in m using Defnition 5 – just fip bit mx at position x where w� = 10. In fact any two x

redundancy subcodewords ri and rj would be suÿcient to correct a single error in the
message; it’s where w� � 2. It’s easy to see if the single error is in the redundancy part i

(ri or rj) instead of the message – this is not an issue since in that case w� � 1 for all x.x

Such reasoning leads to our error correction strategy that is valid for up to fve errors.

25 Markku-Juhani O. Saarinen

Theorem 1. Let m | r be an XE5 message block as in Defnition 5. Changing each bit
�mi when w � 6 will correct a total of fve bit errors in the block. i

Proof. We frst note that if all fve errors are in the redundancy part r, then w� � 5 andi

no modifcations in payload are done. If there are 4 errors in r and one in payload we still
have wx

� � 6 at the payload error position mx, etc. For each message error mx, each of
ten subcodeword ri will contribute one to weight w� unless there is another congruent x

error my – i.e. we have bx/16c = by/16c for r0 or x � y (mod Li) for ri�1. Four errors
cannot generate more than four such congruences (due to properties shown in the proof of
Lemma 2), leaving ffth correctable via remaining six subcodewords (w� � 6).i

In order to verify the correctness of our implementation, we also performed a full P5 496!exhaustive test (search space i!(496−i)! ˇ 2
37.8). Experimentally XE5 corrects 99.4%i=0

of random 6-bit errors and 97.0% of random 7-bit errors.

4.7.1 Eÿcient Constant-Time Implementation

The code generation and error correcting schemes can be implemented in bit-sliced fashion,
without conditional clauses or table lookups on secret data. Please see listings in Section
1.4 for an example implementation that runs in constant time.

The block is encoded simply as a 496-bit concatenation m | r. The reason for the
ordering of Li in Equation 22 is so that they can be packed into byte boundaries: 17+31 =
48, 19 + 29 = 48, 23 + 25 = 48 and 27 + 37 = 64.

4.8 Parameter Selection for Reconciliation
As can be seen in Figure 4, the relationship between window size b and bit failure rate is
almost exponential. Some representative window sizes and payloads are given in Table 2,
which also puts our selection b = 799 in context. Five-error correction (Section 4.7) lowers
the message failure probability to roughly (2−27)5 ˇ 2−135 or even lower as 99% of six-bit
errors are also corrected. We therefore meet the 2−128 message failure requirement with a
signifcant safety margin.

Table 2: How b = 799 was chosen: Potential window b sizes for SafeBits (Equation 16)
selection with di˙erent payload sizes. We target a payload of 496 bits, of which 256 are
actual key bits and 240 bits are used to encrypt a fve-error correcting code from XE5.

Payload
bits�

m ̌ r × n

Selection
Window

b

Selection
Ratio

r = 4(2b+1)
q

Bit fail
Probability

p

Payload
Failure

1− (1− p)m

128
256
384
496†
512
768
1024

191
383
575
799
767
1151
1535

0.124664
0.249654
0.374644
0.520465
0.499634
0.749613
0.999593

2−51.4715

2−46.5521

2−41.5811

2−36.0359

2−36.8063

2−28.1151

2−20.7259

2−44.4715

2−38.5521

2−32.9962

2−27.0818

2−27.8063

2−18.5302

2−10.7263

� This is the minimum number of payload bits you get with 50% probability. The actual
nnumber is binomially distributed with density f(k) =
� �

rk(1− r)n−k. Probability of at
nleast m bits is therefore

P
f(k).

k

k=m
† The payload could be 533 bits with 50% probability. We get 496 bits with 99% probability
– this safety margin was chosen to minimize repetition rate (to ̌ 1 100).

http:sizes.We
http:corrected.We

26 HILA5: Key Encapsulation Mechanism and Public Key Encryption Algorithm

4.9 Putting it together: Design Overview of HILA5
Algorithm 1 contains a pseudocode overview of the HILA5 Key Encapsulation Mechanism
(and Public Key Encryption algorithm), using a number of auxiliary functions.3

Algorithm 1 Protocol fow of the HILA5 KEM.
Alice Bob

(PK, SK) KeyGen()
$ {0, 1}256s Public random seed.

ĝ Parse(s) Expand to “generator” in NTT domain.
na

$
16 Randomize Alice’s secret key.

â NTT(a) Transform it.
ne

$
16 Generate masking noise.

Â ĝ ~ â + NTT(e) Compute Alice’s public key in NTT domain.
Keep SK = â and h(PK). Keep secret key (and hash of public key).

ˆ! Send PK = s | A Send public key to Bob.
PK−−−!

