

Lizard Public Key Encryption

Submission to NIST proposal

x Name of the proposed cryptosystem : Lizard Public Key Encryption

x Principal submitter
- Name : Jung Hee Cheon
- E-mail address : jhcheon@snu.ac.kr
- Telephone : +82 10-9767-1912
- Organization : Seoul National University, Republic of Korea
- Postal address :
Department of Mathematical Sciences (Bldg 27, Rm 404),
Seoul National University, Seoul, Republic of Korea

x Auxiliary submitters
- Seoul National University : Jung Hee Cheon, Sangjoon Park, Joohee Lee, Duhyeong
Kim, Yongsoo Song , Seungwan Hong, Dongwoo Kim, Jinsu Kim, Seong-Min Hong

- Ulsan national institute of science and technology : Aaram Yun, Jeongsu Kim
- Korea Internet & Security Agency : Haeryong Park, Eunyoung Choi, Kimoon Kim,
Jun-Sub Kim, Jieun Lee

x Inventors
- Jung Hee Cheon, Duhyeong Kim, Joohee Lee, Yongsoo Song

x Developers
- Aaram Yun, Jeongsu Kim, Sangjoon Park, Dongwoo Kim, Seungwan Hong, Jinsu
Kim, Seong-Min Hong, Haeryong Park, Eunyoung Choi, Kimoon Kim, Jun-Sub Kim,
Jieun Lee

x Owner of the cryptosystem
- Jung Hee Cheon, Duhyeong Kim, Joohee Lee, Yongsoo Song

Principal submitter Jung Hee Cheon ____________________

Table of Contents

Lizard Public Key Encryption; Submission to NIST proposal . 1

1 Introduction . 3
1.1 Terminology and Notation . 4

2 Security Assumptions and Design Rationale . 5
2.1 Learning with Errors and Learning with Roundings . 5
2.2 Ring variants of LWE and LWR . 6
2.3 Design Rationale . 7
2.4 Proposed Schemes . 8

3 Algorithm Specifications . 8
3.1 Symmetric primitives . 8
3.2 IND-CPA Public Key Encryption Schemes . 8

3.2.1 The Lizard.CPA Encryption Scheme . 8
3.2.2 The RLizard.CPA Encryption Scheme . 9

3.3 IND-CCA2 Key Encapsulation Mechanisms . 10
3.3.1 Overview . 10
3.3.2 The Lizard.KEM Scheme . 11
3.3.3 The RLizard.KEM Scheme . 12

3.4 IND-CCA2 Public Key Encryption Schemes . 13
3.4.1 The Lizard.CCA Scheme . 13
3.4.2 The RLizard.CCA Scheme . 14

3.5 Correctness Analyses . 15
4 Security Analysis and Recommended parameters . 16

4.1 Security Proofs . 16
4.1.1 IND-CPA Security . 16
4.1.2 IND-CCA2 Security . 17

4.2 Parameter Selection . 18
4.2.1 Known Attacks on LWE and LWR . 19
4.2.2 The BKZ Complexity . 21
4.2.3 Recommended Parameters . 21

5 Implementation Aspects and Performance Figures . 27
5.1 Software Implementation . 27

5.1.1 Data Operations . 28
5.1.2 Data Generations . 28
5.1.3 Computational Efficiency . 31

5.2 Hardware Implementation . 33
6 Advantages and limitations . 38

6.1 Application on Smartphone . 39
6.2 Suitability for Small Message Space . 39
6.3 Additive Homomorphic Encryption . 40

1 Introduction

We propose Lizard, a family of post-quantum public-key encryption (PKE) schemes and key
encapsulation mechanisms (KEMs).

At the center of our constructions lies the Lizard IND-CPA PKE. This is a scheme whose
security is based on sparse, small secret versions of learning with errors (LWE) and learning with
roundings (LWR). Essentially, the public-key is chosen to be a set of LWE samples with signed
binary secrets, and the encryption uses rounding to achieve security (via LWR) and reduced size
of the ciphertexts. We use sparse random vectors as ephemeral secrets to speed up multiplications.
Our construction is based on a result we have proved that (sparse) signed binary secret LWE and
LWR are at least as hard as the original LWE.

The IND-CPA PKE scheme is then turned into an IND-CCA2 KEM, via a KEM variant of
the Fujisaki-Okamoto transformation. Using the usual KEM/DEM hybrid paradigm, this can be
turned into an IND-CCA2 PKE scheme, for example by using the one-time pad to symmetrically
encrypt messages with the symmetric key encapsulated by the KEM.

Also, we propose ring-based versions of the above constructions, called RLizard. Instead of
based on the variants of LWE and LWR in Lizard, RLizard is based on the corresponding versions
of ring-LWE and ring-LWR. As with Lizard, we first construct an IND-CPA PKE, and then obtain
IND-CCA2 KEM and PKE by the same transformation.

3

1.1 Terminology and Notation

In this subsection, we introduce a list for terminology and notation used throughout this document.

log the logarithm with base 2
n the dimension of LWE samples, a positive integer
m the number of LWE samples, a positive integer, a power of two
q the large modulus, a positive integer, a power of two
p the small modulus for rounding, a positive integer, a power of two
ℓ a positive integer, the number of secret vectors in case of Lizard primitive, i.e.

the number of plaintext slots in case of Lizard primitive
ℓ1 a positive integer, the number of secret vectors in case of IND-CCA2 KEM

schemes
ℓ2 a positive integer, the number of ephemeral secret vectors in IND-CCA2 KEM

schemes
d a positive integer, the number of plaintext slots in case of IND-CCA2 PKE, the

bit-length of shared secret key in case of IND-CCA2 KEM
hs the Hamming weight of a secret polynomial s
hr the Hamming weight of an ephemeral secret vector r or polynomial r
_16_LOG_Q 16 − log q
_16_LOG_T 15
Zq a set {0, 1, ..., q − 1}
Zp a set {0, 1, ..., p − 1}
mod q reduce an integer, a vector, or a matrix modulo q componentwisely
mod p reduce an integer, a vector, or a matrix modulo p componentwisely
[0, N] a set {0, 1, ..., N − 1}
⌊·⌉ rounding function, ⌊x⌉ is the nearest integer to the rational number x, rounding

upwards in case of a tie
∥ concatenation operator
At the transpose of the matrix A
∥·∥ norm operator, ∥v∥ is 2-norm of the vector v
⟨·, ·⟩ inner product
<< a component-wise left shift operation
>> a component-wise right shift operation
⊕ a component-wise XOR operation
x ← D sampling x from the distribution D
x ← X sampling x from the set X uniform randomly
λ the security parameter
negl(·) the negligible function with respect to the contents of negl(·)
HWT m(h) the uniform distribution over the subset of {−1, 0, 1}m whose elements contain

m − h number of zeros
ZOn(ρ) the distribution over {−1, 0, 1}n where each component x satisfies Pr[x = 1] =

Pr[x = −1] = ρ/2 and Pr[x = 0] = 1 − ρ
Uq the uniform distribution over Zq

DGσ the discrete Gaussian distribution with the parameter σ

4

Bm,h the subset of {−1, 0, 1}m of which elements have exactly h number of non-zero
components, i.e. the set of all possible vectors chosen from HWT m(h)

Bℓ the subset of {−1, 0, 1}m×ℓ of which each column has exactly h number of non-m,h
zero components

R Z[X]/(Xn + 1), a ring of polynomials with integer coefficients modulo Xn + 1
Rq R/qR, a set of ring elements in R modulo q
Rp R/pR, a set of ring elements in R modulo p
R2 R/2R, a set of ring elements in R modulo 2

2 Security Assumptions and Design Rationale

In this section, we introduce the security assumptions exploited in our schemes, and then explain
our design rationale for proposed schemes.

2.1 Learning with Errors and Learning with Roundings

Since Regev [40] introduced the LWE problem, a lot of cryptosystems based on this problem
have been proposed relying on its versatility. For an n-dimensional vector s ∈ Zn and an error
distribution χ over Z, the LWE distribution ALWE × Zq is obtained by choosing a n,q,χ(s) over Zn

q
vector a uniformly and randomly from Zn and an error e from χ, and outputting q

(a, b = ⟨a, s⟩ + e) ∈ Zn × Zq.q

The search LWE problem is to find s ∈ Zq for given arbitrarily many independent samples (ai, bi)
from ALWE

n,q,χ(s). The decision LWE, denoted by LWEn,q,χ(D), aims to distinguish the distribution
ALWE

n,q,χ(s) from the uniform distribution over Zn × Zq with non-negligible advantage, for a fixed q
s ← D. When the number of samples are limited by m, we denote the problem by LWEn,m,q,χ(D).

In this paper, we only consider the discrete Gaussian χ = DGαq as an error distribution where
α is the error rate in (0, 1), so α will substitute the distribution χ in description of LWE problem,
say LWEn,m,q,α(D). The LWE problem is self-reducible, so we usually omit the key distribution D
when it is a uniform distribution over Zn.q

The hardness of the decision LWE problem is guaranteed by the worst case hardness of the
standard lattice problems: the decision version of the shortest vector problem (GapSVP), and the
shortest independent vectors problem (SIVP). After Regev [40] presented the quantum reduction
from those lattice problems to the LWE problem, Peikert et al. [15, 37] improved the reduction
to a classical version for significantly worse parameters; the dimension should be of the size of
ω(n log q). In this case, note that the reduction holds only for the GapSVP, not SIVP.

After the works on the connection between the LWE problem and some lattice problems, some
variants of LWE, of which the secret distributions are modified from the uniform distribution, were
proposed. In [15], Brakerski et al. proved that the LWE problem with binary secret is at least as
hard as the original LWE problem. Following the approach of [15], Cheon et al. [17] proved the
hardness of the LWE problem with sparse secret, i.e., the number of non-zero components of the
secret vector is a constant.

As results of Theorem 4 in [17], the hardness of the LWE problems with (sparse) small secret,
LWEn,m,q,β (HWT n(h)) and LWEn,m,q,β (ZOn(ρ)) for 0 < β < 1, are guaranteed by the following
theorem.

Theorem 1. (Informal) For positive integers m, n, k, q, h, 0 < α, β < 1 and 0 < ρ < 1, following
statements hold:

5

√
1. If log(nCh) + h > k log q and β > α 10h, then the LWEn,m,q,β (HWT n(h)) problem is at least

as hard as the LWEk,m,q,α problem. (()) √
12. If (1 − ρ) log + ρ log 2 n > k log q and β > α 10n, the LWEn,m,q,β (ZOn(ρ)) problem 1−ρ ρ

is at least as hard as the LWEk,m,q,α problem.

In [14, 38, 39], to pack a string of plaintexts in a ciphertext, LWE with single secret was general-
ized to LWE with multiple secrets. An instance of multi-secret LWE is (a, ⟨a, s1⟩+e1, ..., ⟨a, sk⟩+ek)
where s1, ..., sk are secret vectors and e1, ..., ek are independently chosen error vectors. Using the
hybrid argument, multi-secret LWE is proved to be at least as hard as LWE with single secret.

The LWR problem was firstly introduced by Banerjee et al. [10] to improve the efficiency of
pseudorandom generator based on the LWE problem. Unlikely to the LWE problem, errors in the
LWR problem are deterministic so that the problem is so-called a “derandomized” version of the
LWE problem. To hide secret information, the LWR problem uses a rounding by a modulus p
instead of inserting errors. Then, the deterministic error is created by scaling down from Zq to Zp.

For an n-dimensional vector s over Zq, the LWR distribution ALWR (s) over Zn × Zp is obtained n,q,p q

by choosing a vector a from Zn uniform randomly, and returning q (⌊ ⌉)
a, p · (⟨a, s⟩ mod q) ∈ Zn × Zp.qq

As in the LWE problem, ALWR (s) denotes the distribution of m samples from ALWR (s); that is n,m,q,p n,q,p

contained in Zm×n × Zm. The search LWR problem are defined respectively as finding secret s justq p

as same as the search version of LWE problem. In contrary, the decision LWRn,m,q,p(D) problem
aims to distinguish the distribution ALWR (s) from the uniform distribution over Zm×n × Zm

n,m,q,p q p

with m instances for a fixed s ← D.
In [10], Banerjee et al. proved that there is an efficient reduction from the LWE problem to the

LWR problem for a modulus q of super-polynomial size. Later, the follow-up works by Alwen et
al. [8] and Bogdanov et al. [12] improved the reduction by eliminating the restriction on modulus
size and adding a condition of the bound of the number of samples. In particular, the reduction
by Bogdanov et al. works when 2mBp/q is a constant, where B is a bound of errors in the
LWE problem, m is the number of samples in both problems, and p is the rounding modulus in
the LWR problem. That is, the rounding modulus p is proportional to 1/m for fixed q and B.
Since the reduction from LWE to LWR is independent of the secret distribution, the hardness of
LWRn,m,q,p(HWT n(h)) and LWRn,m,q,p(ZOn(ρ)) is obtained from that of the LWE problems with
corresponding secret distributions.

2.2 Ring variants of LWE and LWR

In [33], Lyubashevsky et al. deal with the LWE problem over rings, namely ring-LWE. For positive
integers n and q, and an irreducible polynomial g(x) ∈ Z[x] of degree n, we define the ring
R = Z[x]/(g(x)) and its quotient ring modulo q, Rq = Zq[x]/(g(x)). We denote the polynomial
multiplication of a and b in R and Rq by a ∗ b. The ring-LWE problem is to distinguish between
the uniform distribution and the distribution of (a, a ∗ s + e) ∈ R2 where a is uniform randomly q

chosen polynomial, e is chosen from an error distribution, and s is a secret polynomial.
Due to the efficiency and compactness of ring-LWE, many lattice-based cryptosystems are

constructed as ring-LWE based, rather than LWE-based. As with the LWE problem, the ring-LWE
problem over the ring R is at least as hard as the search version of approximate SVP over the ideal
lattices of R, in the sense of quantum reduction.

6

The ring variant of LWR is introduced in [10, 12] as an analogue of LWR. In the ring-LWR
problem, the vectors chosen from Zn are substituted by polynomials in Rq, i.e., the ring-LWRq

instance for a secret polynomial s ∈ Rq is (⌊ ⌉)
p

a, · a ∗ s ∈ Rq × Rp
q

where ⌊(p/q) · a ∗ s⌉ is obtained by applying the rounding function to each coefficient of (p/q) ·a∗s.
The search and decision ring-LWR problems are defined the same way as the LWR problem, but
over rings.

In [10], Banerjee et al. proved that decision ring-LWR is at least as hard as decision ring-LWE
for sufficiently large modulus. Later, reduction from search ring-LWE to search ring-LWR was
constructed in overall scope of the modulus [10] when the number of samples is bounded.

2.3 Design Rationale

Our first IND-CPA secure PKE scheme simply relies on the hardness assumption of the LWE
and LWR problems with particular secret distributions. As explained in Section 2, it is shown
that LWE with small secret is still hard to solve if the min-entropy of the secret distribution is
sufficiently large. Moreover, the LWR problem is somewhat equivalent to LWE unless we overuse
the same secrets to generate samples due to the reduction in the recent work [12]. All these aspects
lead us to design the primitives named after “Lizard”, of which basic goal is to obtain the fastest
implementation for encryption and decryption among the lattice-based schemes while maintaining
the weaker assumptions, and make the ciphertext sizes smaller in factor log q/ log p.

To give an intuition for the basic algorithms, we describe our Lizard in the case of bit encryption
as follows. In the key generation step, we first sample a secret vector s ∈ {−1, 0, 1}n, a random
matrix A ∈ Zm×n, and an error vector e ← DGm of which components are expected to be small. q σ
Then output the secret key sk ← s, and public key pk ← (A, b) where b = As + e ∈ Zm. Hence, q

the public key is an instance of LWE with the secret vector s. In the encryption step, we sample
a sparse signed binary vector r ← HWT m(hr) with low Hamming weight hr ≈ O(λ), which is an
ephemeral secret of the algorithm. The re-randomization process after calculating (Atr, btr) is to
adapt the ordinary rounding procedure from the modulus q to lower modulus p, without adding
auxiliary noises. The resulting ciphertext for m ∈ {0, 1} is

c ← (⌊(p/q) · Atr⌉, ⌊(p/2) · m + (p/q) · btr⌉) ∈ Zn+1 ,p

where ⌊·⌉ denotes the component-wise rounding of entries to the closest integers, rounding upwards
in case of a tie. If both p < q are power-of-twos, the rounding procedure could be reduced to the
two simple steps: addition of q/2p and the bitwise shift operation. That is, we “cut off” the least
significant bits of each component of the vector (rtA, rtb) to return a ciphertext.

The advantages of Lizard can be analyzed (See Section 3.3 in [18]), but we would like to make
simple remarks here. Since the recent LWE attack for using the sparse secrets emerges [2], our
parameter has been loosened than previous. However, since we use the sparse signed binary secrets
or signed binary secrets, we can obtain the record-breaking encryption and decryption speeds
which are faster than those of NTRU respectively, despite the weaker assumption for the security.
Using LWR in the encryption phase is better than using LWE because it does not require noise
sampling, which results some efficiency, and we have smaller ciphertexts since the factor log q in
the ciphertext size can be reduced to log p. For the usage that requires smaller public key, we can
provide our encryption scheme simply replacing the public key with small seed, or turn to the ring
version of our scheme called RLizard.

7

The RLizard CPA secure PKE scheme provides a trade-off between space-efficiency and security,
which is of independent interest. In RLizard, a public key is parsed into two structured square
matrices modulo q which represent polynomials in Rq, respectively. Hence, the public key size is
reduced from m(n+ℓ) log q to 2n log q compared to Lizard. Let pk = (a, b). The resulting ciphertext
for m ∈ R2 is

c ← (⌊(p/q) · a ∗ r⌉, ⌊(p/2) · m + (p/q) · b ∗ r⌉) ∈ R2 ,p

where r is an ephemeral secret in the encryption procedure which is a sparse signed binary poly-
nomial, and ∗ denotes multiplication in Rq. It can be seen that all the operations in encryption
are just the same with those in Lizard except that multiplications and additions are held in the
polynomial space Rq.

2.4 Proposed Schemes

We first propose IND-CPA secure encryption schemes: Lizard and RLizard. To avoid an abuse of
notations, we call them “Lizard.CPA” and “RLizard.CPA” through the whole document. We con-
vert Lizard.CPA (resp. RLizard.CPA) into an IND-CCA2 Key Encapsulation Mechanism (KEM)
Lizard.KEM (resp. RLizard.KEM) using a KEM variant of Fujisaki-Okamoto transformation [24,
20, 26]. We also suggest Lizard.CCA (resp. RLizard.CCA) using the same transformation, com-
bining it with a One-Time Pad (OTP).

3 Algorithm Specifications

3.1 Symmetric primitives

In our IND-CCA2 schemes, we need to generate (pseudo-)random numbers and hash outputs.
We use the pseudorandom generator randombytes to generate a random bit string of an arbitrary
length, which is recommended to use by NIST. We instantiate all the hash functions in this proposal
with TupleHash256 considering two main factors: the flexibility in input and output lengths, and
the long-term security which comes close to that of AES256.

′More precisely, we use three hash functions G, H, and H to achieve the IND-CCA2 security
′of proposed schemes. The functions G and H are exactly the TupleHash256 with proper input

and output lengths, while the function H is not: the output of H is generated from the output of
TupleHash256 to be spread following a particular distribution. We specified the exact algorithm
to obtain an output of H using TupleHash256 in Section 6.

3.2 IND-CPA Public Key Encryption Schemes

In this section and through the whole document, we suggest two kinds of IND-CPA secure PKE
schemes called Lizard.CPA and RLizard.CPA. The Lizard.CPA and RLizard.CPA PKEs contain
three algorithms in each: a key generation Lizard.CPA.KeyGen, encryption Lizard.CPA.Enc and a
decryption Lizard.CPA.Dec in the former one, and a key generation RLizard.CPA.KeyGen, encryption
RLizard.CPA.Enc and a decryption RLizard.CPA.Dec in the latter one. We assume that certain
conditions for inputs hold for the specifications of algorithms, e.g. the public and secret keys are
valid, which means they are correctly in their form of the corresponding key types.

3.2.1 The Lizard.CPA Encryption Scheme
For positive integers m, n, ℓ, p, q and hr such that hr < m and 2|p|q, and 0 < ρ, α < 1, let
params ← (m, n, q, p, ℓ, ρ, hr, α) through all the algorithms here.

8

Lizard.CPA.KeyGen.

Input: The set of public parameters params.

Output: A key pair consisting of the private key S ∈ {−1, 0, 1}n×ℓ and the public key

(A∥B) ∈ Zm×(n+ℓ)
q .

Operation:
1. Generate a random matrix A ← Zm×n.q

2. Set a secret matrix S := (s0∥ · · · ∥sℓ−1) by sampling each si independently from the distri-
bution ZOn(ρ).

3. For 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ ℓ − 1, sample an integer Eij ← DGαq, and then set
E = (Eij) ∈ Zm×ℓ.q

4. Compute B := −AS + E ∈ Zm×ℓ.q

5. Output the public key pk := (A∥B) ∈ Zm
q

×(n+ℓ) and the private key sk := S ∈ {−1, 0, 1}n×ℓ.

Lizard.CPA.Enc.

Inputs: The set of public parameters params, the public key pk = (A∥B) ∈ Zm×n × Zm×ℓ,q q

and the message M ∈ {0, 1}ℓ.

Output: The ciphertext c = (a, b) ∈ Zn × Zℓ .p p

Operation:
1. Generate an m dimensional vector r ∈ Bm,hr from the distribution HWT m(hr).
2. Compute a := ⌊(p/q) · Atr⌉ ∈ Zn and b := ⌊(p/q) · ((q/2) · M + Btr)⌉ ∈ Zℓ .p p

3. Output the ciphertext c := (a, b) ∈ Zn
p × Zℓ .p

Lizard.CPA.Dec.

Inputs: The set of public parameters params, the secret key sk = S ∈ {−1, 0, 1}n×ℓ and the
ciphertext c = (a, b) ∈ Zn × Zℓ .p p

Output: The message M ∈ {0, 1}ℓ.

Operation:
1. Parse the ciphertext c = (a, b).
2. Compute M = ⌊(2/p) · (b + Sta)⌉ ∈ Zℓ

2.
3. Output the message M.

3.2.2 The RLizard.CPA Encryption Scheme
For positive integers n, p, q, hs and hr such that hs, hr < n and 2|p|q, and 0 < α < 1, let
params ← (n, q, p, hs, hr, α) through all the algorithms here. We denote R = Z[x]/(xn + 1) and∑n−1
Rq = Zq[x]/(x

n + 1). We identify the polynomial a = aix
i ∈ R (resp. Rq) with the vector i=0

a = (a0, a1, ..., an−1) ∈ Zn (resp. Zn). Therefore, for a polynomial a ∈ R (resp. Rq) and any q

distribution D over Zn (resp. Zn), a ← D means sampling the vector a following the distribution q
D and then identifying the vector with its corresponding polynomial a.

9

RLizard.CPA.KeyGen.

Input: The set of public parameters params.

Output: A key pair containing the private key s ∈ R and the public key (a, b) ∈ R2.q

Operation:
1. Generate a random polynomial a ← Rq.
2. Set a secret polynomial s by sampling it from the distribution HWT n(hs).∑n−13. For 0 ≤ i ≤ n − 1, sample an integer ei ← DGαq, and then set e = eiX

i ∈ Rq .i=0
4. Compute b := −a ∗ s + e ∈ Rq.
5. Output the public key pk := (a, b) ∈ R2 and the secret key sk := s ∈ R.q

RLizard.CPA.Enc.

Inputs: The set of public parameters params, the public key (a, b) ∈ R2, and the message q

polynomial M ∈ R2.

Output: The ciphertext c = (c1, c2) ∈ R2.p

Operation:
1. Generate a polynomial r ∈ Rq by sampling it from the distribution HWT n(hr).

′ ′2. Set c1 := a ∗ r, and c2 := b ∗ r in Rq.
′ ′3. Compute c1 := ⌊(p/q) · c1⌉ ∈ Rp and c2 := ⌊(p/q) · ((q/2) · M + c2)⌉ ∈ Rp.

4. Output the ciphertext c := (c1, c2).

RLizard.CPA.Dec.

Inputs: The set of public parameters params, the secret key sk = s ∈ R, and the ciphertext
c = (c1, c2) ∈ R2.p

Output: The message m ∈ R2.

Operation:
1. Parse the ciphertext c = (c1, c2).
2. Compute M := ⌊(2/p) · (c2 + c1 ∗ s)⌉ ∈ R2.
4. Output the message m.

3.3 IND-CCA2 Key Encapsulation Mechanisms

In this section, we suggest two kinds of IND-CCA2 KEM, Lizard.KEM and RLizard.KEM, which
are derived by CCA KEM conversions [26] of Lizard.CPA and RLizard.CPA, respectively.

3.3.1 Overview

Recently, Hofheinz et al. [26] suggested a modular toolkit of FO transformations [24, 20, 43],
which turns an arbitrary weakly (i.e., IND-CPA) secure PKE into a strongly (i.e., IND-CCA2)
secure key encapsulation in the (quantum) random oracle model. The transformation has certain
merits since it is robust against schemes with nonzero decryption failure probability while the

10

others are not. We utilize their conversion technique in quantum random oracle model for our
CPA-secure Lizard and RLizard to achieve the IND-CCA2 KEMs.

Basically, the symmetric primitives required in the IND-CCA2 secure Lizard/RLizard KEMs
are the same as in the IND-CCA2 secure Lizard PKE. That is, we use three hash functions G,

′ H, H ′, where G and H output a d-bit string where d denotes the bit-length of messages of the
CCA schemes and H outputs m-bit string(s) with hamming weight hr, and the OTP here. The
one thing changed in Lizard.CPA to obtain Lizard.KEM is that we transform the message vector
of the length ℓ to the matrix of the size ℓ1 × ℓ2 for some ℓ1 and ℓ2 such that ℓ1 · ℓ2 = ℓ, and use the
parameters (ℓ1, ℓ2) instead of ℓ. Our Lizard.CPA can be re-written in the matrix form as follows:

– The key pair are generated normally as

pk ← (A∥B) ∈ Zm×(n+ℓ1), sk ← S ∈ {−1, 0, 1}n×ℓ1
q

– For a message M ∈ {0, 1}ℓ1×ℓ2 , we first generate an ephemeral secret as a matrix

R ← HWT m(hr)
ℓ2 ∈ {−1, 0, 1}m×ℓ2 , and calculate

C ← (⌊(p/q) · AtR⌉, ⌊(p/2) · M + (p/q) · BtR⌉) ∈ Zn×ℓ2 × Zℓ1×ℓ2 ,p p

where ⌊·⌉ denotes componentwise rounding for whole matrix.

