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1 Introduction 

We propose Lizard, a family of post-quantum public-key encryption (PKE) schemes and key 
encapsulation mechanisms (KEMs). 

At the center of our constructions lies the Lizard IND-CPA PKE. This is a scheme whose 
security is based on sparse, small secret versions of learning with errors (LWE) and learning with 
roundings (LWR). Essentially, the public-key is chosen to be a set of LWE samples with signed 
binary secrets, and the encryption uses rounding to achieve security (via LWR) and reduced size 
of the ciphertexts. We use sparse random vectors as ephemeral secrets to speed up multiplications. 
Our construction is based on a result we have proved that (sparse) signed binary secret LWE and 
LWR are at least as hard as the original LWE. 

The IND-CPA PKE scheme is then turned into an IND-CCA2 KEM, via a KEM variant of 
the Fujisaki-Okamoto transformation. Using the usual KEM/DEM hybrid paradigm, this can be 
turned into an IND-CCA2 PKE scheme, for example by using the one-time pad to symmetrically 
encrypt messages with the symmetric key encapsulated by the KEM. 

Also, we propose ring-based versions of the above constructions, called RLizard. Instead of 
based on the variants of LWE and LWR in Lizard, RLizard is based on the corresponding versions 
of ring-LWE and ring-LWR. As with Lizard, we first construct an IND-CPA PKE, and then obtain 
IND-CCA2 KEM and PKE by the same transformation. 
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1.1 Terminology and Notation 

In this subsection, we introduce a list for terminology and notation used throughout this document. 

log the logarithm with base 2 
n the dimension of LWE samples, a positive integer 
m the number of LWE samples, a positive integer, a power of two 
q the large modulus, a positive integer, a power of two 
p the small modulus for rounding, a positive integer, a power of two 
ℓ a positive integer, the number of secret vectors in case of Lizard primitive, i.e. 

the number of plaintext slots in case of Lizard primitive 
ℓ1 a positive integer, the number of secret vectors in case of IND-CCA2 KEM 

schemes 
ℓ2 a positive integer, the number of ephemeral secret vectors in IND-CCA2 KEM 

schemes 
d a positive integer, the number of plaintext slots in case of IND-CCA2 PKE, the 

bit-length of shared secret key in case of IND-CCA2 KEM 
hs the Hamming weight of a secret polynomial s 
hr the Hamming weight of an ephemeral secret vector r or polynomial r 
_16_LOG_Q 16 − log q 
_16_LOG_T 15 
Zq a set {0, 1, ..., q − 1}
Zp a set {0, 1, ..., p − 1}
mod q reduce an integer, a vector, or a matrix modulo q componentwisely 
mod p reduce an integer, a vector, or a matrix modulo p componentwisely 
[0, N ] a set {0, 1, ..., N − 1}
⌊·⌉ rounding function, ⌊x⌉ is the nearest integer to the rational number x, rounding 

upwards in case of a tie 
∥ concatenation operator 
At the transpose of the matrix A 
∥·∥ norm operator, ∥v∥ is 2-norm of the vector v 
⟨·, ·⟩ inner product 
<< a component-wise left shift operation 
>> a component-wise right shift operation 
⊕ a component-wise XOR operation 
x ← D sampling x from the distribution D 
x ← X sampling x from the set X uniform randomly 
λ the security parameter 
negl(·) the negligible function with respect to the contents of negl(·) 
HWT m(h) the uniform distribution over the subset of {−1, 0, 1}m whose elements contain 

m − h number of zeros 
ZOn(ρ) the distribution over {−1, 0, 1}n where each component x satisfies Pr[x = 1] = 

Pr[x = −1] = ρ/2 and Pr[x = 0] = 1 − ρ 
Uq the uniform distribution over Zq 

DGσ the discrete Gaussian distribution with the parameter σ 
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Bm,h the subset of {−1, 0, 1}m of which elements have exactly h number of non-zero 
components, i.e. the set of all possible vectors chosen from HWT m(h) 

Bℓ the subset of {−1, 0, 1}m×ℓ of which each column has exactly h number of non-m,h 
zero components 

R Z[X]/(Xn + 1), a ring of polynomials with integer coefficients modulo Xn + 1 
Rq R/qR, a set of ring elements in R modulo q 
Rp R/pR, a set of ring elements in R modulo p 
R2 R/2R, a set of ring elements in R modulo 2 

2 Security Assumptions and Design Rationale 

In this section, we introduce the security assumptions exploited in our schemes, and then explain 
our design rationale for proposed schemes. 

2.1 Learning with Errors and Learning with Roundings 

Since Regev [40] introduced the LWE problem, a lot of cryptosystems based on this problem 
have been proposed relying on its versatility. For an n-dimensional vector s ∈ Zn and an error 
distribution χ over Z, the LWE distribution ALWE × Zq is obtained by choosing a n,q,χ(s) over Zn

q 
vector a uniformly and randomly from Zn and an error e from χ, and outputting q 

(a, b = ⟨a, s⟩ + e) ∈ Zn × Zq.q 

The search LWE problem is to find s ∈ Zq for given arbitrarily many independent samples (ai, bi) 
from ALWE 

n,q,χ(s). The decision LWE, denoted by LWEn,q,χ(D), aims to distinguish the distribution 
ALWE 

n,q,χ(s) from the uniform distribution over Zn × Zq with non-negligible advantage, for a fixed q 
s ← D. When the number of samples are limited by m, we denote the problem by LWEn,m,q,χ(D). 

In this paper, we only consider the discrete Gaussian χ = DGαq as an error distribution where 
α is the error rate in (0, 1), so α will substitute the distribution χ in description of LWE problem, 
say LWEn,m,q,α(D). The LWE problem is self-reducible, so we usually omit the key distribution D 
when it is a uniform distribution over Zn.q

The hardness of the decision LWE problem is guaranteed by the worst case hardness of the 
standard lattice problems: the decision version of the shortest vector problem (GapSVP), and the 
shortest independent vectors problem (SIVP). After Regev [40] presented the quantum reduction 
from those lattice problems to the LWE problem, Peikert et al. [15, 37] improved the reduction 
to a classical version for significantly worse parameters; the dimension should be of the size of 
ω(n log q). In this case, note that the reduction holds only for the GapSVP, not SIVP. 

After the works on the connection between the LWE problem and some lattice problems, some 
variants of LWE, of which the secret distributions are modified from the uniform distribution, were 
proposed. In [15], Brakerski et al. proved that the LWE problem with binary secret is at least as 
hard as the original LWE problem. Following the approach of [15], Cheon et al. [17] proved the 
hardness of the LWE problem with sparse secret, i.e., the number of non-zero components of the 
secret vector is a constant. 

As results of Theorem 4 in [17], the hardness of the LWE problems with (sparse) small secret, 
LWEn,m,q,β (HWT n(h)) and LWEn,m,q,β (ZOn(ρ)) for 0 < β < 1, are guaranteed by the following 
theorem. 

Theorem 1. (Informal) For positive integers m, n, k, q, h, 0 < α, β < 1 and 0 < ρ < 1, following 
statements hold: 
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√
1. If log(nCh) + h > k log q and β > α 10h, then the LWEn,m,q,β (HWT n(h)) problem is at least 

as hard as the LWEk,m,q,α problem. ( ( ) ) √ 
12. If (1 − ρ) log + ρ log 2 n > k log q and β > α 10n, the LWEn,m,q,β (ZOn(ρ)) problem 1−ρ ρ 

is at least as hard as the LWEk,m,q,α problem. 

In [14, 38, 39], to pack a string of plaintexts in a ciphertext, LWE with single secret was general-
ized to LWE with multiple secrets. An instance of multi-secret LWE is (a, ⟨a, s1⟩+e1, ..., ⟨a, sk⟩+ek) 
where s1, ..., sk are secret vectors and e1, ..., ek are independently chosen error vectors. Using the 
hybrid argument, multi-secret LWE is proved to be at least as hard as LWE with single secret. 

The LWR problem was firstly introduced by Banerjee et al. [10] to improve the efficiency of 
pseudorandom generator based on the LWE problem. Unlikely to the LWE problem, errors in the 
LWR problem are deterministic so that the problem is so-called a “derandomized” version of the 
LWE problem. To hide secret information, the LWR problem uses a rounding by a modulus p 
instead of inserting errors. Then, the deterministic error is created by scaling down from Zq to Zp. 

For an n-dimensional vector s over Zq, the LWR distribution ALWR (s) over Zn × Zp is obtained n,q,p q

by choosing a vector a from Zn uniform randomly, and returning q ( ⌊ ⌉)
a, p · (⟨a, s⟩ mod q) ∈ Zn × Zp.qq 

As in the LWE problem, ALWR (s) denotes the distribution of m samples from ALWR (s); that is n,m,q,p n,q,p

contained in Zm×n × Zm. The search LWR problem are defined respectively as finding secret s justq p

as same as the search version of LWE problem. In contrary, the decision LWRn,m,q,p(D) problem 
aims to distinguish the distribution ALWR (s) from the uniform distribution over Zm×n × Zm 

n,m,q,p q p

with m instances for a fixed s ← D. 
In [10], Banerjee et al. proved that there is an efficient reduction from the LWE problem to the 

LWR problem for a modulus q of super-polynomial size. Later, the follow-up works by Alwen et 
al. [8] and Bogdanov et al. [12] improved the reduction by eliminating the restriction on modulus 
size and adding a condition of the bound of the number of samples. In particular, the reduction 
by Bogdanov et al. works when 2mBp/q is a constant, where B is a bound of errors in the 
LWE problem, m is the number of samples in both problems, and p is the rounding modulus in 
the LWR problem. That is, the rounding modulus p is proportional to 1/m for fixed q and B. 
Since the reduction from LWE to LWR is independent of the secret distribution, the hardness of 
LWRn,m,q,p(HWT n(h)) and LWRn,m,q,p(ZOn(ρ)) is obtained from that of the LWE problems with 
corresponding secret distributions. 

2.2 Ring variants of LWE and LWR 

In [33], Lyubashevsky et al. deal with the LWE problem over rings, namely ring-LWE. For positive 
integers n and q, and an irreducible polynomial g(x) ∈ Z[x] of degree n, we define the ring 
R = Z[x]/(g(x)) and its quotient ring modulo q, Rq = Zq[x]/(g(x)). We denote the polynomial 
multiplication of a and b in R and Rq by a ∗ b. The ring-LWE problem is to distinguish between 
the uniform distribution and the distribution of (a, a ∗ s + e) ∈ R2 where a is uniform randomly q

chosen polynomial, e is chosen from an error distribution, and s is a secret polynomial. 
Due to the efficiency and compactness of ring-LWE, many lattice-based cryptosystems are 

constructed as ring-LWE based, rather than LWE-based. As with the LWE problem, the ring-LWE 
problem over the ring R is at least as hard as the search version of approximate SVP over the ideal 
lattices of R, in the sense of quantum reduction. 
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The ring variant of LWR is introduced in [10, 12] as an analogue of LWR. In the ring-LWR 
problem, the vectors chosen from Zn are substituted by polynomials in Rq, i.e., the ring-LWRq

instance for a secret polynomial s ∈ Rq is ( ⌊ ⌉)
p 

a, · a ∗ s ∈ Rq × Rp
q 

where ⌊(p/q) · a ∗ s⌉ is obtained by applying the rounding function to each coefficient of (p/q) ·a∗s. 
The search and decision ring-LWR problems are defined the same way as the LWR problem, but 
over rings. 

In [10], Banerjee et al. proved that decision ring-LWR is at least as hard as decision ring-LWE 
for sufficiently large modulus. Later, reduction from search ring-LWE to search ring-LWR was 
constructed in overall scope of the modulus [10] when the number of samples is bounded. 

2.3 Design Rationale 

Our first IND-CPA secure PKE scheme simply relies on the hardness assumption of the LWE 
and LWR problems with particular secret distributions. As explained in Section 2, it is shown 
that LWE with small secret is still hard to solve if the min-entropy of the secret distribution is 
sufficiently large. Moreover, the LWR problem is somewhat equivalent to LWE unless we overuse 
the same secrets to generate samples due to the reduction in the recent work [12]. All these aspects 
lead us to design the primitives named after “Lizard”, of which basic goal is to obtain the fastest 
implementation for encryption and decryption among the lattice-based schemes while maintaining 
the weaker assumptions, and make the ciphertext sizes smaller in factor log q/ log p. 

To give an intuition for the basic algorithms, we describe our Lizard in the case of bit encryption 
as follows. In the key generation step, we first sample a secret vector s ∈ {−1, 0, 1}n, a random 
matrix A ∈ Zm×n, and an error vector e ← DGm of which components are expected to be small. q σ 
Then output the secret key sk ← s, and public key pk ← (A, b) where b = As + e ∈ Zm. Hence, q

the public key is an instance of LWE with the secret vector s. In the encryption step, we sample 
a sparse signed binary vector r ← HWT m(hr) with low Hamming weight hr ≈ O(λ), which is an 
ephemeral secret of the algorithm. The re-randomization process after calculating (Atr, btr) is to 
adapt the ordinary rounding procedure from the modulus q to lower modulus p, without adding 
auxiliary noises. The resulting ciphertext for m ∈ {0, 1} is 

c ← (⌊(p/q) · Atr⌉, ⌊(p/2) · m + (p/q) · btr⌉) ∈ Zn+1 ,p 

where ⌊·⌉ denotes the component-wise rounding of entries to the closest integers, rounding upwards 
in case of a tie. If both p < q are power-of-twos, the rounding procedure could be reduced to the 
two simple steps: addition of q/2p and the bitwise shift operation. That is, we “cut off” the least 
significant bits of each component of the vector (rtA, rtb) to return a ciphertext. 

The advantages of Lizard can be analyzed (See Section 3.3 in [18]), but we would like to make 
simple remarks here. Since the recent LWE attack for using the sparse secrets emerges [2], our 
parameter has been loosened than previous. However, since we use the sparse signed binary secrets 
or signed binary secrets, we can obtain the record-breaking encryption and decryption speeds 
which are faster than those of NTRU respectively, despite the weaker assumption for the security. 
Using LWR in the encryption phase is better than using LWE because it does not require noise 
sampling, which results some efficiency, and we have smaller ciphertexts since the factor log q in 
the ciphertext size can be reduced to log p. For the usage that requires smaller public key, we can 
provide our encryption scheme simply replacing the public key with small seed, or turn to the ring 
version of our scheme called RLizard. 
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The RLizard CPA secure PKE scheme provides a trade-off between space-efficiency and security, 
which is of independent interest. In RLizard, a public key is parsed into two structured square 
matrices modulo q which represent polynomials in Rq, respectively. Hence, the public key size is 
reduced from m(n+ℓ) log q to 2n log q compared to Lizard. Let pk = (a, b). The resulting ciphertext 
for m ∈ R2 is 

c ← (⌊(p/q) · a ∗ r⌉, ⌊(p/2) · m + (p/q) · b ∗ r⌉) ∈ R2 ,p

where r is an ephemeral secret in the encryption procedure which is a sparse signed binary poly-
nomial, and ∗ denotes multiplication in Rq. It can be seen that all the operations in encryption 
are just the same with those in Lizard except that multiplications and additions are held in the 
polynomial space Rq. 

2.4 Proposed Schemes 

We first propose IND-CPA secure encryption schemes: Lizard and RLizard. To avoid an abuse of 
notations, we call them “Lizard.CPA” and “RLizard.CPA” through the whole document. We con-
vert Lizard.CPA (resp. RLizard.CPA) into an IND-CCA2 Key Encapsulation Mechanism (KEM) 
Lizard.KEM (resp. RLizard.KEM) using a KEM variant of Fujisaki-Okamoto transformation [24, 
20, 26]. We also suggest Lizard.CCA (resp. RLizard.CCA) using the same transformation, com-
bining it with a One-Time Pad (OTP). 

3 Algorithm Specifications 

3.1 Symmetric primitives 

In our IND-CCA2 schemes, we need to generate (pseudo-)random numbers and hash outputs. 
We use the pseudorandom generator randombytes to generate a random bit string of an arbitrary 
length, which is recommended to use by NIST. We instantiate all the hash functions in this proposal 
with TupleHash256 considering two main factors: the flexibility in input and output lengths, and 
the long-term security which comes close to that of AES256. 

′More precisely, we use three hash functions G, H, and H to achieve the IND-CCA2 security 
′of proposed schemes. The functions G and H are exactly the TupleHash256 with proper input 

and output lengths, while the function H is not: the output of H is generated from the output of 
TupleHash256 to be spread following a particular distribution. We specified the exact algorithm 
to obtain an output of H using TupleHash256 in Section 6. 

3.2 IND-CPA Public Key Encryption Schemes 

In this section and through the whole document, we suggest two kinds of IND-CPA secure PKE 
schemes called Lizard.CPA and RLizard.CPA. The Lizard.CPA and RLizard.CPA PKEs contain 
three algorithms in each: a key generation Lizard.CPA.KeyGen, encryption Lizard.CPA.Enc and a 
decryption Lizard.CPA.Dec in the former one, and a key generation RLizard.CPA.KeyGen, encryption 
RLizard.CPA.Enc and a decryption RLizard.CPA.Dec in the latter one. We assume that certain 
conditions for inputs hold for the specifications of algorithms, e.g. the public and secret keys are 
valid, which means they are correctly in their form of the corresponding key types. 

3.2.1 The Lizard.CPA Encryption Scheme 
For positive integers m, n, ℓ, p, q and hr such that hr < m and 2|p|q, and 0 < ρ, α < 1, let 
params ← (m, n, q, p, ℓ, ρ, hr, α) through all the algorithms here. 
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Lizard.CPA.KeyGen. 

Input: The set of public parameters params. 

Output: A key pair consisting of the private key S ∈ {−1, 0, 1}n×ℓ and the public key 

(A∥B) ∈ Zm×(n+ℓ) 
q . 

Operation: 
1. Generate a random matrix A ← Zm×n.q

2. Set a secret matrix S := (s0∥ · · · ∥sℓ−1) by sampling each si independently from the distri-
bution ZOn(ρ). 

3. For 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ ℓ − 1, sample an integer Eij ← DGαq, and then set 
E = (Eij ) ∈ Zm×ℓ.q 

4. Compute B := −AS + E ∈ Zm×ℓ.q 

5. Output the public key pk := (A∥B) ∈ Zm
q 

×(n+ℓ) and the private key sk := S ∈ {−1, 0, 1}n×ℓ. 

Lizard.CPA.Enc. 

Inputs: The set of public parameters params, the public key pk = (A∥B) ∈ Zm×n × Zm×ℓ,q q 

and the message M ∈ {0, 1}ℓ. 

Output: The ciphertext c = (a, b) ∈ Zn × Zℓ .p p

Operation: 
1. Generate an m dimensional vector r ∈ Bm,hr from the distribution HWT m(hr). 
2. Compute a := ⌊(p/q) · Atr⌉ ∈ Zn and b := ⌊(p/q) · ((q/2) · M + Btr)⌉ ∈ Zℓ .p p

3. Output the ciphertext c := (a, b) ∈ Zn
p × Zℓ .p

Lizard.CPA.Dec. 

Inputs: The set of public parameters params, the secret key sk = S ∈ {−1, 0, 1}n×ℓ and the 
ciphertext c = (a, b) ∈ Zn × Zℓ .p p

Output: The message M ∈ {0, 1}ℓ. 

Operation: 
1. Parse the ciphertext c = (a, b). 
2. Compute M = ⌊(2/p) · (b + Sta)⌉ ∈ Zℓ 

2. 
3. Output the message M. 

3.2.2 The RLizard.CPA Encryption Scheme 
For positive integers n, p, q, hs and hr such that hs, hr < n and 2|p|q, and 0 < α < 1, let 
params ← (n, q, p, hs, hr, α) through all the algorithms here. We denote R = Z[x]/(xn + 1) and∑n−1
Rq = Zq[x]/(x

n + 1). We identify the polynomial a = aix
i ∈ R (resp. Rq) with the vector i=0 

a = (a0, a1, ..., an−1) ∈ Zn (resp. Zn). Therefore, for a polynomial a ∈ R (resp. Rq) and any q

distribution D over Zn (resp. Zn), a ← D means sampling the vector a following the distribution q 
D and then identifying the vector with its corresponding polynomial a. 
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RLizard.CPA.KeyGen. 

Input: The set of public parameters params. 

Output: A key pair containing the private key s ∈ R and the public key (a, b) ∈ R2.q 

Operation: 
1. Generate a random polynomial a ← Rq. 
2. Set a secret polynomial s by sampling it from the distribution HWT n(hs).∑n−13. For 0 ≤ i ≤ n − 1, sample an integer ei ← DGαq, and then set e = eiX

i ∈ Rq .i=0 
4. Compute b := −a ∗ s + e ∈ Rq. 
5. Output the public key pk := (a, b) ∈ R2 and the secret key sk := s ∈ R.q 

RLizard.CPA.Enc. 

Inputs: The set of public parameters params, the public key (a, b) ∈ R2, and the message q

polynomial M ∈ R2. 

Output: The ciphertext c = (c1, c2) ∈ R2.p

Operation: 
1. Generate a polynomial r ∈ Rq by sampling it from the distribution HWT n(hr). 

′ ′2. Set c1 := a ∗ r, and c2 := b ∗ r in Rq. 
′ ′3. Compute c1 := ⌊(p/q) · c1⌉ ∈ Rp and c2 := ⌊(p/q) · ((q/2) · M + c2)⌉ ∈ Rp. 

4. Output the ciphertext c := (c1, c2). 

RLizard.CPA.Dec. 

Inputs: The set of public parameters params, the secret key sk = s ∈ R, and the ciphertext 
c = (c1, c2) ∈ R2.p

Output: The message m ∈ R2. 

Operation: 
1. Parse the ciphertext c = (c1, c2). 
2. Compute M := ⌊(2/p) · (c2 + c1 ∗ s)⌉ ∈ R2. 
4. Output the message m. 

3.3 IND-CCA2 Key Encapsulation Mechanisms 

In this section, we suggest two kinds of IND-CCA2 KEM, Lizard.KEM and RLizard.KEM, which 
are derived by CCA KEM conversions [26] of Lizard.CPA and RLizard.CPA, respectively. 

3.3.1 Overview 

Recently, Hofheinz et al. [26] suggested a modular toolkit of FO transformations [24, 20, 43], 
which turns an arbitrary weakly (i.e., IND-CPA) secure PKE into a strongly (i.e., IND-CCA2) 
secure key encapsulation in the (quantum) random oracle model. The transformation has certain 
merits since it is robust against schemes with nonzero decryption failure probability while the 
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others are not. We utilize their conversion technique in quantum random oracle model for our 
CPA-secure Lizard and RLizard to achieve the IND-CCA2 KEMs. 