(CT,K) Encaps(PK)
nRandomize Bob’s ephemeral secret key. b

$
16

Transform it. b̂ NTT(b)
Bob’s version of shared secret. y NTT−1(Â ~ b̂)

Get payload and reconciliation values. (d,k, c) SafeBits(y)
(Fail hard after more than a dozen restarts.) If k = FAIL restart Encaps()

Split to message and redundancy mask. m | z = k
Error correction code, encrypt it. r XE5_Cod(m)� z

Get “generator” from Alice’s seed. ĝ Parse(s)
nGenerate masking noise. e0 $
16

Compute Bob’s one-time public value. B̂ ĝ ~ b̂+ NTT(e0)
Keep fnal hash. V is a version identifer. # K = h(V | h(PK) | h(CT) | m)

ˆSend ciphertext to Alice. Send CT = B | d | c | r
CT−−−

K Decaps(SK,CT)
x NTT−1(B̂ ~ â) Alice’s version of the shared secret.

k0 Select(x,d, c) Get payload with the help of reconciliation.
m0 | z0 = k0 Split to message and redundancy mask.

r0 XE5_Cod(m0) Get error correction code from Alice’s version.
m00 XE5_Fix(r � z0 � r0)�m0 Decrypt and apply Bob’s error correction.
K0 = h(V | h(PK) | h(CT) |m00) Keep fnal hash. V is a version identifer.

Notation and auxiliary functions. We represent elements of R in two di˙erent domains;
the normal polynomial representation v and Number Theoretic Transform representation
v̂. Convolution (polynomial multiplication) in the NTT domain is a linear-complexity
operation, written x̂ ~ ŷ. Addition and subtraction work as in normal representation. The
transform and its inverse are denoted here by NTT(v) = v̂ and NTT−1(v̂) = v, respectively.
See Section 1.1 for more information about these transforms.

3Hila is Finnish for a lattice. HILA5 – especially when written as “Hila V” – also refers to hilavitkutin,
a nonsensical placeholder name usually meaning an unidentifed, incomprehensibly complicated apparatus.

	

	

27 Markku-Juhani O. Saarinen

The hash h(x) is SHA3-256 [FIP15]. Function Parse() (Section 1.3) deterministically
samples a uniform ĝ 2 R based on arbitrary seed s using SHA3’s XOF mode SHAKE-
256 [FIP15]. While New Hope uses the slightly faster SHAKE-128 for this purpose, we
consistently use SHAKE-256 or SHA3-256 in all parts of HILA5. Binomial distribution
values 16 can be computed directly from 32 random bits (Section 1.3, Defnition 2).

Bob’s reconciliation function SafeBits() (Section 1.6) captures Equations 14 and 16
from Section 4.5. Conversely, Alice’s reconciliation function Select() (Section 1.7) captures
Equation 17. The XE5 error correction functions r = XE5_Cod(m) and m0 = XE5_Fix(r�
r0)�m are defned in Sections 1.4 and 4.7. Here we have “error key” k = m | r with the
payload key m 2 {0, 1}256 and redundancy r 2 {0, 1}240.

Encoding – shorter messages. Ring elements, whether or not in NTT domain, are
encoded into |R| = dlog2 qen bits = 1, 792 bytes. This is the private key size. Alice’s public
key PK with a 256-bit seed s and Â is 1, 824 bytes. Ciphertext CT is |R|+n+m+ |r| bits
or 2, 012 bytes; 36 bytes less than New Hope [ADPS16b], 196 bytes less than the variant
of [ADPS16a], and 1, 572 bytes less than LP11 [LP11].

Encryption: From noisy Diÿe-Hellman to noisy ElGamal. Modifcation of the scheme
for public-key encryption is straightforward. Compared to the more usual “LP11” Ring-
LWE Public Key Encryption construction [LP11] our reconciliation approach saves about
44 % in ciphertext size. See Section 5 of [Pei14] for details of the formal security argument.

For active security we suggest that K is used as keying material for an AEAD (Au-
thenticated Encryption with Associated Data) [Rog02] scheme such as AES256-GCM
[Dwo07, FIP01] or Keyak [BDP+16] in order to protect message integrity.

5 Summary of Resistance to Known Attacks
Quantum attacks. Our new reconciliation mechanism has no e˙ect on the security against
(quantum) lattice attacks, so attack estimates for “New Hope” parameters are applicable
[ADPS16b, AGVW17]. The main attacks considered are primal and dual variants of Block
Korkin Zolotarev (BKZ) algorithm [SE94, CN11]. Currently this implies 2255 quantum
security, with 2199 attacks plausible, which is well above the 2128 margin.