We use this form for Lizard.CPA to make the public key size and the ciphertext size somewhat
balanced. Actually, the public key size is reduced by a factor ℓ2, and the ciphertext size grows from
(n+ℓ) log p to (n ·ℓ2 +ℓ) log p in this matrix form of Lizard.CPA. On the other hand, RLizard.KEM
is obtained by applying the conversion technique directly to RLizard.CPA.

3.3.2 The Lizard.KEM Scheme
For positive integers m, n, ℓ1, ℓ2, ℓ, d, p, q and hr such that hr < m, ℓ = ℓ1 ·ℓ2, and 2|p|q, 0 < ρ, α <

→ Bℓ2 ′ 1, and the hash functions G : {0, 1}∗ → {0, 1}d, H : {0, 1}∗ and H : {0, 1}∗ → {0, 1}ℓ,m,hr

let params ← (m, n, q, p, ℓ1, ℓ2, ℓ, d, ρ, hr, α, G, H, H ′) through all the algorithms here.

Lizard.KEM.KeyGen.

Input: The set of parameters params.

Output: A key pair containing the private key (S, T) ∈ {−1, 0, 1}n×ℓ1 × {0, 1}ℓ1×ℓ2 and the
public key (A∥B) ∈ Zm

q
×(n+ℓ1).

Operation:
1. Generate a random matrix A ← Zm×n.q

2. Set a secret matrix S := (s0∥ · · · ∥sℓ1−1) by sampling each si independently from the
distribution ZOn(1/2).

3. Generate a random matrix T ← {0, 1}ℓ1×ℓ2 .
4. For 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ ℓ1 − 1, sample an integer Eij ← DGαq, and then set

E = (Eij) ∈ Zm×ℓ1 .q

5. Compute B := −AS + E ∈ Zm×ℓ1 .q

(A∥B) ∈ Zm×(n+ℓ1)6. Output the public key pk := q and the secret key sk := (S, T) ∈
{−1, 0, 1}n×ℓ1 × {0, 1}ℓ1×ℓ2 .

11

Lizard.KEM.Encaps.

Inputs: The set of public parameters params, public key pk = (A∥B) ∈ Zm×n × Zm×ℓ1 .q q

× Zℓ1×ℓ2Output: The ciphertext C = (C1, C2, d) ∈ Zn×ℓ2 × {0, 1}ℓ and the shared key p p

K ∈ {0, 1}d.

Operation:
1. Generate a random matrix M ∈ {0, 1}ℓ1×ℓ2 .
2. Compute the matrix R := H(M) and the vector d := H ′ (M).
3. Compute C1 := ⌊(p/q) · AtR⌉ ∈ Zn×ℓ2 and C2 := ⌊(p/q) · ((q/2) · M + BtR)⌉ ∈ Zℓ1×ℓ2 .p p

4. Compute K := G(C1, C2, d,M), and output the pair (C = (C1, C2, d), K).

Lizard.KEM.Decaps.

Inputs: The set of public parameters params, the public key pk = (A∥B) ∈ Zm×n × Zm×ℓ1 ,q q

the secret key sk = (S, T) ∈ {−1, 0, 1}n×ℓ1 × {0, 1}ℓ1×ℓ2 , and the ciphertext C = (C1, C2, d) ∈
Zn×ℓ2 × Zℓ1×ℓ2 × {0, 1}ℓ.p p

Output: The shared key K ∈ {0, 1}d.

Operation:
1. Parse the ciphertext C := (C1, C2, d).

′2. Compute M := ⌊(2/p) · (C2 + StC1)⌉ ∈ Zℓ1×ℓ2 .2
3. Compute R ′ := H(M ′) and d′ := H ′ (M ′).

′ ′ ′4. Compute C1 := ⌊(p/q) · AtR ′ ⌉ ∈ Zn×ℓ2 and C2 := ⌊(p/q) · ((q/2) · M + BtR ′)⌉ ∈ Zℓ1×ℓ2 ,p p
′ ′ ′and set C := (C1, C 2, d′).

5. If C ̸ ′, then output K := G(C1, C2, d, T).= C
6. Else, output the shared key K := G(C1, C2, d,M ′).

3.3.3 The RLizard.KEM Scheme
For positive integers n, d, p, q, hr, and hs such that hr, hs < n and 2|p|q, 0 < α < 1, and the

′hash functions G : Rp × Rp × {0, 1}d × R2 → {0, 1}d, H : R2 → Bn,hr and H : R2 → {0, 1}n, let
params ← (n, q, p, d, hs, hr, α, G, H, H ′) through all the algorithms here.

RLizard.KEM.KeyGen.

Input: The set of public parameters params.

Output: A key pair containing the private key (s, t) ∈ R × R2 and the public key (a, b) ∈ R2.q

Operation:
1. Generate a random polynomial a ← Rq.
2. Set a secret polynomial s ← HWT n(hs).
3. Generate a random vector t ← {0, 1}n and identify it with the polynomial t ∈ R2.∑n−14. For 0 ≤ i ≤ n − 1, sample an integer ei ← DGαq, and then set e = eiX

i ∈ Rq .i=0
5. Compute b := −a ∗ s + e ∈ Rq.
6. Output the public key pk := (a, b) ∈ R2 and the secret key sk := (s, t) ∈ R × R2.q

12

RLizard.KEM.Encaps.

Inputs: The set of public parameters params, the public key pk := (a, b) ∈ R2.q

Output: The ciphertext c := (c1, c2, d) ∈ Rp × Rp × {0, 1}n and the shared key K ∈ {0, 1}d.

Operation:
1. Generate a polynomial δ ← R2.
2. Compute r := H(δ) and d := H ′ (δ).
3. Compute c1 := ⌊(p/q) · a ∗ r⌉ ∈ Rp and c2 := ⌊(p/q) · ((q/2) · δ + b ∗ r)⌉ ∈ Rp.
4. Compute K := G(c1, c2, d, δ).
5. output (c1, c2, d, K).

RLizard.KEM.Decaps.

Inputs: The set of public parameters params, the public key pk := (a, b) ∈ R2, the secret key q
(s, t) ∈ R × R, and the ciphertext c := (c1, c2, d) ∈ Rp × Rp × {0, 1}n.

Output: The shared key K ∈ {0, 1}d.

Operation:
1. Parse the ciphertext c := (c1, c2, d).
2. Compute δ ′ := ⌊(2/p) · (c2 + s ∗ c1)⌉ ∈ R2.

′3. Compute r := H(δ ′) and d′ := H ′ (δ ′).
′4. Compute a := ⌊(p/q) · a ∗ r ′ ⌉ ∈ Rp and b ′ := ⌊(p/q) · ((q/2) · δ ′ + b ∗ r ′)⌉ ∈ Rp, and set

c ′ := (a ′ , b ′ , d′).
5. If c ̸= c ′, then output K = G(c1, c2, d, t).
6. Else, output the shared key K = G(c1, c2, d, δ ′).

3.4 IND-CCA2 Public Key Encryption Schemes

In this section, we suggest two kinds of IND-CCA2 public key encryption schemes. We apply a
simple conversion for our KEMs to obtain these IND-CCA2 PKEs. The conversion modifies the
encapsulation algorithm simply by appending OTP encryption of a message in Zd to the key 2
value of the KEM. Our IND-CCA2 PKE Lizard and RLizard are specified as Lizard.CCA and
RLizard.CCA, respectively.

3.4.1 The Lizard.CCA Scheme
For positive integers m, n, ℓ, d, p, q and hr such that hr < m and 2|p|q, 0 < ρ, α < 1, and

′the hash functions G : {0, 1}∗ → {0, 1}d, H : {0, 1}∗ → Bm,hr and H : {0, 1}∗ → {0, 1}ℓ, let
params ← (m, n, q, p, ℓ, d, ρ, hr, α, G, H, H ′) through all the algorithms here.

Lizard.CCA.KeyGen.

Input: The set of public parameters params.

Output: A key pair containing the private key S ∈ {−1, 0, 1}n×ℓ and the public key (A∥B) ∈
Zm×(n+ℓ).q

Operation:

13

1. Generate a random matrix A ← Zm×n.q

2. Set a secret matrix S := (s0∥ · · · ∥sℓ−1) by sampling each si independently from the distri-
bution ZOn(ρ).

3. For 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ ℓ − 1, sample an integer Eij ← DGαq, and then set
E = (Eij) ∈ Zm×ℓ.q

4. Compute B := −AS + E ∈ Zm×ℓ.q

5. Output the public key pk := (A∥B) ∈ Zm
q

×(n+ℓ) and the private key sk := S ∈ {−1, 0, 1}n×ℓ.

Lizard.CCA.Enc.

Input: The set of public parameters params, the public key pk = (A∥B) ∈ Zm×n × Zm×ℓ, and q q

the message M ∈ {0, 1}d.

Output: The ciphertext c = (c1, (a, b), c3) ∈ {0, 1}d × Zn+ℓ × {0, 1}ℓ.p

Operation:
1. Generate a random vector δ ← {0, 1}ℓ.
2. Set c1 := M ⊕ G(δ) ∈ Zd and c3 := H ′ (δ).2

3. Set r := H(δ) ∈ {−1, 0, 1}m.
4. Compute a := ⌊(p/q) · Atr⌉ ∈ Zn and b := ⌊(p/q) · ((q/2) · δ + Btr⌉) ∈ Zℓ .p p

5. Output c = (c1, (a, b), c3).

Lizard.CCA.Dec.

Input: The set of public parameters params, the public key pk = (A∥B) ∈ Zm×n × Zm×ℓ, the q q

secret key sk = S ∈ {−1, 0, 1}n×ℓ and the ciphertext c = (c1, (a, b), c3) ∈ {0, 1}d × Zn+ℓ ×p

{0, 1}ℓ.

Output: The message M ∈ {0, 1}d.

Operation:
1. Parse the ciphertext c := (c1, (a, b), c3).
2. Compute δ := ⌊(2/p) · (b + Sta)⌉ ∈ Zℓ

2.
3. Compute the hash values G(δ) and H ′ (δ).
4. If c3 ̸ ′ (δ), then abort. = H
5. Else, compute r := H(δ), and vectors ⌊(p/q) · Atr⌉ ∈ Zn and ⌊(p/q) · ((q/2) · δ + Btr)⌉ ∈ p

Zℓ
p.

6. If (a, b) ̸= (⌊(p/q) · Atr⌉ , ⌊(p/q) · ((q/2) · δ + Btr⌉)), then abort.
7. Else, compute and output the message M := c1 ⊕ G(δ).

3.4.2 The RLizard.CCA Scheme
For positive integers n, p, q, d, hs and hr such that hs, hr < n, and 2|p|q, and 0 < α < 1, and

′the hash functions G : R∗ → {0, 1}d, H : R∗ and H : R2 → {0, 1}n, let params ←2 2 → Bn,hr

(n, q, p, d, hs, hr, α, G, H, H ′) through all the algorithms here.

14

RLizard.CCA.KeyGen.

Input: The set of public parameters params.

Output: A key pair containing the private key s ∈ R and the public key (a, b) ∈ R2.q

Operation:
1. Generate a random polynomial a ← Rq.
2. Set a secret polynomial s by sampling it from the distribution HWT n(hs).∑n−13. For 0 ≤ i ≤ n − 1, sample an integer ei ← DGαq, and then set e = eiX

i ∈ Rq .i=0
4. Compute b := −a ∗ s + e ∈ Rq where the operations are polynomial operations in Rq.
5. Output the public key pk := (a, b) ∈ R2 and the secret key sk := s ∈ R.q

RLizard.CCA.Enc.

Input: The set of public parameters params, the public key pk = (a, b) ∈ R2, and the message q

m ∈ {0, 1}d.

Output: The ciphertext c = (c1, c2, c3) ∈ {0, 1}d × R2 × {0, 1}n.p

Operation:
1. Generate a random polynomial δ ← R2.
2. Set c1 := m ⊕ G(δ) ∈ {0, 1}d and c3 := H ′ (δ).
3. Compute r := H(δ) ∈ Bn,hr .
4. Compute c2 := (⌊(p/q) · a ∗ r⌉ , ⌊(p/q) · ((q/2) · δ + b ∗ r)⌉) ∈ R2.p
5. Output the ciphertext c = (c1, c2, c3).

RLizard.CCA.Dec.

Input: The set of public parameters params, the public key pk = (a, b) ∈ R2, the secret key q

sk = s ∈ R and the ciphertext c = (c1, c2, c3) ∈ {0, 1}d × R2 × {0, 1}n.p

Output: The message m ∈ {0, 1}d.

Operation:
1. Parse the ciphertext c := (c1, c2, c3).
2. Compute δ ← Lizard.CPA.Dec(sk, c2).
3. Compute the hash values G(δ) and H ′ (δ).
4. If c3 ̸ ′ (δ), then abort. = H
5. Else, compute r := H(δ), and polynomials ⌊(p/q) · a ∗ r⌉ ∈ Rp and ⌊(p/q) · ((q/2) · δ + b ∗ r)⌉ ∈

Rp.
6. If c2 ̸= (⌊(p/q) · a ∗ r⌉ , ⌊(p/q) · ((q/2) · δ + b ∗ r)⌉), then abort.
7. Else, compute and output the message m := c1 ⊕ G(δ).

3.5 Correctness Analyses

The following lemma shows certain condition to make decryption failure probability negligible in
λ.

15

Lemma 1 (Correctness for Lizard.CPA and RLizard.CPA). The Lizard.CPA scheme works
correctly (except for the negligible probability) as long as the following inequality holds for the
security parameter λ: []

q qPr |⟨e, r⟩ + ⟨s, f⟩| ≥ − < 2−λ ,
4 2p

where each component ei of the error vector e is independently sampled from DGσ, r ← HWT m(hr),
s ← ZOn(ρ), and f ← Zn

q/p .
Similarly, the RLizard.CPA scheme works correctly if []

q q
Pr |e ∗ r + s ∗ f | ≥ − < 2−λ ,

4 2p

n−1 ′where each coefficient of e =
∑

eiX
i is sampled from DGσ, r ← HWT m(hr), s ← HWT n(hs),i=0

and f ← Rq/p.

Proof. Let r be an m-dimensional vector sampled from HWT m(hr) in our encryption procedure.
The output ciphertext is c ← (c1 = ⌊(p/q) · (Atr)⌉ , c2 = ⌊(p/q) · ((q/2) · m + Btr)⌉).

Let f1 ← c ′ (mod q/p) ∈ Zn and f2 ← c ′ (mod q/p) ∈ Zℓ be the vectors satisfying 1 q/p 2 q/p

(q/p) · c1 = c1
′ − f1 and (q/p) · (c2 − (p/2) · m) = c ′ 2 − f2. Note that f1 = Atr (mod q/p) is uniformly

and randomly distributed over Zn independently from the choice of r, e, and s. Then for any q/p

1 ≤ i ≤ ℓ, the i-th component of c2 − Stc1 ∈ Zℓ isq

(c2 − Stc1)[i] = (p/t) · mi + (p/q) · (c ′ 2 − Stc ′ 1)[i] − (p/q) · (f2[i] − ⟨si, f1⟩)
= (p/t) · mi + (p/q) · (⟨ei, r⟩ + ⟨si, f1⟩) − (p/q) · f2[i]
= (p/t) · mi + ⌊(p/q) · (⟨ei, r⟩ + ⟨si, f1⟩)⌉

since f2 = (AS + E)tr = Stf1 + Etr (mod q/p). Therefore, the correctness of our scheme is
guaranteed if the encryption error is bounded by p/4, or equivalently, |⟨ei, r⟩+⟨si, f1⟩| < q/4−q/2p
with an overwhelming probability.

Same proof holds for the RLizard.CPA scheme. ⊓⊔

Decryption failure probabilities of Lizard.CCA (resp. RLizard.CCA) and Lizard.KEM (resp.
RLizard.KEM) are equal to that of Lizard.CPA (resp. RLizard.CPA) :

Lemma 2 ([26]). If Lizard.CPA is correct with the probability 1 − ϵ, then Lizard.CCA and
Lizard.KEM are correct except with the probability 1 − ϵ in the (quantum) random oracle model.

Samely, if RLizard.CPA is correct with the probability 1−ϵ, then RLizard.CCA and RLizard.KEM
is correct except with the probability 1 − ϵ in the (quantum) random oracle model.

4 Security Analysis and Recommended parameters

4.1 Security Proofs

4.1.1 IND-CPA Security
We first argue that Lizard.CPA is IND-CPA secure under the hardness assumptions of the LWE
problem and the LWR problem. The following theorem gives an explicit proof of our argument on
security.

Theorem 2 (Security). The PKE scheme Lizard is IND-CPA secure under the hardness as-
sumption of LWEn,m,q,α(ZOn(ρ)) and LWRm,n+ℓ,q,p(HWT m(hr)).

16

M) ∈ Zn × ZℓProof. An encryption of M can be generated by adding (0, (p/2) · q p to an en-
cryption of zero, since 2|p|q. Hence, it is enough to show that the pair of public information
pk = (A∥B) ← Lizard.CPA.KeyGen(params) and encryption of zero c ← Lizard.CPA.Encpk(0)
is computationally indistinguishable from the uniform distribution over Zm

q
×(n+ℓ) × Zn+ℓ for a q

parameter set params ← Lizard.CPA.Setup(1λ).

• D0 = {(pk, c) : pk ← Lizard.CPA.KeyGen(params), c ← Lizard.CPA.Encpk(0)}.
• D1 = {(pk, c) : pk ← Zm

q
×(n+ℓ)

, c ← Lizard.CPA.Encpk(0)}.
• D2 = {(pk, c) : pk ← Zm

q
×(n+ℓ)

, c ← Zn+ℓ}.p

The public key pk = (A∥B) ← Lizard.CPA.KeyGen(params) is generated by sampling m in-
stances of LWE problem with ℓ independent secret vectors s1, . . . , sℓ ← ZOn(ρ). In addition, the
multi-secret LWE problem is no easier than ordinary LWE problem as noted in Section 2.1. Hence,
distributions D0 and D1 are computationally indistinguishable under the LWEn,m,q,α(ZOn(ρ))
assumption.

Now assume that pk is uniform random over Zm
q

×(n+ℓ). Then pk and c ← Lizard.CPA.Encpk(0)
together form (n + ℓ) instances of the m dimensional LWR problem with secret r ← HWT m(hr).
Therefore, distributions D1 and D2 are computationally indistinguishable under the hardness as-
sumption of LWRm,n+ℓ,q,p(HWT m(hr)).

As a result, distributions D0 and D2 are computationally indistinguishable under the hardness
assumption of LWEn,m,q,α(ZOn(ρ)) and LWRm,n+ℓ,q,p(HWT m(hr)), which denotes the IND-CPA
security of the PKE scheme. ⊓⊔

As mentioned on Section 2.1, we know that LWEn,m,q,α(ZOn(ρ)) and LWRm,n+ℓ,q,p(HWT m(hr))
both have reductions from the original LWE problem, which is already proven to be hard. There-
fore, Lizard.CPA has a strong security ground. In case of RLizard.CPA, by the similarity of the
construction, we can prove that RLizard.CPA is IND-CPA under the hardness assumption of the
ring-LWE problem and ring-LWR problem with our secret distributions. As far as we know, there
is no known reduction from worst case hard problems to ring-LWE problem and ring-LWR problem
because we use the sparse small secrets.

4.1.2 IND-CCA2 Security
Since we obtained the proof for INC-CPA security of Lizard.CPA and RLizard.CPA, we can
prove the IND-CCA2 security of Lizard.KEM and RLizard.KEM. We argue that Lizard.KEM
and RLizard.KEM achieve tight IND-CCA2 security in the random oracle model, and non-tight
IND-CCA2 security in the quantum random oracle model. For IND-CCA2 security in ROM, the

′hash function H and the hash value d are not necessary.

Theorem 3. ([26], Theorem 3.2 and 3.3) For any IND-CCA2 adversary B on Lizard.KEM issuing
at most qD queries to the decryption oracle, qG queries to the random oracle G, and qH queries to
the random oracle H, there exists an IND-CPA adversary A on Lizard.CPA such that

AdvCCA
Lizard.KEM(B)

qH 2qG + 1 ≤ qG · ϵ + + 3 · AdvCPA

2ω(log λ)
+

tℓ Lizard.CPA(A)

where λ is a security parameter and ϵ is a decryption failure probability of Lizard.CPA and
Lizard.KEM.

17

Theorem 4. ([26], Theorem 4.4 and 4.5) For any IND-CCA2 quantum adversary B on Lizard.KEM
issuing at most qD (classical) queries to the decryption oracle, qG queries to the quantum random
oracle G, qH queries to the quantum random oracle H, and qH queries to the quantum random ′

oracle H′, there exists an IND-CPA quantum adversary A on Lizard.CPA such that

AdvCCA
Lizard.KEM(B) ≤ √ √

(qH + 2qH ′) 8ϵ(qG + 1)2 + (1 + 2qG) AdvCPA
Lizard.CPA(A)

where ϵ is a decryption failure probability of Lizard.CPA and Lizard.KEM.

Since Theorem 3 and 4 are using Lizard.CPA as an IND-CPA secure block to prove the IND-CCA2
security of Lizard.KEM, we can easily convert them into the theorems using RLizard.CPA to prove
RLizard.KEM is IND-CCA2 secure.
From the similarity of Lizard.KEM and RLizard.KEM, since Lizard.CCA and RLizard.CCA are
simply appending OTP encryption of a message in Zd to the key value of the KEM, we can apply 2
Theorem 3 and Theorem 4 with slight modification. Therefore, Lizard.CCA and RLizard.CCA are
also IND-CCA2 secure.

4.2 Parameter Selection

In this section, we analyze the parameter conditions to provide conservative security against known
attacks. To do that, we survey all known typical attacks against LWE such as exhaustive search,
distinguishing attack, embedding attack, BKW attack [3, 4, 21, 28], etc. Since the LWE problems
used in our scheme publish a limited number of samples, it suffices to consider the attacks using
lattice basis reduction algorithm. We plugged the BKZ lattice basis reduction algorithm [16, 42]
in the attacks, which outputs sufficiently short basis of a lattice according to the time complexity.
The most powerful strategies for this kind of attacks in our setting are categorized as follows.

– One can reduce the LWE problem to the Short Integer Solution (SIS) problem. The distin-
guishing attack analyzed in [34, 41] follows this strategy, which is extended to the dual attack.

– Regarding LWE as the Bounded-Distance Decoding (BDD) problem, one can reduce it to
unique-SVP (uSVP). The embedding attack analyzed in [5, 32] follows this strategy, which is
extended to the primal attack.

– There are various techniques to adapt the above two strategies for the small secret variants of
LWE, e.g. the modulus switching [22], the Bai and Galbraith’s rescaling technique for the em-
bedding attack [9], and the BKW style combinatorial approach to the dual attack on LWE [2].

Assembling all methods, we concluded that the dual attack with combinatorial apprach [2] and
the primal attack revisited in [1] are the best attacks against the LWE instances in our setting.

We recall the strategies for the attacks against decisional LWE in the following subsections. We
also observe that there is no difference between LWE and LWR in the attack contexts. Actually,
an instance of the LWR problem can be simply translated into an LWE instance. We would adjust
the best attacks against LWE to LWR.

Remark 1. We mainly focus on attacks for LWE and LWR rather than ring-LWE and ring-LWR
because we believe that the best attacks against RLizard.KEM and RLizard.CCA are the same
attacks on standard lattices where the polynomials are seen as matrices. Hence, we additionally
considered attacks against LWEn,m,q,α(HWT n(hs)) for analysis of ring based schemes.

18

4.2.1 Known Attacks on LWE and LWR
In this subsection, we analyze the conditions to make the LWE problem secure against the best
attacks, and adjust them to the LWR problem. We achieve the required short vector by running
the BKZ algorithm for the target lattice: if Λ is a target lattice of dimension n, then the norms of
the shortest vectors in the output of the BKZ algorithm is approximately

∥b1∥ = δn · det(Λ)1/n ,

where δ converges to a constant rapidly as n grows. This δ, called root Hermite factor, is used
to measure the security of lattice problems. In other words, the runtime of the BKZ algorithm to
achieve a given root Hermite factor in large dimension (> 200) is determined heuristically by δ. In
analysis of each attack, for calculating the attack complexity, it suffices to find a condition for δ
which makes the attack successful.

We first describe and analyze the primal and dual attacks for the short secret variants of
LWE, then transform the LWR instances into the LWE instances to apply the same attacks. These
analyses show the relation between parameters and root Hermite factor δ.

Dual Attack. We are given (A, b) ∈ Zm
q

×(n+1) either from LWEn,m,q,α(Ds), where the standard

deviation of Ds is σs (Ds is either HWT n(hs) or ZOn(ρ)), or from Uqm×(n+1). In the original dual
attack, an attacker constructs a lattice

Λ = {(x, y) ∈ Zm × Zn : xT A = yT (mod q)}

that is the orthogonal lattice of the matrix (−A∥In) modulo q. One can find a short vector
v = (x, y) in Λ using BKZ and then check if ⟨x, b⟩ (mod q) is small or not. If (A, b) is an
LWEn,m,q,α(Ds) instance with secret s and ⟨x, b⟩ is less than q in Z, then ⟨x, b⟩ = ⟨y, s⟩ + ⟨x, e⟩
behaves as a Gaussian, otherwise it is distributed uniformly. Hence, if the attacker can find and
collect short vectors v = (x, y) in Λ such that ⟨x, b⟩ < q, then the attacker would solve the
distinguish problem.