Basically, the symmetric primitives required in the IND-CCA2 secure Lizard/RLizard KEMs 
are the same as in the IND-CCA2 secure Lizard PKE. That is, we use three hash functions G, 

′ H, H ′, where G and H output a d-bit string where d denotes the bit-length of messages of the 
CCA schemes and H outputs m-bit string(s) with hamming weight hr, and the OTP here. The 
one thing changed in Lizard.CPA to obtain Lizard.KEM is that we transform the message vector 
of the length ℓ to the matrix of the size ℓ1 × ℓ2 for some ℓ1 and ℓ2 such that ℓ1 · ℓ2 = ℓ, and use the 
parameters (ℓ1, ℓ2) instead of ℓ. Our Lizard.CPA can be re-written in the matrix form as follows: 

– The key pair are generated normally as 

pk ← (A∥B) ∈ Zm×(n+ℓ1), sk ← S ∈ {−1, 0, 1}n×ℓ1 
q 

– For a message M ∈ {0, 1}ℓ1×ℓ2 , we first generate an ephemeral secret as a matrix 

R ← HWT m(hr)
ℓ2 ∈ {−1, 0, 1}m×ℓ2 , and calculate 

C ← (⌊(p/q) · AtR⌉, ⌊(p/2) · M + (p/q) · BtR⌉) ∈ Zn×ℓ2 × Zℓ1×ℓ2 ,p p 

where ⌊·⌉ denotes componentwise rounding for whole matrix. 

We use this form for Lizard.CPA to make the public key size and the ciphertext size somewhat 
balanced. Actually, the public key size is reduced by a factor ℓ2, and the ciphertext size grows from 
(n+ℓ) log p to (n ·ℓ2 +ℓ) log p in this matrix form of Lizard.CPA. On the other hand, RLizard.KEM 
is obtained by applying the conversion technique directly to RLizard.CPA. 

3.3.2 The Lizard.KEM Scheme 
For positive integers m, n, ℓ1, ℓ2, ℓ, d, p, q and hr such that hr < m, ℓ = ℓ1 ·ℓ2, and 2|p|q, 0 < ρ, α < 

→ Bℓ2 ′ 1, and the hash functions G : {0, 1}∗ → {0, 1}d, H : {0, 1}∗ and H : {0, 1}∗ → {0, 1}ℓ,m,hr

let params ← (m, n, q, p, ℓ1, ℓ2, ℓ, d, ρ, hr, α, G, H, H ′ ) through all the algorithms here. 

Lizard.KEM.KeyGen. 

Input: The set of parameters params. 

Output: A key pair containing the private key (S, T ) ∈ {−1, 0, 1}n×ℓ1 × {0, 1}ℓ1×ℓ2 and the 
public key (A∥B) ∈ Zm

q 
×(n+ℓ1). 

Operation: 
1. Generate a random matrix A ← Zm×n.q

2. Set a secret matrix S := (s0∥ · · · ∥sℓ1−1) by sampling each si independently from the 
distribution ZOn(1/2). 

3. Generate a random matrix T ← {0, 1}ℓ1×ℓ2 . 
4. For 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ ℓ1 − 1, sample an integer Eij ← DGαq, and then set 

E = (Eij ) ∈ Zm×ℓ1 .q 

5. Compute B := −AS + E ∈ Zm×ℓ1 .q 

(A∥B) ∈ Zm×(n+ℓ1)6. Output the public key pk := q and the secret key sk := (S, T ) ∈ 
{−1, 0, 1}n×ℓ1 × {0, 1}ℓ1×ℓ2 . 
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Lizard.KEM.Encaps. 

Inputs: The set of public parameters params, public key pk = (A∥B) ∈ Zm×n × Zm×ℓ1 .q q 

× Zℓ1×ℓ2Output: The ciphertext C = (C1, C2, d) ∈ Zn×ℓ2 × {0, 1}ℓ and the shared key p p 

K ∈ {0, 1}d. 

Operation: 
1. Generate a random matrix M ∈ {0, 1}ℓ1×ℓ2 . 
2. Compute the matrix R := H(M) and the vector d := H ′ (M). 
3. Compute C1 := ⌊(p/q) · AtR⌉ ∈ Zn×ℓ2 and C2 := ⌊(p/q) · ((q/2) · M + BtR)⌉ ∈ Zℓ1×ℓ2 .p p

4. Compute K := G(C1, C2, d,M), and output the pair (C = (C1, C2, d), K). 

Lizard.KEM.Decaps. 

Inputs: The set of public parameters params, the public key pk = (A∥B) ∈ Zm×n × Zm×ℓ1 ,q q 

the secret key sk = (S, T ) ∈ {−1, 0, 1}n×ℓ1 × {0, 1}ℓ1×ℓ2 , and the ciphertext C = (C1, C2, d) ∈ 
Zn×ℓ2 × Zℓ1×ℓ2 × {0, 1}ℓ.p p 

Output: The shared key K ∈ {0, 1}d. 

Operation: 
1. Parse the ciphertext C := (C1, C2, d). 

′2. Compute M := ⌊(2/p) · (C2 + StC1)⌉ ∈ Zℓ1×ℓ2 .2 
3. Compute R ′ := H(M ′ ) and d′ := H ′ (M ′ ). 

′ ′ ′4. Compute C1 := ⌊(p/q) · AtR ′ ⌉ ∈ Zn×ℓ2 and C2 := ⌊(p/q) · ((q/2) · M + BtR ′ )⌉ ∈ Zℓ1×ℓ2 ,p p 
′ ′ ′and set C := (C1, C 2, d′ ). 

5. If C ̸ ′, then output K := G(C1, C2, d, T ).= C 
6. Else, output the shared key K := G(C1, C2, d,M ′ ). 

3.3.3 The RLizard.KEM Scheme 
For positive integers n, d, p, q, hr, and hs such that hr, hs < n and 2|p|q, 0 < α < 1, and the 

′hash functions G : Rp × Rp × {0, 1}d × R2 → {0, 1}d, H : R2 → Bn,hr and H : R2 → {0, 1}n, let 
params ← (n, q, p, d, hs, hr, α, G, H, H ′ ) through all the algorithms here. 

RLizard.KEM.KeyGen. 

Input: The set of public parameters params. 

Output: A key pair containing the private key (s, t) ∈ R × R2 and the public key (a, b) ∈ R2.q 

Operation: 
1. Generate a random polynomial a ← Rq. 
2. Set a secret polynomial s ← HWT n(hs). 
3. Generate a random vector t ← {0, 1}n and identify it with the polynomial t ∈ R2.∑n−14. For 0 ≤ i ≤ n − 1, sample an integer ei ← DGαq, and then set e = eiX

i ∈ Rq .i=0 
5. Compute b := −a ∗ s + e ∈ Rq. 
6. Output the public key pk := (a, b) ∈ R2 and the secret key sk := (s, t) ∈ R × R2.q 
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RLizard.KEM.Encaps. 

Inputs: The set of public parameters params, the public key pk := (a, b) ∈ R2.q 

Output: The ciphertext c := (c1, c2, d) ∈ Rp × Rp × {0, 1}n and the shared key K ∈ {0, 1}d. 

Operation: 
1. Generate a polynomial δ ← R2. 
2. Compute r := H(δ) and d := H ′ (δ). 
3. Compute c1 := ⌊(p/q) · a ∗ r⌉ ∈ Rp and c2 := ⌊(p/q) · ((q/2) · δ + b ∗ r)⌉ ∈ Rp. 
4. Compute K := G(c1, c2, d, δ). 
5. output (c1, c2, d, K). 

RLizard.KEM.Decaps. 

Inputs: The set of public parameters params, the public key pk := (a, b) ∈ R2, the secret key q 
(s, t) ∈ R × R, and the ciphertext c := (c1, c2, d) ∈ Rp × Rp × {0, 1}n. 

Output: The shared key K ∈ {0, 1}d. 

Operation: 
1. Parse the ciphertext c := (c1, c2, d). 
2. Compute δ ′ := ⌊(2/p) · (c2 + s ∗ c1)⌉ ∈ R2. 

′3. Compute r := H(δ ′ ) and d′ := H ′ (δ ′ ). 
′4. Compute a := ⌊(p/q) · a ∗ r ′ ⌉ ∈ Rp and b ′ := ⌊(p/q) · ((q/2) · δ ′ + b ∗ r ′ )⌉ ∈ Rp, and set 

c ′ := (a ′ , b ′ , d′ ). 
5. If c ̸= c ′, then output K = G(c1, c2, d, t). 
6. Else, output the shared key K = G(c1, c2, d, δ ′ ). 

3.4 IND-CCA2 Public Key Encryption Schemes 

In this section, we suggest two kinds of IND-CCA2 public key encryption schemes. We apply a 
simple conversion for our KEMs to obtain these IND-CCA2 PKEs. The conversion modifies the 
encapsulation algorithm simply by appending OTP encryption of a message in Zd to the key 2 
value of the KEM. Our IND-CCA2 PKE Lizard and RLizard are specified as Lizard.CCA and 
RLizard.CCA, respectively. 

3.4.1 The Lizard.CCA Scheme 
For positive integers m, n, ℓ, d, p, q and hr such that hr < m and 2|p|q, 0 < ρ, α < 1, and 

′the hash functions G : {0, 1}∗ → {0, 1}d, H : {0, 1}∗ → Bm,hr and H : {0, 1}∗ → {0, 1}ℓ, let 
params ← (m, n, q, p, ℓ, d, ρ, hr, α, G, H, H ′ ) through all the algorithms here. 

Lizard.CCA.KeyGen. 

Input: The set of public parameters params. 

Output: A key pair containing the private key S ∈ {−1, 0, 1}n×ℓ and the public key (A∥B) ∈ 
Zm×(n+ℓ).q 

Operation: 
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1. Generate a random matrix A ← Zm×n.q 

2. Set a secret matrix S := (s0∥ · · · ∥sℓ−1) by sampling each si independently from the distri-
bution ZOn(ρ). 

3. For 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ ℓ − 1, sample an integer Eij ← DGαq, and then set 
E = (Eij ) ∈ Zm×ℓ.q 

4. Compute B := −AS + E ∈ Zm×ℓ.q 

5. Output the public key pk := (A∥B) ∈ Zm
q 

×(n+ℓ) and the private key sk := S ∈ {−1, 0, 1}n×ℓ. 

Lizard.CCA.Enc. 

Input: The set of public parameters params, the public key pk = (A∥B) ∈ Zm×n × Zm×ℓ, and q q 

the message M ∈ {0, 1}d. 

Output: The ciphertext c = (c1, (a, b), c3) ∈ {0, 1}d × Zn+ℓ × {0, 1}ℓ.p 

Operation: 
1. Generate a random vector δ ← {0, 1}ℓ. 
2. Set c1 := M ⊕ G(δ) ∈ Zd and c3 := H ′ (δ).2 

3. Set r := H(δ) ∈ {−1, 0, 1}m. 
4. Compute a := ⌊(p/q) · Atr⌉ ∈ Zn and b := ⌊(p/q) · ((q/2) · δ + Btr⌉) ∈ Zℓ .p p

5. Output c = (c1, (a, b), c3). 

Lizard.CCA.Dec. 

Input: The set of public parameters params, the public key pk = (A∥B) ∈ Zm×n × Zm×ℓ, the q q 

secret key sk = S ∈ {−1, 0, 1}n×ℓ and the ciphertext c = (c1, (a, b), c3) ∈ {0, 1}d × Zn+ℓ ×p 

{0, 1}ℓ. 

Output: The message M ∈ {0, 1}d. 

Operation: 
1. Parse the ciphertext c := (c1, (a, b), c3). 
2. Compute δ := ⌊(2/p) · (b + Sta)⌉ ∈ Zℓ 

2. 
3. Compute the hash values G(δ) and H ′ (δ). 
4. If c3 ̸ ′ (δ), then abort. = H 
5. Else, compute r := H(δ), and vectors ⌊(p/q) · Atr⌉ ∈ Zn and ⌊(p/q) · ((q/2) · δ + Btr)⌉ ∈ p 

Zℓ
p. 

6. If (a, b) ̸= (⌊(p/q) · Atr⌉ , ⌊(p/q) · ((q/2) · δ + Btr⌉)), then abort. 
7. Else, compute and output the message M := c1 ⊕ G(δ). 

3.4.2 The RLizard.CCA Scheme 
For positive integers n, p, q, d, hs and hr such that hs, hr < n, and 2|p|q, and 0 < α < 1, and 

′the hash functions G : R∗ → {0, 1}d, H : R∗ and H : R2 → {0, 1}n, let params ←2 2 → Bn,hr 

(n, q, p, d, hs, hr, α, G, H, H ′ ) through all the algorithms here. 
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RLizard.CCA.KeyGen. 

Input: The set of public parameters params. 

Output: A key pair containing the private key s ∈ R and the public key (a, b) ∈ R2.q 

Operation: 
1. Generate a random polynomial a ← Rq. 
2. Set a secret polynomial s by sampling it from the distribution HWT n(hs).∑n−13. For 0 ≤ i ≤ n − 1, sample an integer ei ← DGαq, and then set e = eiX

i ∈ Rq .i=0 
4. Compute b := −a ∗ s + e ∈ Rq where the operations are polynomial operations in Rq. 
5. Output the public key pk := (a, b) ∈ R2 and the secret key sk := s ∈ R.q 

RLizard.CCA.Enc. 

Input: The set of public parameters params, the public key pk = (a, b) ∈ R2, and the message q 

m ∈ {0, 1}d. 

Output: The ciphertext c = (c1, c2, c3) ∈ {0, 1}d × R2 × {0, 1}n.p 

Operation: 
1. Generate a random polynomial δ ← R2. 
2. Set c1 := m ⊕ G(δ) ∈ {0, 1}d and c3 := H ′ (δ). 
3. Compute r := H(δ) ∈ Bn,hr . 
4. Compute c2 := (⌊(p/q) · a ∗ r⌉ , ⌊(p/q) · ((q/2) · δ + b ∗ r)⌉) ∈ R2.p
5. Output the ciphertext c = (c1, c2, c3). 

RLizard.CCA.Dec. 

Input: The set of public parameters params, the public key pk = (a, b) ∈ R2, the secret key q 

sk = s ∈ R and the ciphertext c = (c1, c2, c3) ∈ {0, 1}d × R2 × {0, 1}n.p 

Output: The message m ∈ {0, 1}d. 

Operation: 
1. Parse the ciphertext c := (c1, c2, c3). 
2. Compute δ ← Lizard.CPA.Dec(sk, c2). 
3. Compute the hash values G(δ) and H ′ (δ). 
4. If c3 ̸ ′ (δ), then abort. = H 
5. Else, compute r := H(δ), and polynomials ⌊(p/q) · a ∗ r⌉ ∈ Rp and ⌊(p/q) · ((q/2) · δ + b ∗ r)⌉ ∈ 

Rp. 
6. If c2 ̸= (⌊(p/q) · a ∗ r⌉ , ⌊(p/q) · ((q/2) · δ + b ∗ r)⌉), then abort. 
7. Else, compute and output the message m := c1 ⊕ G(δ). 

3.5 Correctness Analyses 

The following lemma shows certain condition to make decryption failure probability negligible in 
λ. 
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Lemma 1 (Correctness for Lizard.CPA and RLizard.CPA). The Lizard.CPA scheme works 
correctly (except for the negligible probability) as long as the following inequality holds for the 
security parameter λ: [ ]

q qPr |⟨e, r⟩ + ⟨s, f⟩| ≥ − < 2−λ ,
4 2p 

where each component ei of the error vector e is independently sampled from DGσ, r ← HWT m(hr), 
s ← ZOn(ρ), and f ← Zn

q/p . 
Similarly, the RLizard.CPA scheme works correctly if [ ]

q q
Pr |e ∗ r + s ∗ f | ≥ − < 2−λ ,

4 2p 

n−1 ′where each coefficient of e = 
∑

eiX
i is sampled from DGσ, r ← HWT m(hr), s ← HWT n(hs),i=0 

and f ← Rq/p. 

Proof. Let r be an m-dimensional vector sampled from HWT m(hr) in our encryption procedure. 
The output ciphertext is c ← (c1 = ⌊(p/q) · (Atr)⌉ , c2 = ⌊(p/q) · ((q/2) · m + Btr)⌉). 

Let f1 ← c ′ (mod q/p) ∈ Zn and f2 ← c ′ (mod q/p) ∈ Zℓ be the vectors satisfying 1 q/p 2 q/p 

(q/p) · c1 = c1 
′ − f1 and (q/p) · (c2 − (p/2) · m) = c ′ 2 − f2. Note that f1 = Atr (mod q/p) is uniformly 

and randomly distributed over Zn independently from the choice of r, e, and s. Then for any q/p 

1 ≤ i ≤ ℓ, the i-th component of c2 − Stc1 ∈ Zℓ isq 

(c2 − Stc1)[i] = (p/t) · mi + (p/q) · (c ′ 2 − Stc ′ 1)[i] − (p/q) · (f2[i] − ⟨si, f1⟩) 
= (p/t) · mi + (p/q) · (⟨ei, r⟩ + ⟨si, f1⟩) − (p/q) · f2[i] 
= (p/t) · mi + ⌊(p/q) · (⟨ei, r⟩ + ⟨si, f1⟩)⌉ 

since f2 = (AS + E)tr = Stf1 + Etr (mod q/p). Therefore, the correctness of our scheme is 
guaranteed if the encryption error is bounded by p/4, or equivalently, |⟨ei, r⟩+⟨si, f1⟩| < q/4−q/2p 
with an overwhelming probability. 

Same proof holds for the RLizard.CPA scheme. ⊓⊔ 

Decryption failure probabilities of Lizard.CCA (resp. RLizard.CCA) and Lizard.KEM (resp. 
RLizard.KEM) are equal to that of Lizard.CPA (resp. RLizard.CPA) : 

Lemma 2 ([26]). If Lizard.CPA is correct with the probability 1 − ϵ, then Lizard.CCA and 
Lizard.KEM are correct except with the probability 1 − ϵ in the (quantum) random oracle model. 

Samely, if RLizard.CPA is correct with the probability 1−ϵ, then RLizard.CCA and RLizard.KEM 
is correct except with the probability 1 − ϵ in the (quantum) random oracle model. 

4 Security Analysis and Recommended parameters 

4.1 Security Proofs 

4.1.1 IND-CPA Security 
We first argue that Lizard.CPA is IND-CPA secure under the hardness assumptions of the LWE 
problem and the LWR problem. The following theorem gives an explicit proof of our argument on 
security. 

Theorem 2 (Security). The PKE scheme Lizard is IND-CPA secure under the hardness as-
sumption of LWEn,m,q,α(ZOn(ρ)) and LWRm,n+ℓ,q,p(HWT m(hr)). 
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M) ∈ Zn × ZℓProof. An encryption of M can be generated by adding (0, (p/2) · q p to an en-
cryption of zero, since 2|p|q. Hence, it is enough to show that the pair of public information 
pk = (A∥B) ← Lizard.CPA.KeyGen(params) and encryption of zero c ← Lizard.CPA.Encpk(0) 
is computationally indistinguishable from the uniform distribution over Zm

q 
×(n+ℓ) × Zn+ℓ for a q 

parameter set params ← Lizard.CPA.Setup(1λ). 

• D0 = {(pk, c) : pk ← Lizard.CPA.KeyGen(params), c ← Lizard.CPA.Encpk(0)}. 
• D1 = {(pk, c) : pk ← Zm

q 
×(n+ℓ) 

, c ← Lizard.CPA.Encpk(0)}. 
• D2 = {(pk, c) : pk ← Zm

q 
×(n+ℓ) 

, c ← Zn+ℓ}.p 

The public key pk = (A∥B) ← Lizard.CPA.KeyGen(params) is generated by sampling m in-
stances of LWE problem with ℓ independent secret vectors s1, . . . , sℓ ← ZOn(ρ). In addition, the 
multi-secret LWE problem is no easier than ordinary LWE problem as noted in Section 2.1. Hence, 
distributions D0 and D1 are computationally indistinguishable under the LWEn,m,q,α(ZOn(ρ)) 
assumption. 

Now assume that pk is uniform random over Zm
q 

×(n+ℓ). Then pk and c ← Lizard.CPA.Encpk(0) 
together form (n + ℓ) instances of the m dimensional LWR problem with secret r ← HWT m(hr). 
Therefore, distributions D1 and D2 are computationally indistinguishable under the hardness as-
sumption of LWRm,n+ℓ,q,p(HWT m(hr)). 

As a result, distributions D0 and D2 are computationally indistinguishable under the hardness 
assumption of LWEn,m,q,α(ZOn(ρ)) and LWRm,n+ℓ,q,p(HWT m(hr)), which denotes the IND-CPA 
security of the PKE scheme. ⊓⊔ 

As mentioned on Section 2.1, we know that LWEn,m,q,α(ZOn(ρ)) and LWRm,n+ℓ,q,p(HWT m(hr)) 
both have reductions from the original LWE problem, which is already proven to be hard. There-
fore, Lizard.CPA has a strong security ground. In case of RLizard.CPA, by the similarity of the 
construction, we can prove that RLizard.CPA is IND-CPA under the hardness assumption of the 
ring-LWE problem and ring-LWR problem with our secret distributions. As far as we know, there 
is no known reduction from worst case hard problems to ring-LWE problem and ring-LWR problem 
because we use the sparse small secrets. 

4.1.2 IND-CCA2 Security 
Since we obtained the proof for INC-CPA security of Lizard.CPA and RLizard.CPA, we can 
prove the IND-CCA2 security of Lizard.KEM and RLizard.KEM. We argue that Lizard.KEM 
and RLizard.KEM achieve tight IND-CCA2 security in the random oracle model, and non-tight 
IND-CCA2 security in the quantum random oracle model. For IND-CCA2 security in ROM, the 

′hash function H and the hash value d are not necessary. 

Theorem 3. ([26], Theorem 3.2 and 3.3) For any IND-CCA2 adversary B on Lizard.KEM issuing 
at most qD queries to the decryption oracle, qG queries to the random oracle G, and qH queries to 
the random oracle H, there exists an IND-CPA adversary A on Lizard.CPA such that 

AdvCCA 
Lizard.KEM(B) 

qH 2qG + 1 ≤ qG · ϵ + + 3 · AdvCPA 

2ω(log λ) 
+ 

tℓ Lizard.CPA(A) 

where λ is a security parameter and ϵ is a decryption failure probability of Lizard.CPA and 
Lizard.KEM. 
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Theorem 4. ([26], Theorem 4.4 and 4.5) For any IND-CCA2 quantum adversary B on Lizard.KEM 
issuing at most qD (classical) queries to the decryption oracle, qG queries to the quantum random 
oracle G, qH queries to the quantum random oracle H, and qH queries to the quantum random ′ 

oracle H′, there exists an IND-CPA quantum adversary A on Lizard.CPA such that 

AdvCCA 
Lizard.KEM(B) ≤ √ √ 

(qH + 2qH ′ ) 8ϵ(qG + 1)2 + (1 + 2qG) AdvCPA 
Lizard.CPA(A) 

where ϵ is a decryption failure probability of Lizard.CPA and Lizard.KEM. 