The only other component used by HILA5 is SHA3 [FIP15]. Pre-image security (but
not collision resistance [CNPS17]) is expected from SHA3 and SHAKE-256 in HILA5.
Breaking the construction via these algorithms is expected to require approximately 2166
logical-qubit-cycles [AMG+16, CBHS17, Unr17].

Algebraic structure of Ring-LWE. Some researchers (notably authors of CRYSTALS -
Kyber [BDK+17]) see risks in the algebraic structure of Ring-LWE and NTRU instances,
and use that to motivate their use of Module-LWE. However, no actual attacks have been
disclosed against our Ring-LWE parameters, and recent work such as [AD17, AGVW17]
seems to reaÿrm the original security estimates.

Biases and classical attacks. Shared secret bits are unbiased. The shared key K also
includes plaintext PT and ciphertext CT in the fnal hash to protect against a class of
active attacks.

Timing and side-channel attacks. The scheme has been designed from ground-up to be
resistant against timing and side-channel attacks. The sampler 16 is constant-time, as is
our error correction code XE5. Ring arithmetic can also be implemented in constant time,
but leakage can be further minimized via blinding [Saa17a] (Section 6).

28 HILA5: Key Encapsulation Mechanism and Public Key Encryption Algorithm

6 Advantages and Limitations

Spec sheet: HILA5
Algorithm Purpose: Key Encapsulation and Public Key Encryption.
Underlying problem: Ring-LWE (Learning With Errors in a Ring.)
Public key size: 1824 Bytes (+32 Byte private key hash.)
Private key size: 1792 Bytes (640 Bytes compressed.)
Ciphertext size: 2012 Byte expansion (KEM) + payload + MAC.
Failure rate: < 2−128, consistent with security level.
Classical security: 2256 (Category 5 – Equivalent to AES-256).
Quantum security: 2128 (Category 5 – Equivalent to AES-256).

6.1 Features
+ Very fast. HILA5 key generation and private key operations are an order of

magnitude faster than those of current RSA- or Elliptic Curve based algorithms.

+ Drop-in compatible. HILA5 is essentially drop-in compatible with current public
key encryption applications. There are no practical usage restrictions. Key sizes and
message expansion are of similar magnitude to current cryptographic standards.

+ Compact implementation. HILA5 can be implemented on a wide range of target
platforms, from most lightweight MCUs to high end vector architectures.

+ Side-channel resistant. HILA5 has been designed from ground up to be resistant
against side-channel attacks such as timing attacks.

+ Well understood parameters. Our Ring-LWE lattice parameters have attracted
a lot of research and can be considered to be conservative choices with a signifcant
security margin. No vulnerabilities are known.

– No signatures. HILA5 does only key encapsulation (KEM), key exchange, and
public key encryption. However, signature algorithms such as BLISS [DDLL13,
Saa17a] use very similar ring parameters.

6.2 Compared to New Hope and other (R)LWE Proposals
+ HILA5 doesn’t fail. The algorithm has much lower failure probability, under 2−128

– compared to 2−38.9 for recommended parameters of Frodo [BCD+16], 2−60 for New
Hope [ADPS16b], and even 2−71.9 for Kyber [BDK+17]. Non-negligible decryption
failure rate is not acceptable in public key encryption applications.

+ Less randomness required. Reconciliation method produces unbiased secrets
without randomized smoothing; the system therefore requires less true randomness.

+ Non-malleable. Computation of the fnal shared secret in HILA5 KEM uses the
full public key and ciphertext messages, thereby reinforcing non-malleability and
making a class of adaptive attacks infeasible.

+ Shorter messages. Ciphertext messages are slightly smaller than New Hope’s.

+ Patent free. Since the sender can choose the message (see Section 4.5), Ring-LWE
key exchange patents [Din15, Din16] are even less applicable on this scheme.

– Slightly slower. Slight (< 5 %) performance penalty when compared to New Hope.

29 Markku-Juhani O. Saarinen

References
[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryp-

tographic primitives and circular-secure encryption based on hard learning
problems. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages
595–618. Springer, 2009. doi:10.1007/978-3-642-03356-8_35.

[AD17] Martin R. Albrecht and Amit Deo. Large modulus ring-lwe >= module-lwe.
In ASIACRYPT 2017, 2017. URL: https://eprint.iacr.org/2017/612.

[ADPS16a] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Newhope
without reconciliation. IACR ePrint 2016/1157, December 2016. URL: https:
//eprint.iacr.org/2016/1157.