Since the secret s is a (sparse) signed binary vector, the term ⟨y, s⟩ is somewhat smaller than
⟨x, e⟩. From this point, a tweaked strategy for this attack when the variances of the components
in the secret vector s are significantly smaller than those of the error vector e arises as follows: We
consider a weighted lattice

−1Λ ′ = {(x, y ′) ∈ Zm × (w · Z)n : (x, w · y) ∈ Λ}

for some positive number w > 0. The optimal choice of w is

(αq)
w = √

2πσs

2for reconciliation of variances w · σ2 and (αq)2/(2π) of w · si and ej , respectively. √ s
nLet q̂ = q/w = 2πσs · α−1. The lattice Λ ′ has the dimension (m + n) and the volume q̂ .

Hence, the BKZ algorithm outputs a short vector v = (x, y ′) of size ∥v∥ ≈ δm+n · (q̂)
n which √

m+n √
n log ˆcan be reduced down to 22 q·log δ when m+n = n log q̂/ log δ. Then ⟨x, b⟩ = ⟨y, w ·s⟩+⟨x, e⟩

is distributed as a Gaussian centered around zero and of standard deviation σ = ∥v∥ · (αq/
√
2π)

by central limit theorem (CLT). If
√
2πσ < q, then ⟨x, b⟩ can be distinguished from the uniform

1distribution modulo q with advantage about [6]. Therefore, the LWEn,m,q,α(Ds) problem is 23
secure only if

n log q̂ 1

log2 α
≥

4 log δ
,

where q̂ =
√
2πσs · α−1.

19

√
Example 1. In case that s is drawn from the distribution HWT n(hs), q̂ = 2πhs/n · α−1. If s
is from the distribution ZOn(ρ), then q̂ =

√
2πρ · α−1. Albrecht’ s combinatorial attack [2] for

the small or sparse secret can be also applied in these cases so that we propose our parameters
according to our attack combined with the combinatorial strategy.

Primal Attack. The key idea of the primal attack is the reduction from LWE to unique-SVP
over a special lattice generated by a LWE instance. If the gap between λ1 and λ2 of this lattice is
large enough, an attacker may find the shortest vector using the BKZ algorithm.

For a given LWEn,m,q,α(HWT n(hs q)) instance (A, b = As+e) ∈ Zm×(n+1), construct the lattice

Λ = {v ∈ Zn+m+1 : (A∥Im∥ − b) v = 0 (mod q)}

with the unique shortest vector (s, e, 1). As with the case of dual attack, we consider the weighted
lattice

Λ ′ = {(x, y ′ , z) ∈ Zn × (w −1Z)m × Z : (x, w · y, z) ∈ Λ}.
√ −1for the constant w √= (αq)/ 2πσs, which contains the unique shortest vector (s, w · e, 1).

Let q̂ = q/w = 2πσs · α−1. Since the lattice Λ ′ has the dimension n + m + 1 and the volume √
m+n+1 m+n+1q̂m, we get λ2(Λ ′) ≈ q̂

m by the Gaussian heuristic. The attacker succeeds to find 2πe

the unique-SVP solution (s, w−1e, 1) if √
m+n q̂

m

α−1λ2(Λ ′) 2πe
m+n

· δm+n≈ √ = √ ≥ τn
λ1(Λ ′) m + n · αq̂ 2πe · q̂m+n √

n log q̂for a constant 0 < τ < 1. To minimize the complexity, an attacker may choose m + n = log δ√
n n log ˆwhich yields q̂m+n ·δm+n = 22 q·log δ. Therefore, the LWEn,m,q,α(Ds) problem is secure against

the primal attack only if
n log q̂ 1

log2 α̂
≥

4 log δ
,

where α̂ = (
√
2πe · τ)α and q̂ =

√
2πσs · α−1.

The constant τ is a constant that can be experimentally determined. For example, Gama and
Nguyen [25] and Albrecht et al. [5] estimated τ within the range [0.18, 0.48] for some special
lattices. Addressing the recent analysis in [1] for the primal attack, we concluded that the dual
attack with BKW style combinatorial strategy is the best attack in our setting.

Dual and Primal attacks on LWR. Now we return to the LWR problem. Given an LWR
instance (A, b = ⌊(p/q) · Ar⌉) ∈ Zm×n × Zm,q p ⌊ ⌉

q q p · b = · · Ar = Ar + t,
p p q

where t ∈ (−q/2p, q/2p]m. The rounding error t heuristically follows an uniform random distribu-
tion on (−q/2p, q/2p]m. Therefore, in the view of attacker, the transformed instance (A, (q/p) · b)
can be regarded as an LWE instance, and we apply the attacks on LWE to (A, (q/p) · b).

Since the variance of uniform random variable on (−q/2p, q/2p] is (q2/12p2), the parameter con-
−1ditions to make LWR secure against the attacks can be obtained by substituting α with p

√
π/6.

The following inequalities are the conditions for LWRm,n+ℓ,q,p(HWT m(hr)) to be secure against
the primal and dual attacks, respectively.

20

– Dual attack:
m log q̂ 1 ≥
log2 p̂ 4 log δ √ √

for p̂ = 6/π · p and q̂ = p 12hr/m.
– Primal attack:

m log q̂ 1

log2 p̂
≥

4 log δ √ √
for q̂ = p 12(hr/m) and p̂ = (3/π2e · τ−1)p.

We concluded that the dual attack in [1] adjusted to our strategy is the best attack for LWR
with sparse signed binary secret.

4.2.2 The BKZ Complexity
In this subsection, we explain how to set the root Hermite factor δ such that the attack complexities
for given δ exceed 2λ, where λ is the security parameter. We follow the strategies to measure the
BKZ complexity in NewHope [7] and Frodo [13]. We review the relations among the root Hermite
factor δ, the block size b, and the time complexity T for the BKZ algorithm in their paper as
follows.

– (pessimistic) T can be estimated as 2cb (about b2cb CPU cycles), where c is some constant.
This is an approximate lower bound of the complexity for a single SVP calculation using the
sieve algorithm [11, 29–31].

· b/2πe)1/2(b−1)– δ = ((πb)1/b .

From this, if we fix the constant c, we can calculate δ from a given T . The best known constant
is achieved by applying Grover’s quantum search algorithm to the sieve algorithms [29, 31], which
sets c = 0.265.

Hence, to make the attack using the BKZ algorithm as in Section 4.2.1 infeasible for security
parameters λ = 128, λ = 192 and λ = 256, we should set the parameters such that the attack is
successful only when δ ≤ 1.00367, δ ≤ 1.00270, and δ ≤ 1.00216, respectively.

4.2.3 Recommended Parameters
We chose parameter sets to achieve an infeasible attack complexity in following order: First, bound
δ according to the time complexity T of desired security category, as seen in Section 4.2.2; Second,
adjust parameters to make the best attack successful. We also chose parameters to achieve negligible
decryption failure probability, in other words as mentioned on Lemma 1, each parameter set should
achieve decryption failure probability less than 2−λ, where λ is the security parameter.

Note on Power-of-Twos. In particular, we set q and p as power-of-twos. In the LWE and LWR
′attacks, one can reduce the modulus q to q < q via modulus switching first and then apply arbi-

trary attack scenarios. Especially since we use the binary (and even sparse) secrets, the benefits
in the considered attacks obtained by the modulus switching overwhelms others with strategies
for specific q’s as far as we know. Hence, any particular choice for modulus q does not harm the
security. Therefore, we set q and p as power-of-twos to make the rounding procedures efficiently
done through the bitwise shift process.

We chose 16 parameter sets: KEM_CATEGORYx_Ny for Lizard.KEM and CCA_CATEGORYx_Ny
for Lizard.CCA, where (x,y) ∈ {(1,536), (1,663), (3,816), (3,952), (5,1088), (5,1300)}, and four sets

21

for both RLizard.KEM and RLizard.CCA called RING_CATEGORY1, RING_CATEGORY3_N1024,
RING_CATEGORY3_N2048, and RING_CATEGORY5. We present the decryption failure probabil-
ities1 and attack complexities of LWE and LWR on our parameter sets in Table 1. The parameter
sets are presented below Table 1.

Table 1: Decryption failure rate and attack complexities of each parameter set for the correspond-
ing scheme: ϵ is the decryption failure probability and TLWE and TLWR are the time complexity of
the best known attacks of LWE and LWR, respectively. The parameter sets RING_CATEGORY1,
RING_CATEGORY3_N1024, RING_CATEGORY_N2048, RING_CATEGORY5 can be used for both
RLizard.CCA and RLizard.KEM.

Parameter Set log2 ϵ log2 TLWE log2 TLWR

KEM_CATEGORY1_N536
CCA_CATEGORY1_N536

-159.212 133 130

KEM_CATEGORY1_N663
CCA_CATEGORY1_N663

-153.500 131 147

KEM_CATEGORY3_N816
CCA_CATEGORY3_N816

-304.467 193 195

KEM_CATEGORY3_N952
CCA_CATEGORY3_N952

-337.189 203 195

KEM_CATEGORY5_N1088
CCA_CATEGORY5_N1088

-381.331 266 257

KEM_CATEGORY5_N1300
CCA_CATEGORY5_N1300

-332.810 264 291

RING_CATEGORY1 -188.248 153 147
RING_CATEGORY3_N1024 -245.897 195 195
RING_CATEGORY3_N2048 -305.684 304 291
RING_CATEGORY5 -305.684 318 348

Parameter Sets of Lizard.CCA

CCA_CATEGORY1_N536
Security Classification : Category 1
n = 536
m = 1024
q = 2048
p = 512
ℓ = 256
d = 256
_16_LOG_Q = 5
ρ = 1/2
hr = 140
CDF_LENGTH = 9
CDF_TABLE = {158, 148, 118, 81, 48, 22, 11, 4, 1}

1 One can obtain the exact decryption failure rates, respectively, running a Python code reported at
github: https://github.com/swanhong/LizardError.

22

https://github.com/swanhong/LizardError

CCA_CATEGORY1_N663
Security Classification : Category 1
n = 663
m = 1024
q = 1024
p = 256
ℓ = 256
d = 256
_16_LOG_Q = 6
ρ = 1/4
hr = 128
CDF_LENGTH = 4
CDF_TABLE = {918, 488, 74, 3}

CCA_CATEGORY3_N816
Security Classification : Category 3
n = 816
m = 1024
q = 2048
p = 512
ℓ = 384
d = 384
_16_LOG_Q = 5
ρ = 1/2
hr = 200
CDF_LENGTH = 5
CDF_TABLE = {304, 231, 100, 25, 4}

CCA_CATEGORY3_N952
Security Classification : Category 3
n = 952
m = 1024
q = 2048
p = 512
ℓ = 384
d = 384
_16_LOG_Q = 5
ρ = 1/4
hr = 200
CDF_LENGTH = 6
CDF_TABLE = {244, 204, 120, 49, 14, 3}

23

CCA_CATEGORY5_N1088
Security Classification : Category 5
n = 1088
m = 2048
q = 4096
p = 1024
ℓ = 512
d = 512
_16_LOG_Q = 4
ρ = 1/2
hr = 200
CDF_LENGTH = 11
CDF_TABLE = {264, 249, 214, 165, 115, 72, 41, 21, 10, 4}

CCA_CATEGORY5_N1300
Security Classification : Category 5
n = 1300
m = 2048
q = 2048
p = 512
ℓ = 512
d = 512
_16_LOG_Q = 5
ρ = 1/4
hr = 200
CDF_LENGTH = 12
CDF_TABLE = {526, 499, 427, 330, 230, 144, 82, 42, 19, 8, 3, 1}

Parameter Sets of Lizard.KEM

KEM_CATEGORY1_N536
Security Classification : Category 1
n = 536
m = 1024
q = 2048
p = 512
ℓ1 = 16
ℓ2 = 16
d = 256
_16_LOG_Q = 5
ρ = 1/2
hr = 140
CDF_LENGTH = 9
CDF_TABLE = {158, 148, 118, 81, 48, 22, 11, 4, 1}

24

KEM_CATEGORY1_N663
Security Classification : Category 1
n = 663
m = 1024
q = 1024
p = 256
ℓ1 = 16
ℓ2 = 16
d = 256
_16_LOG_Q = 6
ρ = 1/4
hr = 128
CDF_LENGTH = 4
CDF_TABLE = {918, 488, 74, 3}

KEM_CATEGORY3_N816
Security Classification : Category 3
n = 816
m = 1024
q = 2048
p = 512
ℓ1 = 24
ℓ2 = 16
d = 384
_16_LOG_Q = 5
ρ = 1/2
hr = 200
CDF_LENGTH = 5
CDF_TABLE = {304, 231, 100, 25, 4}

KEM_CATEGORY3_N952
Security Classification : Category 3
n = 952
m = 1024
q = 2048
p = 512
ℓ1 = 24
ℓ2 = 16
d = 384
_16_LOG_Q = 5
ρ = 1/4
hr = 200
CDF_LENGTH = 6
CDF_TABLE = {244, 204, 120, 49, 14, 3}

25

KEM_CATEGORY5_N1088
Security Classification : Category 5
n = 1088
m = 2048
q = 4096
p = 1024
ℓ1 = 32
ℓ2 = 16
d = 512
_16_LOG_Q = 4
ρ = 1/2
hr = 200
CDF_LENGTH = 11
CDF_TABLE = {264, 249, 214, 165, 115, 72, 41, 21, 10, 4}

KEM_CATEGORY5_N1300
Security Classification : Category 5
n = 1300
m = 1024
q = 2048
p = 512
ℓ1 = 32
ℓ2 = 16
d = 512
_16_LOG_Q = 5
ρ = 1/4
hr = 200
CDF_LENGTH = 12
CDF_TABLE = {526, 499, 427, 330, 230, 144, 82, 42, 19, 8, 3, 1}

Parameter Sets of RLizard.CCA and RLizard.KEM

RING_CATEGORY1
Security Classification : Category 1
n = 1024
q = 1024
p = 256
d = 256
_16_LOG_Q = 6
hs = 128
hr = 128
CDF_LENGTH = 4
CDF_TABLE = {382, 247, 67, 7}

26

RING_CATEGORY3_N1024
Security Classification : Category 3
n = 1024
q = 2048
p = 512
d = 384
_16_LOG_Q = 5
hs = 256
hr = 264
CDF_LENGTH = 6
CDF_TABLE = {560, 443, 219, 68, 13}

RING_CATEGORY3_N2048
Security Classification : Category 3
n = 2048
q = 2048
p = 512
d = 384
_16_LOG_Q = 5
hs = 184
hr = 164
CDF_LENGTH = 8
CDF_TABLE = {816, 720, 496, 266, 111, 36, 9, 2}

RING_CATEGORY5
Security Classification : Category 5
n = 2048
q = 4096
p = 1024
d = 512
_16_LOG_Q = 4
hs = 256
hr = 256
CDF_LENGTH = 10
CDF_TABLE = {310, 289, 233, 162, 98, 51, 23, 9, 3, 1}

5 Implementation Aspects and Performance Figures

In this chapter, we describe and estimate performance and resource requirements of implementa-
tions on Intel x64 running Linux supporting the GCC compiler and on FPGA hardware.

5.1 Software Implementation

This section gives general implementation aspects and computational efficiencies of Lizard.KEM,
RLizard.KEM, Lizard.CCA, and RLizard.CCA. We provide a reference and an optimized imple-
mentation in ANSI C, compiled with the GCC compiler.

27

For Lizard.KEM and RLizard.KEM, the files Lizard.c and RLizard.c are common for im-
plementing the NIST API, including the functions crypto_kem_keypair, crypto_kem_enc and
crypto_kem_dec. For Lizard.CCA and RLizard.CCA, the files Lizard.c and RLizard.c are common
for implementing the NIST API, including the functions crypto_encrypt_keypair, crypto_encrypt
and crypto_encrypt_open. To meet IND-CCA2 security, Lizard.KEM, RLizard.KEM, Lizard.CCA
and RLizard.CCA should be used in public key pk as well as secret key sk in functions crypto_kem_dec
and crypto_encrypt_open. Therefore, public key pk are included as part of the secret key in func-
tions crypto_kem_dec and crypto_encrypt_open of file Lizard.c and RLizard.c.

To use various parameters in one implementation, we used the directing sentences #if defined
and #ifdef. Therefore, we provide various parameters in file params.h. To use each parameter,
you must use it by changing the annotation in the file params.h.

Additional files are provided file randombytes.c to use random values, file sha512.c to use the
hash function and library, and file libkeccak.a of TupleHash256 to use variable length output.

5.1.1 Data Operations

Modulus Operation. For x ∈ Zq , rather than storing itself, we store the value (x <<_16_LOG_Q)
where the data type of x is uint16_t, i.e., the data is stored as the most significant log q bits in
the 16-bit data space. In other words, we identify Zq with the subspace of 16-bit data space of
which the components are all zero except the most significant log q bits.

If vectors or matrices (resp. polynomials) are defined over Zq, then the above data storage
strategy is applied to each of the components (resp. coefficient).

Rounding Operation. In this proposal, there are rounding operations ⌊(p/q) · x⌉ over Zp for
some x ∈ Zq and ⌊(2/p) · y⌉ over Z2 for some y ∈ Zp. Note that x is stored as the most significant
log q bits in the 16-bit data space, and the rounding output ⌊(p/q) · x +0.5⌋ ∈ Zp should be stored
as the most significant log p bits in the same space. Therefore, the operation ⌊(p/q) · x⌉ over Zp is
done by

(x + RD_ADD) ∧ RD_AND

where RD_ADD = 215/p and RD_AND = 216 − 216/p.
For example, when p = 512 and q = 2048, x can be represented as 0110 1000 1100 0000,

RD_ADD = 215/29 = 26 will be 0000 0000 0100 0000 and RD_AND = 216 − 216/29 = 26 will be
1111 1111 1000 0000. The operation (x + RD_ADD) ∧ RD_AND will be as follows.

0110 1000 1100 0000
+ 0000 0000 0100 0000

0110 1001 0000 0000

0110 1001 0000 0000
∧ 1111 1111 1000 0000

0110 1001 0000 0000

The rounding operation ⌊(2/p) · y⌉ over Z2 is done in exactly the same way.

5.1.2 Data Generations

28

Matrix and Vector Generations. As we generate matrices and vectors uniform randomly
from the finite set Zm×n, or following distributions, we introduce the algorithms for these random q

generations as follows.
First, we introduce how to generate the random matrix in Zm×n with the pseudorandom q

generator randombytes(). To achieve automatic reduction of a matrix modulo q, we set the data
type of elements of a matrix as uint16_t, and left shift them _16_LOG_Q bits.

• A ← Zm
q

×n :

- For 1 ≤ i ≤ m and 1 ≤ j ≤ n, randomly generate the (i, j)-th component Aij of A with
randombytes() where the data type of Aij is uint16_t

- For 1 ≤ i ≤ m and 1 ≤ j ≤ n, compute Aij <<_16_LOG_Q
- Output the matrix A

Next, we explain the algorithm of sampling the vector following the distribution ZOn(1/2) (resp.
ZOn(1/4)). The sampling is used for secret key generation of our Lizard.CCA and Lizard.KEM.

• s ← ZOn(1/2) :

- For 0 ≤ i ≤ n − 1, randomly generate two bits x, y ∈ {0, 1} with randombytes()
- Set si = 1 if x = 0 and y = 1, si = −1 if x = y = 0, and si = 0 otherwise, where si is an i-th

component of s

• s ← ZOn(1/4) :

- For 0 ≤ i ≤ n − 1, randomly generate three bits x, y, z ∈ {0, 1} with randombytes()
- Set si = 1 if x = y = 0 and z = 1, si = −1 if x = y = z = 0, and si = 0 otherwise, where si is

an i-th component of s

In our Lizard.CPA, we generate an ephemeral secret vector r ∈ Bm,hr following the distribution
HWT m(hr) in the encryption phase. When generating r, we additionally generate the encoded
values of r; an array r_idx of hr integers in [0,m− 1] which denote indices of non-zero components
of r, and an integer neg_start in [0, hr −1] which denotes a starting index of −1. If i < neg_start,
then the r_idx[i]-th component of r is 1, and if i ≥ neg_start, the r_idx[i]-th component of
r is −1. We note that a vector r and a tuple of an array and an integer (r_idx[hr], neg_start)
match bijectively.

With this array encoding, we can evaluate the multiplication Ar ∈ Zn×m of a matrix A ∈ Zn×m
q q

and the vector r since r_idx contains the index information of non-zero components of r. To be
precise, we only read the r_idx[i]-th column of M for 0 ≤ i ≤ hr; add ai if i < neg_start and
subtract ai if i ≥ neg_start. That is, the number of for loops in the algorithm reduces from nm
to nhr.

• r ← HWT m(hr)

- Set hw = 0 and r as a zero vector
- Generate a random number j ∈ [0,m − 1] and a random bit bit ∈ {0, 1} with randombytes()
- If rj = 0, then set rj = 2 · bit − 1 and hw += 1
- Repeat the above algorithm until hw < hr

• Generation of r_idx

29

- Set neg_start = 0 and back_position = hr

- For 0 ≤ i ≤ m − 1, set r_idx[neg_start] = i and neg_start += 1 if ri = 1, and
r_idx[back_position] = i and back_position −= 1 if ri = −1

- Repeat the above algorithm until neg_start != back_position

In Lizard.KEM, RLizard.KEM, Lizard.CCA, and RLizard.CCA, the ephemeral secret vector r ∈
Bm,hr (resp. matrix R ∈ Bℓ) should be deterministically generated by a Hash function with m,hr

some input. Therefore, rather than using randombytes() whenever it is needed, we generate suf-
ficiently long hash output at once and divide it to several blocks.

• r ← H(input)

- Get some input vector input, and compute the long hash value Hash = TupleHash256(input)
- Set hw = 0 and r as a zero vector
- Compute j = Hash % m and left shift Hash for log m bits
- Compute bit = Hash % 2 and left shift Hash for a bit
- If rj = 0, then set rj = 2 · bit − 1 and hw += 1
- Repeat the above algorithm until hw < hr

The above algorithm r ← H(input) is a case of Lizard.CCA and RLizard.CCA. For Lizard.KEM
and RLizard.KEM, we sample the matrix R ← H(input) where each column vector of R is sampled
from the above algorithm.

In the key generation phases of our schemes, we sample errors through the inversion sampling
which uses a precomputed table for a discrete cumulative density function (CDF) over a small
interval. We name process the Sample_DG() algorithm. The output distribution from this algo-
rithm is a discrete bounded symmetric distribution which is very close to the discrete Gaussian
distribution with respect to the Rényi divergence. More precisely, we preset a positive integer array
CDF_TABLE of the length TABLE_LENGTH according to the CDF. Note that CDF_TABLE is an array of
increasing positive integers, i.e., CDF_TABLE[i] ≤ CDF_TABLE[i + 1] for 0 ≤ i < TABLE_LENGTH − 1.

• sample ← Sample_DG()

- Generate random numbers rnd ∈ [0, CDF_TABLE[TABLE_LENGTH - 1]] and sign ∈ {0, 1} with
randombytes() where the data type of both numbers is uint16_t

- Find the smallest integer sample ∈ [0, TABLE_LENGTH − 1] such that rnd ≤ CDF_TABLE[sample]
- Compute sample = ((−sign) ∧ sample) + sign, i.e., flip sample if sign = 0
- Output sample

Polynomial Generations. As a polynomial a corresponds to a vector a = (a0, a1, ..., an−1) bijec-
tively, we can match the polynomial ring R with the vector space Zn, and the quotient polynomial
ring Rq with the vector space Zn. Therefore, we may regard the notation of a polynomial generation q

as a vector generation.

n−1∑
a = aiX

i ∈ R ⇐⇒ a = (a0, a1, ..., an−1) ∈ Zn

i=0

n−1∑
a = aiX

i ∈ Rq ⇐⇒ a = (a0, a1, ..., an−1) ∈ Zn
q

i=0

30

From the vector-polynomial correspondence, we can regard polynomial generation as vector gener-
ation without specifying the bijection all the time. For example, we introduce the secret polynomial
generation algorithm as follows:

• s ← HWT n(hs)

- Set hw = 0 and s as a zero vector
- Generate a random number j ∈ [0, n − 1] and a random bit bit ∈ {0, 1} with randombytes()
- If sj = 0, then set sj = 2 · bit − 1 and hw += 1
- Repeat the above algorithm until hw < hs

- Identify the vector s with the polynomial s thorough the vector-polynomial correspondence

We also generate encoded values of s, an array s_idx of hs integers in [0, n] and an integer
neg_start.

• Generation of s_idx

- Set neg_start = 0 and back_position = hs

- For 0 ≤ i ≤ m − 1, set s_idx[neg_start] = i and neg_start += 1 if si = 1, and
s_idx[back_position] = i and back_position −= 1 if si = −1

- Repeat the above algorithm until neg_start != back_position

5.1.3 Computational Efficiency
We report an optimized version of implementation tested under the following platform.

Linux: PC running Linux Ubuntu 14.04.3 LTS x86_64

CPU: Intel Xeon E5-2640 v3 at 2.60GHz, Octa core

Compiler: GCC 4.8.4 using gcc -O3 -fomit-frame-pointer -msse2avx -mavx2 -march=native
-std=c99

For Lizard.KEM, RLizard.KEM, Lizard.CCA and RLizard.CCA, the parameter set supplies
128-bit, 192-bit and 256-bit security against all known quantum attacks. We present the parame-
ter sets for various cases.