Since Theorem 3 and 4 are using Lizard.CPA as an IND-CPA secure block to prove the IND-CCA2 
security of Lizard.KEM, we can easily convert them into the theorems using RLizard.CPA to prove 
RLizard.KEM is IND-CCA2 secure. 
From the similarity of Lizard.KEM and RLizard.KEM, since Lizard.CCA and RLizard.CCA are 
simply appending OTP encryption of a message in Zd to the key value of the KEM, we can apply 2 
Theorem 3 and Theorem 4 with slight modification. Therefore, Lizard.CCA and RLizard.CCA are 
also IND-CCA2 secure. 

4.2 Parameter Selection 

In this section, we analyze the parameter conditions to provide conservative security against known 
attacks. To do that, we survey all known typical attacks against LWE such as exhaustive search, 
distinguishing attack, embedding attack, BKW attack [3, 4, 21, 28], etc. Since the LWE problems 
used in our scheme publish a limited number of samples, it suffices to consider the attacks using 
lattice basis reduction algorithm. We plugged the BKZ lattice basis reduction algorithm [16, 42] 
in the attacks, which outputs sufficiently short basis of a lattice according to the time complexity. 
The most powerful strategies for this kind of attacks in our setting are categorized as follows. 

– One can reduce the LWE problem to the Short Integer Solution (SIS) problem. The distin-
guishing attack analyzed in [34, 41] follows this strategy, which is extended to the dual attack. 

– Regarding LWE as the Bounded-Distance Decoding (BDD) problem, one can reduce it to 
unique-SVP (uSVP). The embedding attack analyzed in [5, 32] follows this strategy, which is 
extended to the primal attack. 

– There are various techniques to adapt the above two strategies for the small secret variants of 
LWE, e.g. the modulus switching [22], the Bai and Galbraith’s rescaling technique for the em-
bedding attack [9], and the BKW style combinatorial approach to the dual attack on LWE [2]. 

Assembling all methods, we concluded that the dual attack with combinatorial apprach [2] and 
the primal attack revisited in [1] are the best attacks against the LWE instances in our setting. 

We recall the strategies for the attacks against decisional LWE in the following subsections. We 
also observe that there is no difference between LWE and LWR in the attack contexts. Actually, 
an instance of the LWR problem can be simply translated into an LWE instance. We would adjust 
the best attacks against LWE to LWR. 

Remark 1. We mainly focus on attacks for LWE and LWR rather than ring-LWE and ring-LWR 
because we believe that the best attacks against RLizard.KEM and RLizard.CCA are the same 
attacks on standard lattices where the polynomials are seen as matrices. Hence, we additionally 
considered attacks against LWEn,m,q,α(HWT n(hs)) for analysis of ring based schemes. 
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4.2.1 Known Attacks on LWE and LWR 
In this subsection, we analyze the conditions to make the LWE problem secure against the best 
attacks, and adjust them to the LWR problem. We achieve the required short vector by running 
the BKZ algorithm for the target lattice: if Λ is a target lattice of dimension n, then the norms of 
the shortest vectors in the output of the BKZ algorithm is approximately 

∥b1∥ = δn · det(Λ)1/n , 

where δ converges to a constant rapidly as n grows. This δ, called root Hermite factor, is used 
to measure the security of lattice problems. In other words, the runtime of the BKZ algorithm to 
achieve a given root Hermite factor in large dimension (> 200) is determined heuristically by δ. In 
analysis of each attack, for calculating the attack complexity, it suffices to find a condition for δ 
which makes the attack successful. 

We first describe and analyze the primal and dual attacks for the short secret variants of 
LWE, then transform the LWR instances into the LWE instances to apply the same attacks. These 
analyses show the relation between parameters and root Hermite factor δ. 

Dual Attack. We are given (A, b) ∈ Zm
q 

×(n+1) either from LWEn,m,q,α(Ds), where the standard 

deviation of Ds is σs (Ds is either HWT n(hs) or ZOn(ρ)), or from Uqm×(n+1). In the original dual 
attack, an attacker constructs a lattice 

Λ = {(x, y) ∈ Zm × Zn : xT A = yT (mod q)} 

that is the orthogonal lattice of the matrix (−A∥In) modulo q. One can find a short vector 
v = (x, y) in Λ using BKZ and then check if ⟨x, b⟩ (mod q) is small or not. If (A, b) is an 
LWEn,m,q,α(Ds) instance with secret s and ⟨x, b⟩ is less than q in Z, then ⟨x, b⟩ = ⟨y, s⟩ + ⟨x, e⟩ 
behaves as a Gaussian, otherwise it is distributed uniformly. Hence, if the attacker can find and 
collect short vectors v = (x, y) in Λ such that ⟨x, b⟩ < q, then the attacker would solve the 
distinguish problem. 

Since the secret s is a (sparse) signed binary vector, the term ⟨y, s⟩ is somewhat smaller than 
⟨x, e⟩. From this point, a tweaked strategy for this attack when the variances of the components 
in the secret vector s are significantly smaller than those of the error vector e arises as follows: We 
consider a weighted lattice 

−1Λ ′ = {(x, y ′ ) ∈ Zm × (w · Z)n : (x, w · y) ∈ Λ} 

for some positive number w > 0. The optimal choice of w is 

(αq) 
w = √ 

2πσs 

2for reconciliation of variances w · σ2 and (αq)2/(2π) of w · si and ej , respectively. √ s 
nLet q̂ = q/w = 2πσs · α−1. The lattice Λ ′ has the dimension (m + n) and the volume q̂ . 

Hence, the BKZ algorithm outputs a short vector v = (x, y ′ ) of size ∥v∥ ≈ δm+n · (q̂) 
n which √ 

m+n √ 
n log ˆcan be reduced down to 22 q·log δ when m+n = n log q̂/ log δ. Then ⟨x, b⟩ = ⟨y, w ·s⟩+⟨x, e⟩ 

is distributed as a Gaussian centered around zero and of standard deviation σ = ∥v∥ · (αq/ 
√ 
2π) 

by central limit theorem (CLT). If 
√ 
2πσ < q, then ⟨x, b⟩ can be distinguished from the uniform 

1distribution modulo q with advantage about [6]. Therefore, the LWEn,m,q,α(Ds) problem is 23
secure only if 

n log q̂ 1 

log2 α 
≥ 

4 log δ
, 

where q̂ = 
√ 
2πσs · α−1. 
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√
Example 1. In case that s is drawn from the distribution HWT n(hs), q̂ = 2πhs/n · α−1. If s 
is from the distribution ZOn(ρ), then q̂ = 

√ 
2πρ · α−1. Albrecht’ s combinatorial attack [2] for 

the small or sparse secret can be also applied in these cases so that we propose our parameters 
according to our attack combined with the combinatorial strategy. 

Primal Attack. The key idea of the primal attack is the reduction from LWE to unique-SVP 
over a special lattice generated by a LWE instance. If the gap between λ1 and λ2 of this lattice is 
large enough, an attacker may find the shortest vector using the BKZ algorithm. 

For a given LWEn,m,q,α(HWT n(hs q)) instance (A, b = As+e) ∈ Zm×(n+1), construct the lattice 

Λ = {v ∈ Zn+m+1 : (A∥Im∥ − b) v = 0 (mod q)} 

with the unique shortest vector (s, e, 1). As with the case of dual attack, we consider the weighted 
lattice 

Λ ′ = {(x, y ′ , z) ∈ Zn × (w −1Z)m × Z : (x, w · y, z) ∈ Λ}. 
√ −1for the constant w √= (αq)/ 2πσs, which contains the unique shortest vector (s, w · e, 1). 

Let q̂ = q/w = 2πσs · α−1. Since the lattice Λ ′ has the dimension n + m + 1 and the volume √ 
m+n+1 m+n+1q̂m, we get λ2(Λ ′ ) ≈ q̂

m by the Gaussian heuristic. The attacker succeeds to find 2πe 

the unique-SVP solution (s, w−1e, 1) if √ 
m+n q̂

m 

α−1λ2(Λ ′ ) 2πe 
m+n 

· δm+n≈ √ = √ ≥ τn 
λ1(Λ ′ ) m + n · αq̂ 2πe · q̂m+n √ 

n log q̂for a constant 0 < τ < 1. To minimize the complexity, an attacker may choose m + n = log δ√ 
n n log ˆwhich yields q̂m+n ·δm+n = 22 q·log δ. Therefore, the LWEn,m,q,α(Ds) problem is secure against 

the primal attack only if 
n log q̂ 1 

log2 α̂
≥ 

4 log δ
, 

where α̂ = ( 
√ 
2πe · τ )α and q̂ = 

√ 
2πσs · α−1. 

The constant τ is a constant that can be experimentally determined. For example, Gama and 
Nguyen [25] and Albrecht et al. [5] estimated τ within the range [0.18, 0.48] for some special 
lattices. Addressing the recent analysis in [1] for the primal attack, we concluded that the dual 
attack with BKW style combinatorial strategy is the best attack in our setting. 

Dual and Primal attacks on LWR. Now we return to the LWR problem. Given an LWR 
instance (A, b = ⌊(p/q) · Ar⌉) ∈ Zm×n × Zm,q p ⌊ ⌉ 

q q p · b = · · Ar = Ar + t, 
p p q 

where t ∈ (−q/2p, q/2p]m. The rounding error t heuristically follows an uniform random distribu-
tion on (−q/2p, q/2p]m. Therefore, in the view of attacker, the transformed instance (A, (q/p) · b) 
can be regarded as an LWE instance, and we apply the attacks on LWE to (A, (q/p) · b). 

Since the variance of uniform random variable on (−q/2p, q/2p] is (q2/12p2), the parameter con-
−1ditions to make LWR secure against the attacks can be obtained by substituting α with p

√ 
π/6. 

The following inequalities are the conditions for LWRm,n+ℓ,q,p(HWT m(hr)) to be secure against 
the primal and dual attacks, respectively. 
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– Dual attack: 
m log q̂ 1 ≥
log2 p̂ 4 log δ √ √

for p̂ = 6/π · p and q̂ = p 12hr/m. 
– Primal attack: 

m log q̂ 1 

log2 p̂
≥ 

4 log δ √ √
for q̂ = p 12(hr/m) and p̂ = ( 3/π2e · τ−1)p. 

We concluded that the dual attack in [1] adjusted to our strategy is the best attack for LWR 
with sparse signed binary secret. 

4.2.2 The BKZ Complexity 
In this subsection, we explain how to set the root Hermite factor δ such that the attack complexities 
for given δ exceed 2λ, where λ is the security parameter. We follow the strategies to measure the 
BKZ complexity in NewHope [7] and Frodo [13]. We review the relations among the root Hermite 
factor δ, the block size b, and the time complexity T for the BKZ algorithm in their paper as 
follows. 

– (pessimistic) T can be estimated as 2cb (about b2cb CPU cycles), where c is some constant. 
This is an approximate lower bound of the complexity for a single SVP calculation using the 
sieve algorithm [11, 29–31]. 

· b/2πe)1/2(b−1)– δ = ((πb)1/b . 

From this, if we fix the constant c, we can calculate δ from a given T . The best known constant 
is achieved by applying Grover’s quantum search algorithm to the sieve algorithms [29, 31], which 
sets c = 0.265. 

Hence, to make the attack using the BKZ algorithm as in Section 4.2.1 infeasible for security 
parameters λ = 128, λ = 192 and λ = 256, we should set the parameters such that the attack is 
successful only when δ ≤ 1.00367, δ ≤ 1.00270, and δ ≤ 1.00216, respectively. 

4.2.3 Recommended Parameters 
We chose parameter sets to achieve an infeasible attack complexity in following order: First, bound 
δ according to the time complexity T of desired security category, as seen in Section 4.2.2; Second, 
adjust parameters to make the best attack successful. We also chose parameters to achieve negligible 
decryption failure probability, in other words as mentioned on Lemma 1, each parameter set should 
achieve decryption failure probability less than 2−λ, where λ is the security parameter. 

Note on Power-of-Twos. In particular, we set q and p as power-of-twos. In the LWE and LWR 
′attacks, one can reduce the modulus q to q < q via modulus switching first and then apply arbi-

trary attack scenarios. Especially since we use the binary (and even sparse) secrets, the benefits 
in the considered attacks obtained by the modulus switching overwhelms others with strategies 
for specific q’s as far as we know. Hence, any particular choice for modulus q does not harm the 
security. Therefore, we set q and p as power-of-twos to make the rounding procedures efficiently 
done through the bitwise shift process. 

We chose 16 parameter sets: KEM_CATEGORYx_Ny for Lizard.KEM and CCA_CATEGORYx_Ny 
for Lizard.CCA, where (x,y) ∈ {(1,536), (1,663), (3,816), (3,952), (5,1088), (5,1300)}, and four sets 
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for both RLizard.KEM and RLizard.CCA called RING_CATEGORY1, RING_CATEGORY3_N1024, 
RING_CATEGORY3_N2048, and RING_CATEGORY5. We present the decryption failure probabil-
ities1 and attack complexities of LWE and LWR on our parameter sets in Table 1. The parameter 
sets are presented below Table 1. 

Table 1: Decryption failure rate and attack complexities of each parameter set for the correspond-
ing scheme: ϵ is the decryption failure probability and TLWE and TLWR are the time complexity of 
the best known attacks of LWE and LWR, respectively. The parameter sets RING_CATEGORY1, 
RING_CATEGORY3_N1024, RING_CATEGORY_N2048, RING_CATEGORY5 can be used for both 
RLizard.CCA and RLizard.KEM. 

Parameter Set log2 ϵ log2 TLWE log2 TLWR 

KEM_CATEGORY1_N536 
CCA_CATEGORY1_N536 

-159.212 133 130 

KEM_CATEGORY1_N663 
CCA_CATEGORY1_N663 

-153.500 131 147 

KEM_CATEGORY3_N816 
CCA_CATEGORY3_N816 

-304.467 193 195 

KEM_CATEGORY3_N952 
CCA_CATEGORY3_N952 

-337.189 203 195 

KEM_CATEGORY5_N1088 
CCA_CATEGORY5_N1088 

-381.331 266 257 

KEM_CATEGORY5_N1300 
CCA_CATEGORY5_N1300 

-332.810 264 291 

RING_CATEGORY1 -188.248 153 147 
RING_CATEGORY3_N1024 -245.897 195 195 
RING_CATEGORY3_N2048 -305.684 304 291 
RING_CATEGORY5 -305.684 318 348 

Parameter Sets of Lizard.CCA 

CCA_CATEGORY1_N536 
Security Classification : Category 1 
n = 536 
m = 1024 
q = 2048 
p = 512 
ℓ = 256 
d = 256 
_16_LOG_Q = 5 
ρ = 1/2 
hr = 140 
CDF_LENGTH = 9 
CDF_TABLE = {158, 148, 118, 81, 48, 22, 11, 4, 1} 

1 One can obtain the exact decryption failure rates, respectively, running a Python code reported at 
github: https://github.com/swanhong/LizardError. 
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CCA_CATEGORY1_N663 
Security Classification : Category 1 
n = 663 
m = 1024 
q = 1024 
p = 256 
ℓ = 256 
d = 256 
_16_LOG_Q = 6 
ρ = 1/4 
hr = 128 
CDF_LENGTH = 4 
CDF_TABLE = {918, 488, 74, 3} 

CCA_CATEGORY3_N816 
Security Classification : Category 3 
n = 816 
m = 1024 
q = 2048 
p = 512 
ℓ = 384 
d = 384 
_16_LOG_Q = 5 
ρ = 1/2 
hr = 200 
CDF_LENGTH = 5 
CDF_TABLE = {304, 231, 100, 25, 4} 

CCA_CATEGORY3_N952 
Security Classification : Category 3 
n = 952 
m = 1024 
q = 2048 
p = 512 
ℓ = 384 
d = 384 
_16_LOG_Q = 5 
ρ = 1/4 
hr = 200 
CDF_LENGTH = 6 
CDF_TABLE = {244, 204, 120, 49, 14, 3} 
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CCA_CATEGORY5_N1088 
Security Classification : Category 5 
n = 1088 
m = 2048 
q = 4096 
p = 1024 
ℓ = 512 
d = 512 
_16_LOG_Q = 4 
ρ = 1/2 
hr = 200 
CDF_LENGTH = 11 
CDF_TABLE = {264, 249, 214, 165, 115, 72, 41, 21, 10, 4} 

CCA_CATEGORY5_N1300 
Security Classification : Category 5 
n = 1300 
m = 2048 
q = 2048 
p = 512 
ℓ = 512 
d = 512 
_16_LOG_Q = 5 
ρ = 1/4 
hr = 200 
CDF_LENGTH = 12 
CDF_TABLE = {526, 499, 427, 330, 230, 144, 82, 42, 19, 8, 3, 1} 

Parameter Sets of Lizard.KEM 

KEM_CATEGORY1_N536 
Security Classification : Category 1 
n = 536 
m = 1024 
q = 2048 
p = 512 
ℓ1 = 16 
ℓ2 = 16 
d = 256 
_16_LOG_Q = 5 
ρ = 1/2 
hr = 140 
CDF_LENGTH = 9 
CDF_TABLE = {158, 148, 118, 81, 48, 22, 11, 4, 1} 
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KEM_CATEGORY1_N663 
Security Classification : Category 1 
n = 663 
m = 1024 
q = 1024 
p = 256 
ℓ1 = 16 
ℓ2 = 16 
d = 256 
_16_LOG_Q = 6 
ρ = 1/4 
hr = 128 
CDF_LENGTH = 4 
CDF_TABLE = {918, 488, 74, 3} 

KEM_CATEGORY3_N816 
Security Classification : Category 3 
n = 816 
m = 1024 
q = 2048 
p = 512 
ℓ1 = 24 
ℓ2 = 16 
d = 384 
_16_LOG_Q = 5 
ρ = 1/2 
hr = 200 
CDF_LENGTH = 5 
CDF_TABLE = {304, 231, 100, 25, 4} 

KEM_CATEGORY3_N952 
Security Classification : Category 3 
n = 952 
m = 1024 
q = 2048 
p = 512 
ℓ1 = 24 
ℓ2 = 16 
d = 384 
_16_LOG_Q = 5 
ρ = 1/4 
hr = 200 
CDF_LENGTH = 6 
CDF_TABLE = {244, 204, 120, 49, 14, 3} 
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KEM_CATEGORY5_N1088 
Security Classification : Category 5 
n = 1088 
m = 2048 
q = 4096 
p = 1024 
ℓ1 = 32 
ℓ2 = 16 
d = 512 
_16_LOG_Q = 4 
ρ = 1/2 
hr = 200 
CDF_LENGTH = 11 
CDF_TABLE = {264, 249, 214, 165, 115, 72, 41, 21, 10, 4} 

KEM_CATEGORY5_N1300 
Security Classification : Category 5 
n = 1300 
m = 1024 
q = 2048 
p = 512 
ℓ1 = 32 
ℓ2 = 16 
d = 512 
_16_LOG_Q = 5 
ρ = 1/4 
hr = 200 
CDF_LENGTH = 12 
CDF_TABLE = {526, 499, 427, 330, 230, 144, 82, 42, 19, 8, 3, 1} 

Parameter Sets of RLizard.CCA and RLizard.KEM 

RING_CATEGORY1 
Security Classification : Category 1 
n = 1024 
q = 1024 
p = 256 
d = 256 
_16_LOG_Q = 6 
hs = 128 
hr = 128 
CDF_LENGTH = 4 
CDF_TABLE = {382, 247, 67, 7} 
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RING_CATEGORY3_N1024 
Security Classification : Category 3 
n = 1024 
q = 2048 
p = 512 
d = 384 
_16_LOG_Q = 5 
hs = 256 
hr = 264 
CDF_LENGTH = 6 
CDF_TABLE = {560, 443, 219, 68, 13} 

RING_CATEGORY3_N2048 
Security Classification : Category 3 
n = 2048 
q = 2048 
p = 512 
d = 384 
_16_LOG_Q = 5 
hs = 184 
hr = 164 
CDF_LENGTH = 8 
CDF_TABLE = {816, 720, 496, 266, 111, 36, 9, 2} 

RING_CATEGORY5 
Security Classification : Category 5 
n = 2048 
q = 4096 
p = 1024 
d = 512 
_16_LOG_Q = 4 
hs = 256 
hr = 256 
CDF_LENGTH = 10 
CDF_TABLE = {310, 289, 233, 162, 98, 51, 23, 9, 3, 1} 

5 Implementation Aspects and Performance Figures 

In this chapter, we describe and estimate performance and resource requirements of implementa-
tions on Intel x64 running Linux supporting the GCC compiler and on FPGA hardware. 

5.1 Software Implementation 

This section gives general implementation aspects and computational efficiencies of Lizard.KEM, 
RLizard.KEM, Lizard.CCA, and RLizard.CCA. We provide a reference and an optimized imple-
mentation in ANSI C, compiled with the GCC compiler. 
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For Lizard.KEM and RLizard.KEM, the files Lizard.c and RLizard.c are common for im-
plementing the NIST API, including the functions crypto_kem_keypair, crypto_kem_enc and 
crypto_kem_dec. For Lizard.CCA and RLizard.CCA, the files Lizard.c and RLizard.c are common 
for implementing the NIST API, including the functions crypto_encrypt_keypair, crypto_encrypt 
and crypto_encrypt_open. To meet IND-CCA2 security, Lizard.KEM, RLizard.KEM, Lizard.CCA 
and RLizard.CCA should be used in public key pk as well as secret key sk in functions crypto_kem_dec 
and crypto_encrypt_open. Therefore, public key pk are included as part of the secret key in func-
tions crypto_kem_dec and crypto_encrypt_open of file Lizard.c and RLizard.c. 

To use various parameters in one implementation, we used the directing sentences #if defined 
and #ifdef. Therefore, we provide various parameters in file params.h. To use each parameter, 
you must use it by changing the annotation in the file params.h. 

Additional files are provided file randombytes.c to use random values, file sha512.c to use the 
hash function and library, and file libkeccak.a of TupleHash256 to use variable length output. 

5.1.1 Data Operations 

Modulus Operation. For x ∈ Zq , rather than storing itself, we store the value (x <<_16_LOG_Q) 
where the data type of x is uint16_t, i.e., the data is stored as the most significant log q bits in 
the 16-bit data space. In other words, we identify Zq with the subspace of 16-bit data space of 
which the components are all zero except the most significant log q bits. 

If vectors or matrices (resp. polynomials) are defined over Zq, then the above data storage 
strategy is applied to each of the components (resp. coefficient). 

Rounding Operation. In this proposal, there are rounding operations ⌊(p/q) · x⌉ over Zp for 
some x ∈ Zq and ⌊(2/p) · y⌉ over Z2 for some y ∈ Zp. Note that x is stored as the most significant 
log q bits in the 16-bit data space, and the rounding output ⌊(p/q) · x +0.5⌋ ∈ Zp should be stored 
as the most significant log p bits in the same space. Therefore, the operation ⌊(p/q) · x⌉ over Zp is 
done by 

(x + RD_ADD) ∧ RD_AND 

where RD_ADD = 215/p and RD_AND = 216 − 216/p. 
For example, when p = 512 and q = 2048, x can be represented as 0110 1000 1100 0000, 

RD_ADD = 215/29 = 26 will be 0000 0000 0100 0000 and RD_AND = 216 − 216/29 = 26 will be 
1111 1111 1000 0000. The operation (x + RD_ADD) ∧ RD_AND will be as follows. 