[ADPS16b] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-
quantum key exchange – A new hope. In Thorsten Holz and Stefan
Savage, editors, USENIX Security 16, pages 327–343. USENIX Associa-
tion, August 2016. Full version available as https://eprint.iacr.org/
2015/1092. URL: https://www.usenix.org/system/files/conference/
usenixsecurity16/sec16_paper_alkim.pdf.

[AGL+10] Carlos Aguilar, Philippe Gaborit, Patrick Lacharme, Julien Schrek, and
Gilles Zémor. Noisy Diÿe-Hellman protocols, May 2010. Talk given by
Philippe Gaborit at PQCrypto 2010 “Recent Results” session. URL: https:
//pqc2010.cased.de/rr/03.pdf.

[AGVW17] Martin R. Albrecht, Florian Göpfert, Fernando Virdia, and Thomas Wunderer.
Revisiting the expected cost of solving uSVP and applications to LWE. In
ASIACRYPT 2017, 2017. URL: https://eprint.iacr.org/2017/815.

[AJS16] Erdem Alkim, Philipp Jakubeit, and Peter Schwabe. A new hope on ARM
Cortex-M. IACR ePrint 2016/758, 2016. URL: https://eprint.iacr.org/
2016/758.

[AMG+16] Matthew Amy, Olivia Di Matteo, Vlad Gheorghiu, Michele Mosca, Alex Parent,
and John Schanck. Estimating the cost of generic quantum pre-image attacks
on SHA-2 and SHA-3. IACR ePrint 2016/992, 2016. To appear in Proc. SAC
2016. URL: http://eprint.iacr.org/2016/992.

[APS15] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness
of learning with errors. Journal of Mathematical Cryptology, 9(3):169–203,
October 2015. URL: https://eprint.iacr.org/2015/046, doi:10.1515/
jmc-2015-0016.

[BB84] Charles H. Bennett and Gilles Brassard. Quantum cryptography: Public key
distribution and coin tossing. In Proceedings of IEEE International Confer-
ence on Computers, Systems and Signal Processing,, pages 175–179. IEEE,
December 1984. URL: http://researcher.watson.ibm.com/researcher/
files/us-bennetc/BB84highest.pdf.

[BBR88] Charles H. Bennett, Gilles Brassard, and Jean-Marc Robert. Privacy amplif-
cation by public discussion. Siam Journal on Computing, 17(2):210–229, April
1988. doi:10.1137/0217014.

[BCD+16] Joppe Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria
Nikolaenko, Ananth Raghunathan, and Douglas Stebila. Frodo: Take o˙
the ring! practical, quantum-secure key exchange from LWE. In ACM

http://dx.doi.org/10.1007/978-3-642-03356-8_35
https://eprint.iacr.org/2017/612
https://eprint.iacr.org/2016/1157
https://eprint.iacr.org/2016/1157
https://eprint.iacr.org/2015/1092
https://eprint.iacr.org/2015/1092
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_alkim.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_alkim.pdf
https://pqc2010.cased.de/rr/03.pdf
https://pqc2010.cased.de/rr/03.pdf
https://eprint.iacr.org/2017/815
https://eprint.iacr.org/2016/758
https://eprint.iacr.org/2016/758
http://eprint.iacr.org/2016/992
https://eprint.iacr.org/2015/046
http://dx.doi.org/10.1515/jmc-2015-0016
http://dx.doi.org/10.1515/jmc-2015-0016
http://researcher.watson.ibm.com/researcher/files/us-bennetc/BB84highest.pdf
http://researcher.watson.ibm.com/researcher/files/us-bennetc/BB84highest.pdf
http://dx.doi.org/10.1137/0217014

30 HILA5: Key Encapsulation Mechanism and Public Key Encryption Algorithm

CCS 2016, pages 1006–1018. ACM, October 2016. Full version available as
IACR ePrint 2016/659. URL: https://eprint.iacr.org/2016/659, doi:
10.1145/2976749.2978425.

[BCNS15] Joppe W. Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. Post-
quantum key exchange for the TLS protocol from the ring learning with
errors problem. In IEEE S & P 2015, pages 553–570. IEEE Computer
Society, 2015. Extended version available as IACR ePrint 2014/599. URL:
https://eprint.iacr.org/2014/599, doi:10.1109/SP.2015.40.

[BDK+17] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,
John M. Schanck, Peter Schwabe, and Damien Stehlé. CRYSTALS – Kyber:
a CCA-secure module-lattice-based KEM. IACR ePrint 2016/634, 2017. URL:
https://eprint.iacr.org/2017/634.