Operations Parameter SharedSecret
(bytes)

Ciphertext
(bytes)

Public Key
(bytes)

Private Key
(bytes)

Lizard.KEM

KEM_CATEGORY1_N536 32 17, 696 1, 130, 496 8, 608
KEM_CATEGORY1_N663 32 10, 896 1, 390, 592 10, 640
KEM_CATEGORY3_N816 48 26, 928 1, 720, 320 19, 632
KEM_CATEGORY3_N952 48 31, 280 1, 998, 848 22, 896
KEM_CATEGORY5_N1088 64 35, 904 4, 587, 520 34, 880
KEM_CATEGORY5_N1300 64 42, 688 2, 727, 936 41, 664

RLizard.KEM

RING_CATEGORY1 32 2, 080 4, 096 385
RING_CATEGORY3_N1024 48 4, 144 4, 096 641
RING_CATEGORY3_N2048 48 8, 240 8, 192 625
RING_CATEGORY5 64 8, 256 8, 192 769

Table 2: Size of Lizard.KEM and RLizard.KEM

31

Operations Parameter KeyGen
(ms)

Enc
(ms)

Dec
(ms)

KEM_CATEGORY1_N536 75.895 0.324 0.351
KEM_CATEGORY1_N663 92.566 0.362 0.403

Lizard.KEM
KEM_CATEGORY3_N816 119.728 0.590 0.666
KEM_CATEGORY3_N952 138.215 0.676 0.794
KEM_CATEGORY5_N1088 306.368 0.846 0.905
KEM_CATEGORY5_N1300 183.198 0.826 0.896
RING_CATEGORY1 0.458 0.040 0.044

RLizard.KEM
RING_CATEGORY3_N1024 0.519 0.077 0.088
RING_CATEGORY3_N2048 0.889 0.102 0.119
RING_CATEGORY5 0.933 0.137 0.161

Table 3: Performance of Lizard.KEM and RLizard.KEM

Operations Parameter Plaintext
(bytes)

Ciphertext
(bytes)

Public Key
(bytes)

Private Key
(bytes)

Lizard.CCA

CCA_CATEGORY1_N536 32 1, 648 1, 622, 016 137, 216
CCA_CATEGORY1_N663 32 983 1, 882, 112 169, 728
CCA_CATEGORY3_N816 48 2, 496 2, 457, 600 313, 344
CCA_CATEGORY3_N952 48 2, 768 2, 736, 128 365, 568
CCA_CATEGORY5_N1088 64 3, 328 6, 553, 600 557, 056
CCA_CATEGORY5_N1300 64 3, 752 3, 710, 976 665, 600

RLizard.CCA

RING_CATEGORY1 32 2, 208 4, 096 257
RING_CATEGORY3_N1024 48 4, 272 4, 096 513
RING_CATEGORY3_N2048 48 8, 496 8, 192 369
RING_CATEGORY5 64 8, 512 8, 192 513

Table 4: Size of Lizard.CCA and RLizard.CCA

Operations Parameter KeyGen
(ms)

Enc
(ms)

Dec
(ms)

CCA_CATEGORY1_N536 156.320 0.031 0.034
CCA_CATEGORY1_N663 176.570 0.032 0.036

Lizard.CCA
CCA_CATEGORY3_N816 250.555 0.052 0.064
CCA_CATEGORY3_N952 275.555 0.057 0.072
CCA_CATEGORY5_N1088 663.879 0.062 0.086
CCA_CATEGORY5_N1300 392.828 0.071 0.101
RING_CATEGORY1 0.449 0.036 0.039

RLizard.CCA
RING_CATEGORY3_N1024 0.513 0.057 0.075
RING_CATEGORY3_N2048 0.875 0.078 0.093
RING_CATEGORY5 0.920 0.108 0.135

Table 5: Performance of Lizard.CCA and RLizard.CCA

32

The code uses only plain C instructions, without assembly nor SIMD instructions. For optimized
speed, we used the loop fusion and loop unrolling methods. In optimized implementation, the code
performs addition and subtraction operations to reduce the number of multiplication operations.
For example, the optimized code performs the operation using r_idx instead of r.

On the platform above, we have presented the required space of Lizard.KEM and RLizard.KEM
in Table 2 and the timing results in Table 3. We have also presented the required space of
Lizard.CCA and RLizard.CCA in Table 4 and the timing results in Table 5. A certain amount of er-
ror is possible in Table 3 and Table 5 when implementing Lizard.KEM, RLizard.KEM, Lizard.CCA
and RLizard.CCA.

5.2 Hardware Implementation

In this section, we propose the hardware architecture for Lizard Public Key Encryption and report
the performance of the FPGA, which we implemented using Lizard.CPA and RLizard.CPA. These
two Lizard modules mainly consist of a memory part and an addition part. Since the portion of the
addition part is very small, while that of the memory part is very large, we decided to store only
the data needed by calculation in the memory. Therefore, the operation of the module includes the
data input/output process.

The advantage of Lizard PKE from the hardware implementation viewpoint is the simple
calculation and ease of resource sharing. Since the q value is 210, setting the register Sum for
storage as 10-bit only has the effect of becoming a modulus by itself. Since the key calculation
is an accumulation that is a repetition of addition and subtraction, the calculation part is very
simple, except for the storage space such as the memory. This means not only that the area is
small but also that high-frequency operation is possible. The size of the area is even smaller than
AES requires. Furthermore, it is easy to share resources since the various operational modes have
similar hardware structures.

On the other hand, it requires a large storage space such as a cursor memory since the pa-
rameters are large, and the processes of inputting/outputting in a common size (32-bit word) and
writing them to memory become complex because the volumes of data can differ considerably. One
must also consider the fact that the use of memory is essential because of the large storage space.

Parameter of Lizard.CPA and RLizard.CPA For Lizard.CPA, the classical parameter set
supplies 128-bit security against the classical attacks, but not enough against quantum attacks.
The recommended parameter set provides 128-bit security against all known quantum attacks.
The paranoid parameter set would remain secure and have 128-bit security against quantum at-
tacks even if a remarkable improvement towards solving SVP arises. We present the parameter
sets for the case that Ds = ZOn(1/2) and Dr = HWT m(128). We fix the plaintext modulus as
t = 2 and hr = 128. The following table is the suggested parameter sets for 128-bit security. For
RLizard.CPA, we set Ds = Dr = HWT n(128) and λ = 128.

33

Operations m n logq logp α−1

Lizard.CPA
Classical 840 544 10 8 171

Lizard.CPA
Recommended

940 608 10 8 182

Lizard.CPA
Paranoid

1450 736 10 8 160

RLizard.CPA 1024 1024 10 8 154

Table 6: Parameter of Lizard.KEM and RLizard.KEM

We have implemented based on the recommended parameter of Lizard.CPA.

Architecture of Lizard.CPA The Fig. 1 shows the hardware architecture of Lizard.CPA.

Fig. 1: Data path of Lizard.CPA

In the Fig. 1, Sel_S, Sel_M, Sel_E, Sel_A, and Sel_C are the multiplexers used to select the
elements of S, M, E, A and c. The register Sum is the space for the accumulated data, while W is
the storage space in which the final accumulated results are grouped into a 32-bit word. The adder
is used to accumulate the value of the register Sum, the initial value of which is one of the inputs in
the red box at the beginning of accumulation. The other input of the adder determines whether the
output of Sel_S (S or r) is added (S or r being 1), subtracted (S or r being –1), or does nothing
(S or r being 0) to the result of the Sel_A (one of the elements of A for key generation), the result
of Sel_C (one of elements of c1 for decryption), or the outside input value (one of the elements of
A or B for encryption). In the key generation process, there is an additional calculation involving
either the addition or subtraction of the 3-bit value of the Sel_E output depending on the sign
of the remaining 1 bit. The Fig. 1 omits the step in which two 9-bit data are converted into two
4-bit data containing the 3-bit data of 0 to 7 and the 1-bit data for the sign. It also omits the
control circuit, which uses the registers and adders for the finite state machine and the counter.

34

Lizard.CPA requires three counters to count n, ℓ, and m, and the proposed design uses only one
adder through resource sharing.

Finite State Machine of Lizard.CPA

Key Generation. The process begins with the inputting of all the values of S. The portions of
1, –1, and 0 of S are determined by the input from the outside (i.e. the same as for r).

Fig. 2: Finite state machine for generating a key in Lizard.CPA

When the Lizard.CPA module is run in the key generation mode while S is being input,
it receives A and E in words per row through A_IN and E_IN. The count in the module is
incremented when a word is input, and the data are stored in the memory with the count value as
the address. If S is input before the module starts, the address value of the word is specified at the
same time for writing the data. However, since A and E use the internal counter as the address
value, they must be input in sequence when they are input from the outside. If both a row for A
and a row for E are inputted, a B element is calculated with S (which was input before the module
started), the cycle n is ringed, and a row of B is calculated by repeating it ℓ times. Whenever two
elements of B are calculated, they are grouped into a word and output to the outside. When a
row of B is calculated, the next rows of A and E are input to calculate the next row of B. The
key generation is completed when the process of inputting rows A and E and calculating row B is
repeated m times, and m rows of B are all calculated.

Encryption. The process begins by inputting the R and M values in advance.

Fig. 3: Finite state machine for encryption of Lizard.CPA

When the module starts in the encryption mode, the module receives the elements of A in
units of the row to calculate c1, and only one element is input into each word as the elements are
input in units of words. As such, A in the first of the n columns and m elements in the selected
column are selected one at a time from the top. This contrasts with the fact that A, E, and B

35

are input or output in rows, and that two elements are transmitted into a word, during the key
generation process. An element of c1 is finally calculated by accumulating the calculation with r,
which was input before the module started, whenever A was input in the column, in the register
Sum. The initial value of calculation of the c1 element is 2, the accumulated value is maintained in
10 bits, and the final accumulated value is obtained from the top 8 bits by discarding the bottom 2
bits. Each time four elements of c1 are calculated, they are grouped into a word and stored in the
memory. In the same way, B is input in the row (l rows and m elements in each row) to calculate
c2. To calculate each element of c2, the initial value is calculated by adding 2 to the 1 bit selected
from each word of M (selected from the MSB) and shifted by 9 bits to the left. The process is
finished with the calculation of c2. The encryption process ends when the results c1 and c2 are
stored in the memory. They can be read by specifying the register name and the address.

Decryption. The process begins by inputting S, c1, and c2 values in advance.

Fig. 4: Finite state machine for decryption of Lizard.CPA

The element of c2 is initialized with the value of the register Sum by INIT_M, and CAL_M
performs the accumulation using the S and c1 values for n cycles. The top two bits of the final
accumulated value are exclusive OR’ ed to 1 bit of M. While the process is repeated l times, 32
bits of M are stored in the WR_M step. Using the dual port memory means reading or writing the
data of up to two data at a time. The limitation makes it necessary to use INIT_M and WR_M.
If there is no limitation on data reading or writing by using the register instead of the memory,
the steps of INIT_M and WR_M can be eliminated. As with the process of encryption, since the
result is not output but saved in the memory during the process, l/32 = 8 words of M is read by
specifying the register name and address after completing the process.

Architecture of RLizard.CPA The Fig. 5 shows the hardware architecture of RLizard.CPA.

As with Lizard.CPA, Sel_S, Sel_E, Sel_A and Sel_C in the Fig. 5 are the multiplexers used
to select the elements of S, M, E, A and c one at a time by selecting 2-bit, 1-bit, 4-bit, 10-bit
and 8-bit. However, the method of Sel_M is different from that of Lizard.CPA since RLizard.CPA
stores one byte of each word of A in the available space. In RLizard.CPA, only the difference of
the coefficient with a value of -1 or 1 of S or r is stored in Mem1, and the coefficients of A, B,
and c1 are stored in Mem0. Let’ s assume that the former is the difference data and the latter
is the coefficient data. Since the difference data must be read first to determine the address of
the coefficient data, it is necessary to read these two data sequentially. We used the dgr and neg
registers to store the address of the coefficient data to read in the next clock cycle and the option
of whether to subtract. This method is called pipe lining. It reads the difference data in the first
cycle and then reads the coefficient data with the value of the dgr register as the address in the

36

Fig. 5: Data path of RLizard.CPA

next cycle. It also reads the next difference data in the same cycle to be ready for the following
clock cycle. It reads only the coefficient data in the last cycle. It differs from Lizard.CPA in that
it can read E and use it as the initial value during the key generation cycle since it reads only
the difference data in the first cycle. For simplicity, the Fig. 5 also omits the step in which 9-bit
data input are converted into two 4-bit data of -7 to 7 and stored in the memory. Likewise, the
register Sum stores the accumulation result; and W is the storage space in which each of the final
accumulation results are grouped into a 32-bit word. The value in the register W is not written in
the memory but rather is directly output. The Fig. 5 shows Cntn , which is one of the counters.
The control circuit (not shown in the Fig. 5) has another counter for counting S and r. Like the
lattice-based Lizard, the proposed design uses only one adder through resource sharing.

Finite State Machine of RLizard.CPA Unlike Lizard.CPA, there is only one finite state ma-
chine in RLizard.CPA.

Fig. 6: Finite state machine in RLizard.CPA

All four steps perform multiplication of two n-degree polynomials through state transition. Al-
though the process usually requires about n2 cycles, the use of pipe lining requires only 129 clock

37

cycles. INIT initially reads only the difference data and the data needed for initialization (E for
key generation, M for encryption 1, and c2 for decryption). CAL reads the difference data and
the coefficient data, while LAST reads only the coefficient data. The module performs addition or
subtraction only in CAL and LAST, which read the coefficient data from the memory. The LAST
block also groups two of the final results at a time and outputs them to the outside.

Performance

Latency. The following table shows the performance of the two Lizard modules.

Operations Type Computation
Performance

(T(I) = 1, T(O) = 1)
Latency

@50MHz @100MHz

Lizard.CPA
KeyGen m(n + ℓ)T (I) + mℓ(n + T (O)) 150.5 M cycles 3 s 1.5 s
Enc m(n + ℓ)T (I) 829.4 k cycles 16.6 ms 8.3 ms
Dec ℓ(n + 1) + ℓ/32 155.9 k cycles 3.1 ms 1.6 ms

RLizard.CPA 128(n + (1 + T (O))/2) 131.2 k cycles 2.6 ms 1.3 ms

Table 7: Latency of Lizard.CPA and RLizard.CPA

T(I) and T(O) represent the delay of input and output, respectively. The operating times of all
four steps (Key Generation, Encryption0, Encryption1, Decryption) are the same in RLizard.CPA.
However, when the Lizard.CPA module is run in Key Generation mode or Encryption mode, it
receives E, A and B. Therefore it outputs a signal when it is time to get the input. If it reads the
data in same clock cycle after it gets the signal, T (O) = 1. We performed the number of Cycles
and Latency as T (I) = 1 and T (O) = 1.
The table above does not include the time required to input data in advance or read the data after
the end of the process.

Area. The GE (Gate Equivalent) Table 8 is measured based on the implementation of the Samsung
65nm Library. It is the performance at 50MHz Frequency and much the same as the one at 100MHz
Frequency. It is expected to have a similar area when operated on higher frequencies.

Lizard.CPA RLizard.CPA
Area Size of Memory Space

Area Size of Memory Space total storage space total storage space

memory 646.9 k 644.7 k 0x3000 words 99.7 k 98.3 k 1k words
register 3321.4 k 3319.5 k 0x2740 words 204.1 k 202.7 k 512 words + 64*22-bit

Table 8: Area of Lizard.CPA and RLizard.CPA

6 Advantages and limitations

In this section, we present our implementations of our scheme for special purposes. These results
show that Lizard is flexible and efficient for various usage. The device we used in Section 6.1
was Samsung Galaxy S7. In Section 6.2 and Section 6.3, the implementations were written in

38

C, and performed on a Linux environment containing an Intel Xeon E5-2620 CPU running at
2.10GHz with Turbo Boost and Multithreading disabled. We used AVX2 vector instructions for
optimizing the implementation of our schemes. The version of gcc compiler is 5.4.0, and we compiled
our C reference implementation with flags -O3 -fomit-frame-pointer -mavx2 -march=native
-std=c99 for the x86_64 architecture.

Through this section, the performances of key generation (resp. encryption and decryption) of
our schemes were reported as a mean value across 100 (resp. 100000) measurements. We recorded
public key sizes of our schemes used in our software2.

6.1 Application on Smartphone

Since the smartphone is one of the most commonly used devices, it is natural to consider a mobile
implementation. We have implemented Lizard.CPA as an Android application. The parameters of
the implementation satisfy 128-bit quantum security with bigger decryption failure probability.
The performance of the application was comparable to computer implementation. The application
used a small amount of memory (less than 20 megabytes), and used only one core of CPU. There-
fore, we can see that Lizard is suitable for a smartphone.

Table 9: Parameter of Lizard.CPA on Android application implementation
m n log q log p α−1 ρ hr

960 608 10 8 182 1/2 128

Table 10: Performance of Lizard.CPA on Android application implementation
KeyGen Enc Dec
(ms) (ms) (ms)

288.618 0.0770 0.0229

6.2 Suitability for Small Message Space

Lizard can be utilized on low-end devices. We implemented our Lizard.CPA scheme with 32-bit
message space under 128-bit classical security (119-bit quantum security). We used classical pa-
rameters suggested in Table 11, and set ℓ = 32 to specify the message space. In general case, the
public key size is 741kB, and an encryption takes only 0.009 milliseconds. The public key size can
be reduced to 46kB if we replace the public matrix A by a 256-bit seed that generates A, and
an encryption gets slower to 0.052 milliseconds while a decryption takes the same time. These
performance data show us that Lizard can be efficient on low capacity devices.

2 We can generate matrix A in our public key from a 256-bit seed with Pseudo-Random Generator (PRG)
and store only the seed. To implement this case, we use AES128 in the ECB mode in our implementation
to expand a 256-bit seed, enabling the AES-NI instruction.

39

Table 11: Parameter of Lizard.CPA with 32-bit message space with 128-bit classical security
m n log q log p α−1 ρ hr ϵ
724 480 11 9 303 1/2 128 2−154

Table 12: Performance of Lizard.CPA with 32-bit message space with 128-bit classical security

ctxt
(bytes)

pk
(bytes)

sk
(bytes)

KeyGen
(ms)

Enc
(ms)

Dec
(ms)

A as matrix
(A as seed)

576
741,376
(46,368)

3,840
4.749

(1.891)
0.009

(0.052)
0.001

6.3 Additive Homomorphic Encryption

Lizard can also be used as a post-quantum alternative for additive homomorphic encryption (AHE)
which support the bounded number of homomorphic additions. Lizard.CPA can be naturally seen
as an additive homomorphic encryption supporting the bounded number of additions together with
the following addition procedure: ∑k– Lizard.CPA.Add(c1, · · · , ck) : Output ci ∈ Zn+ℓ

i=1 p

Corollary 1 (Correctness). The additive homomorphic encryption described above works cor-
rectly for k homomorphic additions as long as the following inequality holds for security parameter
λ: []

q q
Pr |⟨e, r⟩ + ⟨s, f⟩| ≥ − < negl(λ)

2tk 2pk

where e ← DGm
σ , r ← HWT m(hr), s ← ZOn(ρ), and f ← Zn

q/p .
Proof. This is easily proved by Lemma 1 and the triangle inequality.

Parameters for Additive Homomorphic Encryption. It is harder to meet the correctness
condition in Corollary 1 than the plain Lizard scheme. We suggest a parameter set for 128-bit
quantum security that allows 100 additions as Table 13.

Table 13: Parameter for additive homomorphic encryption
m n log q log p α−1 ρ hr

1024 816 16 14 21000 1/2 136

For this parameter set, the decryption failure probability after 100 homomorphic additions is
approximately 2−29.

Previously proposed additive homomorphic encryption schemes [27, 35, 36] of which perfor-
mances are summarized in [19]3 can afford much more homomorphic additions with fixed param-
3 In [19], they also suggested an AHE scheme with excellent performances, but their parameters are turned
out to be insecure [23].

40

eter sets than ours. However, when one needs only bounded number of homomorphic additions,
Lizard might provide a better trade-off so that it can be faster than other AHE schemes. For
Lizard which supports 100 homomorphic additions, an encryption, decryption, and homomorphic
addition take only 0.014, 0.012, and 0.0005 milliseconds, which are at least 147, 333, and 4 times
faster than all of those of AHE schemes in [27, 35, 36], respectively. We present a sample result for
256-bit messages and 128-bit quantum security in Table 14.

Table 14: Performance of Lizard with 256-bit messages which supports 100 homomorphic additions
ctxt

(bytes)
pk

(bytes)
sk

(bytes)
KeyGen

(ms)
Enc
(ms)

Dec
(ms)

Add
(ms)

A as matrix
(A as seed) 1,876

2,195,456
(524,320) 52,224

25.923
(21.444)

0.014
(0.092) 0.012 0.0005

References

1. Martin Albrecht, Florian Göpfert, Fernando Virdia, and Thomas Wunderer. Revisiting the Expected
Cost of Solving uSVP and Applications to LWE. 2017. to appear.

2. Martin R Albrecht. On dual lattice attacks against small-secret lwe and parameter choices in helib
and seal. IACR Cryptology ePrint Archive, 2017:047, 2017.

3. Martin R Albrecht, Carlos Cid, Jean-Charles Faugere, Robert Fitzpatrick, and Ludovic Perret. On the
complexity of the BKW algorithm on LWE. Designs, Codes and Cryptography, 74(2):325–354, 2015.

4. Martin R Albrecht, Jean-Charles Faugere, Robert Fitzpatrick, and Ludovic Perret. Lazy modulus
switching for the BKW algorithm on LWE. In International Workshop on Public Key Cryptography,
pages 429–445. Springer, 2014.

5. Martin R Albrecht, Robert Fitzpatrick, and Florian Göpfert. On the efficacy of solving LWE by
reduction to unique-SVP. In International Conference on Information Security and Cryptology, pages
293–310. Springer, 2013.

6. Martin R Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of learning with errors.
Journal of Mathematical Cryptology, 9(3):169–203, 2015.

7. Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-quantum Key Exchange—A
New Hope. In 25th USENIX Security Symposium (USENIX Security 16), pages 327–343, Austin, TX,
August 2016. USENIX Association.

8. Joël Alwen, Stephan Krenn, Krzysztof Pietrzak, and Daniel Wichs. Learning with rounding, revisited.
In Advances in Cryptology–CRYPTO 2013, pages 57–74. Springer, 2013.

9. Shi Bai and Steven D Galbraith. Lattice decoding attacks on binary LWE. In Australasian Conference
on Information Security and Privacy, pages 322–337. Springer, 2014.

10. Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and lattices. In Annual
International Conference on the Theory and Applications of Cryptographic Techniques, pages 719–737.
Springer, 2012.

11. Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in nearest neighbor
searching with applications to lattice sieving. In Proceedings of the Twenty-Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 10–24. SIAM, 2016.

12. Andrej Bogdanov, Siyao Guo, Daniel Masny, Silas Richelson, and Alon Rosen. On the hardness of
learning with rounding over small modulus. In Theory of Cryptography Conference, pages 209–224.
Springer, 2016.

13. Joppe Bos, Craig Costello, Leo Ducas, Ilya Mironov, Michael Naehrig, Valeria Nikolaenko, Ananth
Raghunathan, and Douglas Stebila. Frodo: Take off the Ring! Practical, Quantum-Secure Key Ex-
change from LWE. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS ’16, pages 1006–1018, New York, NY, USA, 2016. ACM.

41

14. Zvika Brakerski, Craig Gentry, and Shai Halevi. Packed ciphertexts in LWE-based homomorphic
encryption. In Public-Key Cryptography–PKC 2013, pages 1–13. Springer, 2013.

15. Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. Classical hardness of
learning with errors. In Proceedings of the forty-fifth annual ACM symposium on Theory of computing,
pages 575–584. ACM, 2013.

16. Yuanmi Chen and Phong Q Nguyen. BKZ 2.0: Better lattice security estimates. In International Con-
ference on the Theory and Application of Cryptology and Information Security, pages 1–20. Springer,
2011.

17. Jung Hee Cheon, Kyoohyung Han, Jinsu Kim, Changmin Lee, and Yongha Son. Practical post-
quantum public key cryptosystem based on LWE. In the 19th Annual international Conference on
Information Security and Cryptology, 2016. Available at https://eprint.iacr.org.

18. Jung Hee Cheon, Duhyeong Kim, Joohee Lee, and Yong Soo Song. Lizard: Cut off the tail!//practical
post-quantum public-key encryption from lwe and lwr. IACR Cryptology ePrint Archive, 2016:1126,
2016.

19. Jung Hee Cheon, Hyung Tae Lee, and Jae Hong Seo. A new additive homomorphic encryption based
on the Co-ACD problem. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, pages 287–298. ACM, 2014.

20. Alexander W Dent. A designer’s guide to kems. Lecture notes in computer science, pages 133–151,
2003.

21. Alexandre Duc, Florian Tramèr, and Serge Vaudenay. Better algorithms for LWE and LWR. In Annual
International Conference on the Theory and Applications of Cryptographic Techniques, pages 173–202.
Springer, 2015.

22. Léo Ducas and Daniele Micciancio. Fhew: Bootstrapping homomorphic encryption in less than a
second. In Advances in Cryptology–EUROCRYPT 2015, pages 617–640. Springer, 2015.

23. Pierre-Alain Fouque, Moon Sung Lee, Tancrède Lepoint, and Mehdi Tibouchi. Cryptanalysis of the
Co-ACD assumption. In Annual Cryptology Conference, pages 561–580. Springer, 2015.

24. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric encryption
schemes. In Crypto, volume 99, pages 537–554. Springer, 1999.

25. Nicolas Gama and Phong Q Nguyen. Predicting lattice reduction. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 31–51. Springer, 2008.

26. Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of the fujisaki-okamoto
transformation. Cryptology ePrint Archive, Report 2017/604, 2017. http://eprint.iacr.org/2017/
604.

27. Marc Joye and Benoit Libert. Efficient cryptosystems from 2k-th power residue symbols. In Annual
International Conference on the Theory and Applications of Cryptographic Techniques, pages 76–92.
Springer, 2013.

28. Paul Kirchner and Pierre-Alain Fouque. An improved BKW algorithm for LWE with applications to
cryptography and lattices. In Annual Cryptology Conference, pages 43–62. Springer, 2015.

29. Thijs Laarhoven. Search problems in cryptography. PhD thesis, PhD thesis, Eindhoven University of
Technology, 2015. http://www.thijs.com/docs/phd-final.pdf, 2015.

30. Thijs Laarhoven. Sieving for shortest vectors in lattices using angular locality-sensitive hashing. In
Annual Cryptology Conference, pages 3–22. Springer, 2015.