0110 1000 1100 0000 
+ 0000 0000 0100 0000 

0110 1001 0000 0000 

0110 1001 0000 0000 
∧ 1111 1111 1000 0000 

0110 1001 0000 0000 

The rounding operation ⌊(2/p) · y⌉ over Z2 is done in exactly the same way. 

5.1.2 Data Generations 
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Matrix and Vector Generations. As we generate matrices and vectors uniform randomly 
from the finite set Zm×n, or following distributions, we introduce the algorithms for these random q

generations as follows. 
First, we introduce how to generate the random matrix in Zm×n with the pseudorandom q 

generator randombytes(). To achieve automatic reduction of a matrix modulo q, we set the data 
type of elements of a matrix as uint16_t, and left shift them _16_LOG_Q bits. 

• A ← Zm
q 

×n : 

- For 1 ≤ i ≤ m and 1 ≤ j ≤ n, randomly generate the (i, j)-th component Aij of A with 
randombytes() where the data type of Aij is uint16_t 

- For 1 ≤ i ≤ m and 1 ≤ j ≤ n, compute Aij <<_16_LOG_Q 
- Output the matrix A 

Next, we explain the algorithm of sampling the vector following the distribution ZOn(1/2) (resp. 
ZOn(1/4)). The sampling is used for secret key generation of our Lizard.CCA and Lizard.KEM. 

• s ← ZOn(1/2) : 

- For 0 ≤ i ≤ n − 1, randomly generate two bits x, y ∈ {0, 1} with randombytes() 
- Set si = 1 if x = 0 and y = 1, si = −1 if x = y = 0, and si = 0 otherwise, where si is an i-th 

component of s 

• s ← ZOn(1/4) : 

- For 0 ≤ i ≤ n − 1, randomly generate three bits x, y, z ∈ {0, 1} with randombytes() 
- Set si = 1 if x = y = 0 and z = 1, si = −1 if x = y = z = 0, and si = 0 otherwise, where si is 

an i-th component of s 

In our Lizard.CPA, we generate an ephemeral secret vector r ∈ Bm,hr following the distribution 
HWT m(hr) in the encryption phase. When generating r, we additionally generate the encoded 
values of r; an array r_idx of hr integers in [0,m− 1] which denote indices of non-zero components 
of r, and an integer neg_start in [0, hr −1] which denotes a starting index of −1. If i < neg_start, 
then the r_idx[i]-th component of r is 1, and if i ≥ neg_start, the r_idx[i]-th component of 
r is −1. We note that a vector r and a tuple of an array and an integer (r_idx[hr], neg_start) 
match bijectively. 

With this array encoding, we can evaluate the multiplication Ar ∈ Zn×m of a matrix A ∈ Zn×m 
q q

and the vector r since r_idx contains the index information of non-zero components of r. To be 
precise, we only read the r_idx[i]-th column of M for 0 ≤ i ≤ hr; add ai if i < neg_start and 
subtract ai if i ≥ neg_start. That is, the number of for loops in the algorithm reduces from nm 
to nhr. 

• r ← HWT m(hr) 

- Set hw = 0 and r as a zero vector 
- Generate a random number j ∈ [0,m − 1] and a random bit bit ∈ {0, 1} with randombytes() 
- If rj = 0, then set rj = 2 · bit − 1 and hw += 1 
- Repeat the above algorithm until hw < hr 

• Generation of r_idx 
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- Set neg_start = 0 and back_position = hr 

- For 0 ≤ i ≤ m − 1, set r_idx[neg_start] = i and neg_start += 1 if ri = 1, and 
r_idx[back_position] = i and back_position −= 1 if ri = −1 

- Repeat the above algorithm until neg_start != back_position 

In Lizard.KEM, RLizard.KEM, Lizard.CCA, and RLizard.CCA, the ephemeral secret vector r ∈ 
Bm,hr (resp. matrix R ∈ Bℓ ) should be deterministically generated by a Hash function with m,hr

some input. Therefore, rather than using randombytes() whenever it is needed, we generate suf-
ficiently long hash output at once and divide it to several blocks. 

• r ← H(input) 

- Get some input vector input, and compute the long hash value Hash = TupleHash256(input) 
- Set hw = 0 and r as a zero vector 
- Compute j = Hash % m and left shift Hash for log m bits 
- Compute bit = Hash % 2 and left shift Hash for a bit 
- If rj = 0, then set rj = 2 · bit − 1 and hw += 1 
- Repeat the above algorithm until hw < hr 

The above algorithm r ← H(input) is a case of Lizard.CCA and RLizard.CCA. For Lizard.KEM 
and RLizard.KEM, we sample the matrix R ← H(input) where each column vector of R is sampled 
from the above algorithm. 

In the key generation phases of our schemes, we sample errors through the inversion sampling 
which uses a precomputed table for a discrete cumulative density function (CDF) over a small 
interval. We name process the Sample_DG() algorithm. The output distribution from this algo-
rithm is a discrete bounded symmetric distribution which is very close to the discrete Gaussian 
distribution with respect to the Rényi divergence. More precisely, we preset a positive integer array 
CDF_TABLE of the length TABLE_LENGTH according to the CDF. Note that CDF_TABLE is an array of 
increasing positive integers, i.e., CDF_TABLE[i] ≤ CDF_TABLE[i + 1] for 0 ≤ i < TABLE_LENGTH − 1. 

• sample ← Sample_DG() 

- Generate random numbers rnd ∈ [0, CDF_TABLE[TABLE_LENGTH - 1]] and sign ∈ {0, 1} with 
randombytes() where the data type of both numbers is uint16_t 

- Find the smallest integer sample ∈ [0, TABLE_LENGTH − 1] such that rnd ≤ CDF_TABLE[sample] 
- Compute sample = ((−sign) ∧ sample) + sign, i.e., flip sample if sign = 0 
- Output sample 

Polynomial Generations. As a polynomial a corresponds to a vector a = (a0, a1, ..., an−1) bijec-
tively, we can match the polynomial ring R with the vector space Zn, and the quotient polynomial 
ring Rq with the vector space Zn. Therefore, we may regard the notation of a polynomial generation q

as a vector generation. 

n−1∑ 
a = aiX

i ∈ R ⇐⇒ a = (a0, a1, ..., an−1) ∈ Zn 

i=0 

n−1∑ 
a = aiX

i ∈ Rq ⇐⇒ a = (a0, a1, ..., an−1) ∈ Zn 
q 

i=0 
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From the vector-polynomial correspondence, we can regard polynomial generation as vector gener-
ation without specifying the bijection all the time. For example, we introduce the secret polynomial 
generation algorithm as follows: 

• s ← HWT n(hs) 

- Set hw = 0 and s as a zero vector 
- Generate a random number j ∈ [0, n − 1] and a random bit bit ∈ {0, 1} with randombytes() 
- If sj = 0, then set sj = 2 · bit − 1 and hw += 1 
- Repeat the above algorithm until hw < hs 

- Identify the vector s with the polynomial s thorough the vector-polynomial correspondence 

We also generate encoded values of s, an array s_idx of hs integers in [0, n] and an integer 
neg_start. 

• Generation of s_idx 

- Set neg_start = 0 and back_position = hs 

- For 0 ≤ i ≤ m − 1, set s_idx[neg_start] = i and neg_start += 1 if si = 1, and 
s_idx[back_position] = i and back_position −= 1 if si = −1 

- Repeat the above algorithm until neg_start != back_position 

5.1.3 Computational Efficiency 
We report an optimized version of implementation tested under the following platform. 

Linux: PC running Linux Ubuntu 14.04.3 LTS x86_64 

CPU: Intel Xeon E5-2640 v3 at 2.60GHz, Octa core 

Compiler: GCC 4.8.4 using gcc -O3 -fomit-frame-pointer -msse2avx -mavx2 -march=native 
-std=c99 

For Lizard.KEM, RLizard.KEM, Lizard.CCA and RLizard.CCA, the parameter set supplies 
128-bit, 192-bit and 256-bit security against all known quantum attacks. We present the parame-
ter sets for various cases. 

Operations Parameter SharedSecret 
(bytes) 

Ciphertext 
(bytes) 

Public Key 
(bytes) 

Private Key 
(bytes) 

Lizard.KEM 

KEM_CATEGORY1_N536 32 17, 696 1, 130, 496 8, 608 
KEM_CATEGORY1_N663 32 10, 896 1, 390, 592 10, 640 
KEM_CATEGORY3_N816 48 26, 928 1, 720, 320 19, 632 
KEM_CATEGORY3_N952 48 31, 280 1, 998, 848 22, 896 
KEM_CATEGORY5_N1088 64 35, 904 4, 587, 520 34, 880 
KEM_CATEGORY5_N1300 64 42, 688 2, 727, 936 41, 664 

RLizard.KEM 

RING_CATEGORY1 32 2, 080 4, 096 385 
RING_CATEGORY3_N1024 48 4, 144 4, 096 641 
RING_CATEGORY3_N2048 48 8, 240 8, 192 625 
RING_CATEGORY5 64 8, 256 8, 192 769 

Table 2: Size of Lizard.KEM and RLizard.KEM 
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Operations Parameter KeyGen 
(ms) 

Enc 
(ms) 

Dec 
(ms) 

KEM_CATEGORY1_N536 75.895 0.324 0.351 
KEM_CATEGORY1_N663 92.566 0.362 0.403 

Lizard.KEM 
KEM_CATEGORY3_N816 119.728 0.590 0.666 
KEM_CATEGORY3_N952 138.215 0.676 0.794 
KEM_CATEGORY5_N1088 306.368 0.846 0.905 
KEM_CATEGORY5_N1300 183.198 0.826 0.896 
RING_CATEGORY1 0.458 0.040 0.044 

RLizard.KEM 
RING_CATEGORY3_N1024 0.519 0.077 0.088 
RING_CATEGORY3_N2048 0.889 0.102 0.119 
RING_CATEGORY5 0.933 0.137 0.161 

Table 3: Performance of Lizard.KEM and RLizard.KEM 

Operations Parameter Plaintext 
(bytes) 

Ciphertext 
(bytes) 

Public Key 
(bytes) 

Private Key 
(bytes) 

Lizard.CCA 

CCA_CATEGORY1_N536 32 1, 648 1, 622, 016 137, 216 
CCA_CATEGORY1_N663 32 983 1, 882, 112 169, 728 
CCA_CATEGORY3_N816 48 2, 496 2, 457, 600 313, 344 
CCA_CATEGORY3_N952 48 2, 768 2, 736, 128 365, 568 
CCA_CATEGORY5_N1088 64 3, 328 6, 553, 600 557, 056 
CCA_CATEGORY5_N1300 64 3, 752 3, 710, 976 665, 600 

RLizard.CCA 

RING_CATEGORY1 32 2, 208 4, 096 257 
RING_CATEGORY3_N1024 48 4, 272 4, 096 513 
RING_CATEGORY3_N2048 48 8, 496 8, 192 369 
RING_CATEGORY5 64 8, 512 8, 192 513 

Table 4: Size of Lizard.CCA and RLizard.CCA 

Operations Parameter KeyGen 
(ms) 

Enc 
(ms) 

Dec 
(ms) 

CCA_CATEGORY1_N536 156.320 0.031 0.034 
CCA_CATEGORY1_N663 176.570 0.032 0.036 

Lizard.CCA 
CCA_CATEGORY3_N816 250.555 0.052 0.064 
CCA_CATEGORY3_N952 275.555 0.057 0.072 
CCA_CATEGORY5_N1088 663.879 0.062 0.086 
CCA_CATEGORY5_N1300 392.828 0.071 0.101 
RING_CATEGORY1 0.449 0.036 0.039 

RLizard.CCA 
RING_CATEGORY3_N1024 0.513 0.057 0.075 
RING_CATEGORY3_N2048 0.875 0.078 0.093 
RING_CATEGORY5 0.920 0.108 0.135 

Table 5: Performance of Lizard.CCA and RLizard.CCA 
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The code uses only plain C instructions, without assembly nor SIMD instructions. For optimized 
speed, we used the loop fusion and loop unrolling methods. In optimized implementation, the code 
performs addition and subtraction operations to reduce the number of multiplication operations. 
For example, the optimized code performs the operation using r_idx instead of r. 

On the platform above, we have presented the required space of Lizard.KEM and RLizard.KEM 
in Table 2 and the timing results in Table 3. We have also presented the required space of 
Lizard.CCA and RLizard.CCA in Table 4 and the timing results in Table 5. A certain amount of er-
ror is possible in Table 3 and Table 5 when implementing Lizard.KEM, RLizard.KEM, Lizard.CCA 
and RLizard.CCA. 

5.2 Hardware Implementation 

In this section, we propose the hardware architecture for Lizard Public Key Encryption and report 
the performance of the FPGA, which we implemented using Lizard.CPA and RLizard.CPA. These 
two Lizard modules mainly consist of a memory part and an addition part. Since the portion of the 
addition part is very small, while that of the memory part is very large, we decided to store only 
the data needed by calculation in the memory. Therefore, the operation of the module includes the 
data input/output process. 

The advantage of Lizard PKE from the hardware implementation viewpoint is the simple 
calculation and ease of resource sharing. Since the q value is 210, setting the register Sum for 
storage as 10-bit only has the effect of becoming a modulus by itself. Since the key calculation 
is an accumulation that is a repetition of addition and subtraction, the calculation part is very 
simple, except for the storage space such as the memory. This means not only that the area is 
small but also that high-frequency operation is possible. The size of the area is even smaller than 
AES requires. Furthermore, it is easy to share resources since the various operational modes have 
similar hardware structures. 

On the other hand, it requires a large storage space such as a cursor memory since the pa-
rameters are large, and the processes of inputting/outputting in a common size (32-bit word) and 
writing them to memory become complex because the volumes of data can differ considerably. One 
must also consider the fact that the use of memory is essential because of the large storage space. 

Parameter of Lizard.CPA and RLizard.CPA For Lizard.CPA, the classical parameter set 
supplies 128-bit security against the classical attacks, but not enough against quantum attacks. 
The recommended parameter set provides 128-bit security against all known quantum attacks. 
The paranoid parameter set would remain secure and have 128-bit security against quantum at-
tacks even if a remarkable improvement towards solving SVP arises. We present the parameter 
sets for the case that Ds = ZOn(1/2) and Dr = HWT m(128). We fix the plaintext modulus as 
t = 2 and hr = 128. The following table is the suggested parameter sets for 128-bit security. For 
RLizard.CPA, we set Ds = Dr = HWT n(128) and λ = 128. 
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Operations m n logq logp α−1 

Lizard.CPA 
Classical 840 544 10 8 171 

Lizard.CPA 
Recommended 

940 608 10 8 182 

Lizard.CPA 
Paranoid 

1450 736 10 8 160 

RLizard.CPA 1024 1024 10 8 154 

Table 6: Parameter of Lizard.KEM and RLizard.KEM 

We have implemented based on the recommended parameter of Lizard.CPA. 

Architecture of Lizard.CPA The Fig. 1 shows the hardware architecture of Lizard.CPA. 

Fig. 1: Data path of Lizard.CPA 

In the Fig. 1, Sel_S, Sel_M, Sel_E, Sel_A, and Sel_C are the multiplexers used to select the 
elements of S, M, E, A and c. The register Sum is the space for the accumulated data, while W is 
the storage space in which the final accumulated results are grouped into a 32-bit word. The adder 
is used to accumulate the value of the register Sum, the initial value of which is one of the inputs in 
the red box at the beginning of accumulation. The other input of the adder determines whether the 
output of Sel_S (S or r) is added (S or r being 1), subtracted (S or r being –1), or does nothing 
(S or r being 0) to the result of the Sel_A (one of the elements of A for key generation), the result 
of Sel_C (one of elements of c1 for decryption), or the outside input value (one of the elements of 
A or B for encryption). In the key generation process, there is an additional calculation involving 
either the addition or subtraction of the 3-bit value of the Sel_E output depending on the sign 
of the remaining 1 bit. The Fig. 1 omits the step in which two 9-bit data are converted into two 
4-bit data containing the 3-bit data of 0 to 7 and the 1-bit data for the sign. It also omits the 
control circuit, which uses the registers and adders for the finite state machine and the counter. 
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Lizard.CPA requires three counters to count n, ℓ, and m, and the proposed design uses only one 
adder through resource sharing. 

Finite State Machine of Lizard.CPA 

Key Generation. The process begins with the inputting of all the values of S. The portions of 
1, –1, and 0 of S are determined by the input from the outside (i.e. the same as for r). 

Fig. 2: Finite state machine for generating a key in Lizard.CPA 

When the Lizard.CPA module is run in the key generation mode while S is being input, 
it receives A and E in words per row through A_IN and E_IN. The count in the module is 
incremented when a word is input, and the data are stored in the memory with the count value as 
the address. If S is input before the module starts, the address value of the word is specified at the 
same time for writing the data. However, since A and E use the internal counter as the address 
value, they must be input in sequence when they are input from the outside. If both a row for A 
and a row for E are inputted, a B element is calculated with S (which was input before the module 
started), the cycle n is ringed, and a row of B is calculated by repeating it ℓ times. Whenever two 
elements of B are calculated, they are grouped into a word and output to the outside. When a 
row of B is calculated, the next rows of A and E are input to calculate the next row of B. The 
key generation is completed when the process of inputting rows A and E and calculating row B is 
repeated m times, and m rows of B are all calculated. 

Encryption. The process begins by inputting the R and M values in advance. 

Fig. 3: Finite state machine for encryption of Lizard.CPA 

When the module starts in the encryption mode, the module receives the elements of A in 
units of the row to calculate c1, and only one element is input into each word as the elements are 
input in units of words. As such, A in the first of the n columns and m elements in the selected 
column are selected one at a time from the top. This contrasts with the fact that A, E, and B 
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are input or output in rows, and that two elements are transmitted into a word, during the key 
generation process. An element of c1 is finally calculated by accumulating the calculation with r, 
which was input before the module started, whenever A was input in the column, in the register 
Sum. The initial value of calculation of the c1 element is 2, the accumulated value is maintained in 
10 bits, and the final accumulated value is obtained from the top 8 bits by discarding the bottom 2 
bits. Each time four elements of c1 are calculated, they are grouped into a word and stored in the 
memory. In the same way, B is input in the row (l rows and m elements in each row) to calculate 
c2. To calculate each element of c2, the initial value is calculated by adding 2 to the 1 bit selected 
from each word of M (selected from the MSB) and shifted by 9 bits to the left. The process is 
finished with the calculation of c2. The encryption process ends when the results c1 and c2 are 
stored in the memory. They can be read by specifying the register name and the address. 

Decryption. The process begins by inputting S, c1, and c2 values in advance. 

Fig. 4: Finite state machine for decryption of Lizard.CPA 

The element of c2 is initialized with the value of the register Sum by INIT_M, and CAL_M 
performs the accumulation using the S and c1 values for n cycles. The top two bits of the final 
accumulated value are exclusive OR’ ed to 1 bit of M. While the process is repeated l times, 32 
bits of M are stored in the WR_M step. Using the dual port memory means reading or writing the 
data of up to two data at a time. The limitation makes it necessary to use INIT_M and WR_M. 
If there is no limitation on data reading or writing by using the register instead of the memory, 
the steps of INIT_M and WR_M can be eliminated. As with the process of encryption, since the 
result is not output but saved in the memory during the process, l/32 = 8 words of M is read by 
specifying the register name and address after completing the process. 

Architecture of RLizard.CPA The Fig. 5 shows the hardware architecture of RLizard.CPA. 

As with Lizard.CPA, Sel_S, Sel_E, Sel_A and Sel_C in the Fig. 5 are the multiplexers used 
to select the elements of S, M, E, A and c one at a time by selecting 2-bit, 1-bit, 4-bit, 10-bit 
and 8-bit. However, the method of Sel_M is different from that of Lizard.CPA since RLizard.CPA 
stores one byte of each word of A in the available space. In RLizard.CPA, only the difference of 
the coefficient with a value of -1 or 1 of S or r is stored in Mem1, and the coefficients of A, B, 
and c1 are stored in Mem0. Let’ s assume that the former is the difference data and the latter 
is the coefficient data. Since the difference data must be read first to determine the address of 
the coefficient data, it is necessary to read these two data sequentially. We used the dgr and neg 
registers to store the address of the coefficient data to read in the next clock cycle and the option 
of whether to subtract. This method is called pipe lining. It reads the difference data in the first 
cycle and then reads the coefficient data with the value of the dgr register as the address in the 
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Fig. 5: Data path of RLizard.CPA 

next cycle. It also reads the next difference data in the same cycle to be ready for the following 
clock cycle. It reads only the coefficient data in the last cycle. It differs from Lizard.CPA in that 
it can read E and use it as the initial value during the key generation cycle since it reads only 
the difference data in the first cycle. For simplicity, the Fig. 5 also omits the step in which 9-bit 
data input are converted into two 4-bit data of -7 to 7 and stored in the memory. Likewise, the 
register Sum stores the accumulation result; and W is the storage space in which each of the final 
accumulation results are grouped into a 32-bit word. The value in the register W is not written in 
the memory but rather is directly output. The Fig. 5 shows Cntn , which is one of the counters. 
The control circuit (not shown in the Fig. 5) has another counter for counting S and r. Like the 
lattice-based Lizard, the proposed design uses only one adder through resource sharing. 

Finite State Machine of RLizard.CPA Unlike Lizard.CPA, there is only one finite state ma-
chine in RLizard.CPA. 

Fig. 6: Finite state machine in RLizard.CPA 

All four steps perform multiplication of two n-degree polynomials through state transition. Al-
though the process usually requires about n2 cycles, the use of pipe lining requires only 129 clock 
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cycles. INIT initially reads only the difference data and the data needed for initialization (E for 
key generation, M for encryption 1, and c2 for decryption). CAL reads the difference data and 
the coefficient data, while LAST reads only the coefficient data. The module performs addition or 
subtraction only in CAL and LAST, which read the coefficient data from the memory. The LAST 
block also groups two of the final results at a time and outputs them to the outside. 

Performance 

Latency. The following table shows the performance of the two Lizard modules. 

Operations Type Computation 
Performance 

(T(I) = 1, T(O) = 1) 
Latency 

@50MHz @100MHz 

Lizard.CPA 
KeyGen m(n + ℓ)T (I) + mℓ(n + T (O)) 150.5 M cycles 3 s 1.5 s 
Enc m(n + ℓ)T (I) 829.4 k cycles 16.6 ms 8.3 ms 
Dec ℓ(n + 1) + ℓ/32 155.9 k cycles 3.1 ms 1.6 ms 

RLizard.CPA 128(n + (1 + T (O))/2) 131.2 k cycles 2.6 ms 1.3 ms 

Table 7: Latency of Lizard.CPA and RLizard.CPA 

T(I) and T(O) represent the delay of input and output, respectively. The operating times of all 
four steps (Key Generation, Encryption0, Encryption1, Decryption) are the same in RLizard.CPA. 
However, when the Lizard.CPA module is run in Key Generation mode or Encryption mode, it 
receives E, A and B. Therefore it outputs a signal when it is time to get the input. If it reads the 
data in same clock cycle after it gets the signal, T (O) = 1. We performed the number of Cycles 
and Latency as T (I) = 1 and T (O) = 1. 
The table above does not include the time required to input data in advance or read the data after 
the end of the process. 