[BDP+16] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, and
Ronny Van Keer. Caesar submission: Keyak v2, September 2016. CAE-
SAR Candidate Specifcation. URL: http://keyak.noekeon.org/.

[BDPR98] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Re-
lations among notions of security for public-key encryption schemes. In
Hugo Krawczyk, editor, CRYPTO 1998, volume 1462 of LNCS, pages 26–
45. Springer, 1998. URL: https://www.di.ens.fr/~pointche/Documents/
Papers/1998_crypto.pdf, doi:10.1007/BFb0055718.

[BS93] Gilles Brassard and Louis Salvail. Secret-key reconciliation by public discussion.
In Tor Helleseth, editor, EUROCRYPT 1993, volume 765 of LNCS, pages
410–423. Springer, 1993. doi:10.1007/3-540-48285-7_35.

[CBHS17] Jan Czajkowski, Leon Groot Bruinderink, Andreas Hülsing, and Christian
Scha˙ner. Quantum preimage, 2nd-preimage, and collision resistance of SHA3.
IACR ePrint 2017/302, 2017. URL: https://eprint.iacr.org/2017/302.

[CJL+16] Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene Peralta, Ray
Perlner, and Daniel Smith-Tone. Report on post-quantum cryptography.
NISTIR 8105, April 2016. doi:10.6028/NIST.IR.8105.

[CLN16] Craig Costello, Patrick Longa, and Michael Naehrig. Eÿcient algorithms for
supersingular isogeny Diÿe-Hellman. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, volume 9814 of LNCS, pages 572–601.
Springer, 2016. URL: https://eprint.iacr.org/2016/413, doi:10.1007/
978-3-662-53018-4_21.

[CN11] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security
estimates. In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT
2011, volume 7073 of LNCS, pages 43–62. Springer, 2011. URL: http://
www.iacr.org/archive/asiacrypt2011/70730001/70730001.pdf, doi:10.
1007/978-3-642-25385-0_1.

[CNPS17] André Chailloux, María Naya-Plasencia, and André Schrottenloher. An
eÿcient quantum collision search algorithm and implications on symmetric
cryptography. In ASIACRYPT 2017, 2017. URL: https://eprint.iacr.
org/2017/847.

[CS03] Ronald Cramer and Victor Shoup. Design and analysis of practical public-key
encryption schemes secure against adaptive chosen ciphertext attack. SIAM
Journal on Computing, 33(1):167–226, 2003. URL: http://www.shoup.net/
papers/cca2.pdf, doi:10.1137/S0097539702403773.

https://eprint.iacr.org/2016/659
http://dx.doi.org/10.1145/2976749.2978425
http://dx.doi.org/10.1145/2976749.2978425
https://eprint.iacr.org/2014/599
http://dx.doi.org/10.1109/SP.2015.40
https://eprint.iacr.org/2017/634
http://keyak.noekeon.org/
https://www.di.ens.fr/~pointche/Documents/Papers/1998_crypto.pdf
https://www.di.ens.fr/~pointche/Documents/Papers/1998_crypto.pdf
http://dx.doi.org/10.1007/BFb0055718
http://dx.doi.org/10.1007/3-540-48285-7_35
https://eprint.iacr.org/2017/302
http://dx.doi.org/10.6028/NIST.IR.8105
https://eprint.iacr.org/2016/413
http://dx.doi.org/10.1007/978-3-662-53018-4_21
http://dx.doi.org/10.1007/978-3-662-53018-4_21
http://www.iacr.org/archive/asiacrypt2011/70730001/70730001.pdf
http://www.iacr.org/archive/asiacrypt2011/70730001/70730001.pdf
http://dx.doi.org/10.1007/978-3-642-25385-0_1
http://dx.doi.org/10.1007/978-3-642-25385-0_1
https://eprint.iacr.org/2017/847
https://eprint.iacr.org/2017/847
http://www.shoup.net/papers/cca2.pdf
http://www.shoup.net/papers/cca2.pdf
http://dx.doi.org/10.1137/S0097539702403773

31 Markku-Juhani O. Saarinen

[CT65] James W. Cooley and John W. Tukey. An algorithm for the machine calculation
of complex Fourier series. Mathematics of Computation, 19(90):297–301, April
1965. doi:10.1090/S0025-5718-1965-0178586-1.

[DDLL13] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky.
Lattice signatures and bimodal Gaussians. In Ran Canetti and Juan A.
Garay, editors, CRYPTO 2013, pages 40–56. Springer, 2013. Extended version
available as IACR ePrint 2013/383. URL: https://eprint.iacr.org/2013/
383, doi:10.1007/978-3-642-40041-4_3.