31. Thijs Laarhoven, Michele Mosca, and Joop Van De Pol. Finding shortest lattice vectors faster using
quantum search. Designs, Codes and Cryptography, 77(2-3):375–400, 2015.

32. Mingjie Liu, Xiaoyun Wang, Guangwu Xu, and Xuexin Zheng. Shortest lattice vectors in the presence
of gaps. IACR Cryptology ePrint Archive, 2011:139, 2011.

33. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over
rings. In Annual International Conference on the Theory and Applications of Cryptographic Techniques,
pages 1–23. Springer, 2010.

34. Daniele Micciancio and Oded Regev. Lattice-based cryptography. In Post-quantum cryptography,
pages 147–191. Springer, 2009.

35. Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. Can homomorphic encryption be prac-
tical? In Proceedings of the 3rd ACM workshop on Cloud computing security workshop, pages 113–124.
ACM, 2011.

42

http://www.thijs.com/docs/phd-final.pdf
http://eprint.iacr.org/2017
http:https://eprint.iacr.org

36. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Inter-
national Conference on the Theory and Applications of Cryptographic Techniques, pages 223–238.
Springer, 1999.

37. Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem. In Proceedings
of the forty-first annual ACM symposium on Theory of computing, pages 333–342. ACM, 2009.

38. Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and composable
oblivious transfer. In Annual International Cryptology Conference, pages 554–571. Springer, 2008.

39. Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In Proceedings of
the fortieth annual ACM symposium on Theory of computing, pages 187–196. ACM, 2008.

40. Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In Proceedings
of the Thirty-seventh Annual ACM Symposium on Theory of Computing, STOC ’05, pages 84–93, New
York, NY, USA, 2005. ACM.

41. Markus Rückert and Michael Schneider. Estimating the security of lattice-based cryptosystems. Cryp-
tology ePrint Archive, Report 2010/137, 2010. http://eprint.iacr.org/2010/137.

42. Claus-Peter Schnorr and Martin Euchner. Lattice basis reduction: improved practical algorithms and
solving subset sum problems. Mathematical programming, 66(1-3):181–199, 1994.

43. Ehsan Ebrahimi Targhi and Dominique Unruh. Quantum Security of the Fujisaki-Okamoto and OAEP
Transforms. Cryptology ePrint Archive, Report 2015/1210, 2015. http://eprint.iacr.org/2015/
1210.

43

http://eprint.iacr.org/2015
http://eprint.iacr.org/2010/137

	Structure Bookmarks
	Lizard Public Key Encryption
	Lizard Public Key Encryption
	Lizard Public Key Encryption

	Submission to NIST proposal
	Submission to NIST proposal

	
	
	Name of the proposed cryptosystem : Lizard Public Key Encryption

	
	
	Principal submitter

	TR
	-Name : Jung Hee Cheon

	TR
	-E-mail address : jhcheon@snu.ac.kr

	TR
	-Telephone : +82 10-9767-1912

	TR
	-Organization : Seoul National University, Republic of Korea

	TR
	-Postal address :

	TR
	Department of Mathematical Sciences (Bldg 27, Rm 404),

	TR
	Seoul National University, Seoul, Republic of Korea

	
	
	Auxiliary submitters

	TR
	-Seoul National University: Jung Hee Cheon, Sangjoon Park, Joohee Lee, Duhyeong

	TR
	Kim, Yongsoo Song, Seungwan Hong, Dongwoo Kim, Jinsu Kim, Seong-Min Hong

	TR
	-Ulsan national institute of science and technology: Aaram Yun, Jeongsu Kim

	TR
	-Korea Internet & Security Agency: Haeryong Park, Eunyoung Choi, Kimoon Kim,

	TR
	Jun-Sub Kim, Jieun Lee

	
	
	Inventors

	TR
	-Jung Hee Cheon, Duhyeong Kim, Joohee Lee, Yongsoo Song

	
	
	Developers

	TR
	-Aaram Yun, Jeongsu Kim, Sangjoon Park, Dongwoo Kim, Seungwan Hong, Jinsu

	TR
	Kim, Seong-Min Hong, Haeryong Park, Eunyoung Choi, Kimoon Kim, Jun-Sub Kim,

	TR
	Jieun Lee

	
	
	Owner of the cryptosystem

	TR
	-Jung Hee Cheon, Duhyeong Kim, Joohee Lee, Yongsoo Song

	Principal submitter Jung Hee Cheon ____________________
	Principal submitter Jung Hee Cheon ____________________
	Figure
	Table of Contents
	Table of Contents
	Table of Contents

	Lizard Public Key Encryption; Submission to NIST proposal
	Lizard Public Key Encryption; Submission to NIST proposal
	
	1

	1 Introduction
	1 Introduction
	...
	3

	1.1
	1.1
	Terminology and Notation
	..
	4

	2
	2
	Security Assumptions and Design Rationale

	5

	2.1
	2.1
	Learning with Errors and Learning with Roundings

	5

	2.2
	2.2
	Ring variants of LWE and LWR
	...
	6

	2.3
	2.3
	Design Rationale
	..
	7

	2.4
	2.4
	ProposedSchemes
	...
	8

	3
	3
	Algorithm Specifications
	..
	8

	3.1
	3.1
	Symmetric primitives
	..
	8

	3.2
	3.2
	IND-CPA Public Key Encryption Schemes

	8

	3.2.1
	3.2.1
	The Lizard.CPA Encryption Scheme

	8

	3.2.2
	3.2.2
	The RLizard.CPA Encryption Scheme

	9

	3.3
	3.3
	IND-CCA2 Key Encapsulation Mechanisms

	10

	3.3.1
	3.3.1
	Overview
	...
	10

	3.3.2
	3.3.2
	The Lizard.KEM Scheme
	...
	11

	3.3.3
	3.3.3
	TheRLizard.KEMScheme
	..
	12

	3.4
	3.4
	IND-CCA2 Public Key Encryption Schemes

	13

	3.4.1
	3.4.1
	The Lizard.CCA Scheme
	..
	13

	3.4.2
	3.4.2
	The RLizard.CCA Scheme
	..
	14

	3.5
	3.5
	Correctness Analyses
	..
	15

	4 SecurityAnalysisandRecommendedparameters
	4 SecurityAnalysisandRecommendedparameters

	16

	4.1
	4.1
	Security Proofs
	..
	16

	4.1.1
	4.1.1
	IND-CPA Security
	...
	16

	4.1.2
	4.1.2
	IND-CCA2 Security
	..
	17

	4.2
	4.2
	Parameter Selection
	...
	18

	4.2.1
	4.2.1
	Known Attacks on LWE and LWR

	19

	4.2.2
	4.2.2
	The BKZ Complexity
	..
	21

	4.2.3
	4.2.3
	Recommended Parameters
	..
	21

	5
	5
	Implementation Aspects and Performance Figures

	27

	5.1
	5.1
	Software Implementation
	...
	27

	5.1.1
	5.1.1
	DataOperations
	...
	28

	5.1.2
	5.1.2
	Data Generations
	..
	28

	5.1.3
	5.1.3
	Computational Efficiency
	...
	31

	5.2
	5.2
	Hardware Implementation
	..
	33

	6
	6
	Advantages and limitations
	..
	38

	6.1
	6.1
	Application on Smartphone
	...
	39

	6.2
	6.2
	Suitability for Small Message Space
	..
	39

	6.3
	6.3
	Additive Homomorphic Encryption
	..
	40

	1 Introduction
	1 Introduction
	We propose Lizard, a family of post-quantum public-key encryption (PKE) schemes and key encapsulation mechanisms (KEMs).
	At the center of our constructions lies the Lizard IND-CPA PKE. This is a scheme whose security is based on sparse, small secret versions of learning with errors (LWE) and learning with roundings (LWR). Essentially, the public-key is chosen to be a set of LWE samples with signed binary secrets, and the encryption uses rounding to achieve security (via LWR) and reduced size of the ciphertexts. We use sparse random vectors as ephemeral secrets to speed up multiplications. Our construction is based on a result
	The IND-CPA PKE scheme is then turned into an IND-CCA2 KEM, via a KEM variant of the Fujisaki-Okamoto transformation. Using the usual KEM/DEM hybrid paradigm, this can be turned into an IND-CCA2 PKE scheme, for example by using the one-time pad to symmetrically encrypt messages with the symmetric key encapsulated by the KEM.
	Also, we propose ring-based versions of the above constructions, called RLizard. Instead of based on the variants of LWE and LWR in Lizard, RLizard is based on the corresponding versions of ring-LWE and ring-LWR. As with Lizard, we first construct an IND-CPA PKE, and then obtain IND-CCA2 KEM and PKE by the same transformation.
	1.1 Terminology and Notation
	1.1 Terminology and Notation
	In this subsection, we introduce a list for terminology and notation used throughout this document.
	log the logarithm with base 2
	 the dimension of LWE samples, a positive integer
	 the number of LWE samples, a positive integer, a power of two
	 the large modulus, a positive integer, a power of two
	 the small modulus for rounding, a positive integer, a power of two
	ℓ a positive integer, the number of secret vectors in case of Lizard primitive, the number of plaintext slots in case of Lizard primitive
	ℓ1 a positive integer, the number of secret vectors in case of IND-CCA2 KEM schemes
	ℓ2 a positive integer, the number of ephemeral secret vectors in IND-CCA2 KEM schemes
	 a positive integer, the number of plaintext slots in case of IND-CCA2 PKE, the bit-length of shared secret key in case of IND-CCA2 KEM
	 the Hamming weight of a secret polynomial
	 the Hamming weight of an ephemeral secret vector r or polynomial
	_16_LOG_Q 16 log
	_16_LOG_T 15
	Z a set 0 1 1
	Z a set 0 1 1
	mod reduce an integer, a vector, or a matrix modulo componentwisely
	mod reduce an integer, a vector, or a matrix modulo componentwisely
	[0] a set 0 1 1
	⌊⌉ rounding function, ⌊⌉ is the nearest integer to the rational number , rounding upwards in case of a tie
	∥ concatenation operator
	the transpose of the matrix A
	

	∥∥ norm operator, ∥v∥ is 2-norm of the vector v
	⟨ ⟩ inner product
	 a component-wise left shift operation
	 a component-wise right shift operation
	 a component-wise XOR operation
	 sampling from the distribution
	 sampling from the set uniform randomly
	 the security parameter
	negl() the negligible function with respect to the contents of negl()
	 () the uniform distribution over the subset of 1 0 1whose elements contain number of zeros
	

	() the distribution over 1 0 1where each component satisfies Pr[= 1] = Pr[= 1] = /2 and Pr[= 0] = 1
	

	 the uniform distribution over Z
	 the discrete Gaussian distribution with the parameter
	 the subset of 1 0 1of which elements have exactly number of non-zero components, the set of all possible vectors chosen from () the subset of 1 0 1of which each column has exactly number of non-
	
	ℓ
	ℓ

	
	zero components Z[]/(+ 1), a ring of polynomials with integer coefficients modulo +1 /, a set of ring elements in modulo /, a set of ring elements in modulo 2 /2, a set of ring elements in modulo 2
	
	

	2 Security Assumptions and Design Rationale
	2 Security Assumptions and Design Rationale
	In this section, we introduce the security assumptions exploited in our schemes, and then explain our design rationale for proposed schemes.
	2.1 Learning with Errors and Learning with Roundings
	2.1 Learning with Errors and Learning with Roundings
	Since Regev [40] introduced the LWE problem, a lot of cryptosystems based on this problem have been proposed relying on its versatility. For an -dimensional vector s Zand an error distribution over Z, the LWE distribution Z is obtained by choosing a
	
	LWE

	 vector a uniformly and randomly from Zand an error from , and outputting
	(s) over Z
	StyleSpan
	

	
	(a = ⟨a s⟩ +) Z Z
	

	
	The search LWE problem is to find s Z for given arbitrarily many independent samples (a) from
	LWE

	(s). The decision LWE, denoted by LWE(), aims to distinguish the distribution
	StyleSpan

	LWE
	StyleSpan

	(s) from the uniform distribution over Z Z with non-negligible advantage, for a fixed
	StyleSpan
	

	 s . When the number of samples are limited by , we denote the problem by LWE(). In this paper, we only consider the discrete Gaussian = as an error distribution where is the error rate in (0 1), so will substitute the distribution in description of LWE problem, say LWE(). The LWE problem is self-reducible, so we usually omit the key distribution when it is a uniform distribution over Z.
	StyleSpan

	P
	The hardness of the decision LWE problem is guaranteed by the worst case hardness of the standard lattice problems: the decision version of the shortest vector problem (GapSVP), and the shortest independent vectors problem (SIVP). After Regev [40] presented the quantum reduction from those lattice problems to the LWE problem, Peikert et al. [15, 37] improved the reduction to a classical version for significantly worse parameters; the dimension should be of the size of (log). In this case, note that the re
	After the works on the connection between the LWE problem and some lattice problems, some variants of LWE, of which the secret distributions are modified from the uniform distribution, were proposed. In [15], Brakerski et al. proved that the LWE problem with binary secret is at least as hard as the original LWE problem. Following the approach of [15], Cheon et al. [17] proved the hardness of the LWE problem with sparse secret, the number of non-zero components of the secret vector is a constant.
	As results of Theorem 4 in [17], the hardness of the LWE problems with (sparse) small secret, LWE (()) and LWE (()) for 0 1, are guaranteed by the following theorem.
	Theorem 1. (Informal) For positive integers , 0 1 and 0 1, following statements hold:
	P
	1. If log()+ log and , then the LWE (()) problem is at least as hard as the LWE problem.
	10

	(())
	
	1
	1

	2. If (1) log + log log and , the LWE (()) problem
	2
	10

	1 is at least as hard as the LWE problem.
	In [14, 38, 39], to pack a string of plaintexts in a ciphertext, LWE with single secret was generalized to LWE with multiple secrets. An instance of multi-secret LWE is (a ⟨a s1⟩+e1 ⟨a s⟩+e) where s1 s are secret vectors and e1 e are independently chosen error vectors. Using the hybrid argument, multi-secret LWE is proved to be at least as hard as LWE with single secret.
	-

	The LWR problem was firstly introduced by Banerjee et al. [10] to improve the efficiency of pseudorandom generator based on the LWE problem. Unlikely to the LWE problem, errors in the LWR problem are deterministic so that the problem is so-called a “derandomized” version of the LWE problem. To hide secret information, the LWR problem uses a rounding by a modulus instead of inserting errors. Then, the deterministic error is created by scaling down from Z to Z.
	For an -dimensional vector s over Z, the LWR distribution (s) over Z Z is obtained
	LWR
	

	P
	by choosing a vector a from Zuniform randomly, and returning
	

	
	(⌊ ⌉)
	a (⟨a s⟩ mod) Z Z
	
	

	P
	
	As in the LWE problem, (s) denotes the distribution of samples from (s); that is
	LWR
	LWR

	contained in Z Z. The search LWR problem are defined respectively as finding secret s just
	
	StyleSpan

	as same as the search version of LWE problem. In contrary, the decision LWR() problem aims to distinguish the distribution (s) from the uniform distribution over Z Z
	LWR
	
	

	
	with instances for a fixed s .
	In [10], Banerjee et al. proved that there is an efficient reduction from the LWE problem to the LWR problem for a modulus of super-polynomial size. Later, the follow-up works by Alwen et al. [8] and Bogdanov et al. [12] improved the reduction by eliminating the restriction on modulus size and adding a condition of the bound of the number of samples. In particular, the reduction by Bogdanov et al. works when 2/ is a constant, where is a bound of errors in the LWE problem, is the number of samples in both

	2.2 Ring variants of LWE and LWR
	2.2 Ring variants of LWE and LWR
	In [33], Lyubashevsky et al. deal with the LWE problem over rings, namely ring-LWE. For positive integers and , and an irreducible polynomial () Z[] of degree , we define the ring = Z[]/(()) and its quotient ring modulo , = Z[]/(()). We denote the polynomial multiplication of and in and by . The ring-LWE problem is to distinguish between the uniform distribution and the distribution of (+) where is uniform randomly
	2

	P
	chosen polynomial, is chosen from an error distribution, and is a secret polynomial.
	Due to the efficiency and compactness of ring-LWE, many lattice-based cryptosystems are constructed as ring-LWE based, rather than LWE-based. As with the LWE problem, the ring-LWE problem over the ring is at least as hard as the search version of approximate SVP over the ideal lattices of , in the sense of quantum reduction.
	The ring variant of LWR is introduced in [10, 12] as an analogue of LWR. In the ring-LWR problem, the vectors chosen from Zare substituted by polynomials in , , the ring-LWR
	

	P
	instance for a secret polynomial is
	(⌊ ⌉)
	
	

	
	
	where ⌊(/) ⌉ is obtained by applying the rounding function to each coefficient of (/). The search and decision ring-LWR problems are defined the same way as the LWR problem, but over rings.
	In [10], Banerjee et al. proved that decision ring-LWR is at least as hard as decision ring-LWE for sufficiently large modulus. Later, reduction from search ring-LWE to search ring-LWR was constructed in overall scope of the modulus [10] when the number of samples is bounded.

	2.3 Design Rationale
	2.3 Design Rationale
	Our first IND-CPA secure PKE scheme simply relies on the hardness assumption of the LWE and LWR problems with particular secret distributions. As explained in Section 2, it is shown that LWE with small secret is still hard to solve if the min-entropy of the secret distribution is sufficiently large. Moreover, the LWR problem is somewhat equivalent to LWE unless we overuse the same secrets to generate samples due to the reduction in the recent work [12]. All these aspects lead us to design the primitives nam
	To give an intuition for the basic algorithms, we describe our Lizard in the case of bit encryption as follows. In the key generation step, we first sample a secret vector s 1 0 1, a random matrix Z, and an error vector e of which components are expected to be small.
	StyleSpan
	StyleSpan
	

	
	Then output the secret key sk s, and public key pk (b) where b = s + e Z. Hence,
	StyleSpan

	P
	the public key is an instance of LWE with the secret vector s. In the encryption step, we sample a sparse signed binary vector r () with low Hamming weight (), which is an ephemeral secret of the algorithm. The re-randomization process after calculating (r br) is to adapt the ordinary rounding procedure from the modulus to lower modulus , without adding auxiliary noises. The resulting ciphertext for 0 1 is
	StyleSpan
	StyleSpan

	c (⌊(/) r⌉ ⌊(/2) +(/) br⌉) Z
	StyleSpan
	StyleSpan
	+1

	
	where ⌊⌉ denotes the component-wise rounding of entries to the closest integers, rounding upwards in case of a tie. If both are power-of-twos, the rounding procedure could be reduced to the two simple steps: addition of /2 and the bitwise shift operation. That is, we “cut off” the least significant bits of each component of the vector (r rb) to return a ciphertext.
	StyleSpan
	StyleSpan

	The advantages of Lizard can be analyzed (See Section 3.3 in [18]), but we would like to make simple remarks here. Since the recent LWE attack for using the sparse secrets emerges [2], our parameter has been loosened than previous. However, since we use the sparse signed binary secrets or signed binary secrets, we can obtain the record-breaking encryption and decryption speeds which are faster than those of NTRU respectively, despite the weaker assumption for the security. Using LWR in the encryption phase
	The RLizard CPA secure PKE scheme provides a trade-off between space-efficiency and security, which is of independent interest. In RLizard, a public key is parsed into two structured square matrices modulo which represent polynomials in , respectively. Hence, the public key size is reduced from (+ℓ) log to 2 log compared to Lizard. Let pk =(). The resulting ciphertext for 2 is
	 (⌊(/) ⌉ ⌊(/2) +(/) ⌉)
	2

	P
	where is an ephemeral secret in the encryption procedure which is a sparse signed binary polynomial, and denotes multiplication in . It can be seen that all the operations in encryption are just the same with those in Lizard except that multiplications and additions are held in the polynomial space .
	-

	2.4 Proposed Schemes
	2.4 Proposed Schemes
	We first propose IND-CPA secure encryption schemes: Lizard and RLizard. To avoid an abuse of notations, we call them “Lizard.CPA” and “RLizard.CPA” through the whole document. We convert Lizard.CPA (RLizard.CPA) into an IND-CCA2 Key Encapsulation Mechanism (KEM) Lizard.KEM (RLizard.KEM) using a KEM variant of Fujisaki-Okamoto transformation [24, 20, 26]. We also suggest Lizard.CCA (RLizard.CCA) using the same transformation, combining it with a One-Time Pad (OTP).
	-
	-

	3 Algorithm Specifications
	3 Algorithm Specifications
	3.1 Symmetric primitives
	3.1 Symmetric primitives
	In our IND-CCA2 schemes, we need to generate (pseudo-)random numbers and hash outputs. We use the pseudorandom generator randombytes to generate a random bit string of an arbitrary length, which is recommended to use by NIST. We instantiate all the hash functions in this proposal with TupleHash256 considering two main factors: the flexibility in input and output lengths, and the long-term security which comes close to that of AES256.
	′
	More precisely, we use three hash functions , , and to achieve the IND-CCA2 security
	′
	of proposed schemes. The functions and are exactly the TupleHash256 with proper input and output lengths, while the function is not: the output of is generated from the output of TupleHash256 to be spread following a particular distribution. We specified the exact algorithm to obtain an output of using TupleHash256 in Section 6.

	3.2 IND-CPA Public Key Encryption Schemes
	3.2 IND-CPA Public Key Encryption Schemes
	In this section and through the whole document, we suggest two kinds of IND-CPA secure PKE schemes called Lizard.CPA and RLizard.CPA. The Lizard.CPA and RLizard.CPA PKEs contain three algorithms in each: a key generation LizardCPAKeyGen, encryption LizardCPAEnc and a decryption LizardCPADec in the former one, and a key generation RLizardCPAKeyGen, encryption RLizardCPAEnc and a decryption RLizardCPADec in the latter one. We assume that certain conditions for inputs hold for the specifications of algorithms,
	3.2.1 The Lizard.CPA Encryption Scheme
	3.2.1 The Lizard.CPA Encryption Scheme
	For positive integers , , ℓ, , and such that and 2, and 0 1, let (ℓ) through all the algorithms here.
	LizardCPAKeyGen.
	Input: The set of public parameters .
	Output: A key pair consisting of the private key 1 0 1and the public key
	ℓ

	(∥) Z
	(∥) Z
	(+ℓ)

	 .
	Operation:
	1. Generate a random matrix Z.
	StyleSpan

	P
	2.
	2.
	2.
	Set a secret matrix := (s0∥∥sℓ1) by sampling each s independently from the distribution ().
	-

	3.
	3.
	For 0 1 and 0 ℓ 1, sample an integer , and then set =() Z.
	ℓ

	
	4. Compute := + Z.
	ℓ

	
	5. Output the public key pk := (∥) Z and the private key sk := 1 0 1.
	StyleSpan
	(+ℓ)
	ℓ

	LizardCPAEnc.
	Inputs: The set of public parameters , the public key pk =(∥) Z Z,
	
	ℓ

	
	and the message M 0 1.
	ℓ

	Output: The ciphertext c =(a b) Z Z.
	
	ℓ

	P
	Operation:
	1.
	1.
	1.
	Generate an dimensional vector r from the distribution ()
	r

	2.
	2.
	Compute a := ⌊(/) r⌉ Zand b := ⌊(/) ((/2) M + r)⌉ Z.
	StyleSpan
	
	StyleSpan
	ℓ

	P
	3. Output the ciphertext c := (a b) Z Z.
	StyleSpan
	
	ℓ

	P
	LizardCPADec.
	Inputs: The set of public parameters , the secret key sk = 1 0 1and the ciphertext c =(a b) Z Z.
	ℓ
	
	ℓ

	P
	Output: The message M 0 1.
	ℓ

	Operation:
	1.
	1.
	1.
	Parse the ciphertext c =(a b).

	2.
	2.
	Compute M = ⌊(2/) (b + a)⌉ Z.
	StyleSpan
	ℓ
	2

	3.
	3.
	Output the message M.

	3.2.2 The RLizard.CPA Encryption Scheme
	3.2.2 The RLizard.CPA Encryption Scheme
	For positive integers , , , and such that and 2, and 0 1, let () through all the algorithms here. We denote = Z[]/(+ 1) and
	

	∑
	1
	 = Z[]/(+ 1). We identify the polynomial = () with the vector
	
	

	=0
	a =(01 1) Z(Z). Therefore, for a polynomial () and any
	
	StyleSpan

	P
	distribution over Z(Z), means sampling the vector a following the distribution
	
	StyleSpan

	
	 and then identifying the vector with its corresponding polynomial .
	RLizardCPAKeyGen.
	Input: The set of public parameters .
	Output: A key pair containing the private key and the public key () .
	2

	
	Operation:
	1.
	1.
	1.
	Generate a random polynomial .

	2.
	2.
	Set a secret polynomial by sampling it from the distribution ().

	∑
	1
	3. For 0 1, sample an integer , and then set = .
	

	=0
	4.
	4.
	4.
	Compute := + .

	5.
	5.
	Output the public key pk := () and the secret key sk := .
	2

	
	RLizardCPAEnc.
	Inputs: The set of public parameters , the public key () , and the message
	2

	P
	polynomial 2.
	Output: The ciphertext c =(12) .
	2

	P
	Operation:
	1. Generate a polynomial by sampling it from the distribution ().
	′′
	2. Set := , and := in .
	1
	2

	′′
	3.
	3.
	3.
	Compute 1 := ⌊(/) ⌉ and 2 := ⌊(/) ((/2) +)⌉ .
	1
	2

	4.
	4.
	Output the ciphertext c := (12).

	RLizardCPADec.
	Inputs: The set of public parameters , the secret key sk = , and the ciphertext c =(12) .
	2

	P
	Output: The message 2.
	Operation:
	1.
	1.
	1.
	Parse the ciphertext c =(12).

	2.
	2.
	Compute := ⌊(2/) (2 + 1)⌉ 2.