Area. The GE (Gate Equivalent) Table 8 is measured based on the implementation of the Samsung 
65nm Library. It is the performance at 50MHz Frequency and much the same as the one at 100MHz 
Frequency. It is expected to have a similar area when operated on higher frequencies. 

Lizard.CPA RLizard.CPA 
Area Size of Memory Space 

Area Size of Memory Space total storage space total storage space 

memory 646.9 k 644.7 k 0x3000 words 99.7 k 98.3 k 1k words 
register 3321.4 k 3319.5 k 0x2740 words 204.1 k 202.7 k 512 words + 64*22-bit 

Table 8: Area of Lizard.CPA and RLizard.CPA 

6 Advantages and limitations 

In this section, we present our implementations of our scheme for special purposes. These results 
show that Lizard is flexible and efficient for various usage. The device we used in Section 6.1 
was Samsung Galaxy S7. In Section 6.2 and Section 6.3, the implementations were written in 
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C, and performed on a Linux environment containing an Intel Xeon E5-2620 CPU running at 
2.10GHz with Turbo Boost and Multithreading disabled. We used AVX2 vector instructions for 
optimizing the implementation of our schemes. The version of gcc compiler is 5.4.0, and we compiled 
our C reference implementation with flags -O3 -fomit-frame-pointer -mavx2 -march=native 
-std=c99 for the x86_64 architecture. 

Through this section, the performances of key generation (resp. encryption and decryption) of 
our schemes were reported as a mean value across 100 (resp. 100000) measurements. We recorded 
public key sizes of our schemes used in our software2. 

6.1 Application on Smartphone 

Since the smartphone is one of the most commonly used devices, it is natural to consider a mobile 
implementation. We have implemented Lizard.CPA as an Android application. The parameters of 
the implementation satisfy 128-bit quantum security with bigger decryption failure probability. 
The performance of the application was comparable to computer implementation. The application 
used a small amount of memory (less than 20 megabytes), and used only one core of CPU. There-
fore, we can see that Lizard is suitable for a smartphone. 

Table 9: Parameter of Lizard.CPA on Android application implementation 
m n log q log p α−1 ρ hr 

960 608 10 8 182 1/2 128 

Table 10: Performance of Lizard.CPA on Android application implementation 
KeyGen Enc Dec 
(ms) (ms) (ms) 

288.618 0.0770 0.0229 

6.2 Suitability for Small Message Space 

Lizard can be utilized on low-end devices. We implemented our Lizard.CPA scheme with 32-bit 
message space under 128-bit classical security (119-bit quantum security). We used classical pa-
rameters suggested in Table 11, and set ℓ = 32 to specify the message space. In general case, the 
public key size is 741kB, and an encryption takes only 0.009 milliseconds. The public key size can 
be reduced to 46kB if we replace the public matrix A by a 256-bit seed that generates A, and 
an encryption gets slower to 0.052 milliseconds while a decryption takes the same time. These 
performance data show us that Lizard can be efficient on low capacity devices. 

2 We can generate matrix A in our public key from a 256-bit seed with Pseudo-Random Generator (PRG) 
and store only the seed. To implement this case, we use AES128 in the ECB mode in our implementation 
to expand a 256-bit seed, enabling the AES-NI instruction. 
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Table 11: Parameter of Lizard.CPA with 32-bit message space with 128-bit classical security 
m n log q log p α−1 ρ hr ϵ 
724 480 11 9 303 1/2 128 2−154 

Table 12: Performance of Lizard.CPA with 32-bit message space with 128-bit classical security 

ctxt 
(bytes) 

pk
(bytes) 

sk 
(bytes) 

KeyGen
(ms) 

Enc 
(ms) 

Dec 
(ms) 

A as matrix 
(A as seed) 

576 
741,376 
(46,368) 

3,840 
4.749 

(1.891) 
0.009 

(0.052) 
0.001 

6.3 Additive Homomorphic Encryption 

Lizard can also be used as a post-quantum alternative for additive homomorphic encryption (AHE) 
which support the bounded number of homomorphic additions. Lizard.CPA can be naturally seen 
as an additive homomorphic encryption supporting the bounded number of additions together with 
the following addition procedure: ∑k– Lizard.CPA.Add(c1, · · · , ck) : Output ci ∈ Zn+ℓ 

i=1 p 

Corollary 1 (Correctness). The additive homomorphic encryption described above works cor-
rectly for k homomorphic additions as long as the following inequality holds for security parameter 
λ: [ ]

q q
Pr |⟨e, r⟩ + ⟨s, f⟩| ≥ − < negl(λ)

2tk 2pk 

where e ← DGm
σ , r ← HWT m(hr), s ← ZOn(ρ), and f ← Zn

q/p . 
Proof. This is easily proved by Lemma 1 and the triangle inequality. 

Parameters for Additive Homomorphic Encryption. It is harder to meet the correctness 
condition in Corollary 1 than the plain Lizard scheme. We suggest a parameter set for 128-bit 
quantum security that allows 100 additions as Table 13. 

Table 13: Parameter for additive homomorphic encryption 
m n log q log p α−1 ρ hr 

1024 816 16 14 21000 1/2 136 

For this parameter set, the decryption failure probability after 100 homomorphic additions is 
approximately 2−29. 

Previously proposed additive homomorphic encryption schemes [27, 35, 36] of which perfor-
mances are summarized in [19]3 can afford much more homomorphic additions with fixed param-
3 In [19], they also suggested an AHE scheme with excellent performances, but their parameters are turned 
out to be insecure [23]. 
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eter sets than ours. However, when one needs only bounded number of homomorphic additions, 
Lizard might provide a better trade-off so that it can be faster than other AHE schemes. For 
Lizard which supports 100 homomorphic additions, an encryption, decryption, and homomorphic 
addition take only 0.014, 0.012, and 0.0005 milliseconds, which are at least 147, 333, and 4 times 
faster than all of those of AHE schemes in [27, 35, 36], respectively. We present a sample result for 
256-bit messages and 128-bit quantum security in Table 14. 

Table 14: Performance of Lizard with 256-bit messages which supports 100 homomorphic additions 
ctxt 

(bytes) 
pk 

(bytes) 
sk 

(bytes) 
KeyGen 

(ms) 
Enc 
(ms) 

Dec 
(ms) 

Add 
(ms) 

A as matrix 
(A as seed) 1,876 

2,195,456 
(524,320) 52,224 

25.923 
(21.444) 

0.014 
(0.092) 0.012 0.0005 
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	1 Introduction 
	1 Introduction 
	We propose Lizard, a family of post-quantum public-key encryption (PKE) schemes and key encapsulation mechanisms (KEMs). 
	At the center of our constructions lies the Lizard IND-CPA PKE. This is a scheme whose security is based on sparse, small secret versions of learning with errors (LWE) and learning with roundings (LWR). Essentially, the public-key is chosen to be a set of LWE samples with signed binary secrets, and the encryption uses rounding to achieve security (via LWR) and reduced size of the ciphertexts. We use sparse random vectors as ephemeral secrets to speed up multiplications. Our construction is based on a result
	The IND-CPA PKE scheme is then turned into an IND-CCA2 KEM, via a KEM variant of the Fujisaki-Okamoto transformation. Using the usual KEM/DEM hybrid paradigm, this can be turned into an IND-CCA2 PKE scheme, for example by using the one-time pad to symmetrically encrypt messages with the symmetric key encapsulated by the KEM. 
	Also, we propose ring-based versions of the above constructions, called RLizard. Instead of based on the variants of LWE and LWR in Lizard, RLizard is based on the corresponding versions of ring-LWE and ring-LWR. As with Lizard, we first construct an IND-CPA PKE, and then obtain IND-CCA2 KEM and PKE by the same transformation. 
	1.1 Terminology and Notation 
	1.1 Terminology and Notation 
	In this subsection, we introduce a list for terminology and notation used throughout this document. 
	log the logarithm with base 2 
	 the dimension of LWE samples, a positive integer 
	 the number of LWE samples, a positive integer, a power of two 
	 the large modulus, a positive integer, a power of two 
	 the small modulus for rounding, a positive integer, a power of two 
	ℓ a positive integer, the number of secret vectors in case of Lizard primitive,  the number of plaintext slots in case of Lizard primitive 
	ℓ1 a positive integer, the number of secret vectors in case of IND-CCA2 KEM schemes 
	ℓ2 a positive integer, the number of ephemeral secret vectors in IND-CCA2 KEM schemes 
	 a positive integer, the number of plaintext slots in case of IND-CCA2 PKE, the bit-length of shared secret key in case of IND-CCA2 KEM 
	 the Hamming weight of a secret polynomial  
	 the Hamming weight of an ephemeral secret vector r or polynomial  
	_16_LOG_Q 16  log  
	_16_LOG_T 15 
	Z a set 0 1    1
	Z a set 0 1    1
	mod  reduce an integer, a vector, or a matrix modulo  componentwisely 
	mod  reduce an integer, a vector, or a matrix modulo  componentwisely 
	[0] a set 0 1    1
	⌊⌉ rounding function, ⌊⌉ is the nearest integer to the rational number , rounding upwards in case of a tie 
	∥ concatenation operator 
	the transpose of the matrix A 
	 

	∥∥ norm operator, ∥v∥ is 2-norm of the vector v 
	⟨ ⟩ inner product 
	 a component-wise left shift operation 
	 a component-wise right shift operation 
	 a component-wise XOR operation 
	   sampling  from the distribution  
	   sampling  from the set  uniform randomly 
	 the security parameter 
	negl() the negligible function with respect to the contents of negl() 
	 () the uniform distribution over the subset of 1 0 1whose elements contain    number of zeros 
	 

	() the distribution over 1 0 1where each component  satisfies Pr[ = 1] = Pr[ = 1] = /2 and Pr[ = 0] = 1   
	 

	 the uniform distribution over Z 
	 the discrete Gaussian distribution with the parameter  
	 the subset of 1 0 1of which elements have exactly  number of non-zero components,  the set of all possible vectors chosen from  () the subset of 1 0 1of which each column has exactly  number of non-
	 
	ℓ 
	ℓ 

	 
	zero components  Z[]/(+ 1), a ring of polynomials with integer coefficients modulo +1  /, a set of ring elements in  modulo   /, a set of ring elements in  modulo  2 /2, a set of ring elements in  modulo 2 
	 
	 



	2 Security Assumptions and Design Rationale 
	2 Security Assumptions and Design Rationale 
	In this section, we introduce the security assumptions exploited in our schemes, and then explain our design rationale for proposed schemes. 
	2.1 Learning with Errors and Learning with Roundings 
	2.1 Learning with Errors and Learning with Roundings 
	Since Regev [40] introduced the LWE problem, a lot of cryptosystems based on this problem have been proposed relying on its versatility. For an -dimensional vector s  Zand an error distribution  over Z, the LWE distribution  Z is obtained by choosing a 
	 
	LWE 

	 vector a uniformly and randomly from Zand an error  from , and outputting 
	(s) over Z
	StyleSpan
	 

	 
	(a = ⟨a s⟩ + )  Z Z
	 

	 
	The search LWE problem is to find s  Z for given arbitrarily many independent samples (a) from 
	LWE 

	(s). The decision LWE, denoted by LWE(), aims to distinguish the distribution 
	StyleSpan

	LWE 
	StyleSpan

	(s) from the uniform distribution over Z Z with non-negligible advantage, for a fixed 
	StyleSpan
	 

	 s . When the number of samples are limited by , we denote the problem by LWE(). In this paper, we only consider the discrete Gaussian  =  as an error distribution where  is the error rate in (0 1), so  will substitute the distribution  in description of LWE problem, say LWE(). The LWE problem is self-reducible, so we usually omit the key distribution  when it is a uniform distribution over Z.
	StyleSpan

	P
	The hardness of the decision LWE problem is guaranteed by the worst case hardness of the standard lattice problems: the decision version of the shortest vector problem (GapSVP), and the shortest independent vectors problem (SIVP). After Regev [40] presented the quantum reduction from those lattice problems to the LWE problem, Peikert et al. [15, 37] improved the reduction to a classical version for significantly worse parameters; the dimension should be of the size of ( log ). In this case, note that the re
	After the works on the connection between the LWE problem and some lattice problems, some variants of LWE, of which the secret distributions are modified from the uniform distribution, were proposed. In [15], Brakerski et al. proved that the LWE problem with binary secret is at least as hard as the original LWE problem. Following the approach of [15], Cheon et al. [17] proved the hardness of the LWE problem with sparse secret,  the number of non-zero components of the secret vector is a constant. 
	As results of Theorem 4 in [17], the hardness of the LWE problems with (sparse) small secret, LWE ( ()) and LWE (()) for 0  1, are guaranteed by the following theorem. 
	Theorem 1. (Informal) For positive integers     , 0    1 and 0  1, following statements hold: 
	P
	1. If log()+  log  and  , then the LWE ( ()) problem is at least as hard as the LWE problem. 
	10

	(()) 
	 
	1
	1

	2. If (1  ) log +  log  log  and  , the LWE (()) problem 
	2 
	10

	1 is at least as hard as the LWE problem. 
	In [14, 38, 39], to pack a string of plaintexts in a ciphertext, LWE with single secret was generalized to LWE with multiple secrets. An instance of multi-secret LWE is (a ⟨a s1⟩+e1  ⟨a s⟩+e) where s1  s are secret vectors and e1  e are independently chosen error vectors. Using the hybrid argument, multi-secret LWE is proved to be at least as hard as LWE with single secret. 
	-

	The LWR problem was firstly introduced by Banerjee et al. [10] to improve the efficiency of pseudorandom generator based on the LWE problem. Unlikely to the LWE problem, errors in the LWR problem are deterministic so that the problem is so-called a “derandomized” version of the LWE problem. To hide secret information, the LWR problem uses a rounding by a modulus  instead of inserting errors. Then, the deterministic error is created by scaling down from Z to Z. 
	For an -dimensional vector s over Z, the LWR distribution (s) over Z Z is obtained 
	LWR 
	 

	P
	by choosing a vector a from Zuniform randomly, and returning 
	 

	 
	(⌊ ⌉)
	a (⟨a s⟩ mod ) Z Z
	 
	 

	P
	 
	As in the LWE problem, (s) denotes the distribution of  samples from (s); that is 
	LWR 
	LWR 

	contained in Z Z. The search LWR problem are defined respectively as finding secret s just
	 
	StyleSpan

	as same as the search version of LWE problem. In contrary, the decision LWR() problem aims to distinguish the distribution (s) from the uniform distribution over Z Z
	LWR 
	 
	 

	 
	with  instances for a fixed s . 
	In [10], Banerjee et al. proved that there is an efficient reduction from the LWE problem to the LWR problem for a modulus  of super-polynomial size. Later, the follow-up works by Alwen et al. [8] and Bogdanov et al. [12] improved the reduction by eliminating the restriction on modulus size and adding a condition of the bound of the number of samples. In particular, the reduction by Bogdanov et al. works when 2/ is a constant, where  is a bound of errors in the LWE problem,  is the number of samples in both

	2.2 Ring variants of LWE and LWR 
	2.2 Ring variants of LWE and LWR 
	In [33], Lyubashevsky et al. deal with the LWE problem over rings, namely ring-LWE. For positive integers  and , and an irreducible polynomial ()  Z[] of degree , we define the ring  = Z[]/(()) and its quotient ring modulo ,  = Z[]/(()). We denote the polynomial multiplication of  and  in  and  by   . The ring-LWE problem is to distinguish between the uniform distribution and the distribution of (    + )  where  is uniform randomly 
	2 

	P
	chosen polynomial,  is chosen from an error distribution, and  is a secret polynomial. 
	Due to the efficiency and compactness of ring-LWE, many lattice-based cryptosystems are constructed as ring-LWE based, rather than LWE-based. As with the LWE problem, the ring-LWE problem over the ring  is at least as hard as the search version of approximate SVP over the ideal lattices of , in the sense of quantum reduction. 
	The ring variant of LWR is introduced in [10, 12] as an analogue of LWR. In the ring-LWR problem, the vectors chosen from Zare substituted by polynomials in , , the ring-LWR
	 

	P
	instance for a secret polynomial    is 
	(⌊ ⌉)
	 
	 

	       
	 
	where ⌊(/)    ⌉ is obtained by applying the rounding function to each coefficient of (/). The search and decision ring-LWR problems are defined the same way as the LWR problem, but over rings. 
	In [10], Banerjee et al. proved that decision ring-LWR is at least as hard as decision ring-LWE for sufficiently large modulus. Later, reduction from search ring-LWE to search ring-LWR was constructed in overall scope of the modulus [10] when the number of samples is bounded. 

	2.3 Design Rationale 
	2.3 Design Rationale 
	Our first IND-CPA secure PKE scheme simply relies on the hardness assumption of the LWE and LWR problems with particular secret distributions. As explained in Section 2, it is shown that LWE with small secret is still hard to solve if the min-entropy of the secret distribution is sufficiently large. Moreover, the LWR problem is somewhat equivalent to LWE unless we overuse the same secrets to generate samples due to the reduction in the recent work [12]. All these aspects lead us to design the primitives nam
	To give an intuition for the basic algorithms, we describe our Lizard in the case of bit encryption as follows. In the key generation step, we first sample a secret vector s  1 0 1, a random matrix   Z, and an error vector e of which components are expected to be small. 
	StyleSpan
	StyleSpan
	 

	 
	Then output the secret key sk  s, and public key pk  ( b) where b = s + e  Z. Hence, 
	StyleSpan

	P
	the public key is an instance of LWE with the secret vector s. In the encryption step, we sample a sparse signed binary vector r  () with low Hamming weight  (), which is an ephemeral secret of the algorithm. The re-randomization process after calculating (r br) is to adapt the ordinary rounding procedure from the modulus  to lower modulus , without adding auxiliary noises. The resulting ciphertext for  0 1 is 
	StyleSpan
	StyleSpan

	c  (⌊(/)  r⌉ ⌊(/2)   +(/)  br⌉)  Z
	StyleSpan
	StyleSpan
	+1 

	 
	where ⌊⌉ denotes the component-wise rounding of entries to the closest integers, rounding upwards in case of a tie. If both  are power-of-twos, the rounding procedure could be reduced to the two simple steps: addition of /2 and the bitwise shift operation. That is, we “cut off” the least significant bits of each component of the vector (r rb) to return a ciphertext. 
	StyleSpan
	StyleSpan

	The advantages of Lizard can be analyzed (See Section 3.3 in [18]), but we would like to make simple remarks here. Since the recent LWE attack for using the sparse secrets emerges [2], our parameter has been loosened than previous. However, since we use the sparse signed binary secrets or signed binary secrets, we can obtain the record-breaking encryption and decryption speeds which are faster than those of NTRU respectively, despite the weaker assumption for the security. Using LWR in the encryption phase 
	The RLizard CPA secure PKE scheme provides a trade-off between space-efficiency and security, which is of independent interest. In RLizard, a public key is parsed into two structured square matrices modulo  which represent polynomials in , respectively. Hence, the public key size is reduced from (+ℓ) log  to 2 log  compared to Lizard. Let pk =( ). The resulting ciphertext for   2 is 
	  (⌊(/)    ⌉ ⌊(/2)   +(/)    ⌉)  
	2 

	P
	where  is an ephemeral secret in the encryption procedure which is a sparse signed binary polynomial, and  denotes multiplication in . It can be seen that all the operations in encryption are just the same with those in Lizard except that multiplications and additions are held in the polynomial space . 
	-


	2.4 Proposed Schemes 
	2.4 Proposed Schemes 
	We first propose IND-CPA secure encryption schemes: Lizard and RLizard. To avoid an abuse of notations, we call them “Lizard.CPA” and “RLizard.CPA” through the whole document. We convert Lizard.CPA ( RLizard.CPA) into an IND-CCA2 Key Encapsulation Mechanism (KEM) Lizard.KEM ( RLizard.KEM) using a KEM variant of Fujisaki-Okamoto transformation [24, 20, 26]. We also suggest Lizard.CCA ( RLizard.CCA) using the same transformation, combining it with a One-Time Pad (OTP). 
	-
	-



	3 Algorithm Specifications 
	3 Algorithm Specifications 
	3.1 Symmetric primitives 
	3.1 Symmetric primitives 
	In our IND-CCA2 schemes, we need to generate (pseudo-)random numbers and hash outputs. We use the pseudorandom generator randombytes to generate a random bit string of an arbitrary length, which is recommended to use by NIST. We instantiate all the hash functions in this proposal with TupleHash256 considering two main factors: the flexibility in input and output lengths, and the long-term security which comes close to that of AES256. 
	′
	More precisely, we use three hash functions , , and  to achieve the IND-CCA2 security 
	′
	of proposed schemes. The functions  and  are exactly the TupleHash256 with proper input and output lengths, while the function  is not: the output of  is generated from the output of TupleHash256 to be spread following a particular distribution. We specified the exact algorithm to obtain an output of  using TupleHash256 in Section 6. 

	3.2 IND-CPA Public Key Encryption Schemes 
	3.2 IND-CPA Public Key Encryption Schemes 
	In this section and through the whole document, we suggest two kinds of IND-CPA secure PKE schemes called Lizard.CPA and RLizard.CPA. The Lizard.CPA and RLizard.CPA PKEs contain three algorithms in each: a key generation LizardCPAKeyGen, encryption LizardCPAEnc and a decryption LizardCPADec in the former one, and a key generation RLizardCPAKeyGen, encryption RLizardCPAEnc and a decryption RLizardCPADec in the latter one. We assume that certain conditions for inputs hold for the specifications of algorithms,
	3.2.1 The Lizard.CPA Encryption Scheme 
	3.2.1 The Lizard.CPA Encryption Scheme 
	For positive integers , , ℓ, ,  and  such that   and 2, and 0    1, let   (    ℓ  ) through all the algorithms here. 
	LizardCPAKeyGen. 
	Input: The set of public parameters . 
	Output: A key pair consisting of the private key   1 0 1and the public key 
	ℓ 

	(∥)  Z
	(∥)  Z
	(+ℓ) 

	 . 
	Operation: 
	1. Generate a random matrix   Z.
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	2. 
	2. 
	2. 
	Set a secret matrix  := (s0∥∥sℓ1) by sampling each s independently from the distribution (). 
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	3. 
	3. 
	For 0      1 and 0    ℓ  1, sample an integer  , and then set  =( )  Z.
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	4. Compute  :=  +   Z.
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	5. Output the public key pk := (∥)  Z and the private key sk :=   1 0 1. 
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	LizardCPAEnc. 
	Inputs: The set of public parameters , the public key pk =(∥)  Z Z,
	 
	ℓ

	 
	and the message M 0 1. 
	ℓ

	Output: The ciphertext c =(a b)  Z Z.
	 