[Din15] Jintai Ding. Improvements on cryptographic systems using pairing with errors,
June 2015. Application PCT/CN2015/080697. URL: https://patents.
google.com/patent/WO2015184991A1/en.

[Din16] Jintai Ding. New cryptographic systems using pairing with errors, January
2016. U.S. Patent US924667. URL: https://patents.google.com/patent/
US9246675B2.

[Dwo07] Morris Dworkin. Recommendation for block cipher modes of operation: Ga-
lois/Counter Mode (GCM) and GMAC. NIST Special Publication 800-38D,
November 2007. doi:10.6028/NIST.SP.800-38D.

[DXL12] Jintai Ding, Xiang Xie, and Xiaodong Lin. A simple provably secure key
exchange scheme based on the learning with errors problem. IACR ePrint
2012/688, 2012. URL: https://eprint.iacr.org/2012/688.

[FIP01] FIPS. Specifcation for the Advanced Encryption Standard (AES). Federal
Information Processing Standards Publication 197, November 2001. URL:
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

[FIP15] FIPS. SHA-3 standard: Permutation-based hash and extendable-output
functions. Federal Information Processing Standards Publication 202, August
2015. doi:10.6028/NIST.FIPS.202.

[FNSW17] Roberta Faux, Karin Niles, Rino Sanchez, and John Wade. An FPGA
study of lattice-based key exchanges, 2017. ETSI / IQC Quantum
Safe Workshop, 13-15 September 2017, London, UK. URL: https:
//docbox.etsi.org/Workshop/2017/201709_ETSI_IQC_QUANTUMSAFE/
TECHNICAL_TRACK/S04_SYSTEM_LEVEL_ISSUES/ENVIETA_FAUX.pdf.

[GS16] Shay Gueron and Fabian Schlieker. Speeding up R-LWE post-quantum key
exchange. IACR ePrint 2016/467, 2016. URL: https://eprint.iacr.org/
2016/467.

[KLC+17] Po-Chun Kuo, Wen-Ding Li, Yu-Wei Chen, Yuan-Che Hsu, Bo-Yuan Peng,
Chen-Mou Cheng, and Bo-Yin Yang. Post-quantum key exchange on FPGAs.
IACR ePrint 2017/690, 2017. URL: https://eprint.iacr.org/2017/690.

[LN16] Patrick Longa and Michael Naehrig. Speeding up the number theoretic
transform for faster ideal lattice-based cryptography. In Sara Foresti and
Giuseppe Persiano, editors, CANS 2016, volume 10052 of LNCS, pages 124–
139. Springer, 2016. URL: https://eprint.iacr.org/2016/504, doi:10.
1007/978-3-319-48965-0_8.

[LP11] Richard Lindner and Chris Peikert. Better key sizes (and attacks) for LWE-
based encryption. In Aggelos Kiayias, editor, CT-RSA 2011, volume 6558 of
LNCS, pages 319–339. Springer, 2011. doi:10.1007/978-3-642-19074-2_21.

http://dx.doi.org/10.1090/S0025-5718-1965-0178586-1
https://eprint.iacr.org/2013/383
https://eprint.iacr.org/2013/383
http://dx.doi.org/10.1007/978-3-642-40041-4_3
https://patents.google.com/patent/WO2015184991A1/en
https://patents.google.com/patent/WO2015184991A1/en
https://patents.google.com/patent/US9246675B2
https://patents.google.com/patent/US9246675B2
http://dx.doi.org/10.6028/NIST.SP.800-38D
https://eprint.iacr.org/2012/688
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://dx.doi.org/10.6028/NIST.FIPS.202
https://docbox.etsi.org/Workshop/2017/201709_ETSI_IQC_QUANTUMSAFE/TECHNICAL_TRACK/S04_SYSTEM_LEVEL_ISSUES/ENVIETA_FAUX.pdf
https://docbox.etsi.org/Workshop/2017/201709_ETSI_IQC_QUANTUMSAFE/TECHNICAL_TRACK/S04_SYSTEM_LEVEL_ISSUES/ENVIETA_FAUX.pdf
https://docbox.etsi.org/Workshop/2017/201709_ETSI_IQC_QUANTUMSAFE/TECHNICAL_TRACK/S04_SYSTEM_LEVEL_ISSUES/ENVIETA_FAUX.pdf
https://eprint.iacr.org/2016/467
https://eprint.iacr.org/2016/467
https://eprint.iacr.org/2017/690
https://eprint.iacr.org/2016/504
http://dx.doi.org/10.1007/978-3-319-48965-0_8
http://dx.doi.org/10.1007/978-3-319-48965-0_8
http://dx.doi.org/10.1007/978-3-642-19074-2_21
http:JamesW.CooleyandJohnW.Tukey.An

32 HILA5: Key Encapsulation Mechanism and Public Key Encryption Algorithm

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. In Henri Gilbert, editor, EUROCRYPT
2010, volume 6110 of LNCS, pages 1–23. Springer, 2010. doi:10.1007/
978-3-642-13190-5_1.