	4. Output the message .

	3.3 IND-CCA2 Key Encapsulation Mechanisms
	3.3 IND-CCA2 Key Encapsulation Mechanisms
	In this section, we suggest two kinds of IND-CCA2 KEM, Lizard.KEM and RLizard.KEM, which are derived by CCA KEM conversions [26] of Lizard.CPA and RLizard.CPA, respectively.
	3.3.1 Overview
	3.3.1 Overview
	Recently, Hofheinz et al. [26] suggested a modular toolkit of FO transformations [24, 20, 43], which turns an arbitrary weakly (i.e., IND-CPA) secure PKE into a strongly (i.e., IND-CCA2) secure key encapsulation in the (quantum) random oracle model. The transformation has certain merits since it is robust against schemes with nonzero decryption failure probability while the
	Recently, Hofheinz et al. [26] suggested a modular toolkit of FO transformations [24, 20, 43], which turns an arbitrary weakly (i.e., IND-CPA) secure PKE into a strongly (i.e., IND-CCA2) secure key encapsulation in the (quantum) random oracle model. The transformation has certain merits since it is robust against schemes with nonzero decryption failure probability while the
	others are not. We utilize their conversion technique in quantum random oracle model for our CPA-secure Lizard and RLizard to achieve the IND-CCA2 KEMs.

	Basically, the symmetric primitives required in the IND-CCA2 secure Lizard/RLizard KEMs are the same as in the IND-CCA2 secure Lizard PKE. That is, we use three hash functions ,
	′
	, , where and output a -bit string where denotes the bit-length of messages of the CCA schemes and outputs -bit string(s) with hamming weight , and the OTP here. The one thing changed in Lizard.CPA to obtain Lizard.KEM is that we transform the message vector of the length ℓ to the matrix of the size ℓ1 ℓ2 for some ℓ1 and ℓ2 such that ℓ1 ℓ2 = ℓ, and use the parameters (ℓ1ℓ2) instead of ℓ. Our Lizard.CPA can be re-written in the matrix form as follows:
	′

	– The key pair are generated normally as
	pk (∥) Z, sk 1 0 1
	(+ℓ
	1
)
	ℓ
	1

	
	– For a message 0 1, we first generate an ephemeral secret as a matrix
	ℓ
	1
	ℓ
	2

	 () 1 0 1 and calculate
	ℓ
	2
	ℓ
	2

	 (⌊(/) ⌉ ⌊(/2) +(/) ⌉) Z Z
	StyleSpan
	StyleSpan
	ℓ
	2
	ℓ
	1
	ℓ
	2

	
	where ⌊⌉ denotes componentwise rounding for whole matrix.
	We use this form for Lizard.CPA to make the public key size and the ciphertext size somewhat balanced. Actually, the public key size is reduced by a factor ℓ2, and the ciphertext size grows from (+ℓ) log to (ℓ2 +ℓ) log in this matrix form of Lizard.CPA. On the other hand, RLizard.KEM is obtained by applying the conversion technique directly to RLizard.CPA.

	3.3.2 The Lizard.KEM Scheme
	3.3.2 The Lizard.KEM Scheme
	For positive integers , , ℓ1, ℓ2, ℓ, , , and such that , ℓ = ℓ1 ℓ2, and 2, 0
	 ℓ2 ′
	StyleSpan

	1, and the hash functions : 0 10 1, : 0 1and : 0 10 1,
	
	StyleSpan
	
	
	ℓ

	r
	let (ℓ1ℓ2 ℓ) through all the algorithms here.
	′

	LizardKEMKeyGen.
	Input: The set of parameters .
	Output: A key pair containing the private key () 1 0 10 1and the
	ℓ
	1
	ℓ
	1
	ℓ
	2

	public key (∥) Z .
	StyleSpan
	(+ℓ
	1
)

	Operation:
	1. Generate a random matrix Z.
	StyleSpan

	P
	2.
	2.
	2.
	Set a secret matrix := (s0∥∥sℓ1) by sampling each s independently from the distribution (1/2).
	1

	3.
	3.
	Generate a random matrix 0 1.
	ℓ
	1
	ℓ
	2

	4.
	4.
	For 0 1 and 0 ℓ1 1, sample an integer , and then set =() Z.
	ℓ
	1

	
	5. Compute := + Z.
	ℓ
	1

	 1
	(∥) Z
	(+ℓ
)

	6. Output the public key pk := and the secret key sk := () 1 0 10 1.
	ℓ
	1
	ℓ
	1
	ℓ
	2

	LizardKEMEncaps.
	Inputs: The set of public parameters , public key pk =(∥) Z Z.
	
	ℓ
	1

	
	ℓ1ℓ2
	 Z

	Output: The ciphertext =(12 d) Z0 1and the shared key
	ℓ
	2
	ℓ

	
	K 0 1.
	StyleSpan

	Operation:
	1.
	1.
	1.
	Generate a random matrix 0 1.
	ℓ
	1
	ℓ
	2

	2.
	2.
	Compute the matrix := () and the vector d := ().
	′

	3.
	3.
	Compute 1 := ⌊(/) ⌉ Zand 2 := ⌊(/) ((/2) +)⌉ Z.
	StyleSpan
	ℓ
	2
	StyleSpan
	ℓ
	1
	ℓ
	2

	P
	4. Compute K := (12 d), and output the pair (=(12 d) K).
	LizardKEMDecaps.
	Inputs: The set of public parameters , the public key pk =(∥) Z Z,
	
	ℓ
	1

	
	the secret key sk =() 1 0 10 1, and the ciphertext =(12 d)
	ℓ
	1
	ℓ
	1
	ℓ
	2

	ℓ2 ℓ1ℓ2
	Z
	 Z

	0 1.
	ℓ

	
	Output: The shared key K 0 1.
	StyleSpan

	Operation:
	1. Parse the ciphertext := (12 d).
	′
	2.
	2.
	2.
	Compute := ⌊(2/) (2 + 1)⌉ Z.
	StyleSpan
	ℓ
	1
	ℓ
	2

	3.
	3.
	Compute := () and d:= ().
	′
	′
	′
	′
	′

	2
	′ ′′
	4. Compute := ⌊(/) ⌉ Zand := ⌊(/) ((/2) +)⌉ Z,
	1
	StyleSpan
	′
	ℓ
	2
	2
	StyleSpan
	′
	ℓ
	1
	ℓ
	2

	
	′ ′′
	and set := (d).
	1
	2
	′

	5. If ̸, then output K := (12 d).
	′

	=
	6. Else, output the shared key K := (12 d).
	′

	3.3.3 The RLizard.KEM Scheme
	3.3.3 The RLizard.KEM Scheme
	For positive integers , , , , , and such that and 2, 0 1, and the
	′
	hash functions : 0 1 2 0 1, : 2 and : 2 0 1, let () through all the algorithms here.
	
	StyleSpan
	r
	StyleSpan
	′

	RLizardKEMKeyGen.
	Input: The set of public parameters .
	Output: A key pair containing the private key () 2 and the public key () .
	2

	
	Operation:
	1.
	1.
	1.
	Generate a random polynomial .

	2.
	2.
	Set a secret polynomial ().

	3.
	3.
	Generate a random vector t 0 1and identify it with the polynomial 2.
	

	∑
	1
	4. For 0 1, sample an integer , and then set = .
	

	=0
	5.
	5.
	5.
	Compute := + .

	6.
	6.
	Output the public key pk := () and the secret key sk := () 2.
	2

	
	RLizardKEMEncaps.
	Inputs: The set of public parameters , the public key pk := () .
	2

	
	Output: The ciphertext c := (12 d) 0 1and the shared key K 0 1.
	
	StyleSpan

	Operation:
	1.
	1.
	1.
	Generate a polynomial 2.

	2.
	2.
	Compute := () and d := ().
	′

	3.
	3.
	Compute 1 := ⌊(/) ⌉ and 2 := ⌊(/) ((/2) +)⌉ .

	4.
	4.
	Compute K := (12 d).

	5.
	5.
	output (12 d K).

	RLizardKEMDecaps.
	Inputs: The set of public parameters , the public key pk := () , the secret key
	2

	
	() , and the ciphertext c := (12 d) 0 1.
	StyleSpan

	Output: The shared key K 0 1.
	StyleSpan

	Operation:
	1.
	1.
	1.
	Parse the ciphertext c := (12 d).

	2.
	2.
	Compute := ⌊(2/) (2 + 1)⌉ 2.
	′

	′
	3. Compute := () and d:= ().
	′
	′
	′
	′

	′
	4.
	4.
	4.
	Compute := ⌊(/) ⌉ and := ⌊(/) ((/2) +)⌉ , and set c := (d).
	′
	′
	′
	′
	′
	′
	′
	′

	5.
	5.
	5.
	If c ̸

	= c , then output K = (12 d).
	′

	6.
	6.
	Else, output the shared key K = (12 d).
	′

	3.4 IND-CCA2 Public Key Encryption Schemes
	3.4 IND-CCA2 Public Key Encryption Schemes
	In this section, we suggest two kinds of IND-CCA2 public key encryption schemes. We apply a simple conversion for our KEMs to obtain these IND-CCA2 PKEs. The conversion modifies the encapsulation algorithm simply by appending OTP encryption of a message in Zto the key
	

	2
	value of the KEM. Our IND-CCA2 PKE Lizard and RLizard are specified as Lizard.CCA and RLizard.CCA, respectively.
	3.4.1 The Lizard.CCA Scheme
	3.4.1 The Lizard.CCA Scheme
	For positive integers , , ℓ, , , and such that and 2, 0 1, and
	′
	the hash functions : 0 10 1, : 0 1 and : 0 10 1, let (ℓ) through all the algorithms here.
	
	StyleSpan
	
	r
	
	ℓ
	′

	LizardCCAKeyGen.
	Input: The set of public parameters .
	Output: A key pair containing the private key 1 0 1and the public key (∥)
	ℓ

	(+ℓ)
	Z

	.
	
	Operation:
	1. Generate a random matrix Z.
	StyleSpan

	
	2.
	2.
	2.
	Set a secret matrix := (s0∥∥sℓ1) by sampling each s independently from the distribution ().
	-

	3.
	3.
	For 0 1 and 0 ℓ 1, sample an integer , and then set =() Z.
	ℓ

	
	4. Compute := + Z.
	ℓ

	
	5. Output the public key pk := (∥) Z and the private key sk := 1 0 1.
	StyleSpan
	(+ℓ)
	ℓ

	LizardCCAEnc.
	Input: The set of public parameters , the public key pk =(∥) Z Z, and
	
	ℓ

	
	the message M 0 1.
	StyleSpan

	Output: The ciphertext c =(c1 (a b) c3) 0 1 Z0 1.
	
	+ℓ
	ℓ

	
	Operation:
	1.
	1.
	1.
	Generate a random vector δ 0 1.
	ℓ

	2.
	2.
	Set c1 := M (δ) Zand c3 := (δ).
	
	′

	3.
	3.
	Set r := (δ) 1 0 1.
	StyleSpan

	2
	4. Compute a := ⌊(/) r⌉ Zand b := ⌊(/) ((/2) δ + r⌉) Z.
	StyleSpan
	
	StyleSpan
	ℓ

	P
	5. Output c =(c1 (a b) c3).
	LizardCCADec.
	Input: The set of public parameters , the public key pk =(∥) Z Z, the
	
	ℓ

	
	secret key sk = 1 0 1and the ciphertext c =(c1 (a b) c3) 0 1 Z
	ℓ
	
	+ℓ

	
	0 1.
	ℓ

	Output: The message M 0 1.
	StyleSpan

	Operation:
	1.
	1.
	1.
	Parse the ciphertext c := (c1 (a b) c3).

	2.
	2.
	Compute δ := ⌊(2/) (b + a)⌉ Z.
	StyleSpan
	ℓ
	2

	3.
	3.
	Compute the hash values (δ) and (δ).
	′

	4.
	4.
	If c3 ̸(δ), then abort.
	′

	=
	5. Else, compute r := (δ), and vectors ⌊(/) r⌉ Zand ⌊(/) ((/2) δ + r)⌉
	StyleSpan
	
	StyleSpan

	 Z.
	ℓ
	StyleSpan

	6. If (a b) ̸
	=(⌊(/) r⌉ ⌊(/) ((/2) δ + r⌉)), then abort.
	StyleSpan
	StyleSpan

	7. Else, compute and output the message M := c1 (δ).

	3.4.2 The RLizard.CCA Scheme
	3.4.2 The RLizard.CCA Scheme
	For positive integers , , , , and such that , and 2, and 0 1, and
	′
	the hash functions : 0 1, : and : 2 0 1, let
	
	StyleSpan
	
	StyleSpan

	22 r
	

	() through all the algorithms here.
	′

	RLizardCCAKeyGen.
	Input: The set of public parameters .
	Output: A key pair containing the private key and the public key () .
	2

	
	Operation:
	1.
	1.
	1.
	Generate a random polynomial .

	2.
	2.
	Set a secret polynomial by sampling it from the distribution ().

	∑
	1
	3. For 0 1, sample an integer , and then set = .
	

	=0
	4.
	4.
	4.
	Compute := + where the operations are polynomial operations in .

	5.
	5.
	Output the public key pk := () and the secret key sk := .
	2

	
	RLizardCCAEnc.
	Input: The set of public parameters , the public key pk =() , and the message
	2

	
	m 0 1.
	StyleSpan

	Output: The ciphertext c =(c1 c2 c3) 0 1 0 1.
	
	2
	StyleSpan

	
	Operation:
	1.
	1.
	1.
	Generate a random polynomial 2.

	2.
	2.
	Set c1 := m () 0 1and c3 := ().
	
	′

	3.
	3.
	Compute := () .
	r

	4.
	4.
	Compute c2 := (⌊(/) ⌉ ⌊(/) ((/2) +)⌉) .
	2

	P
	5. Output the ciphertext c =(c1 c2 c3).
	RLizardCCADec.
	Input: The set of public parameters , the public key pk =() , the secret key
	2

	
	sk = and the ciphertext c =(c1 c2 c3) 0 1 0 1.
	
	2
	StyleSpan

	
	Output: The message m 0 1.
	StyleSpan

	Operation:
	1.
	1.
	1.
	Parse the ciphertext c := (c1 c2 c3).

	2.
	2.
	Compute LizardCPADec(sk c2).

	3.
	3.
	Compute the hash values () and ().
	′

	4.
	4.
	If c3 ̸(), then abort.
	′

	=
	5.
	5.
	5.
	Else, compute := (), and polynomials ⌊(/) ⌉ and ⌊(/) ((/2) +)⌉ .

	6.
	6.
	If c2 ̸

	=(⌊(/) ⌉ ⌊(/) ((/2) +)⌉), then abort.
	7. Else, compute and output the message m := c1 ().

	3.5 Correctness Analyses
	3.5 Correctness Analyses
	The following lemma shows certain condition to make decryption failure probability negligible in .
	Lemma 1 (Correctness for Lizard.CPA and RLizard.CPA). The Lizard.CPA scheme works correctly (except for the negligible probability) as long as the following inequality holds for the security parameter :
	[]
	P
	StyleSpan

	Pr ⟨e r⟩ + ⟨s f⟩ 2
	

	42 where each component of the error vector e is independently sampled from , r (), s (), and f Z. Similarly, the RLizard.CPA scheme works correctly if
	StyleSpan
	/

	[]
	P
	StyleSpan

	 + 2
	

	42
	1
	′
	where each coefficient of = is sampled from , (), (),
	∑
	StyleSpan
	

	=0
	and /.
	Proof. Let r be an -dimensional vector sampled from () in our encryption procedure. The output ciphertext is c (c1 = ⌊(/) (r)⌉ c2 = ⌊(/) ((/2) m + r)⌉).
	StyleSpan
	StyleSpan

	Let f1 c (mod /) Zand f2 c (mod /) Zbe the vectors satisfying
	′
	
	′
	ℓ

	1 / 2 /
	(/) c1 = c f1 and (/) (c2 (/2) m)= c f2. Note that f1 = r (mod /) is uniformly and randomly distributed over Zindependently from the choice of r, e, and s. Then for any
	1
	′
	′
	2
	StyleSpan
	

	/
	1 ℓ, the -th component of c2 c1 Zis
	StyleSpan
	ℓ

	
	(c2 c1)[]=(/) +(/) (c c)[] (/) (f2[] ⟨s f1⟩)
	StyleSpan
	′
	2
	StyleSpan
	′
	1

	=(/) +(/) (⟨e r⟩ + ⟨s f1⟩) (/) f2[]
	=(/) + ⌊(/) (⟨e r⟩ + ⟨s f1⟩)⌉
	since f2 =(+)r = f1 + r (mod /). Therefore, the correctness of our scheme is guaranteed if the encryption error is bounded by /4, or equivalently, ⟨e r⟩+⟨s f1⟩ /4/2 with an overwhelming probability.
	StyleSpan
	StyleSpan
	StyleSpan

	Same proof holds for the RLizard.CPA scheme. ⊓⊔
	Decryption failure probabilities of Lizard.CCA (. RLizard.CCA) and Lizard.KEM (. RLizard.KEM) are equal to that of Lizard.CPA (. RLizard.CPA) :
	Lemma 2 ([26]). If Lizard.CPA is correct with the probability 1 ϵ, then Lizard.CCA and Lizard.KEM are correct except with the probability 1 ϵ in the (quantum) random oracle model.
	Samely, if RLizard.CPA is correct with the probability 1ϵ, then RLizard.CCA and RLizard.KEM is correct except with the probability 1 ϵ in the (quantum) random oracle model.

	4 Security Analysis and Recommended parameters
	4 Security Analysis and Recommended parameters
	4.1 Security Proofs
	4.1 Security Proofs
	4.1.1 IND-CPA Security
	4.1.1 IND-CPA Security
	We first argue that Lizard.CPA is IND-CPA secure under the hardness assumptions of the LWE problem and the LWR problem. The following theorem gives an explicit proof of our argument on security.
	Theorem 2 (Security). The PKE scheme Lizard is IND-CPA secure under the hardness assumption of LWE(()) and LWR+ℓ(()).
	-

	M) Z ZProof. An encryption of M can be generated by adding (0 (/2) to an encryption of zero, since 2. Hence, it is enough to show that the pair of public information pk =(∥) LizardCPAKeyGen() and encryption of zero c LizardCPAEncpk(0)
	
	ℓ
	
	-

	is computationally indistinguishable from the uniform distribution over Z Zfor a
	StyleSpan
	(+ℓ)
	+ℓ

	
	parameter set LizardCPASetup(1).
	StyleSpan

	L
	LI
	Lbl
	0 = (pk c): pk LizardCPAKeyGen() c LizardCPAEncpk(0).

	LI
	Lbl
	1 = (pk c): pk Z c LizardCPAEncpk(0).
	StyleSpan
	(+ℓ)

	2 = (pk c): pk Z c Z.
	StyleSpan
	(+ℓ)
	+ℓ

	
	The public key pk =(∥) LizardCPAKeyGen() is generated by sampling instances of LWE problem with ℓ independent secret vectors s1 sℓ (). In addition, the multi-secret LWE problem is no easier than ordinary LWE problem as noted in Section 2.1. Hence, distributions 0 and 1 are computationally indistinguishable under the LWE(()) assumption.
	-

	Now assume that pk is uniform random over Z . Then pk and c LizardCPAEncpk(0) together form (+ ℓ) instances of the dimensional LWR problem with secret r (). Therefore, distributions 1 and 2 are computationally indistinguishable under the hardness assumption of LWR+ℓ(()).
	StyleSpan
	(+ℓ)
	-

	As a result, distributions 0 and 2 are computationally indistinguishable under the hardness assumption of LWE(()) and LWR+ℓ(()), which denotes the IND-CPA security of the PKE scheme. ⊓⊔
	As mentioned on Section 2.1, we know that LWE(()) and LWR+ℓ(()) both have reductions from the original LWE problem, which is already proven to be hard. Therefore, Lizard.CPA has a strong security ground. In case of RLizard.CPA, by the similarity of the construction, we can prove that RLizard.CPA is IND-CPA under the hardness assumption of the ring-LWE problem and ring-LWR problem with our secret distributions. As far as we know, there is no known reduction from worst case hard problems to ring-LWE problem
	-

	4.1.2 IND-CCA2 Security
	4.1.2 IND-CCA2 Security
	Since we obtained the proof for INC-CPA security of Lizard.CPA and RLizard.CPA, we can prove the IND-CCA2 security of Lizard.KEM and RLizard.KEM. We argue that Lizard.KEM and RLizard.KEM achieve tight IND-CCA2 security in the random oracle model, and non-tight IND-CCA2 security in the quantum random oracle model. For IND-CCA2 security in ROM, the
	′
	hash function and the hash value d are not necessary.
	Theorem 3. ([26], Theorem 3.2 and 3.3) For any IND-CCA2 adversary on Lizard.KEM issuing at most queries to the decryption oracle, queries to the random oracle G, and queries to the random oracle H, there exists an IND-CPA adversary on Lizard.CPA such that
	Adv
	Adv
	CCA

	Lizard.KEM 2 +1
	()

	 ϵ + +3 Adv
	CPA

	ℓ Lizard.CPA
	2
	(log)
	+
	StyleSpan
	()

	where is a security parameter and ϵ is a decryption failure probability of Lizard.CPA and Lizard.KEM.
	Theorem 4. ([26], Theorem 4.4 and 4.5) For any IND-CCA2 quantum adversary on Lizard.KEM issuing at most (classical) queries to the decryption oracle, queries to the quantum random oracle G, queries to the quantum random oracle H, and queries to the quantum random
	′
	oracle H, there exists an IND-CPA quantum adversary on Lizard.CPA such that
	′

	Adv
	Adv
	CCA

	Lizard.KEM
	()

	√
	√
	√

	(+2 ′)8ϵ(+ 1)+ (1 + 2) Adv
	2
	CPA

	Lizard.CPA
	()

	where ϵ is a decryption failure probability of Lizard.CPA and Lizard.KEM.
	Since Theorem 3 and 4 are using Lizard.CPA as an IND-CPA secure block to prove the IND-CCA2 security of Lizard.KEM, we can easily convert them into the theorems using RLizard.CPA to prove RLizard.KEM is IND-CCA2 secure. From the similarity of Lizard.KEM and RLizard.KEM, since Lizard.CCA and RLizard.CCA are simply appending OTP encryption of a message in Zto the key value of the KEM, we can apply
	

	2
	Theorem 3 and Theorem 4 with slight modification. Therefore, Lizard.CCA and RLizard.CCA are also IND-CCA2 secure.

	4.2 Parameter Selection
	4.2 Parameter Selection
	In this section, we analyze the parameter conditions to provide conservative security against known attacks. To do that, we survey all known typical attacks against LWE such as exhaustive search, distinguishing attack, embedding attack, BKW attack [3, 4, 21, 28], etc. Since the LWE problems used in our scheme publish a limited number of samples, it suffices to consider the attacks using lattice basis reduction algorithm. We plugged the BKZ lattice basis reduction algorithm [16, 42] in the attacks, which out
	–
	–
	–
	One can reduce the LWE problem to the Short Integer Solution (SIS) problem. The distinguishing attack analyzed in [34, 41] follows this strategy, which is extended to the dual attack.
	-

	–
	–
	Regarding LWE as the Bounded-Distance Decoding (BDD) problem, one can reduce it to unique-SVP (uSVP). The embedding attack analyzed in [5, 32] follows this strategy, which is extended to the primal attack.

	–
	–
	There are various techniques to adapt the above two strategies for the small secret variants of LWE, e.g. the modulus switching [22], the Bai and Galbraith’s rescaling technique for the embedding attack [9], and the BKW style combinatorial approach to the dual attack on LWE [2].
	-

	Assembling all methods, we concluded that the dual attack with combinatorial apprach [2] and the primal attack revisited in [1] are the best attacks against the LWE instances in our setting.
	We recall the strategies for the attacks against decisional LWE in the following subsections. We also observe that there is no difference between LWE and LWR in the attack contexts. Actually, an instance of the LWR problem can be simply translated into an LWE instance. We would adjust the best attacks against LWE to LWR.
	Remark 1. We mainly focus on attacks for LWE and LWR rather than ring-LWE and ring-LWR because we believe that the best attacks against RLizard.KEM and RLizard.CCA are the same attacks on standard lattices where the polynomials are seen as matrices. Hence, we additionally considered attacks against LWE(()) for analysis of ring based schemes.
	4.2.1 Known Attacks on LWE and LWR
	4.2.1 Known Attacks on LWE and LWR
	In this subsection, we analyze the conditions to make the LWE problem secure against the best attacks, and adjust them to the LWR problem. We achieve the required short vector by running the BKZ algorithm for the target lattice: if Λ is a target lattice of dimension , then the norms of the shortest vectors in the output of the BKZ algorithm is approximately
	∥b1∥ = det(Λ)
	
	1/

	where converges to a constant rapidly as grows. This , called root Hermite factor, is used to measure the security of lattice problems. In other words, the runtime of the BKZ algorithm to achieve a given root Hermite factor in large dimension (200) is determined heuristically by . In analysis of each attack, for calculating the attack complexity, it suffices to find a condition for which makes the attack successful.
	We first describe and analyze the primal and dual attacks for the short secret variants of LWE, then transform the LWR instances into the LWE instances to apply the same attacks. These analyses show the relation between parameters and root Hermite factor .
	Dual Attack. We are given (b) Z either from LWE(), where the standard deviation of is (is either () or ()), or from . In the original dual attack, an attacker constructs a lattice
	StyleSpan
	(+1)
	(+1)

	Λ= (x y) Z Z: x = y(mod)
	
	
	
	

	that is the orthogonal lattice of the matrix (∥) modulo . One can find a short vector v =(x y) in Λ using BKZ and then check if ⟨x b⟩ (mod) is small or not. If (b) is an LWE() instance with secret s and ⟨x b⟩ is less than in Z, then ⟨x b⟩ = ⟨y s⟩ + ⟨x e⟩ behaves as a Gaussian, otherwise it is distributed uniformly. Hence, if the attacker can find and collect short vectors v =(x y) in Λ such that ⟨x b⟩ , then the attacker would solve the distinguish problem.
	Since the secret s is a (sparse) signed binary vector, the term ⟨y s⟩ is somewhat smaller than ⟨x e⟩. From this point, a tweaked strategy for this attack when the variances of the components in the secret vector s are significantly smaller than those of the error vector e arises as follows: We consider a weighted lattice
	1
	Λ = (x y) Z (Z):(x y) Λ
	′
	′
	
	

	for some positive number 0. The optimal choice of is ()
	 =
	
	2

	
	P
	Let ˆ= / = . The lattice Λ has the dimension (+) and the volume ˆ. Hence, the BKZ algorithm outputs a short vector v =(x y) of size ∥v∥ (ˆ) which
	2
	1
	′
	′
	+
	n

	
	
	m+n

	√
	 log ˆ
	 log ˆ

	can be reduced down to 2when + = . Then ⟨x b⟩ = ⟨ys⟩+⟨x e⟩ is distributed as a Gaussian centered around zero and of standard deviation = ∥v∥ (/ 2) by central limit theorem (CLT). If 2 , then ⟨x b⟩ can be distinguished from the uniform
	2
	log
	 log ˆ/ log
	
	

	distribution modulo with advantage about [6]. Therefore, the LWE() problem is
	23
	secure only if
	secure only if
	1
	 log ˆ

	log where ˆ= 2 .
	2
	
	4 log
	
	
	1

	√
	Example 1. In case that s is drawn from the distribution (), ˆ= . If s is from the distribution (), then ˆ= 2 . Albrecht’ s combinatorial attack [2] for the small or sparse secret can be also applied in these cases so that we propose our parameters according to our attack combined with the combinatorial strategy.
	2/
	1
	
	1

	Primal Attack. The key idea of the primal attack is the reduction from LWE to unique-SVP over a special lattice generated by a LWE instance. If the gap between 1 and 2 of this lattice is large enough, an attacker may find the shortest vector using the BKZ algorithm.
	For a given LWE((
	For a given LWE((
)) instance (b = s+e) Z, construct the lattice
	(+1)

	Λ= v Z:(∥∥ b) v =0 (mod)
	++1

	with the unique shortest vector (s e 1). As with the case of dual attack, we consider the weighted lattice
	Λ = (x y) Z (Z) Z :(x y) Λ
	′
	′
	
	1
	

	1
	for the constant =()/ , which contains the unique shortest vector (s e 1). Let ˆ= / =. Since the lattice Λ has the dimension + +1 and the volume
	StyleSpan
	2
	2
	
	1
	′

	√
	++1
	++1

	m+n+1
	ˆ, we get 2(Λ) ˆby the Gaussian heuristic. The attacker succeeds to find
	StyleSpan
	′
	m

	2
	the unique-SVP solution (se 1) if
	1

	√
	+
	+

	1
	ˆ
	m
	StyleSpan

	2(Λ) 2
	′
	m+n

	+
	

	 =
	n
	 + ˆ ˆm+n
	1(Λ
	′
)
	2

	√
	 log ˆ
	 log ˆ

	for a constant 0 1. To minimize the complexity, an attacker may choose + =
	log
	
	n
	 log ˆ
	 log ˆ

	which yields ˆm+n =2. Therefore, the LWE() problem is secure against
	+
	2
	log

	the primal attack only if
	1
	 log ˆ

	logˆ
	2
	
	4 log
	

	where ˆ=(2) and ˆ= 2 .
	