	ℓ 

	P
	Operation: 
	1. 
	1. 
	1. 
	Generate an  dimensional vector r  from the distribution  () 
	r 


	2. 
	2. 
	Compute a := ⌊(/)  r⌉ Zand b := ⌊(/)  ((/2)  M + r)⌉ Z.
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	3. Output the ciphertext c := (a b)  Z Z.
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	LizardCPADec. 
	Inputs: The set of public parameters , the secret key sk =   1 0 1and the ciphertext c =(a b)  Z Z.
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	P
	Output: The message M 0 1. 
	ℓ

	Operation: 
	1. 
	1. 
	1. 
	Parse the ciphertext c =(a b). 

	2. 
	2. 
	Compute M = ⌊(2/)  (b + a)⌉ Z. 
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	3. 
	3. 
	Output the message M. 



	3.2.2 The RLizard.CPA Encryption Scheme 
	3.2.2 The RLizard.CPA Encryption Scheme 
	For positive integers , , ,  and  such that   and 2, and 0  1, let   (   ) through all the algorithms here. We denote  = Z[]/(+ 1) and
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	 = Z[]/(+ 1). We identify the polynomial  =   ( ) with the vector 
	 
	 

	=0 
	a =(01  1)  Z( Z). Therefore, for a polynomial    ( ) and any 
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	distribution  over Z( Z),   means sampling the vector a following the distribution 
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	 and then identifying the vector with its corresponding polynomial . 
	RLizardCPAKeyGen. 
	Input: The set of public parameters . 
	Output: A key pair containing the private key    and the public key ( )  .
	2

	 
	Operation: 
	1. 
	1. 
	1. 
	Generate a random polynomial   . 

	2. 
	2. 
	Set a secret polynomial  by sampling it from the distribution  ().
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	1
	3. For 0      1, sample an integer  , and then set  =   .
	 

	=0 
	4. 
	4. 
	4. 
	Compute  :=    +   . 

	5. 
	5. 
	Output the public key pk := ( )  and the secret key sk :=   .
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	RLizardCPAEnc. 
	Inputs: The set of public parameters , the public key ( )  , and the message 
	2

	P
	polynomial   2. 
	Output: The ciphertext c =(12)  .
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	P
	Operation: 
	1. Generate a polynomial    by sampling it from the distribution  (). 
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	2. Set :=   , and :=    in . 
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	3. 
	3. 
	Compute 1 := ⌊(/)  ⌉  and 2 := ⌊(/)  ((/2)   + )⌉ . 
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	4. 
	4. 
	Output the ciphertext c := (12). 


	RLizardCPADec. 
	Inputs: The set of public parameters , the secret key sk =   , and the ciphertext c =(12)  .
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	P
	Output: The message   2. 
	Operation: 
	1. 
	1. 
	1. 
	Parse the ciphertext c =(12). 

	2. 
	2. 
	Compute  := ⌊(2/)  (2 + 1  )⌉ 2. 


	4. Output the message . 


	3.3 IND-CCA2 Key Encapsulation Mechanisms 
	3.3 IND-CCA2 Key Encapsulation Mechanisms 
	In this section, we suggest two kinds of IND-CCA2 KEM, Lizard.KEM and RLizard.KEM, which are derived by CCA KEM conversions [26] of Lizard.CPA and RLizard.CPA, respectively. 
	3.3.1 Overview 
	3.3.1 Overview 
	Recently, Hofheinz et al. [26] suggested a modular toolkit of FO transformations [24, 20, 43], which turns an arbitrary weakly (i.e., IND-CPA) secure PKE into a strongly (i.e., IND-CCA2) secure key encapsulation in the (quantum) random oracle model. The transformation has certain merits since it is robust against schemes with nonzero decryption failure probability while the 
	Recently, Hofheinz et al. [26] suggested a modular toolkit of FO transformations [24, 20, 43], which turns an arbitrary weakly (i.e., IND-CPA) secure PKE into a strongly (i.e., IND-CCA2) secure key encapsulation in the (quantum) random oracle model. The transformation has certain merits since it is robust against schemes with nonzero decryption failure probability while the 
	others are not. We utilize their conversion technique in quantum random oracle model for our CPA-secure Lizard and RLizard to achieve the IND-CCA2 KEMs. 

	Basically, the symmetric primitives required in the IND-CCA2 secure Lizard/RLizard KEMs are the same as in the IND-CCA2 secure Lizard PKE. That is, we use three hash functions , 
	′ 
	,  , where  and  output a -bit string where  denotes the bit-length of messages of the CCA schemes and  outputs -bit string(s) with hamming weight , and the OTP here. The one thing changed in Lizard.CPA to obtain Lizard.KEM is that we transform the message vector of the length ℓ to the matrix of the size ℓ1  ℓ2 for some ℓ1 and ℓ2 such that ℓ1  ℓ2 = ℓ, and use the parameters (ℓ1ℓ2) instead of ℓ. Our Lizard.CPA can be re-written in the matrix form as follows: 
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	– The key pair are generated normally as 
	pk  (∥)  Z, sk    1 0 1
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	– For a message  0 1, we first generate an ephemeral secret as a matrix 
	ℓ
	1
	ℓ
	2 

	  () 1 0 1 and calculate 
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	where ⌊⌉ denotes componentwise rounding for whole matrix. 
	We use this form for Lizard.CPA to make the public key size and the ciphertext size somewhat balanced. Actually, the public key size is reduced by a factor ℓ2, and the ciphertext size grows from (+ℓ) log  to (ℓ2 +ℓ) log  in this matrix form of Lizard.CPA. On the other hand, RLizard.KEM is obtained by applying the conversion technique directly to RLizard.CPA. 

	3.3.2 The Lizard.KEM Scheme 
	3.3.2 The Lizard.KEM Scheme 
	For positive integers , , ℓ1, ℓ2, ℓ, , ,  and  such that  , ℓ = ℓ1 ℓ2, and 2, 0    
	 ℓ2 ′ 
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	1, and the hash functions  : 0 10 1,  : 0 1and  : 0 10 1,
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	let   (    ℓ1ℓ2 ℓ        ) through all the algorithms here. 
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	LizardKEMKeyGen. 
	Input: The set of parameters . 
	Output: A key pair containing the private key (  )  1 0 10 1and the 
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	public key (∥)  Z . 
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	Operation: 
	1. Generate a random matrix   Z.
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	2. 
	Set a secret matrix  := (s0∥∥sℓ1) by sampling each s independently from the distribution (1/2). 
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	Generate a random matrix  0 1. 
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	For 0      1 and 0    ℓ1  1, sample an integer  , and then set  =( )  Z.
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	5. Compute  :=  +   Z.
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	6. Output the public key pk :=  and the secret key sk := (  )  1 0 10 1. 
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	LizardKEMEncaps. 
	Inputs: The set of public parameters , public key pk =(∥)  Z Z.
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	Output: The ciphertext  =(12 d)  Z0 1and the shared key 
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	Operation: 
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	1. 
	Generate a random matrix  0 1. 
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	2. 
	Compute the matrix  := () and the vector d :=  (). 
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	Compute 1 := ⌊(/)  ⌉ Zand 2 := ⌊(/)  ((/2)   + )⌉ Z.
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	4. Compute K := (12 d), and output the pair ( =(12 d) K). 
	LizardKEMDecaps. 
	Inputs: The set of public parameters , the public key pk =(∥)  Z Z,
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	the secret key sk =(  )  1 0 10 1, and the ciphertext  =(12 d)  
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	Output: The shared key K 0 1. 
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	Operation: 
	1. Parse the ciphertext  := (12 d). 
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	2. 
	Compute  := ⌊(2/)  (2 + 1)⌉ Z.
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	Compute  := ( ) and d:=  ( ). 
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	4. Compute := ⌊(/)   ⌉ Zand := ⌊(/)  ((/2)   +  )⌉ Z,
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	and set  := (  d). 
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	5. If  ̸, then output K := (12 d ).
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	6. Else, output the shared key K := (12 d ). 
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	3.3.3 The RLizard.KEM Scheme 
	3.3.3 The RLizard.KEM Scheme 
	For positive integers , , , , , and  such that   and 2, 0  1, and the 
	′
	hash functions  :    0 1 2 0 1,  : 2  and  : 2 0 1, let   (         ) through all the algorithms here. 
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	RLizardKEMKeyGen. 
	Input: The set of public parameters . 
	Output: A key pair containing the private key ( )    2 and the public key ( )  .
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	Operation: 
	1. 
	1. 
	1. 
	Generate a random polynomial   . 

	2. 
	2. 
	Set a secret polynomial   (). 

	3. 
	3. 
	Generate a random vector t 0 1and identify it with the polynomial   2.
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	4. For 0      1, sample an integer  , and then set  =   .
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	Compute  :=    +   . 
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	6. 
	Output the public key pk := ( )  and the secret key sk := ( )    2.
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	RLizardKEMEncaps. 
	Inputs: The set of public parameters , the public key pk := ( )  .
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	Output: The ciphertext c := (12 d)     0 1and the shared key K 0 1. 
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	Operation: 
	1. 
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	1. 
	Generate a polynomial   2. 
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	Compute  := () and d :=  (). 
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	Compute 1 := ⌊(/)    ⌉  and 2 := ⌊(/)  ((/2)   +   )⌉ . 
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	Compute K := (12 d). 
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	5. 
	output (12 d K). 


	RLizardKEMDecaps. 
	Inputs: The set of public parameters , the public key pk := ( )  , the secret key 
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	( )    , and the ciphertext c := (12 d)     0 1. 
	StyleSpan

	Output: The shared key K 0 1. 
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	Operation: 
	1. 
	1. 
	1. 
	Parse the ciphertext c := (12 d). 
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	Compute  := ⌊(2/)  (2 +   1)⌉ 2. 
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	3. Compute  := ( ) and d:=  ( ). 
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	= c , then output K = (12 d). 
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	Else, output the shared key K = (12 d ). 
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	3.4 IND-CCA2 Public Key Encryption Schemes 
	3.4 IND-CCA2 Public Key Encryption Schemes 
	In this section, we suggest two kinds of IND-CCA2 public key encryption schemes. We apply a simple conversion for our KEMs to obtain these IND-CCA2 PKEs. The conversion modifies the encapsulation algorithm simply by appending OTP encryption of a message in Zto the key 
	 

	2 
	value of the KEM. Our IND-CCA2 PKE Lizard and RLizard are specified as Lizard.CCA and RLizard.CCA, respectively. 
	3.4.1 The Lizard.CCA Scheme 
	3.4.1 The Lizard.CCA Scheme 
	For positive integers , , ℓ, , ,  and  such that   and 2, 0    1, and 
	′
	the hash functions  : 0 10 1,  : 0 1 and  : 0 10 1, let   (    ℓ        ) through all the algorithms here. 
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	LizardCCAKeyGen. 
	Input: The set of public parameters . 
	Output: A key pair containing the private key   1 0 1and the public key (∥)  
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	Operation: 
	1. Generate a random matrix   Z.
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	2. 
	2. 
	Set a secret matrix  := (s0∥∥sℓ1) by sampling each s independently from the distribution (). 
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	3. 
	For 0      1 and 0    ℓ  1, sample an integer  , and then set  =( )  Z.
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	4. Compute  :=  +   Z.
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	5. Output the public key pk := (∥)  Z and the private key sk :=   1 0 1. 
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	LizardCCAEnc. 
	Input: The set of public parameters , the public key pk =(∥)  Z Z, and 
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	the message M 0 1. 
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	Output: The ciphertext c =(c1 (a b) c3) 0 1 Z0 1.
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	Operation: 
	1. 
	1. 
	1. 
	Generate a random vector δ 0 1. 
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	2. 
	Set c1 := M  (δ)  Zand c3 :=  (δ).
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	Set r := (δ)  1 0 1. 
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	4. Compute a := ⌊(/)  r⌉ Zand b := ⌊(/)  ((/2)  δ + r⌉)  Z.
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	5. Output c =(c1 (a b) c3). 
	LizardCCADec. 
	Input: The set of public parameters , the public key pk =(∥)  Z Z, the 
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	secret key sk =   1 0 1and the ciphertext c =(c1 (a b) c3) 0 1 Z
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	Output: The message M 0 1. 
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	Operation: 
	1. 
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	1. 
	Parse the ciphertext c := (c1 (a b) c3). 
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	2. 
	Compute δ := ⌊(2/)  (b + a)⌉ Z. 
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	3. 
	3. 
	Compute the hash values (δ) and  (δ). 
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	4. 
	4. 
	If c3 ̸(δ), then abort. 
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	5. Else, compute r := (δ), and vectors ⌊(/)  r⌉ Zand ⌊(/)  ((/2)  δ + r)⌉ 
	StyleSpan
	 
	StyleSpan

	 Z. 
	ℓ
	StyleSpan

	6. If (a b) ̸
	=(⌊(/)  r⌉  ⌊(/)  ((/2)  δ + r⌉)), then abort. 
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	7. Else, compute and output the message M := c1  (δ). 

	3.4.2 The RLizard.CCA Scheme 
	3.4.2 The RLizard.CCA Scheme 
	For positive integers , , , ,  and  such that  , and 2, and 0  1, and 
	′
	the hash functions  : 0 1,  : and  : 2 0 1, let  
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	(         ) through all the algorithms here. 
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	RLizardCCAKeyGen. 
	Input: The set of public parameters . 
	Output: A key pair containing the private key    and the public key ( )  .
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	Operation: 
	1. 
	1. 
	1. 
	Generate a random polynomial   . 

	2. 
	2. 
	Set a secret polynomial  by sampling it from the distribution  ().
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	3. For 0      1, sample an integer  , and then set  =   .
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	4. 
	4. 
	4. 
	Compute  :=    +    where the operations are polynomial operations in . 
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	5. 
	Output the public key pk := ( )  and the secret key sk :=   .
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	RLizardCCAEnc. 
	Input: The set of public parameters , the public key pk =( )  , and the message 
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	m 0 1. 
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	Output: The ciphertext c =(c1 c2 c3) 0 1 0 1.
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	Operation: 
	1. 
	1. 
	1. 
	Generate a random polynomial   2. 
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	2. 
	Set c1 := m  () 0 1and c3 :=  (). 
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	Compute  := ()  . 
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	Compute c2 := (⌊(/)    ⌉  ⌊(/)  ((/2)   +   )⌉)  .
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	5. Output the ciphertext c =(c1 c2 c3). 
	RLizardCCADec. 
	Input: The set of public parameters , the public key pk =( )  , the secret key 
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	sk =    and the ciphertext c =(c1 c2 c3) 0 1 0 1.
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	Output: The message m 0 1. 
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	Operation: 
	1. 
	1. 
	1. 
	Parse the ciphertext c := (c1 c2 c3). 

	2. 
	2. 
	Compute   LizardCPADec(sk c2). 

	3. 
	3. 
	Compute the hash values () and  (). 
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	4. 
	4. 
	If c3 ̸(), then abort. 
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	Else, compute  := (), and polynomials ⌊(/)    ⌉  and ⌊(/)  ((/2)   +   )⌉ . 

	6. 
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	If c2 ̸


	=(⌊(/)    ⌉  ⌊(/)  ((/2)   +   )⌉), then abort. 
	7. Else, compute and output the message m := c1  (). 


	3.5 Correctness Analyses 
	3.5 Correctness Analyses 
	The following lemma shows certain condition to make decryption failure probability negligible in . 
	Lemma 1 (Correctness for Lizard.CPA and RLizard.CPA). The Lizard.CPA scheme works correctly (except for the negligible probability) as long as the following inequality holds for the security parameter : 
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	and   /. 
	Proof. Let r be an -dimensional vector sampled from  () in our encryption procedure. The output ciphertext is c  (c1 = ⌊(/)  (r)⌉  c2 = ⌊(/)  ((/2)  m + r)⌉). 
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	Let f1  c (mod /)  Zand f2  c (mod /)  Zbe the vectors satisfying 
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	=(/)   +(/)  (⟨e r⟩ + ⟨s f1⟩)  (/)  f2[] 
	=(/)   + ⌊(/)  (⟨e r⟩ + ⟨s f1⟩)⌉ 
	since f2 =( + )r = f1 + r (mod /). Therefore, the correctness of our scheme is guaranteed if the encryption error is bounded by /4, or equivalently, ⟨e r⟩+⟨s f1⟩ /4/2 with an overwhelming probability. 
	StyleSpan
	StyleSpan
	StyleSpan

	Same proof holds for the RLizard.CPA scheme. ⊓⊔ 
	Decryption failure probabilities of Lizard.CCA (. RLizard.CCA) and Lizard.KEM (. RLizard.KEM) are equal to that of Lizard.CPA (. RLizard.CPA) : 
	Lemma 2 ([26]). If Lizard.CPA is correct with the probability 1  ϵ, then Lizard.CCA and Lizard.KEM are correct except with the probability 1  ϵ in the (quantum) random oracle model. 
	Samely, if RLizard.CPA is correct with the probability 1ϵ, then RLizard.CCA and RLizard.KEM is correct except with the probability 1  ϵ in the (quantum) random oracle model. 


	4 Security Analysis and Recommended parameters 
	4 Security Analysis and Recommended parameters 
	4.1 Security Proofs 
	4.1 Security Proofs 
	4.1.1 IND-CPA Security 
	4.1.1 IND-CPA Security 
	We first argue that Lizard.CPA is IND-CPA secure under the hardness assumptions of the LWE problem and the LWR problem. The following theorem gives an explicit proof of our argument on security. 
	Theorem 2 (Security). The PKE scheme Lizard is IND-CPA secure under the hardness assumption of LWE(()) and LWR+ℓ( ()). 
	-

	M)  Z ZProof. An encryption of M can be generated by adding (0 (/2)  to an encryption of zero, since 2. Hence, it is enough to show that the pair of public information pk =(∥)  LizardCPAKeyGen() and encryption of zero c  LizardCPAEncpk(0) 
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	parameter set   LizardCPASetup(1). 
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	0 = (pk c): pk  LizardCPAKeyGen() c  LizardCPAEncpk(0). 
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	2 = (pk c): pk  Z  c  Z.
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	The public key pk =(∥)  LizardCPAKeyGen() is generated by sampling  instances of LWE problem with ℓ independent secret vectors s1 sℓ (). In addition, the multi-secret LWE problem is no easier than ordinary LWE problem as noted in Section 2.1. Hence, distributions 0 and 1 are computationally indistinguishable under the LWE(()) assumption. 
	-

	Now assume that pk is uniform random over Z . Then pk and c  LizardCPAEncpk(0) together form ( + ℓ) instances of the  dimensional LWR problem with secret r  (). Therefore, distributions 1 and 2 are computationally indistinguishable under the hardness assumption of LWR+ℓ( ()). 
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	As a result, distributions 0 and 2 are computationally indistinguishable under the hardness assumption of LWE(()) and LWR+ℓ( ()), which denotes the IND-CPA security of the PKE scheme. ⊓⊔ 
	As mentioned on Section 2.1, we know that LWE(()) and LWR+ℓ( ()) both have reductions from the original LWE problem, which is already proven to be hard. Therefore, Lizard.CPA has a strong security ground. In case of RLizard.CPA, by the similarity of the construction, we can prove that RLizard.CPA is IND-CPA under the hardness assumption of the ring-LWE problem and ring-LWR problem with our secret distributions. As far as we know, there is no known reduction from worst case hard problems to ring-LWE problem 
	-


	4.1.2 IND-CCA2 Security 
	4.1.2 IND-CCA2 Security 
	Since we obtained the proof for INC-CPA security of Lizard.CPA and RLizard.CPA, we can prove the IND-CCA2 security of Lizard.KEM and RLizard.KEM. We argue that Lizard.KEM and RLizard.KEM achieve tight IND-CCA2 security in the random oracle model, and non-tight IND-CCA2 security in the quantum random oracle model. For IND-CCA2 security in ROM, the 
	′
	hash function  and the hash value d are not necessary. 
	Theorem 3. ([26], Theorem 3.2 and 3.3) For any IND-CCA2 adversary  on Lizard.KEM issuing at most  queries to the decryption oracle,  queries to the random oracle G, and  queries to the random oracle H, there exists an IND-CPA adversary  on Lizard.CPA such that 
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	where  is a security parameter and ϵ is a decryption failure probability of Lizard.CPA and Lizard.KEM. 
	Theorem 4. ([26], Theorem 4.4 and 4.5) For any IND-CCA2 quantum adversary  on Lizard.KEM issuing at most  (classical) queries to the decryption oracle,  queries to the quantum random oracle G,  queries to the quantum random oracle H, and  queries to the quantum random 
	′ 
	oracle H, there exists an IND-CPA quantum adversary  on Lizard.CPA such that 
	′
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	where ϵ is a decryption failure probability of Lizard.CPA and Lizard.KEM. 
	Since Theorem 3 and 4 are using Lizard.CPA as an IND-CPA secure block to prove the IND-CCA2 security of Lizard.KEM, we can easily convert them into the theorems using RLizard.CPA to prove RLizard.KEM is IND-CCA2 secure. From the similarity of Lizard.KEM and RLizard.KEM, since Lizard.CCA and RLizard.CCA are simply appending OTP encryption of a message in Zto the key value of the KEM, we can apply 
	 

	2 
	Theorem 3 and Theorem 4 with slight modification. Therefore, Lizard.CCA and RLizard.CCA are also IND-CCA2 secure. 


	4.2 Parameter Selection 
	4.2 Parameter Selection 
	In this section, we analyze the parameter conditions to provide conservative security against known attacks. To do that, we survey all known typical attacks against LWE such as exhaustive search, distinguishing attack, embedding attack, BKW attack [3, 4, 21, 28], etc. Since the LWE problems used in our scheme publish a limited number of samples, it suffices to consider the attacks using lattice basis reduction algorithm. We plugged the BKZ lattice basis reduction algorithm [16, 42] in the attacks, which out
	– 
	– 
	– 
	One can reduce the LWE problem to the Short Integer Solution (SIS) problem. The distinguishing attack analyzed in [34, 41] follows this strategy, which is extended to the dual attack. 
	-


	– 
	– 
	Regarding LWE as the Bounded-Distance Decoding (BDD) problem, one can reduce it to unique-SVP (uSVP). The embedding attack analyzed in [5, 32] follows this strategy, which is extended to the primal attack. 