[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-
LWE cryptography. In Thomas Johansson and Phong Q. Nguyen, editors,
EUROCRYPT 2013, volume 7881 of LNCS, pages 35–54. Springer, 2013. Full
version available as IACR ePrint 2013/293. URL: https://eprint.iacr.
org/2013/293, doi:10.1007/978-3-642-38348-9_3.

[MS77] F. Jessie MacWilliams and Neil J.A. Sloane. The theory of error-correcting
codes. North-Holland, 1977.

[NIS16] NIST. Submission requirements and evaluation criteria for the post-
quantum cryptography standardization process. Oÿcial Call for Pro-
posals, National Institute for Standards and Technology, December
2016. URL: http://csrc.nist.gov/groups/ST/post-quantum-crypto/
documents/call-for-proposals-final-dec-2016.pdf.

[NSA16] NSA/CSS. Information assurance directorate: Commercial na-
tional security algorithm suite and quantum computing FAQ,
January 2016. URL: https://www.iad.gov/iad/library/
ia-guidance/ia-solutions-for-classified/algorithm-guidance/
cnsa-suite-and-quantum-computing-faq.cfm.

[Nus80] Henri J. Nussbaumer. Fast polynomial transform algorithms for digital con-
volution. IEEE Transactions on Acoustics, Speech and Signal Processing,
28:205–215, 1980. doi:10.1109/TASSP.1980.1163372.

[Pei09] Chris Peikert. Some recent progress in lattice-based cryptography, March 2009.
Invited Talk given at TCC 2009. URL: http://www.cc.gatech.edu/fac/
cpeikert/pubs/slides-tcc09.pdf, doi:10.1007/978-3-642-00457-5_5.

[Pei14] Chris Peikert. Lattice cryptography for the internet. In Michele Mosca, editor,
PQCrypto 2014, volume 8772 of LNCS, pages 197–219. Springer, 2014. URL:
https://eprint.iacr.org/2014/070, doi:10.1007/978-3-319-11659-4_
12.

[PZ03] John Proos and Christof Zalka. Shor’s discrete logarithm quantum algorithm
for elliptic curves. Quantum Information & Computation, 3(4):317–344, July
2003. Updated version available on arXiv. URL: https://arxiv.org/abs/
quant-ph/9508027.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In STOC ’05, pages 84–93. ACM, May 2005. doi:10.1145/
1060590.1060603.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. Journal of the ACM, 56(6):34:1–34:40, September 2009. doi:
10.1145/1568318.1568324.

[Rog02] Phillip Rogaway. Authenticated-encryption with associated-data. In ACM
CCS 2002, pages 98–107. ACM Press, 2002. URL: http://web.cs.ucdavis.
edu/~rogaway/papers/ad.pdf, doi:10.1145/586110.586125.

http://dx.doi.org/10.1007/978-3-642-13190-5_1
http://dx.doi.org/10.1007/978-3-642-13190-5_1
https://eprint.iacr.org/2013/293
https://eprint.iacr.org/2013/293
http://dx.doi.org/10.1007/978-3-642-38348-9_3
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf
https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm
https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm
https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm
http://dx.doi.org/10.1109/TASSP.1980.1163372
http://www.cc.gatech.edu/fac/cpeikert/pubs/slides-tcc09.pdf
http://www.cc.gatech.edu/fac/cpeikert/pubs/slides-tcc09.pdf
http://dx.doi.org/10.1007/978-3-642-00457-5_5
https://eprint.iacr.org/2014/070
http://dx.doi.org/10.1007/978-3-319-11659-4_12
http://dx.doi.org/10.1007/978-3-319-11659-4_12
https://arxiv.org/abs/quant-ph/9508027
https://arxiv.org/abs/quant-ph/9508027
http://dx.doi.org/10.1145/1060590.1060603
http://dx.doi.org/10.1145/1060590.1060603
http://dx.doi.org/10.1145/1568318.1568324
http://dx.doi.org/10.1145/1568318.1568324
http://web.cs.ucdavis.edu/~rogaway/papers/ad.pdf
http://web.cs.ucdavis.edu/~rogaway/papers/ad.pdf
http://dx.doi.org/10.1145/586110.586125

33 Markku-Juhani O. Saarinen

[Saa17a] Markku-Juhani O. Saarinen. Arithmetic coding and blinding countermeasures
for lattice signatures. Journal of Cryptographic Engineering, 2017. To appear.
URL: http://rdcu.be/oHun, doi:10.1007/s13389-017-0149-6.