	
	1

	The constant is a constant that can be experimentally determined. For example, Gama and Nguyen [25] and Albrecht et al. [5] estimated within the range [0.18, 0.48] for some special lattices. Addressing the recent analysis in [1] for the primal attack, we concluded that the dual attack with BKW style combinatorial strategy is the best attack in our setting.
	Dual and Primal attacks on LWR. Now we return to the LWR problem. Given an LWR instance (b = ⌊(/) r⌉) Z Z,
	
	StyleSpan

	
	⌊⌉
	
	

	 b = r = r + t
	
	where t (/2 /2]. The rounding error t heuristically follows an uniform random distribution on (/2 /2]. Therefore, in the view of attacker, the transformed instance ((/) b) can be regarded as an LWE instance, and we apply the attacks on LWE to ((/) b).
	StyleSpan
	-
	StyleSpan

	Since the variance of uniform random variable on (/2 /2] is (/12), the parameter
	2
	2
	con
	-

	1
	ditions to make LWR secure against the attacks can be obtained by substituting with /6. The following inequalities are the conditions for LWR+ℓ(()) to be secure against the primal and dual attacks, respectively.
	√

	– Dual attack:
	1
	 log ˆ

	P
	logˆ
	2
	4 log

	√√
	for ˆ= and ˆ= .
	6/
	12/

	– Primal attack:
	1 logˆ
	 log ˆ
	2
	
	4 log

	√√
	for ˆ= and ˆ=().
	12(/)
	3/
	2
	
	1

	We concluded that the dual attack in [1] adjusted to our strategy is the best attack for LWR with sparse signed binary secret.
	for reconciliation of variances and ()/(2) of and , respectively.
	2
	2

	2
	2

	1
	1
	1

	4.2.2 The BKZ Complexity
	4.2.2 The BKZ Complexity
	In this subsection, we explain how to set the root Hermite factor such that the attack complexities for given exceed 2, where is the security parameter. We follow the strategies to measure the BKZ complexity in NewHope [7] and Frodo [13]. We review the relations among the root Hermite factor , the block size , and the time complexity for the BKZ algorithm in their paper as follows.
	StyleSpan

	– (pessimistic) can be estimated as 2(about 2CPU cycles), where is some constant. This is an approximate lower bound of the complexity for a single SVP calculation using the sieve algorithm [11, 29–31].
	
	

	1/2(1)
	 /2)

	– = (().
	1/

	From this, if we fix the constant , we can calculate from a given . The best known constant is achieved by applying Grover’s quantum search algorithm to the sieve algorithms [29, 31], which sets =0265.
	Hence, to make the attack using the BKZ algorithm as in Section 4.2.1 infeasible for security parameters = 128, = 192 and = 256, we should set the parameters such that the attack is successful only when 100367, 100270, and 100216, respectively.

	4.2.3 Recommended Parameters
	4.2.3 Recommended Parameters
	We chose parameter sets to achieve an infeasible attack complexity in following order: First, bound according to the time complexity of desired security category, as seen in Section 4.2.2; Second, adjust parameters to make the best attack successful. We also chose parameters to achieve negligible decryption failure probability, in other words as mentioned on Lemma 1, each parameter set should achieve decryption failure probability less than 2, where is the security parameter.
	StyleSpan

	Note on Power-of-Twos. In particular, we set and as power-of-twos. In the LWE and LWR
	′
	attacks, one can reduce the modulus to via modulus switching first and then apply arbitrary attack scenarios. Especially since we use the binary (and even sparse) secrets, the benefits in the considered attacks obtained by the modulus switching overwhelms others with strategies for specific ’s as far as we know. Hence, any particular choice for modulus does not harm the security. Therefore, we set and as power-of-twos to make the rounding procedures efficiently done through the bitwise shift process.
	-

	We chose 16 parameter sets: KEM_CATEGORYx_Ny for Lizard.KEM and CCA_CATEGORYx_Ny for Lizard.CCA, where (x,y) (1,536), (1,663), (3,816), (3,952), (5,1088), (5,1300), and four sets
	for both RLizard.KEM and RLizard.CCA called RING_CATEGORY1, RING_CATEGORY3_N1024, RING_CATEGORY3_N2048, and RING_CATEGORY5. We present the decryption failure probabilitiesand attack complexities of LWE and LWR on our parameter sets in Table 1. The parameter sets are presented below Table 1.
	-
	1

	Table 1: Decryption failure rate and attack complexities of each parameter set for the corresponding scheme: ϵ is the decryption failure probability and LWE and LWR are the time complexity of the best known attacks of LWE and LWR, respectively. The parameter sets RING_CATEGORY1, RING_CATEGORY3_N1024, RING_CATEGORY_N2048, RING_CATEGORY5 can be used for both RLizard.CCA and RLizard.KEM.
	-

	Parameter Set
	Parameter Set
	Parameter Set
	log2 ϵ
	log2 LWE
	log2 LWR

	KEM_CATEGORY1_N536 CCA_CATEGORY1_N536
	KEM_CATEGORY1_N536 CCA_CATEGORY1_N536
	-159.212
	133
	130

	KEM_CATEGORY1_N663 CCA_CATEGORY1_N663
	KEM_CATEGORY1_N663 CCA_CATEGORY1_N663
	-153.500
	131
	147

	KEM_CATEGORY3_N816 CCA_CATEGORY3_N816
	KEM_CATEGORY3_N816 CCA_CATEGORY3_N816
	-304.467
	193
	195

	KEM_CATEGORY3_N952 CCA_CATEGORY3_N952
	KEM_CATEGORY3_N952 CCA_CATEGORY3_N952
	-337.189
	203
	195

	KEM_CATEGORY5_N1088 CCA_CATEGORY5_N1088
	KEM_CATEGORY5_N1088 CCA_CATEGORY5_N1088
	-381.331
	266
	257

	KEM_CATEGORY5_N1300 CCA_CATEGORY5_N1300
	KEM_CATEGORY5_N1300 CCA_CATEGORY5_N1300
	-332.810
	264
	291

	RING_CATEGORY1
	RING_CATEGORY1
	-188.248
	153
	147

	RING_CATEGORY3_N1024
	RING_CATEGORY3_N1024
	-245.897
	195
	195

	RING_CATEGORY3_N2048
	RING_CATEGORY3_N2048
	-305.684
	304
	291

	RING_CATEGORY5
	RING_CATEGORY5
	-305.684
	318
	348

	Parameter Sets of Lizard.CCA
	CCA_CATEGORY1_N536 Security Classification : Category 1 = 536 = 1024 = 2048 = 512 ℓ = 256 = 256 _16_LOG_Q = 5 = 1/2 = 140 CDF_LENGTH = 9 CDF_TABLE = 158 148 118 81 48 22 11 4 1
	One can obtain the exact decryption failure rates, respectively, running a Python code reported at
	1
	github: https://github.com/swanhong/LizardError.

	CCA_CATEGORY1_N663 Security Classification : Category 1 = 663 = 1024 = 1024 = 256 ℓ = 256 = 256 _16_LOG_Q = 6 = 1/4 = 128 CDF_LENGTH = 4 CDF_TABLE = 918 488 74 3 CCA_CATEGORY3_N816 Security Classification : Category 3 = 816 = 1024 = 2048 = 512 ℓ = 384 = 384 _16_LOG_Q = 5 = 1/2 = 200 CDF_LENGTH = 5 CDF_TABLE = 304 231 100 25 4 CCA_CATEGORY3_N952 Security Classification : Category 3 = 952 = 1024 = 2048 = 512 ℓ = 384 = 384 _16_LOG_Q = 5 = 1/4 = 200 CDF_LENGTH = 6 CDF_TABLE = 244 204 120 49
	CCA_CATEGORY5_N1088 Security Classification : Category 5 = 1088 = 2048 = 4096 = 1024 ℓ = 512 = 512 _16_LOG_Q = 4 = 1/2 = 200 CDF_LENGTH = 11 CDF_TABLE = 264 249 214 165 115 72 41 21 10 4 CCA_CATEGORY5_N1300 Security Classification : Category 5 = 1300 = 2048 = 2048 = 512 ℓ = 512 = 512 _16_LOG_Q = 5 = 1/4 = 200 CDF_LENGTH = 12 CDF_TABLE = 526 499 427 330 230 144 82 42 19 8 3 1
	Parameter Sets of Lizard.KEM
	KEM_CATEGORY1_N536 Security Classification : Category 1 = 536 = 1024 = 2048 = 512 ℓ1 = 16 ℓ2 = 16 = 256 _16_LOG_Q = 5 = 1/2 = 140 CDF_LENGTH = 9 CDF_TABLE = 158 148 118 81 48 22 11 4 1
	KEM_CATEGORY1_N663 Security Classification : Category 1 = 663 = 1024 = 1024 = 256 ℓ1 = 16 ℓ2 = 16 = 256 _16_LOG_Q = 6 = 1/4 = 128 CDF_LENGTH = 4 CDF_TABLE = 918 488 74 3 KEM_CATEGORY3_N816 Security Classification : Category 3 = 816 = 1024 = 2048 = 512 ℓ1 = 24 ℓ2 = 16 = 384 _16_LOG_Q = 5 = 1/2 = 200 CDF_LENGTH = 5 CDF_TABLE = 304 231 100 25 4 KEM_CATEGORY3_N952 Security Classification : Category 3 = 952 = 1024 = 2048 = 512 ℓ1 = 24 ℓ2 = 16 = 384 _16_LOG_Q = 5 = 1/4 = 200 CDF_LENGTH = 6 CD
	KEM_CATEGORY5_N1088 Security Classification : Category 5 = 1088 = 2048 = 4096 = 1024 ℓ1 = 32 ℓ2 = 16 = 512 _16_LOG_Q = 4 = 1/2 = 200 CDF_LENGTH = 11 CDF_TABLE = 264 249 214 165 115 72 41 21 10 4 KEM_CATEGORY5_N1300 Security Classification : Category 5 = 1300 = 1024 = 2048 = 512 ℓ1 = 32 ℓ2 = 16 = 512 _16_LOG_Q = 5 = 1/4 = 200 CDF_LENGTH = 12 CDF_TABLE = 526 499 427 330 230 144 82 42 19 8 3 1
	Parameter Sets of RLizard.CCA and RLizard.KEM
	RING_CATEGORY1 Security Classification : Category 1 = 1024 = 1024 = 256 = 256 _16_LOG_Q = 6 = 128 = 128 CDF_LENGTH = 4 CDF_TABLE = 382 247 67 7
	RING_CATEGORY3_N1024 Security Classification : Category 3 = 1024 = 2048 = 512 = 384 _16_LOG_Q = 5 = 256 = 264 CDF_LENGTH = 6 CDF_TABLE = 560 443 219 68 13 RING_CATEGORY3_N2048 Security Classification : Category 3 = 2048 = 2048 = 512 = 384 _16_LOG_Q = 5 = 184 = 164 CDF_LENGTH = 8 CDF_TABLE = 816 720 496 266 111 36 9 2 RING_CATEGORY5 Security Classification : Category 5 = 2048 = 4096 = 1024 = 512 _16_LOG_Q = 4 = 256 = 256 CDF_LENGTH = 10 CDF_TABLE = 310 289 233 162 98 51 23 9 3 1

	5 Implementation Aspects and Performance Figures
	5 Implementation Aspects and Performance Figures
	In this chapter, we describe and estimate performance and resource requirements of implementations on Intel x64 running Linux supporting the GCC compiler and on FPGA hardware.
	-

	5.1 Software Implementation
	5.1 Software Implementation
	This section gives general implementation aspects and computational efficiencies of Lizard.KEM, RLizard.KEM, Lizard.CCA, and RLizard.CCA. We provide a reference and an optimized implementation in ANSI C, compiled with the GCC compiler.
	-

	For Lizard.KEM and RLizard.KEM, the files Lizard.c and RLizard.c are common for implementing the NIST API, including the functions crypto_kem_keypair, crypto_kem_enc and crypto_kem_dec. For Lizard.CCA and RLizard.CCA, the files Lizard.c and RLizard.c are common for implementing the NIST API, including the functions crypto_encrypt_keypair, crypto_encrypt and crypto_encrypt_open. To meet IND-CCA2 security, Lizard.KEM, RLizard.KEM, Lizard.CCA and RLizard.CCA should be used in public key pk as well as secret ke
	-
	-

	To use various parameters in one implementation, we used the directing sentences #if defined and #ifdef. Therefore, we provide various parameters in file params.h. To use each parameter, you must use it by changing the annotation in the file params.h.
	Additional files are provided file randombytes.c to use random values, file sha512.c to use the hash function and library, and file libkeccak.a of TupleHash256 to use variable length output.
	5.1.1 Data Operations
	5.1.1 Data Operations
	Modulus Operation. For Z , rather than storing itself, we store the value (_16_LOG_Q) where the data type of is uint16_t, , the data is stored as the most significant log bits in the 16-bit data space. In other words, we identify Z with the subspace of 16-bit data space of which the components are all zero except the most significant log bits.
	If vectors or matrices (. polynomials) are defined over Z, then the above data storage strategy is applied to each of the components (coefficient).
	Rounding Operation. In this proposal, there are rounding operations ⌊(/) ⌉ over Z for some Z and ⌊(2/) ⌉ over Z2 for some Z. Note that is stored as the most significant log bits in the 16-bit data space, and the rounding output ⌊(/) +05⌋ Z should be stored as the most significant log bits in the same space. Therefore, the operation ⌊(/) ⌉ over Z is done by
	(+ RD_ADD) RD_AND
	where RD_ADD =2/ and RD_AND =2 2/.
	15
	16
	16

	For example, when = 512 and = 2048, can be represented as 0110 1000 1100 0000, RD_ADD =2/2=2will be 0000 0000 0100 0000 and RD_AND =2 2/2=2will be 1111 1111 1000 0000. The operation (+ RD_ADD) RD_AND will be as follows.
	15
	9
	6
	16
	16
	9
	6

	0110 1000 1100 0000
	+ 0000 0000 0100 0000 0110 1001 0000 0000
	0110 1001 0000 0000
	∧ 1111 1111 1000 0000
	0110 1001 0000 0000
	The rounding operation ⌊(2/) ⌉ over Z2 is done in exactly the same way.

	5.1.2 Data Generations
	5.1.2 Data Generations
	Matrix and Vector Generations. As we generate matrices and vectors uniform randomly from the finite set Z, or following distributions, we introduce the algorithms for these random
	StyleSpan

	P
	generations as follows. First, we introduce how to generate the random matrix in Zwith the pseudorandom
	

	
	generator randombytes(). To achieve automatic reduction of a matrix modulo , we set the data type of elements of a matrix as uint16_t, and left shift them _16_LOG_Q bits.
	 Z:
	StyleSpan
	
	

	-For 1 and 1 , randomly generate the ()-th component of with
	randombytes() where the data type of is uint16_t -For 1 and 1 , compute _16_LOG_Q -Output the matrix
	Next, we explain the algorithm of sampling the vector following the distribution (1/2) (. (1/4)). The sampling is used for secret key generation of our Lizard.CCA and Lizard.KEM.
	 s (1/2) :
	-For 0 1, randomly generate two bits 0 1 with randombytes() -Set =1 if =0 and =1, = 1 if = =0, and =0 otherwise, where is an -th component of s
	 s (1/4) :
	-For 0 1, randomly generate three bits 0 1 with randombytes() -Set =1 if = =0 and =1, = 1 if = = =0, and =0 otherwise, where is an -th component of s
	In our Lizard.CPA, we generate an ephemeral secret vector r following the distribution () in the encryption phase. When generating r, we additionally generate the encoded values of r; an array r_idx of integers in [0 1] which denote indices of non-zero components of r, and an integer neg_start in [0 1] which denotes a starting index of 1. If neg_start, then the r_idx[i]-th component of r is 1, and if neg_start, the r_idx[i]-th component of r is 1. We note that a vector r and a tuple of an array and an
	r

	With this array encoding, we can evaluate the multiplication r Zof a matrix Z
	
	

	P
	and the vector r since r_idx contains the index information of non-zero components of r. To be precise, we only read the r_idx[i]-th column of for 0 ; add a if neg_start and subtract a if neg_start. That is, the number of for loops in the algorithm reduces from to .
	 r ()
	-Set =0 and r as a zero vector -Generate a random number [0 1] and a random bit bit 0 1 with randombytes() -If =0, then set =2 bit 1 and += 1 -Repeat the above algorithm until
	 Generation of r_idx
	-Set neg_start =0 and back_position = -For 0 1, set r_idx[neg_start] = and neg_start += 1 if =1, and r_idx[back_position] = and back_position =1 if = 1 -Repeat the above algorithm until neg_start != back_position
	In Lizard.KEM, RLizard.KEM, Lizard.CCA, and RLizard.CCA, the ephemeral secret vector r (. matrix) should be deterministically generated by a Hash function with
	r
	ℓ

	r
	some input. Therefore, rather than using randombytes() whenever it is needed, we generate sufficiently long hash output at once and divide it to several blocks.
	-

	 r (input)
	-Get some input vector input, and compute the long hash value Hash = TupleHash256(input) -Set =0 and r as a zero vector -Compute = Hash % and left shift Hash for log bits -Compute bit = Hash % 2 and left shift Hash for a bit -If =0, then set =2 bit 1 and += 1 -Repeat the above algorithm until
	The above algorithm r (input) is a case of Lizard.CCA and RLizard.CCA. For Lizard.KEM and RLizard.KEM, we sample the matrix (input) where each column vector of is sampled from the above algorithm.
	In the key generation phases of our schemes, we sample errors through the inversion sampling which uses a precomputed table for a discrete cumulative density function (CDF) over a small interval. We name process the Sample_DG() algorithm. The output distribution from this algorithm is a discrete bounded symmetric distribution which is very close to the discrete Gaussian distribution with respect to the Rényi divergence. More precisely, we preset a positive integer array CDF_TABLE of the length TABLE_LENGTH
	-

	 sample Sample_DG()
	-Generate random numbers rnd [0 CDF_TABLE[TABLE_LENGTH -1]] and sign 0 1 with
	randombytes() where the data type of both numbers is uint16_t -Find the smallest integer sample [0 TABLE_LENGTH 1] such that rnd CDF_TABLE[sample] -Compute sample = ((sign) sample)+ sign, , flip sample if sign =0 -Output sample
	Polynomial Generations. As a polynomial corresponds to a vector a =(01 1) bijectively, we can match the polynomial ring with the vector space Z, and the quotient polynomial ring with the vector space Z. Therefore, we may regard the notation of a polynomial generation
	-
	StyleSpan
	StyleSpan

	P
	as a vector generation.
	1
	∑
	 = a =(01 1) Z=0
	
	

	1
	∑
	 = a =(01 1) Z
	
	

	 =0
	From the vector-polynomial correspondence, we can regard polynomial generation as vector generation without specifying the bijection all the time. For example, we introduce the secret polynomial generation algorithm as follows:
	-

	 ()
	-Set =0 and s as a zero vector -Generate a random number [0 1] and a random bit bit 0 1 with randombytes() -If =0, then set =2 bit 1 and += 1 -Repeat the above algorithm until -Identify the vector s with the polynomial thorough the vector-polynomial correspondence
	We also generate encoded values of , an array s_idx of integers in [0] and an integer neg_start.
	 Generation of s_idx
	-Set neg_start =0 and back_position = -For 0 1, set s_idx[neg_start] = and neg_start += 1 if =1, and s_idx[back_position] = and back_position =1 if = 1 -Repeat the above algorithm until neg_start != back_position

	5.1.3 Computational Efficiency
	5.1.3 Computational Efficiency
	We report an optimized version of implementation tested under the following platform.
	Linux: PC running Linux Ubuntu 14.04.3 LTS x86_64
	CPU: Intel Xeon E5-2640 v3 at 2.60GHz, Octa core
	Compiler: GCC 4.8.4 using gcc -O3 -fomit-frame-pointer -msse2avx -mavx2 -march=native -std=c99
	For Lizard.KEM, RLizard.KEM, Lizard.CCA and RLizard.CCA, the parameter set supplies 128-bit, 192-bit and 256-bit security against all known quantum attacks. We present the parameter sets for various cases.
	-

	Operations
	Operations
	Operations
	Parameter
	SharedSecret (bytes)
	Ciphertext (bytes)
	Public Key (bytes)
	Private Key (bytes)

	Lizard.KEM
	Lizard.KEM
	KEM_CATEGORY1_N536
	32
	17 696
	1 130 496
	8 608

	KEM_CATEGORY1_N663
	KEM_CATEGORY1_N663
	32
	10 896
	1 390 592
	10 640

	KEM_CATEGORY3_N816
	KEM_CATEGORY3_N816
	48
	26 928
	1 720 320
	19 632

	KEM_CATEGORY3_N952
	KEM_CATEGORY3_N952
	48
	31 280
	1 998 848
	22 896

	KEM_CATEGORY5_N1088
	KEM_CATEGORY5_N1088
	64
	35 904
	4 587 520
	34 880

	KEM_CATEGORY5_N1300
	KEM_CATEGORY5_N1300
	64
	42 688
	2 727 936
	41 664

	RLizard.KEM
	RLizard.KEM
	RING_CATEGORY1
	32
	2 080
	4 096
	385

	RING_CATEGORY3_N1024
	RING_CATEGORY3_N1024
	48
	4 144
	4 096
	641

	RING_CATEGORY3_N2048
	RING_CATEGORY3_N2048
	48
	8 240
	8 192
	625

	RING_CATEGORY5
	RING_CATEGORY5
	64
	8 256
	8 192
	769

	Table 2: Size of Lizard.KEM and RLizard.KEM
	31
	Operations
	Operations
	Operations
	Parameter
	KeyGen (ms)
	Enc (ms)
	Dec (ms)

	TR
	KEM_CATEGORY1_N536
	75895
	0324
	0351

	TR
	KEM_CATEGORY1_N663
	92566
	0362
	0403

	Lizard.KEM
	Lizard.KEM
	KEM_CATEGORY3_N816
	119728
	0590
	0666

	KEM_CATEGORY3_N952
	KEM_CATEGORY3_N952
	138215
	0676
	0794

	TR
	KEM_CATEGORY5_N1088
	306368
	0846
	0905

	TR
	KEM_CATEGORY5_N1300
	183198
	0826
	0896

	TR
	RING_CATEGORY1
	0458
	0040
	0044

	RLizard.KEM
	RLizard.KEM
	RING_CATEGORY3_N1024
	0519
	0077
	0088

	RING_CATEGORY3_N2048
	RING_CATEGORY3_N2048
	0889
	0102
	0119

	RING_CATEGORY5
	RING_CATEGORY5
	0933
	0137
	0161

	Table 3: Performance of Lizard.KEM and RLizard.KEM
	Operations
	Operations
	Operations
	Parameter
	Plaintext (bytes)
	Ciphertext (bytes)
	Public Key (bytes)
	Private Key (bytes)