	– 
	– 
	There are various techniques to adapt the above two strategies for the small secret variants of LWE, e.g. the modulus switching [22], the Bai and Galbraith’s rescaling technique for the embedding attack [9], and the BKW style combinatorial approach to the dual attack on LWE [2]. 
	-



	Assembling all methods, we concluded that the dual attack with combinatorial apprach [2] and the primal attack revisited in [1] are the best attacks against the LWE instances in our setting. 
	We recall the strategies for the attacks against decisional LWE in the following subsections. We also observe that there is no difference between LWE and LWR in the attack contexts. Actually, an instance of the LWR problem can be simply translated into an LWE instance. We would adjust the best attacks against LWE to LWR. 
	Remark 1. We mainly focus on attacks for LWE and LWR rather than ring-LWE and ring-LWR because we believe that the best attacks against RLizard.KEM and RLizard.CCA are the same attacks on standard lattices where the polynomials are seen as matrices. Hence, we additionally considered attacks against LWE( ()) for analysis of ring based schemes. 
	4.2.1 Known Attacks on LWE and LWR 
	4.2.1 Known Attacks on LWE and LWR 
	In this subsection, we analyze the conditions to make the LWE problem secure against the best attacks, and adjust them to the LWR problem. We achieve the required short vector by running the BKZ algorithm for the target lattice: if Λ is a target lattice of dimension , then the norms of the shortest vectors in the output of the BKZ algorithm is approximately 
	∥b1∥ =  det(Λ) 
	 
	1/ 

	where  converges to a constant rapidly as  grows. This , called root Hermite factor, is used to measure the security of lattice problems. In other words, the runtime of the BKZ algorithm to achieve a given root Hermite factor in large dimension ( 200) is determined heuristically by . In analysis of each attack, for calculating the attack complexity, it suffices to find a condition for  which makes the attack successful. 
	We first describe and analyze the primal and dual attacks for the short secret variants of LWE, then transform the LWR instances into the LWE instances to apply the same attacks. These analyses show the relation between parameters and root Hermite factor . 
	Dual Attack. We are given ( b)  Z either from LWE(), where the standard deviation of  is  ( is either  () or ()), or from . In the original dual attack, an attacker constructs a lattice 
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	Λ= (x y)  Z Z: x = y(mod ) 
	 
	 
	 
	 

	that is the orthogonal lattice of the matrix (∥) modulo . One can find a short vector v =(x y) in Λ using BKZ and then check if ⟨x b⟩ (mod ) is small or not. If ( b) is an LWE() instance with secret s and ⟨x b⟩ is less than  in Z, then ⟨x b⟩ = ⟨y s⟩ + ⟨x e⟩ behaves as a Gaussian, otherwise it is distributed uniformly. Hence, if the attacker can find and collect short vectors v =(x y) in Λ such that ⟨x b⟩ , then the attacker would solve the distinguish problem. 
	Since the secret s is a (sparse) signed binary vector, the term ⟨y s⟩ is somewhat smaller than ⟨x e⟩. From this point, a tweaked strategy for this attack when the variances of the components in the secret vector s are significantly smaller than those of the error vector e arises as follows: We consider a weighted lattice 
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	 =  
	 
	2

	  
	P
	Let ˆ= / =  . The lattice Λ has the dimension ( + ) and the volume ˆ. Hence, the BKZ algorithm outputs a short vector v =(x y ) of size ∥v∥  (ˆ) which 
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	can be reduced down to 2when + = . Then ⟨x b⟩ = ⟨ys⟩+⟨x e⟩ is distributed as a Gaussian centered around zero and of standard deviation  = ∥v∥ (/ 2) by central limit theorem (CLT). If 2 , then ⟨x b⟩ can be distinguished from the uniform 
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	distribution modulo  with advantage about [6]. Therefore, the LWE() problem is 
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	Example 1. In case that s is drawn from the distribution  (), ˆ=  . If s is from the distribution (), then ˆ= 2  . Albrecht’ s combinatorial attack [2] for the small or sparse secret can be also applied in these cases so that we propose our parameters according to our attack combined with the combinatorial strategy. 
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	Primal Attack. The key idea of the primal attack is the reduction from LWE to unique-SVP over a special lattice generated by a LWE instance. If the gap between 1 and 2 of this lattice is large enough, an attacker may find the shortest vector using the BKZ algorithm. 
	For a given LWE( (
	For a given LWE( (
	)) instance ( b = s+e)  Z, construct the lattice 
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	with the unique shortest vector (s e 1). As with the case of dual attack, we consider the weighted lattice 
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	for the constant  =()/ , which contains the unique shortest vector (s e 1). Let ˆ= / =. Since the lattice Λ has the dimension  +  +1 and the volume 
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	for a constant 0   1. To minimize the complexity, an attacker may choose  +  = 
	log 
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	which yields ˆm+n =2. Therefore, the LWE() problem is secure against 
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	where ˆ=( 2   ) and ˆ= 2  . 
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	The constant  is a constant that can be experimentally determined. For example, Gama and Nguyen [25] and Albrecht et al. [5] estimated  within the range [0.18, 0.48] for some special lattices. Addressing the recent analysis in [1] for the primal attack, we concluded that the dual attack with BKW style combinatorial strategy is the best attack in our setting. 
	Dual and Primal attacks on LWR. Now we return to the LWR problem. Given an LWR instance ( b = ⌊(/)  r⌉)  Z Z,
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	 b =  r = r + t 
	  
	where t  (/2 /2]. The rounding error t heuristically follows an uniform random distribution on (/2 /2]. Therefore, in the view of attacker, the transformed instance ( (/)  b) can be regarded as an LWE instance, and we apply the attacks on LWE to ( (/)  b). 
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	Since the variance of uniform random variable on (/2 /2] is (/12), the parameter 
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	ditions to make LWR secure against the attacks can be obtained by substituting  with /6. The following inequalities are the conditions for LWR+ℓ( ()) to be secure against the primal and dual attacks, respectively. 
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	We concluded that the dual attack in [1] adjusted to our strategy is the best attack for LWR with sparse signed binary secret. 
	for reconciliation of variances  and ()/(2) of    and  , respectively. 
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	4.2.2 The BKZ Complexity 
	4.2.2 The BKZ Complexity 
	In this subsection, we explain how to set the root Hermite factor  such that the attack complexities for given  exceed 2, where  is the security parameter. We follow the strategies to measure the BKZ complexity in NewHope [7] and Frodo [13]. We review the relations among the root Hermite factor , the block size , and the time complexity  for the BKZ algorithm in their paper as follows. 
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	– (pessimistic)  can be estimated as 2(about 2CPU cycles), where  is some constant. This is an approximate lower bound of the complexity for a single SVP calculation using the sieve algorithm [11, 29–31]. 
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	 /2)
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	From this, if we fix the constant , we can calculate  from a given  . The best known constant is achieved by applying Grover’s quantum search algorithm to the sieve algorithms [29, 31], which sets  =0265. 
	Hence, to make the attack using the BKZ algorithm as in Section 4.2.1 infeasible for security parameters  = 128,  = 192 and  = 256, we should set the parameters such that the attack is successful only when   100367,   100270, and   100216, respectively. 

	4.2.3 Recommended Parameters 
	4.2.3 Recommended Parameters 
	We chose parameter sets to achieve an infeasible attack complexity in following order: First, bound  according to the time complexity  of desired security category, as seen in Section 4.2.2; Second, adjust parameters to make the best attack successful. We also chose parameters to achieve negligible decryption failure probability, in other words as mentioned on Lemma 1, each parameter set should achieve decryption failure probability less than 2, where  is the security parameter. 
	StyleSpan

	Note on Power-of-Twos. In particular, we set  and  as power-of-twos. In the LWE and LWR 
	′
	attacks, one can reduce the modulus  to   via modulus switching first and then apply arbitrary attack scenarios. Especially since we use the binary (and even sparse) secrets, the benefits in the considered attacks obtained by the modulus switching overwhelms others with strategies for specific ’s as far as we know. Hence, any particular choice for modulus  does not harm the security. Therefore, we set  and  as power-of-twos to make the rounding procedures efficiently done through the bitwise shift process. 
	-

	We chose 16 parameter sets: KEM_CATEGORYx_Ny for Lizard.KEM and CCA_CATEGORYx_Ny for Lizard.CCA, where (x,y) (1,536), (1,663), (3,816), (3,952), (5,1088), (5,1300), and four sets 
	for both RLizard.KEM and RLizard.CCA called RING_CATEGORY1, RING_CATEGORY3_N1024, RING_CATEGORY3_N2048, and RING_CATEGORY5. We present the decryption failure probabilitiesand attack complexities of LWE and LWR on our parameter sets in Table 1. The parameter sets are presented below Table 1. 
	-
	1 

	Table 1: Decryption failure rate and attack complexities of each parameter set for the corresponding scheme: ϵ is the decryption failure probability and LWE and LWR are the time complexity of the best known attacks of LWE and LWR, respectively. The parameter sets RING_CATEGORY1, RING_CATEGORY3_N1024, RING_CATEGORY_N2048, RING_CATEGORY5 can be used for both RLizard.CCA and RLizard.KEM. 
	-

	Parameter Set 
	Parameter Set 
	Parameter Set 
	log2 ϵ 
	log2 LWE 
	log2 LWR 

	KEM_CATEGORY1_N536 CCA_CATEGORY1_N536 
	KEM_CATEGORY1_N536 CCA_CATEGORY1_N536 
	-159.212 
	133 
	130 

	KEM_CATEGORY1_N663 CCA_CATEGORY1_N663 
	KEM_CATEGORY1_N663 CCA_CATEGORY1_N663 
	-153.500 
	131 
	147 

	KEM_CATEGORY3_N816 CCA_CATEGORY3_N816 
	KEM_CATEGORY3_N816 CCA_CATEGORY3_N816 
	-304.467 
	193 
	195 

	KEM_CATEGORY3_N952 CCA_CATEGORY3_N952 
	KEM_CATEGORY3_N952 CCA_CATEGORY3_N952 
	-337.189 
	203 
	195 

	KEM_CATEGORY5_N1088 CCA_CATEGORY5_N1088 
	KEM_CATEGORY5_N1088 CCA_CATEGORY5_N1088 
	-381.331 
	266 
	257 

	KEM_CATEGORY5_N1300 CCA_CATEGORY5_N1300 
	KEM_CATEGORY5_N1300 CCA_CATEGORY5_N1300 
	-332.810 
	264 
	291 

	RING_CATEGORY1 
	RING_CATEGORY1 
	-188.248 
	153 
	147 

	RING_CATEGORY3_N1024 
	RING_CATEGORY3_N1024 
	-245.897 
	195 
	195 

	RING_CATEGORY3_N2048 
	RING_CATEGORY3_N2048 
	-305.684 
	304 
	291 

	RING_CATEGORY5 
	RING_CATEGORY5 
	-305.684 
	318 
	348 


	Parameter Sets of Lizard.CCA 
	CCA_CATEGORY1_N536 Security Classification : Category 1  = 536  = 1024  = 2048  = 512 ℓ = 256  = 256 _16_LOG_Q = 5  = 1/2  = 140 CDF_LENGTH = 9 CDF_TABLE = 158 148 118 81 48 22 11 4 1 
	One can obtain the exact decryption failure rates, respectively, running a Python code reported at 
	1 
	github: https://github.com/swanhong/LizardError. 

	CCA_CATEGORY1_N663 Security Classification : Category 1  = 663  = 1024  = 1024  = 256 ℓ = 256  = 256 _16_LOG_Q = 6  = 1/4  = 128 CDF_LENGTH = 4 CDF_TABLE = 918 488 74 3 CCA_CATEGORY3_N816 Security Classification : Category 3  = 816  = 1024  = 2048  = 512 ℓ = 384  = 384 _16_LOG_Q = 5  = 1/2  = 200 CDF_LENGTH = 5 CDF_TABLE = 304 231 100 25 4 CCA_CATEGORY3_N952 Security Classification : Category 3  = 952  = 1024  = 2048  = 512 ℓ = 384  = 384 _16_LOG_Q = 5  = 1/4  = 200 CDF_LENGTH = 6 CDF_TABLE = 244 204 120 49
	CCA_CATEGORY5_N1088 Security Classification : Category 5  = 1088  = 2048  = 4096  = 1024 ℓ = 512  = 512 _16_LOG_Q = 4  = 1/2  = 200 CDF_LENGTH = 11 CDF_TABLE = 264 249 214 165 115 72 41 21 10 4 CCA_CATEGORY5_N1300 Security Classification : Category 5  = 1300  = 2048  = 2048  = 512 ℓ = 512  = 512 _16_LOG_Q = 5  = 1/4  = 200 CDF_LENGTH = 12 CDF_TABLE = 526 499 427 330 230 144 82 42 19 8 3 1 
	Parameter Sets of Lizard.KEM 
	KEM_CATEGORY1_N536 Security Classification : Category 1  = 536  = 1024  = 2048  = 512 ℓ1 = 16 ℓ2 = 16  = 256 _16_LOG_Q = 5  = 1/2  = 140 CDF_LENGTH = 9 CDF_TABLE = 158 148 118 81 48 22 11 4 1 
	KEM_CATEGORY1_N663 Security Classification : Category 1  = 663  = 1024  = 1024  = 256 ℓ1 = 16 ℓ2 = 16  = 256 _16_LOG_Q = 6  = 1/4  = 128 CDF_LENGTH = 4 CDF_TABLE = 918 488 74 3 KEM_CATEGORY3_N816 Security Classification : Category 3  = 816  = 1024  = 2048  = 512 ℓ1 = 24 ℓ2 = 16  = 384 _16_LOG_Q = 5  = 1/2  = 200 CDF_LENGTH = 5 CDF_TABLE = 304 231 100 25 4 KEM_CATEGORY3_N952 Security Classification : Category 3  = 952  = 1024  = 2048  = 512 ℓ1 = 24 ℓ2 = 16  = 384 _16_LOG_Q = 5  = 1/4  = 200 CDF_LENGTH = 6 CD
	KEM_CATEGORY5_N1088 Security Classification : Category 5  = 1088  = 2048  = 4096  = 1024 ℓ1 = 32 ℓ2 = 16  = 512 _16_LOG_Q = 4  = 1/2  = 200 CDF_LENGTH = 11 CDF_TABLE = 264 249 214 165 115 72 41 21 10 4 KEM_CATEGORY5_N1300 Security Classification : Category 5  = 1300  = 1024  = 2048  = 512 ℓ1 = 32 ℓ2 = 16  = 512 _16_LOG_Q = 5  = 1/4  = 200 CDF_LENGTH = 12 CDF_TABLE = 526 499 427 330 230 144 82 42 19 8 3 1 
	Parameter Sets of RLizard.CCA and RLizard.KEM 
	RING_CATEGORY1 Security Classification : Category 1  = 1024  = 1024  = 256  = 256 _16_LOG_Q = 6  = 128  = 128 CDF_LENGTH = 4 CDF_TABLE = 382 247 67 7 
	RING_CATEGORY3_N1024 Security Classification : Category 3  = 1024  = 2048  = 512  = 384 _16_LOG_Q = 5  = 256  = 264 CDF_LENGTH = 6 CDF_TABLE = 560 443 219 68 13 RING_CATEGORY3_N2048 Security Classification : Category 3  = 2048  = 2048  = 512  = 384 _16_LOG_Q = 5  = 184  = 164 CDF_LENGTH = 8 CDF_TABLE = 816 720 496 266 111 36 9 2 RING_CATEGORY5 Security Classification : Category 5  = 2048  = 4096  = 1024  = 512 _16_LOG_Q = 4  = 256  = 256 CDF_LENGTH = 10 CDF_TABLE = 310 289 233 162 98 51 23 9 3 1 



	5 Implementation Aspects and Performance Figures 
	5 Implementation Aspects and Performance Figures 
	In this chapter, we describe and estimate performance and resource requirements of implementations on Intel x64 running Linux supporting the GCC compiler and on FPGA hardware. 
	-

	5.1 Software Implementation 
	5.1 Software Implementation 
	This section gives general implementation aspects and computational efficiencies of Lizard.KEM, RLizard.KEM, Lizard.CCA, and RLizard.CCA. We provide a reference and an optimized implementation in ANSI C, compiled with the GCC compiler. 
	-

	For Lizard.KEM and RLizard.KEM, the files Lizard.c and RLizard.c are common for implementing the NIST API, including the functions crypto_kem_keypair, crypto_kem_enc and crypto_kem_dec. For Lizard.CCA and RLizard.CCA, the files Lizard.c and RLizard.c are common for implementing the NIST API, including the functions crypto_encrypt_keypair, crypto_encrypt and crypto_encrypt_open. To meet IND-CCA2 security, Lizard.KEM, RLizard.KEM, Lizard.CCA and RLizard.CCA should be used in public key pk as well as secret ke
	-
	-

	To use various parameters in one implementation, we used the directing sentences #if defined and #ifdef. Therefore, we provide various parameters in file params.h. To use each parameter, you must use it by changing the annotation in the file params.h. 
	Additional files are provided file randombytes.c to use random values, file sha512.c to use the hash function and library, and file libkeccak.a of TupleHash256 to use variable length output. 
	5.1.1 Data Operations 
	5.1.1 Data Operations 
	Modulus Operation. For   Z , rather than storing itself, we store the value ( _16_LOG_Q) where the data type of  is uint16_t, , the data is stored as the most significant log  bits in the 16-bit data space. In other words, we identify Z with the subspace of 16-bit data space of which the components are all zero except the most significant log  bits. 
	If vectors or matrices (. polynomials) are defined over Z, then the above data storage strategy is applied to each of the components ( coefficient). 
	Rounding Operation. In this proposal, there are rounding operations ⌊(/)  ⌉ over Z for some   Z and ⌊(2/)  ⌉ over Z2 for some   Z. Note that  is stored as the most significant log  bits in the 16-bit data space, and the rounding output ⌊(/)   +05⌋ Z should be stored as the most significant log  bits in the same space. Therefore, the operation ⌊(/)  ⌉ over Z is done by 
	( + RD_ADD)  RD_AND 
	where RD_ADD =2/ and RD_AND =2 2/. 
	15
	16 
	16

	For example, when  = 512 and  = 2048,  can be represented as 0110 1000 1100 0000, RD_ADD =2/2=2will be 0000 0000 0100 0000 and RD_AND =2 2/2=2will be 1111 1111 1000 0000. The operation ( + RD_ADD)  RD_AND will be as follows. 
	15
	9 
	6 
	16 
	16
	9 
	6 

	0110 1000 1100 0000 
	+ 0000 0000 0100 0000 0110 1001 0000 0000 
	0110 1001 0000 0000 
	∧ 1111 1111 1000 0000 
	0110 1001 0000 0000 
	The rounding operation ⌊(2/)  ⌉ over Z2 is done in exactly the same way. 

	5.1.2 Data Generations 
	5.1.2 Data Generations 
	Matrix and Vector Generations. As we generate matrices and vectors uniform randomly from the finite set Z, or following distributions, we introduce the algorithms for these random 
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	generations as follows. First, we introduce how to generate the random matrix in Zwith the pseudorandom 
	 

	 
	generator randombytes(). To achieve automatic reduction of a matrix modulo , we set the data type of elements of a matrix as uint16_t, and left shift them _16_LOG_Q bits. 
	   Z: 
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	-For 1     and 1    , randomly generate the ( )-th component  of  with 
	randombytes() where the data type of  is uint16_t -For 1     and 1    , compute  _16_LOG_Q -Output the matrix  
	Next, we explain the algorithm of sampling the vector following the distribution (1/2) (. (1/4)). The sampling is used for secret key generation of our Lizard.CCA and Lizard.KEM. 
	 s (1/2) : 
	-For 0      1, randomly generate two bits   0 1 with randombytes() -Set  =1 if  =0 and  =1,  = 1 if  =  =0, and  =0 otherwise, where  is an -th component of s 
	 s (1/4) : 
	-For 0      1, randomly generate three bits    0 1 with randombytes() -Set  =1 if  =  =0 and  =1,  = 1 if  =  =  =0, and  =0 otherwise, where  is an -th component of s 
	In our Lizard.CPA, we generate an ephemeral secret vector r  following the distribution  () in the encryption phase. When generating r, we additionally generate the encoded values of r; an array r_idx of  integers in [0 1] which denote indices of non-zero components of r, and an integer neg_start in [0 1] which denotes a starting index of 1. If  neg_start, then the r_idx[i]-th component of r is 1, and if   neg_start, the r_idx[i]-th component of r is 1. We note that a vector r and a tuple of an array and an
	r 

	With this array encoding, we can evaluate the multiplication r  Zof a matrix   Z
	 
	 

	P
	and the vector r since r_idx contains the index information of non-zero components of r. To be precise, we only read the r_idx[i]-th column of  for 0    ; add a if  neg_start and subtract a if   neg_start. That is, the number of for loops in the algorithm reduces from  to . 
	 r  () 
	-Set  =0 and r as a zero vector -Generate a random number   [0  1] and a random bit bit 0 1 with randombytes() -If  =0, then set  =2  bit  1 and  += 1 -Repeat the above algorithm until    
	 Generation of r_idx 
	-Set neg_start =0 and back_position =  -For 0      1, set r_idx[neg_start] =  and neg_start += 1 if  =1, and r_idx[back_position] =  and back_position =1 if  = 1 -Repeat the above algorithm until neg_start != back_position 
	In Lizard.KEM, RLizard.KEM, Lizard.CCA, and RLizard.CCA, the ephemeral secret vector r  (. matrix   ) should be deterministically generated by a Hash function with 
	r 
	ℓ 

	r
	some input. Therefore, rather than using randombytes() whenever it is needed, we generate sufficiently long hash output at once and divide it to several blocks. 
	-

	 r  (input) 
	-Get some input vector input, and compute the long hash value Hash = TupleHash256(input) -Set  =0 and r as a zero vector -Compute  = Hash %  and left shift Hash for log  bits -Compute bit = Hash % 2 and left shift Hash for a bit -If  =0, then set  =2  bit  1 and  += 1 -Repeat the above algorithm until    
	The above algorithm r  (input) is a case of Lizard.CCA and RLizard.CCA. For Lizard.KEM and RLizard.KEM, we sample the matrix   (input) where each column vector of  is sampled from the above algorithm. 
	In the key generation phases of our schemes, we sample errors through the inversion sampling which uses a precomputed table for a discrete cumulative density function (CDF) over a small interval. We name process the Sample_DG() algorithm. The output distribution from this algorithm is a discrete bounded symmetric distribution which is very close to the discrete Gaussian distribution with respect to the Rényi divergence. More precisely, we preset a positive integer array CDF_TABLE of the length TABLE_LENGTH 
	-

	 sample  Sample_DG() 
	-Generate random numbers rnd  [0 CDF_TABLE[TABLE_LENGTH -1]] and sign 0 1 with 
	randombytes() where the data type of both numbers is uint16_t -Find the smallest integer sample  [0 TABLE_LENGTH  1] such that rnd  CDF_TABLE[sample] -Compute sample = ((sign)  sample)+ sign, , flip sample if sign =0 -Output sample 
	Polynomial Generations. As a polynomial  corresponds to a vector a =(01  1) bijectively, we can match the polynomial ring  with the vector space Z, and the quotient polynomial ring  with the vector space Z. Therefore, we may regard the notation of a polynomial generation 
	-
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	P
	as a vector generation. 
	1
	∑ 
	 =    a =(01  1)  Z=0 
	 
	 

	1
	∑ 
	 =    a =(01  1)  Z
	 
	 

	 =0 
	From the vector-polynomial correspondence, we can regard polynomial generation as vector generation without specifying the bijection all the time. For example, we introduce the secret polynomial generation algorithm as follows: 
	-