[Saa17b] Markku-Juhani O. Saarinen. HILA5: On reliability, reconciliation, and error
correction for Ring-LWE encryption. In Selected Areas in Cryptography – SAC
2017. 24th International Conference, Ottawa, ON, Canada, August 16 - 18,
2017, volume 10640 of LNCS. Springer, August 2017. To Appear. Preprint
available as IACR ePrint 2017/424. URL: https://eprint.iacr.org/2017/
424.

[Saa17c] Markku-Juhani O. Saarinen. Ring-LWE ciphertext compression and error
correction: Tools for lightweight post-quantum cryptography. In Proceedings
of the 3rd ACM International Workshop on IoT Privacy, Trust, and Security,
IoTPTS ’17, pages 15–22. ACM, April 2017. doi:10.1145/3055245.3055254.

[SE94] Claus P. Schnorr and Martin Euchner. Lattice basis reduction: Improved prac-
tical algorithms and solving subset sum problems. Mathematical Programming,
66(1):181–199, August 1994. doi:10.1007/BF01581144.

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and
factoring. In Proc. FOCS ’94, pages 124–134. IEEE, 1994. Updated version
available on arXiv. URL: https://arxiv.org/abs/quant-ph/9508027, doi:
10.1109/SFCS.1994.365700.

[SM16] Douglas Stebila and Michele Mosca. Post-quantum key exchange for the inter-
net and the open quantum safe project. IACR ePrint 2016/1017, 2016. Based
on the Sta˙ord Tavares Invited Lecture at Selected Areas in Cryptography
(SAC) 2016 by D. Stebila. URL: https://eprint.iacr.org/2016/1017.

[SS17] Silvan Streit and Fabrizio De Santis. Post-quantum key exchange on ARMv8-A
– a new hope for NEON made simple. IACR ePrint 2017/388, 2017. URL:
https://eprint.iacr.org/2017/388.

[Unr17] Dominique Unruh. Collapsing sponges: Post-quantum security of the sponge
construction. IACR ePrint 2017/282, 2017. URL: https://eprint.iacr.
org/2017/282.

[vL99] Jacobus H. van Lint. Introduction to Coding Theory, volume 86 of Grad-
uate Texts in Mathematics. Springer, 3rd edition, 1999. doi:10.1007/
978-3-642-58575-3.

http://rdcu.be/oHun
http://dx.doi.org/10.1007/s13389-017-0149-6
https://eprint.iacr.org/2017/424
https://eprint.iacr.org/2017/424
http://dx.doi.org/10.1145/3055245.3055254
http://dx.doi.org/10.1007/BF01581144
https://arxiv.org/abs/quant-ph/9508027
http://dx.doi.org/10.1109/SFCS.1994.365700
http://dx.doi.org/10.1109/SFCS.1994.365700
https://eprint.iacr.org/2016/1017
https://eprint.iacr.org/2017/388
https://eprint.iacr.org/2017/282
https://eprint.iacr.org/2017/282
http://dx.doi.org/10.1007/978-3-642-58575-3
http://dx.doi.org/10.1007/978-3-642-58575-3

	Executive Summary
	Specification
	Rings and Number Theoretic Transforms
	Encoding and Decoding of Ring Polynomials
	Random Samplers
	Error Correction Code
	Key Generation
	Key Encapsulation
	Key Decapsulation

	Performance Analysis
	Software Optimizations
	Software Comparison
	Hardware Implementations

	Known Answer Test Values
	Design and Parameter Selection
	Expected Security Strength
	Hard Problem: Introduction to Ring-LWE
	Noisy Diffie-Hellman in a Ring
	Reconciliation
	Peikert's Reconciliation and BCNS Instantiation
	New Hope Variants

	SafeBits: New Reconciliation Method
	Intuition: Selecting Safe Bits
	Even safer bits via Peikert's reconciliation
	Bob Chooses Key Bits: Ding's Patents

	Analysis of Decryption Failure
	Independence Assumption
	Computing the Error Distribution

	Constant-Time Error Correction
	Efficient Constant-Time Implementation

	Parameter Selection for Reconciliation
	Putting it together: Design Overview of HILA5

	Summary of Resistance to Known Attacks
	Advantages and Limitations
	Features
	Compared to New Hope and other (R)LWE Proposals

	References