	Lizard.CCA
	Lizard.CCA
	CCA_CATEGORY1_N536
	32
	1 648
	1 622 016
	137 216

	CCA_CATEGORY1_N663
	CCA_CATEGORY1_N663
	32
	983
	1 882 112
	169 728

	CCA_CATEGORY3_N816
	CCA_CATEGORY3_N816
	48
	2 496
	2 457 600
	313 344

	CCA_CATEGORY3_N952
	CCA_CATEGORY3_N952
	48
	2 768
	2 736 128
	365 568

	CCA_CATEGORY5_N1088
	CCA_CATEGORY5_N1088
	64
	3 328
	6 553 600
	557 056

	CCA_CATEGORY5_N1300
	CCA_CATEGORY5_N1300
	64
	3 752
	3 710 976
	665 600

	RLizard.CCA
	RLizard.CCA
	RING_CATEGORY1
	32
	2 208
	4 096
	257

	RING_CATEGORY3_N1024
	RING_CATEGORY3_N1024
	48
	4 272
	4 096
	513

	RING_CATEGORY3_N2048
	RING_CATEGORY3_N2048
	48
	8 496
	8 192
	369

	RING_CATEGORY5
	RING_CATEGORY5
	64
	8 512
	8 192
	513

	Table 4: Size of Lizard.CCA and RLizard.CCA
	Operations
	Operations
	Operations
	Parameter
	KeyGen (ms)
	Enc (ms)
	Dec (ms)

	TR
	CCA_CATEGORY1_N536
	156320
	0031
	0034

	TR
	CCA_CATEGORY1_N663
	176570
	0032
	0036

	Lizard.CCA
	Lizard.CCA
	CCA_CATEGORY3_N816
	250555
	0052
	0064

	CCA_CATEGORY3_N952
	CCA_CATEGORY3_N952
	275555
	0057
	0072

	TR
	CCA_CATEGORY5_N1088
	663879
	0062
	0086

	TR
	CCA_CATEGORY5_N1300
	392828
	0071
	0101

	TR
	RING_CATEGORY1
	0449
	0036
	0039

	RLizard.CCA
	RLizard.CCA
	RING_CATEGORY3_N1024
	0513
	0057
	0075

	RING_CATEGORY3_N2048
	RING_CATEGORY3_N2048
	0875
	0078
	0093

	RING_CATEGORY5
	RING_CATEGORY5
	0920
	0108
	0135

	Table 5: Performance of Lizard.CCA and RLizard.CCA
	32
	The code uses only plain C instructions, without assembly nor SIMD instructions. For optimized speed, we used the loop fusion and loop unrolling methods. In optimized implementation, the code performs addition and subtraction operations to reduce the number of multiplication operations. For example, the optimized code performs the operation using r_idx instead of r.
	On the platform above, we have presented the required space of Lizard.KEM and RLizard.KEM in Table 2 and the timing results in Table 3. We have also presented the required space of Lizard.CCA and RLizard.CCA in Table 4 and the timing results in Table 5. A certain amount of error is possible in Table 3 and Table 5 when implementing Lizard.KEM, RLizard.KEM, Lizard.CCA and RLizard.CCA.
	-

	5.2 Hardware Implementation
	5.2 Hardware Implementation
	In this section, we propose the hardware architecture for Lizard Public Key Encryption and report the performance of the FPGA, which we implemented using Lizard.CPA and RLizard.CPA. These two Lizard modules mainly consist of a memory part and an addition part. Since the portion of the addition part is very small, while that of the memory part is very large, we decided to store only the data needed by calculation in the memory. Therefore, the operation of the module includes the data input/output process.
	The advantage of Lizard PKE from the hardware implementation viewpoint is the simple calculation and ease of resource sharing. Since the value is 2, setting the register Sum for storage as 10-bit only has the effect of becoming a modulus by itself. Since the key calculation is an accumulation that is a repetition of addition and subtraction, the calculation part is very simple, except for the storage space such as the memory. This means not only that the area is small but also that high-frequency operation
	10

	On the other hand, it requires a large storage space such as a cursor memory since the parameters are large, and the processes of inputting/outputting in a common size (32-bit word) and writing them to memory become complex because the volumes of data can differ considerably. One must also consider the fact that the use of memory is essential because of the large storage space.
	-

	Parameter of Lizard.CPA and RLizard.CPA For Lizard.CPA, the classical parameter set supplies 128-bit security against the classical attacks, but not enough against quantum attacks. The recommended parameter set provides 128-bit security against all known quantum attacks. The paranoid parameter set would remain secure and have 128-bit security against quantum attacks even if a remarkable improvement towards solving SVP arises. We present the parameter sets for the case that = (1/2) and = (128). We fix the
	-

	Operations −1
	LizardCPA Classical
	LizardCPA Classical
	LizardCPA Classical
	840
	544
	10
	8
	171

	LizardCPA Recommended
	LizardCPA Recommended
	940
	608
	10
	8
	182

	LizardCPA Paranoid
	LizardCPA Paranoid
	1450
	736
	10
	8
	160

	RLizard.CPA
	RLizard.CPA
	1024
	1024
	10
	8
	154

	Table 6: Parameter of Lizard.KEM and RLizard.KEM
	We have implemented based on the recommended parameter of Lizard.CPA. Architecture of Lizard.CPA The Fig. 1 shows the hardware architecture of Lizard.CPA.
	Fig. 1: Data path of Lizard.CPA
	In the Fig. 1, Sel_S, Sel_M, Sel_E, Sel_A, and Sel_C are the multiplexers used to select the elements of , M, , and c. The register Sum is the space for the accumulated data, while W is the storage space in which the final accumulated results are grouped into a 32-bit word. The adder is used to accumulate the value of the register Sum, the initial value of which is one of the inputs in the red box at the beginning of accumulation. The other input of the adder determines whether the output of Sel_S (or r)
	Lizard.CPA requires three counters to count , ℓ, and , and the proposed design uses only one adder through resource sharing.
	Finite State Machine of Lizard.CPA
	Key Generation. The process begins with the inputting of all the values of . The portions of 1, –1, and 0 of are determined by the input from the outside (i.e. the same as for r).
	Figure
	Fig. 2: Finite state machine for generating a key in Lizard.CPA
	When the Lizard.CPA module is run in the key generation mode while is being input, it receives and in words per row through A_IN and E_IN. The count in the module is incremented when a word is input, and the data are stored in the memory with the count value as the address. If is input before the module starts, the address value of the word is specified at the same time for writing the data. However, since and use the internal counter as the address value, they must be input in sequence when they are
	Encryption. The process begins by inputting the R and M values in advance.
	Figure
	Fig. 3: Finite state machine for encryption of Lizard.CPA
	When the module starts in the encryption mode, the module receives the elements of in units of the row to calculate 1, and only one element is input into each word as the elements are input in units of words. As such, in the first of the columns and elements in the selected column are selected one at a time from the top. This contrasts with the fact that , , and
	When the module starts in the encryption mode, the module receives the elements of in units of the row to calculate 1, and only one element is input into each word as the elements are input in units of words. As such, in the first of the columns and elements in the selected column are selected one at a time from the top. This contrasts with the fact that , , and
	are input or output in rows, and that two elements are transmitted into a word, during the key generation process. An element of 1 is finally calculated by accumulating the calculation with r, which was input before the module started, whenever was input in the column, in the register Sum. The initial value of calculation of the 1 element is 2, the accumulated value is maintained in 10 bits, and the final accumulated value is obtained from the top 8 bits by discarding the bottom 2 bits. Each time four elem

	Decryption. The process begins by inputting , 1, and 2 values in advance.
	Figure
	Fig. 4: Finite state machine for decryption of Lizard.CPA
	The element of 2 is initialized with the value of the register Sum by INIT_M, and CAL_M performs the accumulation using the and 1 values for cycles. The top two bits of the final accumulated value are exclusive OR’ ed to 1bitof M. While the process is repeated l times, 32 bits of M are stored in the WR_M step. Using the dual port memory means reading or writing the data of up to two data at a time. The limitation makes it necessary to use INIT_M and WR_M. If there is no limitation on data reading or writi
	Architecture of RLizard.CPA The Fig. 5 shows the hardware architecture of RLizard.CPA.
	As with Lizard.CPA, Sel_S, Sel_E, Sel_A and Sel_C in the Fig. 5 are the multiplexers used to select the elements of , M, , and c one at a time by selecting 2-bit, 1-bit, 4-bit, 10-bit and 8-bit. However, the method of Sel_M is different from that of Lizard.CPA since RLizard.CPA stores one byte of each word of in the available space. In RLizard.CPA, only the difference of the coefficient with a value of -1 or 1 of or r is stored in Mem1, and the coefficients of , , and 1 are stored in Mem0. Let’ s assume
	Figure
	Fig. 5: Data path of RLizard.CPA
	next cycle. It also reads the next difference data in the same cycle to be ready for the following clock cycle. It reads only the coefficient data in the last cycle. It differs from Lizard.CPA in that it can read and use it as the initial value during the key generation cycle since it reads only the difference data in the first cycle. For simplicity, the Fig. 5 also omits the step in which 9-bit data input are converted into two 4-bit data of -7 to 7 and stored in the memory. Likewise, the register Sum sto
	Finite State Machine of RLizard.CPA Unlike Lizard.CPA, there is only one finite state machine in RLizard.CPA.
	-

	Figure
	Fig. 6: Finite state machine in RLizard.CPA
	All four steps perform multiplication of two -degree polynomials through state transition. Although the process usually requires about cycles, the use of pipe lining requires only 129 clock
	All four steps perform multiplication of two -degree polynomials through state transition. Although the process usually requires about cycles, the use of pipe lining requires only 129 clock
	-
	2

	cycles. INIT initially reads only the difference data and the data needed for initialization (for key generation, M for encryption 1, and 2 for decryption). CAL reads the difference data and the coefficient data, while LAST reads only the coefficient data. The module performs addition or subtraction only in CAL and LAST, which read the coefficient data from the memory. The LAST block also groups two of the final results at a time and outputs them to the outside.

	Performance
	Latency. The following table shows the performance of the two Lizard modules.
	Operations
	Operations
	Operations
	Type
	Computation
	Performance (T(I) = 1 T(O) = 1)
	Latency

	@50MHz
	@50MHz
	@100MHz

	Lizard.CPA
	Lizard.CPA
	KeyGen
	(+ ℓ) () + ℓ(+ ())
	150.5 M cycles
	3 s
	1.5 s

	Enc
	Enc
	(+ ℓ) ()
	829.4 k cycles
	16.6 ms
	8.3 ms

	TR
	Dec
	ℓ(+ 1) + ℓ/32
	155.9 k cycles
	3.1 ms
	1.6 ms

	RLizard.CPA
	RLizard.CPA
	128(+ (1 + ())/2)
	131.2 k cycles
	2.6 ms
	1.3 ms

	Table 7: Latency of Lizard.CPA and RLizard.CPA
	T(I) and T(O) represent the delay of input and output, respectively. The operating times of all four steps (Key Generation, Encryption0, Encryption1, Decryption) are the same in RLizard.CPA. However, when the Lizard.CPA module is run in Key Generation mode or Encryption mode, it receives , and . Therefore it outputs a signal when it is time to get the input. If it reads the data in same clock cycle after it gets the signal, ()=1. We performed the number of Cycles and Latency as ()=1 and ()=1. The table
	Area. The GE (Gate Equivalent) Table 8 is measured based on the implementation of the Samsung 65nm Library. It is the performance at 50MHz Frequency and much the same as the one at 100MHz Frequency. It is expected to have a similar area when operated on higher frequencies.
	Table
	TR
	Lizard.CPA
	RLizard.CPA

	Area
	Area
	Size of Memory Space
	Area
	Size of Memory Space

	total
	total
	storage space
	total
	storage space

	memory
	memory
	646.9 k
	644.7 k
	0x3000 words
	99.7 k
	98.3 k
	1k words

	register
	register
	3321.4 k
	3319.5 k
	0x2740 words
	204.1 k
	202.7 k
	512 words + 64*22-bit

	Table 8: Area of Lizard.CPA and RLizard.CPA

	6 Advantages and limitations
	6 Advantages and limitations
	In this section, we present our implementations of our scheme for special purposes. These results show that Lizard is flexible and efficient for various usage. The device we used in Section 6.1 was Samsung Galaxy S7. In Section 6.2 and Section 6.3, the implementations were written in
	In this section, we present our implementations of our scheme for special purposes. These results show that Lizard is flexible and efficient for various usage. The device we used in Section 6.1 was Samsung Galaxy S7. In Section 6.2 and Section 6.3, the implementations were written in
	C, and performed on a Linux environment containing an Intel Xeon E5-2620 CPU running at 2.10GHz with Turbo Boost and Multithreading disabled. We used AVX2 vector instructions for optimizing the implementation of our schemes. The version of gcc compiler is 5.4.0, and we compiled our C reference implementation with flags -O3 -fomit-frame-pointer -mavx2 -march=native -std=c99 for the x86_64 architecture.

	Through this section, the performances of key generation (encryption and decryption) of our schemes were reported as a mean value across 100 (100000) measurements. We recorded public key sizes of our schemes used in our software.
	2

	6.1 Application on Smartphone
	6.1 Application on Smartphone
	Since the smartphone is one of the most commonly used devices, it is natural to consider a mobile implementation. We have implemented Lizard.CPA as an Android application. The parameters of the implementation satisfy 128-bit quantum security with bigger decryption failure probability. The performance of the application was comparable to computer implementation. The application used a small amount of memory (less than 20 megabytes), and used only one core of CPU. Therefore, we can see that Lizard is suitable
	-

	Table 9: Parameter of Lizard.CPA on Android application implementation
	
	
	
	
	log
	log
	−1
	
	r

	960
	960
	608
	10
	8
	182
	1/2
	128

	Table 10: Performance of Lizard.CPA on Android application implementation
	KeyGen
	KeyGen
	KeyGen
	Enc
	Dec

	(ms)
	(ms)
	(ms)
	(ms)

	288.618
	288.618
	0.0770
	0.0229

	6.2 Suitability for Small Message Space
	6.2 Suitability for Small Message Space
	Lizard can be utilized on low-end devices. We implemented our Lizard.CPA scheme with 32-bit message space under 128-bit classical security (119-bit quantum security). We used classical parameters suggested in Table 11, and set ℓ = 32 to specify the message space. In general case, the public key size is 741kB, and an encryption takes only 0009 milliseconds. The public key size can be reduced to 46kB if we replace the public matrix by a 256-bit seed that generates , and an encryption gets slower to 0052 mill
	-

	erate matrix in our public key from a 256-bit seed with Pseudo-Random Generator (PRG)
	erate matrix in our public key from a 256-bit seed with Pseudo-Random Generator (PRG)
	2
	We can gen

	and store only the seed. To implement this case, we use AES128 in the ECB mode in our implementation
	to expand a 256-bit seed, enabling the AES-NI instruction.
	Table 11: Parameter of Lizard.CPA with 32-bit message space with 128-bit classical security
	
	
	
	
	log
	log
	−1
	
	r
	ϵ

	724
	724
	480
	11
	9
	303
	1/2
	128
	2−154

	Table 12: Performance of Lizard.CPA with 32-bit message space with 128-bit classical security
	Table
	TR
	ctxt (bytes)
	pk(bytes)
	sk (bytes)
	KeyGen(ms)
	Enc (ms)
	Dec (ms)

	 as matrix (as seed)
	 as matrix (as seed)
	576
	741,376 (46,368)
	3,840
	4.749 (1.891)
	0.009 (0.052)
	0.001

	6.3 Additive Homomorphic Encryption
	6.3 Additive Homomorphic Encryption
	Lizard can also be used as a post-quantum alternative for additive homomorphic encryption (AHE) which support the bounded number of homomorphic additions. Lizard.CPA can be naturally seen as an additive homomorphic encryption supporting the bounded number of additions together with the following addition procedure:
	∑
	– LizardCPAAdd(c1 c): Output c Z
	+ℓ

	=1
	Corollary 1 (Correctness). The additive homomorphic encryption described above works correctly for homomorphic additions as long as the following inequality holds for security parameter : []
	-

	P
	StyleSpan

	 ⟨e r⟩ + ⟨s f⟩ negl()
	2 2
	where e , r (), s (), and f Z.
	StyleSpan
	
	StyleSpan
	/

	Proof. This is easily proved by Lemma 1 and the triangle inequality.
	Parameters for Additive Homomorphic Encryption. It is harder to meet the correctness condition in Corollary 1 than the plain Lizard scheme. We suggest a parameter set for 128-bit quantum security that allows 100 additions as Table 13.
	Table 13: Parameter for additive homomorphic encryption
	
	
	
	
	log
	log
	−1
	
	r

	1024
	1024
	816
	16
	14
	21000
	1/2
	136

	For this parameter set, the decryption failure probability after 100 homomorphic additions is approximately 2.
	29

	Previously proposed additive homomorphic encryption schemes [27, 35, 36] of which performances are summarized in [19]can afford much more homomorphic additions with fixed param
	-
	3
	-

	also suggested an AHE scheme with excellent performances, but their parameters are turned out to be insecure [23].
	3
	In [19], they

	eter sets than ours. However, when one needs only bounded number of homomorphic additions, Lizard might provide a better trade-off so that it can be faster than other AHE schemes. For Lizard which supports 100 homomorphic additions, an encryption, decryption, and homomorphic addition take only 0014, 0012, and 00005 milliseconds, which are at least 147, 333, and 4 times faster than all of those of AHE schemes in [27, 35, 36], respectively. We present a sample result for 256-bit messages and 128-bit quantum s
	Table 14: Performance of Lizard with 256-bit messages which supports 100 homomorphic additions
	Table
	TR
	ctxt (bytes)
	pk (bytes)
	sk (bytes)
	KeyGen (ms)
	Enc (ms)
	Dec (ms)
	Add (ms)

	 as matrix (as seed)
	 as matrix (as seed)
	1,876
	2,195,456 (524,320)
	52,224
	25.923 (21.444)
	0.014 (0.092)
	0.012
	0.0005

	References
	References
	1.
	1.
	1.
	Martin Albrecht, Florian Göpfert, Fernando Virdia, and Thomas Wunderer. Revisiting the Expected Cost of Solving uSVP and Applications to LWE. 2017. to appear.

	2.
	2.
	Martin R Albrecht. On dual lattice attacks against small-secret lwe and parameter choices in helib and seal. IACR Cryptology ePrint Archive, 2017:047, 2017.

	3.
	3.
	Martin R Albrecht, Carlos Cid, Jean-Charles Faugere, Robert Fitzpatrick, and Ludovic Perret. On the complexity of the BKW algorithm on LWE. Designs, Codes and Cryptography, 74(2):325–354, 2015.

	4.
	4.
	Martin R Albrecht, Jean-Charles Faugere, Robert Fitzpatrick, and Ludovic Perret. Lazy modulus switching for the BKW algorithm on LWE. In International Workshop on Public Key Cryptography, pages 429–445. Springer, 2014.

	5.
	5.
	Martin R Albrecht, Robert Fitzpatrick, and Florian Göpfert. On the efficacy of solving LWE by reduction to unique-SVP. In International Conference on Information Security and Cryptology, pages 293–310. Springer, 2013.

	6.
	6.
	Martin R Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of learning with errors. Journal of Mathematical Cryptology, 9(3):169–203, 2015.

	7.
	7.
	Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-quantum Key Exchange—A New Hope. In 25th USENIX Security Symposium (USENIX Security 16), pages 327–343, Austin, TX, August 2016. USENIX Association.

	8.
	8.
	Joël Alwen, Stephan Krenn, Krzysztof Pietrzak, and Daniel Wichs. Learning with rounding, revisited. In Advances in Cryptology–CRYPTO 2013, pages 57–74. Springer, 2013.

	9.
	9.
	Shi Bai and Steven D Galbraith. Lattice decoding attacks on binary LWE. In Australasian Conference on Information Security and Privacy, pages 322–337. Springer, 2014.

	10.
	10.
	Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and lattices. In Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages 719–737. Springer, 2012.

	11.
	11.
	Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in nearest neighbor searching with applications to lattice sieving. In Proceedings of the Twenty-Seventh Annual ACMSIAM Symposium on Discrete Algorithms, pages 10–24. SIAM, 2016.
	-

	12.
	12.
	Andrej Bogdanov, Siyao Guo, Daniel Masny, Silas Richelson, and Alon Rosen. On the hardness of learning with rounding over small modulus. In Theory of Cryptography Conference, pages 209–224. Springer, 2016.

	13.
	13.
	Joppe Bos, Craig Costello, Leo Ducas, Ilya Mironov, Michael Naehrig, Valeria Nikolaenko, Ananth Raghunathan, and Douglas Stebila. Frodo: Take off the Ring! Practical, Quantum-Secure Key Exchange from LWE. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, CCS ’16, pages 1006–1018, New York, NY, USA, 2016. ACM.
	-
	-

	14.
	14.
	Zvika Brakerski, Craig Gentry, and Shai Halevi. Packed ciphertexts in LWE-based homomorphic encryption. In Public-Key Cryptography–PKC 2013, pages 1–13. Springer, 2013.

	15.
	15.
	Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. Classical hardness of learning with errors. In Proceedings of the forty-fifth annual ACM symposium on Theory of computing, pages 575–584. ACM, 2013.

	16.
	16.
	Yuanmi Chen and Phong Q Nguyen. BKZ 2.0: Better lattice security estimates. In International Conference on the Theory and Application of Cryptology and Information Security, pages 1–20. Springer, 2011.
	-

	17.
	17.
	Jung Hee Cheon, Kyoohyung Han, Jinsu Kim, Changmin Lee, and Yongha Son. Practical post-quantum public key cryptosystem based on LWE. In the 19th Annual international Conference on Information Security and Cryptology, 2016. Available at .
	https://eprint.iacr.org

	18.
	18.
	Jung Hee Cheon, Duhyeong Kim, Joohee Lee, and Yong Soo Song. Lizard: Cut off the tail!//practical post-quantum public-key encryption from lwe and lwr. IACR Cryptology ePrint Archive, 2016:1126, 2016.

	19.
	19.
	Jung Hee Cheon, Hyung Tae Lee, and Jae Hong Seo. A new additive homomorphic encryption based on the Co-ACD problem. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, pages 287–298. ACM, 2014.

	20.
	20.
	Alexander W Dent. A designer’s guide to kems. Lecture notes in computer science, pages 133–151, 2003.

	21.
	21.
	Alexandre Duc, Florian Tramèr, and Serge Vaudenay. Better algorithms for LWE and LWR. In Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages 173–202. Springer, 2015.

	22.
	22.
	Léo Ducas and Daniele Micciancio. Fhew: Bootstrapping homomorphic encryption in less than a second. In Advances in Cryptology–EUROCRYPT 2015, pages 617–640. Springer, 2015.

	23.
	23.
	Pierre-Alain Fouque, Moon Sung Lee, Tancrède Lepoint, and Mehdi Tibouchi. Cryptanalysis of the Co-ACD assumption. In Annual Cryptology Conference, pages 561–580. Springer, 2015.

	24.
	24.
	Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric encryption schemes. In Crypto, volume 99, pages 537–554. Springer, 1999.

	25.
	25.
	Nicolas Gama and Phong Q Nguyen. Predicting lattice reduction. In Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages 31–51. Springer, 2008.

	26.
	26.
	26.
	Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of the fujisaki-okamoto transformation. Cryptology ePrint Archive, Report 2017/604, 2017. /
	http://eprint.iacr.org/2017

	604.

	27.
	27.
	Marc Joye and Benoit Libert. Efficient cryptosystems from 2-th power residue symbols. In Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages 76–92. Springer, 2013.

	28.
	28.
	Paul Kirchner and Pierre-Alain Fouque. An improved BKW algorithm for LWE with applications to cryptography and lattices. In Annual Cryptology Conference, pages 43–62. Springer, 2015.

	29.
	29.
	Thijs Laarhoven. Search problems in cryptography. PhD thesis, PhD thesis, Eindhoven University of Technology, 2015. , 2015.
	http://www.thijs.com/docs/phd-final.pdf

	30.
	30.
	Thijs Laarhoven. Sieving for shortest vectors in lattices using angular locality-sensitive hashing. In Annual Cryptology Conference, pages 3–22. Springer, 2015.

	31.
	31.
	Thijs Laarhoven, Michele Mosca, and Joop Van De Pol. Finding shortest lattice vectors faster using quantum search. Designs, Codes and Cryptography, 77(2-3):375–400, 2015.

	32.
	32.
	Mingjie Liu, Xiaoyun Wang, Guangwu Xu, and Xuexin Zheng. Shortest lattice vectors in the presence of gaps. IACR Cryptology ePrint Archive, 2011:139, 2011.

	33.
	33.
	Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over rings. In Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages 1–23. Springer, 2010.

	34.
	34.
	Daniele Micciancio and Oded Regev. Lattice-based cryptography. In Post-quantum cryptography, pages 147–191. Springer, 2009.

	35.
	35.
	Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. Can homomorphic encryption be practical? In Proceedings of the 3rd ACM workshop on Cloud computing security workshop, pages 113–124. ACM, 2011.
	-

	36.
	36.
	Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In International Conference on the Theory and Applications of Cryptographic Techniques, pages 223–238. Springer, 1999.
	-

	37.
	37.
	Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem. In Proceedings of the forty-first annual ACM symposium on Theory of computing, pages 333–342. ACM, 2009.

	38.
	38.
	Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and composable oblivious transfer. In Annual International Cryptology Conference, pages 554–571. Springer, 2008.

	39.
	39.
	Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In Proceedings of the fortieth annual ACM symposium on Theory of computing, pages 187–196. ACM, 2008.

	40.
	40.
	Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In Proceedings of the Thirty-seventh Annual ACM Symposium on Theory of Computing, STOC ’05, pages 84–93, New York, NY, USA, 2005. ACM.

	41.
	41.
	Markus Rückert and Michael Schneider. Estimating the security of lattice-based cryptosystems. Cryptology ePrint Archive, Report 2010/137, 2010. .
	-
	http://eprint.iacr.org/2010/137

	42.
	42.
	Claus-Peter Schnorr and Martin Euchner. Lattice basis reduction: improved practical algorithms and solving subset sum problems. Mathematical programming, 66(1-3):181–199, 1994.

	43.
	43.
	Ehsan Ebrahimi Targhi and Dominique Unruh. Quantum Security of the Fujisaki-Okamoto and OAEP Transforms. Cryptology ePrint Archive, Report 2015/1210, 2015. / 1210.
	http://eprint.iacr.org/2015