	   () 
	-Set  =0 and s as a zero vector -Generate a random number   [0  1] and a random bit bit 0 1 with randombytes() -If  =0, then set  =2  bit  1 and  += 1 -Repeat the above algorithm until    -Identify the vector s with the polynomial  thorough the vector-polynomial correspondence 
	We also generate encoded values of , an array s_idx of  integers in [0] and an integer neg_start. 
	 Generation of s_idx 
	-Set neg_start =0 and back_position =  -For 0      1, set s_idx[neg_start] =  and neg_start += 1 if  =1, and s_idx[back_position] =  and back_position =1 if  = 1 -Repeat the above algorithm until neg_start != back_position 

	5.1.3 Computational Efficiency 
	5.1.3 Computational Efficiency 
	We report an optimized version of implementation tested under the following platform. 
	Linux: PC running Linux Ubuntu 14.04.3 LTS x86_64 
	CPU: Intel Xeon E5-2640 v3 at 2.60GHz, Octa core 
	Compiler: GCC 4.8.4 using gcc -O3 -fomit-frame-pointer -msse2avx -mavx2 -march=native -std=c99 
	For Lizard.KEM, RLizard.KEM, Lizard.CCA and RLizard.CCA, the parameter set supplies 128-bit, 192-bit and 256-bit security against all known quantum attacks. We present the parameter sets for various cases. 
	-

	Operations 
	Operations 
	Operations 
	Parameter 
	SharedSecret (bytes) 
	Ciphertext (bytes) 
	Public Key (bytes) 
	Private Key (bytes) 

	Lizard.KEM 
	Lizard.KEM 
	KEM_CATEGORY1_N536 
	32 
	17 696 
	1 130 496 
	8 608 

	KEM_CATEGORY1_N663 
	KEM_CATEGORY1_N663 
	32 
	10 896 
	1 390 592 
	10 640 

	KEM_CATEGORY3_N816 
	KEM_CATEGORY3_N816 
	48 
	26 928 
	1 720 320 
	19 632 

	KEM_CATEGORY3_N952 
	KEM_CATEGORY3_N952 
	48 
	31 280 
	1 998 848 
	22 896 

	KEM_CATEGORY5_N1088 
	KEM_CATEGORY5_N1088 
	64 
	35 904 
	4 587 520 
	34 880 

	KEM_CATEGORY5_N1300 
	KEM_CATEGORY5_N1300 
	64 
	42 688 
	2 727 936 
	41 664 

	RLizard.KEM 
	RLizard.KEM 
	RING_CATEGORY1 
	32 
	2 080 
	4 096 
	385 

	RING_CATEGORY3_N1024 
	RING_CATEGORY3_N1024 
	48 
	4 144 
	4 096 
	641 

	RING_CATEGORY3_N2048 
	RING_CATEGORY3_N2048 
	48 
	8 240 
	8 192 
	625 

	RING_CATEGORY5 
	RING_CATEGORY5 
	64 
	8 256 
	8 192 
	769 


	Table 2: Size of Lizard.KEM and RLizard.KEM 
	31 
	Operations 
	Operations 
	Operations 
	Parameter 
	KeyGen (ms) 
	Enc (ms) 
	Dec (ms) 

	TR
	KEM_CATEGORY1_N536 
	75895 
	0324 
	0351 

	TR
	KEM_CATEGORY1_N663 
	92566 
	0362 
	0403 

	Lizard.KEM 
	Lizard.KEM 
	KEM_CATEGORY3_N816 
	119728 
	0590 
	0666 

	KEM_CATEGORY3_N952 
	KEM_CATEGORY3_N952 
	138215 
	0676 
	0794 

	TR
	KEM_CATEGORY5_N1088 
	306368 
	0846 
	0905 

	TR
	KEM_CATEGORY5_N1300 
	183198 
	0826 
	0896 

	TR
	RING_CATEGORY1 
	0458 
	0040 
	0044 

	RLizard.KEM 
	RLizard.KEM 
	RING_CATEGORY3_N1024 
	0519 
	0077 
	0088 

	RING_CATEGORY3_N2048 
	RING_CATEGORY3_N2048 
	0889 
	0102 
	0119 

	RING_CATEGORY5 
	RING_CATEGORY5 
	0933 
	0137 
	0161 


	Table 3: Performance of Lizard.KEM and RLizard.KEM 
	Operations 
	Operations 
	Operations 
	Parameter 
	Plaintext (bytes) 
	Ciphertext (bytes) 
	Public Key (bytes) 
	Private Key (bytes) 

	Lizard.CCA 
	Lizard.CCA 
	CCA_CATEGORY1_N536 
	32 
	1 648 
	1 622 016 
	137 216 

	CCA_CATEGORY1_N663 
	CCA_CATEGORY1_N663 
	32 
	983 
	1 882 112 
	169 728 

	CCA_CATEGORY3_N816 
	CCA_CATEGORY3_N816 
	48 
	2 496 
	2 457 600 
	313 344 

	CCA_CATEGORY3_N952 
	CCA_CATEGORY3_N952 
	48 
	2 768 
	2 736 128 
	365 568 

	CCA_CATEGORY5_N1088 
	CCA_CATEGORY5_N1088 
	64 
	3 328 
	6 553 600 
	557 056 

	CCA_CATEGORY5_N1300 
	CCA_CATEGORY5_N1300 
	64 
	3 752 
	3 710 976 
	665 600 

	RLizard.CCA 
	RLizard.CCA 
	RING_CATEGORY1 
	32 
	2 208 
	4 096 
	257 

	RING_CATEGORY3_N1024 
	RING_CATEGORY3_N1024 
	48 
	4 272 
	4 096 
	513 

	RING_CATEGORY3_N2048 
	RING_CATEGORY3_N2048 
	48 
	8 496 
	8 192 
	369 

	RING_CATEGORY5 
	RING_CATEGORY5 
	64 
	8 512 
	8 192 
	513 


	Table 4: Size of Lizard.CCA and RLizard.CCA 
	Operations 
	Operations 
	Operations 
	Parameter 
	KeyGen (ms) 
	Enc (ms) 
	Dec (ms) 

	TR
	CCA_CATEGORY1_N536 
	156320 
	0031 
	0034 

	TR
	CCA_CATEGORY1_N663 
	176570 
	0032 
	0036 

	Lizard.CCA 
	Lizard.CCA 
	CCA_CATEGORY3_N816 
	250555 
	0052 
	0064 

	CCA_CATEGORY3_N952 
	CCA_CATEGORY3_N952 
	275555 
	0057 
	0072 

	TR
	CCA_CATEGORY5_N1088 
	663879 
	0062 
	0086 

	TR
	CCA_CATEGORY5_N1300 
	392828 
	0071 
	0101 

	TR
	RING_CATEGORY1 
	0449 
	0036 
	0039 

	RLizard.CCA 
	RLizard.CCA 
	RING_CATEGORY3_N1024 
	0513 
	0057 
	0075 

	RING_CATEGORY3_N2048 
	RING_CATEGORY3_N2048 
	0875 
	0078 
	0093 

	RING_CATEGORY5 
	RING_CATEGORY5 
	0920 
	0108 
	0135 


	Table 5: Performance of Lizard.CCA and RLizard.CCA 
	32 
	The code uses only plain C instructions, without assembly nor SIMD instructions. For optimized speed, we used the loop fusion and loop unrolling methods. In optimized implementation, the code performs addition and subtraction operations to reduce the number of multiplication operations. For example, the optimized code performs the operation using r_idx instead of r. 
	On the platform above, we have presented the required space of Lizard.KEM and RLizard.KEM in Table 2 and the timing results in Table 3. We have also presented the required space of Lizard.CCA and RLizard.CCA in Table 4 and the timing results in Table 5. A certain amount of error is possible in Table 3 and Table 5 when implementing Lizard.KEM, RLizard.KEM, Lizard.CCA and RLizard.CCA. 
	-



	5.2 Hardware Implementation 
	5.2 Hardware Implementation 
	In this section, we propose the hardware architecture for Lizard Public Key Encryption and report the performance of the FPGA, which we implemented using Lizard.CPA and RLizard.CPA. These two Lizard modules mainly consist of a memory part and an addition part. Since the portion of the addition part is very small, while that of the memory part is very large, we decided to store only the data needed by calculation in the memory. Therefore, the operation of the module includes the data input/output process. 
	The advantage of Lizard PKE from the hardware implementation viewpoint is the simple calculation and ease of resource sharing. Since the  value is 2, setting the register Sum for storage as 10-bit only has the effect of becoming a modulus by itself. Since the key calculation is an accumulation that is a repetition of addition and subtraction, the calculation part is very simple, except for the storage space such as the memory. This means not only that the area is small but also that high-frequency operation
	10

	On the other hand, it requires a large storage space such as a cursor memory since the parameters are large, and the processes of inputting/outputting in a common size (32-bit word) and writing them to memory become complex because the volumes of data can differ considerably. One must also consider the fact that the use of memory is essential because of the large storage space. 
	-

	Parameter of Lizard.CPA and RLizard.CPA For Lizard.CPA, the classical parameter set supplies 128-bit security against the classical attacks, but not enough against quantum attacks. The recommended parameter set provides 128-bit security against all known quantum attacks. The paranoid parameter set would remain secure and have 128-bit security against quantum attacks even if a remarkable improvement towards solving SVP arises. We present the parameter sets for the case that  = (1/2) and  =  (128). We fix the
	-

	Operations     −1 
	LizardCPA Classical 
	LizardCPA Classical 
	LizardCPA Classical 
	840 
	544 
	10 
	8 
	171 

	LizardCPA Recommended 
	LizardCPA Recommended 
	940 
	608 
	10 
	8 
	182 

	LizardCPA Paranoid 
	LizardCPA Paranoid 
	1450 
	736 
	10 
	8 
	160 

	RLizard.CPA 
	RLizard.CPA 
	1024 
	1024 
	10 
	8 
	154 


	Table 6: Parameter of Lizard.KEM and RLizard.KEM 
	We have implemented based on the recommended parameter of Lizard.CPA. Architecture of Lizard.CPA The Fig. 1 shows the hardware architecture of Lizard.CPA. 
	Fig. 1: Data path of Lizard.CPA 
	In the Fig. 1, Sel_S, Sel_M, Sel_E, Sel_A, and Sel_C are the multiplexers used to select the elements of , M, ,  and c. The register Sum is the space for the accumulated data, while W is the storage space in which the final accumulated results are grouped into a 32-bit word. The adder is used to accumulate the value of the register Sum, the initial value of which is one of the inputs in the red box at the beginning of accumulation. The other input of the adder determines whether the output of Sel_S ( or r) 
	Lizard.CPA requires three counters to count , ℓ, and , and the proposed design uses only one adder through resource sharing. 
	Finite State Machine of Lizard.CPA 
	Key Generation. The process begins with the inputting of all the values of . The portions of 1, –1, and 0 of  are determined by the input from the outside (i.e. the same as for r). 
	Figure
	Fig. 2: Finite state machine for generating a key in Lizard.CPA 
	When the Lizard.CPA module is run in the key generation mode while  is being input, it receives  and  in words per row through A_IN and E_IN. The count in the module is incremented when a word is input, and the data are stored in the memory with the count value as the address. If  is input before the module starts, the address value of the word is specified at the same time for writing the data. However, since  and  use the internal counter as the address value, they must be input in sequence when they are 
	Encryption. The process begins by inputting the R and M values in advance. 
	Figure
	Fig. 3: Finite state machine for encryption of Lizard.CPA 
	When the module starts in the encryption mode, the module receives the elements of  in units of the row to calculate 1, and only one element is input into each word as the elements are input in units of words. As such,  in the first of the  columns and  elements in the selected column are selected one at a time from the top. This contrasts with the fact that , , and  
	When the module starts in the encryption mode, the module receives the elements of  in units of the row to calculate 1, and only one element is input into each word as the elements are input in units of words. As such,  in the first of the  columns and  elements in the selected column are selected one at a time from the top. This contrasts with the fact that , , and  
	are input or output in rows, and that two elements are transmitted into a word, during the key generation process. An element of 1 is finally calculated by accumulating the calculation with r, which was input before the module started, whenever  was input in the column, in the register Sum. The initial value of calculation of the 1 element is 2, the accumulated value is maintained in 10 bits, and the final accumulated value is obtained from the top 8 bits by discarding the bottom 2 bits. Each time four elem

	Decryption. The process begins by inputting , 1, and 2 values in advance. 
	Figure
	Fig. 4: Finite state machine for decryption of Lizard.CPA 
	The element of 2 is initialized with the value of the register Sum by INIT_M, and CAL_M performs the accumulation using the  and 1 values for  cycles. The top two bits of the final accumulated value are exclusive OR’ ed to 1bitof M. While the process is repeated l times, 32 bits of M are stored in the WR_M step. Using the dual port memory means reading or writing the data of up to two data at a time. The limitation makes it necessary to use INIT_M and WR_M. If there is no limitation on data reading or writi
	Architecture of RLizard.CPA The Fig. 5 shows the hardware architecture of RLizard.CPA. 
	As with Lizard.CPA, Sel_S, Sel_E, Sel_A and Sel_C in the Fig. 5 are the multiplexers used to select the elements of , M, ,  and c one at a time by selecting 2-bit, 1-bit, 4-bit, 10-bit and 8-bit. However, the method of Sel_M is different from that of Lizard.CPA since RLizard.CPA stores one byte of each word of  in the available space. In RLizard.CPA, only the difference of the coefficient with a value of -1 or 1 of  or r is stored in Mem1, and the coefficients of , , and 1 are stored in Mem0. Let’ s assume 
	Figure
	Fig. 5: Data path of RLizard.CPA 
	next cycle. It also reads the next difference data in the same cycle to be ready for the following clock cycle. It reads only the coefficient data in the last cycle. It differs from Lizard.CPA in that it can read  and use it as the initial value during the key generation cycle since it reads only the difference data in the first cycle. For simplicity, the Fig. 5 also omits the step in which 9-bit data input are converted into two 4-bit data of -7 to 7 and stored in the memory. Likewise, the register Sum sto
	Finite State Machine of RLizard.CPA Unlike Lizard.CPA, there is only one finite state machine in RLizard.CPA. 
	-

	Figure
	Fig. 6: Finite state machine in RLizard.CPA 
	All four steps perform multiplication of two -degree polynomials through state transition. Although the process usually requires about cycles, the use of pipe lining requires only 129 clock 
	All four steps perform multiplication of two -degree polynomials through state transition. Although the process usually requires about cycles, the use of pipe lining requires only 129 clock 
	-
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	cycles. INIT initially reads only the difference data and the data needed for initialization ( for key generation, M for encryption 1, and 2 for decryption). CAL reads the difference data and the coefficient data, while LAST reads only the coefficient data. The module performs addition or subtraction only in CAL and LAST, which read the coefficient data from the memory. The LAST block also groups two of the final results at a time and outputs them to the outside. 

	Performance 
	Latency. The following table shows the performance of the two Lizard modules. 
	Operations 
	Operations 
	Operations 
	Type 
	Computation 
	Performance (T(I) = 1 T(O) = 1) 
	Latency 

	@50MHz 
	@50MHz 
	@100MHz 

	Lizard.CPA 
	Lizard.CPA 
	KeyGen 
	( + ℓ) () + ℓ( +  ()) 
	150.5 M cycles 
	3 s 
	1.5 s 

	Enc 
	Enc 
	( + ℓ) () 
	829.4 k cycles 
	16.6 ms 
	8.3 ms 

	TR
	Dec 
	ℓ( + 1) + ℓ/32 
	155.9 k cycles 
	3.1 ms 
	1.6 ms 

	RLizard.CPA 
	RLizard.CPA 
	128( + (1 +  ())/2) 
	131.2 k cycles 
	2.6 ms 
	1.3 ms 


	Table 7: Latency of Lizard.CPA and RLizard.CPA 
	T(I) and T(O) represent the delay of input and output, respectively. The operating times of all four steps (Key Generation, Encryption0, Encryption1, Decryption) are the same in RLizard.CPA. However, when the Lizard.CPA module is run in Key Generation mode or Encryption mode, it receives ,  and . Therefore it outputs a signal when it is time to get the input. If it reads the data in same clock cycle after it gets the signal,  ()=1. We performed the number of Cycles and Latency as  ()=1 and  ()=1. The table 
	Area. The GE (Gate Equivalent) Table 8 is measured based on the implementation of the Samsung 65nm Library. It is the performance at 50MHz Frequency and much the same as the one at 100MHz Frequency. It is expected to have a similar area when operated on higher frequencies. 
	Table
	TR
	Lizard.CPA 
	RLizard.CPA 

	Area 
	Area 
	Size of Memory Space 
	Area 
	Size of Memory Space 

	total 
	total 
	storage space 
	total 
	storage space 

	memory 
	memory 
	646.9 k 
	644.7 k 
	0x3000 words 
	99.7 k 
	98.3 k 
	1k words 

	register 
	register 
	3321.4 k 
	3319.5 k 
	0x2740 words 
	204.1 k 
	202.7 k 
	512 words + 64*22-bit 


	Table 8: Area of Lizard.CPA and RLizard.CPA 


	6 Advantages and limitations 
	6 Advantages and limitations 
	In this section, we present our implementations of our scheme for special purposes. These results show that Lizard is flexible and efficient for various usage. The device we used in Section 6.1 was Samsung Galaxy S7. In Section 6.2 and Section 6.3, the implementations were written in 
	In this section, we present our implementations of our scheme for special purposes. These results show that Lizard is flexible and efficient for various usage. The device we used in Section 6.1 was Samsung Galaxy S7. In Section 6.2 and Section 6.3, the implementations were written in 
	C, and performed on a Linux environment containing an Intel Xeon E5-2620 CPU running at 2.10GHz with Turbo Boost and Multithreading disabled. We used AVX2 vector instructions for optimizing the implementation of our schemes. The version of gcc compiler is 5.4.0, and we compiled our C reference implementation with flags -O3 -fomit-frame-pointer -mavx2 -march=native -std=c99 for the x86_64 architecture. 

	Through this section, the performances of key generation ( encryption and decryption) of our schemes were reported as a mean value across 100 ( 100000) measurements. We recorded public key sizes of our schemes used in our software. 
	2

	6.1 Application on Smartphone 
	6.1 Application on Smartphone 
	Since the smartphone is one of the most commonly used devices, it is natural to consider a mobile implementation. We have implemented Lizard.CPA as an Android application. The parameters of the implementation satisfy 128-bit quantum security with bigger decryption failure probability. The performance of the application was comparable to computer implementation. The application used a small amount of memory (less than 20 megabytes), and used only one core of CPU. Therefore, we can see that Lizard is suitable
	-

	Table 9: Parameter of Lizard.CPA on Android application implementation 
	 
	 
	 
	 
	log  
	log  
	−1 
	 
	r 

	960 
	960 
	608 
	10 
	8 
	182 
	1/2 
	128 


	Table 10: Performance of Lizard.CPA on Android application implementation 
	KeyGen 
	KeyGen 
	KeyGen 
	Enc 
	Dec 

	(ms) 
	(ms) 
	(ms) 
	(ms) 

	288.618 
	288.618 
	0.0770 
	0.0229 



	6.2 Suitability for Small Message Space 
	6.2 Suitability for Small Message Space 
	Lizard can be utilized on low-end devices. We implemented our Lizard.CPA scheme with 32-bit message space under 128-bit classical security (119-bit quantum security). We used classical parameters suggested in Table 11, and set ℓ = 32 to specify the message space. In general case, the public key size is 741kB, and an encryption takes only 0009 milliseconds. The public key size can be reduced to 46kB if we replace the public matrix  by a 256-bit seed that generates , and an encryption gets slower to 0052 mill
	-

	erate matrix  in our public key from a 256-bit seed with Pseudo-Random Generator (PRG) 
	erate matrix  in our public key from a 256-bit seed with Pseudo-Random Generator (PRG) 
	2 
	We can gen


	and store only the seed. To implement this case, we use AES128 in the ECB mode in our implementation 
	to expand a 256-bit seed, enabling the AES-NI instruction. 
	Table 11: Parameter of Lizard.CPA with 32-bit message space with 128-bit classical security 
	 
	 
	 
	 
	log  
	log  
	−1 
	 
	r 
	ϵ 

	724 
	724 
	480 
	11 
	9 
	303 
	1/2 
	128 
	2−154 


	Table 12: Performance of Lizard.CPA with 32-bit message space with 128-bit classical security 
	Table
	TR
	ctxt (bytes) 
	pk(bytes) 
	sk (bytes) 
	KeyGen(ms) 
	Enc (ms) 
	Dec (ms) 

	 as matrix ( as seed) 
	 as matrix ( as seed) 
	576 
	741,376 (46,368) 
	3,840 
	4.749 (1.891) 
	0.009 (0.052) 
	0.001 



	6.3 Additive Homomorphic Encryption 
	6.3 Additive Homomorphic Encryption 
	Lizard can also be used as a post-quantum alternative for additive homomorphic encryption (AHE) which support the bounded number of homomorphic additions. Lizard.CPA can be naturally seen as an additive homomorphic encryption supporting the bounded number of additions together with the following addition procedure: 
	∑
	– LizardCPAAdd(c1   c): Output c  Z
	+ℓ 

	=1  
	Corollary 1 (Correctness). The additive homomorphic encryption described above works correctly for  homomorphic additions as long as the following inequality holds for security parameter : []
	-

	P
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	Proof. This is easily proved by Lemma 1 and the triangle inequality. 
	Parameters for Additive Homomorphic Encryption. It is harder to meet the correctness condition in Corollary 1 than the plain Lizard scheme. We suggest a parameter set for 128-bit quantum security that allows 100 additions as Table 13. 
	Table 13: Parameter for additive homomorphic encryption 
	 
	 
	 
	 
	log  
	log  
	−1 
	 
	r 

	1024 
	1024 
	816 
	16 
	14 
	21000 
	1/2 
	136 


	For this parameter set, the decryption failure probability after 100 homomorphic additions is approximately 2. 
	29

	Previously proposed additive homomorphic encryption schemes [27, 35, 36] of which performances are summarized in [19]can afford much more homomorphic additions with fixed param
	-
	3 
	-

	also suggested an AHE scheme with excellent performances, but their parameters are turned out to be insecure [23]. 
	3 
	In [19], they 

	eter sets than ours. However, when one needs only bounded number of homomorphic additions, Lizard might provide a better trade-off so that it can be faster than other AHE schemes. For Lizard which supports 100 homomorphic additions, an encryption, decryption, and homomorphic addition take only 0014, 0012, and 00005 milliseconds, which are at least 147, 333, and 4 times faster than all of those of AHE schemes in [27, 35, 36], respectively. We present a sample result for 256-bit messages and 128-bit quantum s
	Table 14: Performance of Lizard with 256-bit messages which supports 100 homomorphic additions 
	Table
	TR
	ctxt (bytes) 
	pk (bytes) 
	sk (bytes) 
	KeyGen (ms) 
	Enc (ms) 
	Dec (ms) 
	Add (ms) 

	 as matrix ( as seed) 
	 as matrix ( as seed) 
	1,876 
	2,195,456 (524,320) 
	52,224 
	25.923 (21.444) 
	0.014 (0.092) 
	0.012 
	0.0005 
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